五年级奥数讲义余数问题
五年级奥数:余数问题
五年级奥数:余数问题在整数的除法中,只有能整除与不能整除两种情况。
当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。
(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。
例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。
注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。
注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
5122除以一个两位数得到的余数是66,求这个两位数。
分析与解:由性质(2)知,除数×商=被除数-余数。
5122-66=5056,5056应是除数的整数倍。
将5056分解质因数,得到5056=26×79。
由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。
被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。
小学数学五年级《带余数的除法》奥数教材教案
小学五年级奥数教材:带余数的除法前面我们讲到除法中被除数和除数的整除问题.除此之外,例如:16÷3=5…1,即16=5×3+1.此时,被除数除以除数出现了余数,我们称之为带余数的除法。
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r。
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商).用带余除式又可以表示为a÷b=q…r,0≤r<b。
例1 一个两位数去除251,得到的余数是41.求这个两位数。
分析这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。
解:∵被除数÷除数=商…余数,即被除数=除数×商+余数,∴251=除数×商+41,251-41=除数×商,∴210=除数×商。
∵210=2×3×5×7,∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70大于余数41.所以除数是42或70.即要求的两位数是42或70。
例2 用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?解:∵被除数=除数×商+余数,即被除数=除数×40+16。
由题意可知:被除数+除数=933-40-16=877,∴(除数×40+16)+除数=877,∴除数×41=877-16,除数=861÷41,除数=21,∴被除数=21×40+16=856。
答:被除数是856,除数是21。
例3 某年的十月里有5个星期六,4个星期日,问这年的10月1日是星期几?解:十月份共有31天,每周共有7天,∵31=7×4+3,∴根据题意可知:有5天的星期数必然是星期四、星期五和星期六。
五年级奥数第2讲-尾数和余数
第2讲尾数和余数一、知识要点自然数的末位数字称为自然数的尾数;除法中,被除数减去商与除数的差叫作余数。
尾数和余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。
二、精讲精练【例题1】(1)9×9×9×……×9(51个9相乘)积的个位数是几?(2) 0.3×0.3×0.3×……0.3(204个0.3相乘)×25×25×25×……×25(1001个25)的个位数字是几?练习1:(1)61×61×61×……×61(2001个61相乘)积的尾数是几?(2)(31×36)×(31×36)×……×(31×36)(共50个)积的尾数是几?(3)0.7×0.7×0.7×……×0.7(2002个0.7)×0.6×0.6×0.6×……×0.6(2002个0.6)积的尾数是多少?【例题2】 3×3×3×……3(2006个3相乘)+ 4×4×4×……4(2007个4相乘)的尾数是几?练习2:(1)5×5×5×......5(2000个5相乘)+ 6×6×6×......6(2001个6相乘)+7×7×7× (7)(2002个7相乘)的尾数是几?(2)52×52×52×……52(33个52相乘)-32×32×32×……32(29个32相乘)的尾数是几?【例题3】 444……4(100个4)÷6,当商是整数时,余数是几?练习3:当商是整数时,余数各是几?(1)666……6(50个6)÷4 (2)888……8(80个8)÷7(3)444……4(1000个4)÷74 (4)111……1(1000个1)÷5【例题4】有一列数,前两个数是3与4,从第3个数开始,每一个数都是前面两个数的和。
小学奥林匹克数学 竞赛数学 五年级 第16讲-余数
知识点回顾一、替换求余:可加性、可减性以及可乘性二、特性求余:例如2、3、4、5、7、8、9、11、13、99等1111除以一个两位数,余数是66,求这个两位数.1111661045-=104551119=⨯⨯1045的约数大于余数66 这个两位数是9521421421421421个(1)除以4和125的余数分别为多少?(2)除以9和11的余数分别是多少? 21808808808808个(1)一个数除以4的余数只需考虑它的末两位除以4的余数. 除以4余121除以4余1 (2)一个数除以9的余数等于它的各位数字之和除以9的余数.(88)21336+⨯=除以9余3一个数除以11的余数等于奇数位数字和减去偶数位数字和的差除以11的余数. (88)11176+⨯=(88)10160+⨯=除以11余5 176-160=16 16÷11=1余5一个数除以125的余数只考虑末三位除以125的余数. 421125346÷=除以125余46一年有365天,轮船制造厂每天都可以生产零件1234个.年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件? 1234196418÷=36519194÷=1234365⨯18472⨯=72除以19余15 最后一包有15个零件.67222221⨯⨯⨯⨯-个自然数的个位数字是多少? 22⨯222⨯⨯2222⨯⨯⨯22222⨯⨯⨯⨯2 ……个位 2 4 8 6 267除以4余36722222⨯⨯⨯⨯个的个位数字是8 个位数字就是729一年有365天,轮船制造厂每天都可以生产零件1234个。
年终将这些零件按19个一包的规格打包,最后一包不够19个。
请问:最后一包有多少个零件?20072007200720071232006+++⋅⋅⋅+算式计算结果的个位数字是多少?1、5、6、10的2007次方的个位数字就是1,5,6,0.1次方2次方3次方4次方5次方6次方…2007次方2 2 4 8 6 2 4 (8)3 3 9 7 1 3 9 74 4 6 4 6 4 6 47 7 9 3 1 7 9 38 8 4 2 6 8 4 29 9 1 9 1 9 1 9 156087432945+++++++++= 2007200720071210+++的个位数字是5 200720072007 200120022006+++的个位数等于的个位数是118745631+++++=的个位数,为152001⨯+108888888+⨯++⨯⨯⨯个除以5的余数是多少?8除以5余310333333+⨯++⨯⨯⨯个3 3,23,33,43,⋅⋅⋅除以5的余数依次为3,4,2,1,3,4,⋅⋅⋅342110+++=347+=余2如果某个自然数除以49余23,除以48也余23.那么这个自然数被14除余数是多少?这个数减去23后是49和48的一个公倍数23,2349481+⨯⨯,2349482+⨯⨯,⋅⋅⋅23÷14=1余9一个自然数除以19余9,除以23余7.那么这个自然数最小是多少?被23除余7的所有数:7,30,53,76,99,122,145,168,191,214,237,…第一个除以19余9的数是237刘叔叔养了400多只兔子,如果3只一个笼,那么最后一笼只有2只;如果5只一笼,那么最后一笼只有4只;如果7只一笼,那么最后一笼只有5只.刘叔叔一共养了多少只兔子?除以3余2 除以5余4 除以7余5 3×5-1=14 14,14+15 , 14+15×2 ,14+15×3,…14+15×5=89 89+105×3=404只100多名小朋友站成一列.从第一人开始一次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;如果按照1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?除以11余9 除以13余11 少2 11132141⨯-=123123123123123个除以99的余数是多少?99的整除特性:两位截断求和 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 …… 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3123÷2=61余1 12+31+23=66 66×61+23+1=405040+50=90把63个苹果,90个桔子,130个梨平均分给一些同学.最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?++=6390130283-=283252582582343=⨯⨯258的约数有1,2,3,6,43,86,129和25810<人数<63 人数只能是43个分完后苹果剩20个,桔子剩4个,梨剩1个。
五年级奥数-数论之余数问题
数论之余数问题余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b=q ……r ,也就是a =b ×q +r,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理0r =0r ≠a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m 同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
2023五年级秋季奥数材料第十五讲带余除法课件通用版
2、三个数 23、51、72 各除以大于 1 的同一个自然数,得到同一个余数,那么这 个除数是多少?
3、有三个自然数 a、b、c,已知 b 除以 a,商 3 余 3;c 除以 a,商 9 余 11。那 么 c 除以 b,得到的余数是多少?
5、某班同学排队,如果每队3人,就多出1人;每排5人,就多出3人;每排7人, 就多出2人。这个班至少有多少同学?
6、被 2,3,5 除都余 1,且不等于 1 的最小整数是多少?
7、已知一个两位数除 1477,余数是 49。那么满足这样条件的所有两位数有几个?
2、已知 2008 被一些自然数除,得到的余数都是 10,这些自然数共有多少个?
3、甲、乙两人做同一个数的带余除法,甲将其除以 8,乙将其除以 9,甲所得 的商与乙所得的余数之和为 13,求甲所得的余数。
例 5:如果某数除 492,2241,3195 都余 15,那么这个数是多少?
能力冲浪5
随堂练习
1、同学们做操,无论排成 6 人一行,8 人一行,10 人一行,最后一行都只站 3 人。 至少有多少人做操?
2、一个数除以 5 余 4,除以 9 余 7。这个数最小是多少?
3、一个整数,除以 8 缺 3,除以 12 余 5,除以 18 余 5。这个数最小是多少?
4、一个数,除以 3 余 2,除以 5 余 4,除以 7 余 3,这个数最小是多少?
3、一位妇女提一篮鸡蛋,三个三个地数余 1 个,五个五个地数余 2 个,七个七 个地数余 6 个,这篮鸡蛋至少有多少个?
例3:一个自然数,除以4余2,除以10余8,除以25余23。这个数最小是多少?
能力冲浪3
五年级奥数余数问题
五年级奥数余数问题一、题目。
1. 一个数除以3余2,除以5余3,除以7余2,求这个数最小是多少?解析:我们先列出除以3余2的数:2、5、8、11、14、17、20、23、26…再列出除以5余3的数:3、8、13、18、23、28…然后列出除以7余2的数:2、9、16、23、30…可以发现23同时满足这三个条件,所以这个数最小是23。
2. 有一个数,除以4余1,除以5余2,除以6余3,这个数最小是多少?解析:这个数加上3就能被4、5、6整除。
4、5、6的最小公倍数是4 = 2×2,5 = 5,6=2×3,最小公倍数LCM = 2×2×3×5 = 60。
所以这个数最小是60 3=57。
3. 一个数除以5余4,除以8余3,求这个数最小是多少?解析:设这个数为x。
根据除以5余4,可设x = 5a+4(a为整数)。
又因为除以8余3,所以5a + 4=8b+3(b为整数),即5a=8b 1。
通过试值法,当b = 2时,a = 3。
此时x=5×3 + 4=19,19除以8余3,所以这个数最小是19。
4. 一个数除以9余7,除以11余9,这个数最小是多少?解析:这个数加上2就能被9和11整除。
9和11互质,它们的最小公倍数是9×11 = 99。
所以这个数最小是99 2 = 97。
5. 某数除以7余1,除以8余2,除以9余3,求这个数最小是多少?解析:这个数加上6就能被7、8、9整除。
7、8、9的最小公倍数为7×8×9=504。
所以这个数最小是504 6 = 498。
6. 一个数除以3余1,除以5余2,除以7余3,这个数最小是多少?解析:中国剩余定理:先求5×7 = 35,35除以3余2,2×2 = 7,7除以3余1。
再求3×7=21,21除以5余1,1×2 = 2,2除以5余2。
然后求3×5 = 15,15除以7余1,1×3=3,3除以7余3。
小学奥数五年级上第21讲《余数的性质与计算》教学课件
巩固提升
mathematics
作业2:151515151515除以8、11、7的余数分别是多少?
答案:3,2,0
巩固提升
mathematics
作业3:算式2009×2009+2010×2010+2011×2011除以31的余数是多少?
答案:15
巩固提升
mathematics
作业4:自然数42011除以9的余数是多少?
例题讲解
例题2:
mathematics
(1)20132013除以4和8的余数分别是多少?
(2)20142014除以3和9的余数分别是多少?
分析:根据4、8、3、9的特性求余法,可以很快计算出结果.
答案:(1)1,5;(2)2,5
例题讲解
mathematics
练习2: (1)20121221除以5和25的余数分别是多少? (2)20130209除以3和9的余数分别是多少? 答案:(1)1,21;(2)2,8
例题讲解
mathematics
例题4:一年有365天,轮船制造厂每天都可以生产零件1234个,年终将这些零件按6个一包 的规格打包,最后一包不够6个,请问:最后一包有多少个零件? 分析:最后一包的零件数实际上就是零件总数除以6的余数. 答案:2
例题讲解
mathematics
练习4: (1)123+456+789的结果除以111的余数是多少? (2)224468-6678的结果除以22的余数是多少? 答案:(1)36;(2)12
例题讲解
例题3:
mathematics
(1)123456789除以7和11的余数分别是多少?87654321呢?
五年级奥数专题第一讲 尾数和余数
五年级奥数专题第一讲 尾数和余数【一】 写出除85后余1的数有哪些?练习1、写出除98余2的数有哪些?2、写出除105后余3的数有哪些?【二】 2×2×2×2×2×2×2×2积的尾数是几?练习1、5×5×5×5×5×5×5积的尾数是几?2、16×16×16×16×16×16积的尾数是几?【三】 写出除214后余4的全部两位数。
练习1、写出除111后余6的全部两位数。
2、180除以一个两位数后余数是5,适合条件的两位数有哪些?【四】 ”个“125100125125125125⨯⨯⨯⨯积的尾数是几?练习1、)个()()262110026212621()2621(⨯⨯⨯⨯⨯⨯⨯积的尾数是几?2、”个“45044444⨯⨯⨯⨯的积的个位数字是几?【五】”个“41004444÷6当商是整数时,余数是几?练习1、”个“5200855555÷13当商是整数时,余数是几?2、当商是整数时,余数是几?(1) ”个“6506666÷4 (2)”个“8808888÷7(3) ”个“410004444÷74 (4)”个“110001111÷5【六】 有一列数,前两个数是3与4,从第3个数开始,每一个数都是前两个数的和。
这一串数中第2000个数除以4,余数是多少?练习1、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是前两个数的和。
在这一串数中,第2006个数被3除,所得的余数是几?2、一列数1、2、4、7、11、16、22、29……这一列数的规律是第二个数比第一个数多1;第三个数比第二个数多2;第四个数比第三个数多3,依次类推。
这列数左起第1000个数被5除余数是几?【七】 甲数除以11余9,乙数除以11余7。
五年级奥数:第14讲 余数问题
五年级奥数:第14讲余数问题在整数的除法中,只有能整除与不能整除两种情况。
当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。
(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。
例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。
注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c 的余数)。
例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。
注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
例1 5122除以一个两位数得到的余数是66,求这个两位数。
分析与解:由性质(2)知,除数×商=被除数-余数。
5122-66=5056,5056应是除数的整数倍。
将5056分解质因数,得到5056=26×79。
由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。
例2 被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。
小学数学5年级培优奥数讲义第08讲-尾数与余数(教师版)
小学数学5年级培优奥数讲义第08讲-尾数与余数(教师版)第08讲尾数与余数教学目标了解尾数、余数概念;掌握一般规律类、周期类、循环类不同情况下尾数或余数的求解方法;培养学生观察发现、总结归纳的学习能力。
知识梳理一、基本概念1.自然数末位的数字称为自然数的尾数。
377896的尾数是6,573450的尾数是0.2.除法中,被除数减去商与除数积的差叫做余数。
35÷6=5……5,余数是5;18881÷3=6293……2,余数是2.尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
二、方法技巧解决这类问题通常需要先观察数据规律发现特征后再选择合适的方法进行解答:1.根据题目中各数的特点,找出规律,确定周期,根据周期再求问题;2.循环小数的问题,要通过计算得出商,发现循环节是由哪几个数字组成的,有几位,周期就是几;3.求一串数除以某数得到的余数,可通过试除,还余多少,就把余下的数除以某数,就直接求出余数了。
典例分析考点一:分解被除数写出符合条件的除数例1、写出除213后余3的全部两位数。
【解析】因为213=210+3,把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21,5×7=35,2×3×5=30,2×3×7=42,一共有7个两位数。
例2、写出除1290后余3的全部三位数【解析】因为1290=1287+3,把1290分解质因数:1287=3×3×11×13,所以只要3,11,13这三个数组合相乘,得到的三位数就都满足条件。
符合条件的三位数有:3×3×13=117,11×13=143,3×11×13=429。
五年级上册数学培优奥数讲义-第15讲余数定理
第15讲余数定理知识与方法余数在计算时有三个主要性质,也被称为三个定理,余数问题中非常重要的同余问题以及中国剩余定理,其实就是根据这三个性质来解决问题的,所以这三个性质非常重要。
余数主要有以下三个性质:(1)可加性:a与b的和除以c的余数,等于a、b分别除以c的余数之和。
(2)可减性:a与b的差除以c的余数,等于a、b分别除以c的余数之差。
(3)可乘性:a与b的乘积除以c的余数,等于a、b分别除以c的余数之积(或这个积除以c的余数)。
初级挑战1(1)23÷5=4……()(2)108÷4=2716÷5=3……() 214÷4=53……()39÷5=7……() 322÷4=80……()(3)155÷3=51……()230÷3=76……()385÷3=128……()观察以上每组算式中的被除数和余数,你发现了什么?思维点拨:余数定理一:a与b的和除以c的余数,等于a、b分别除以c的余数之()。
如果余数之和大于除数,那么可以继续除以这个除数得到余数。
答案:(1)3、1、4;(2)2、2;(3)2、2、1发现:三个数除以一个相同的数,如果一个数是其它两个数的和,那么所得的余数也是其它两个数除得的余数的和。
能力探索11、快速计算:(234+123+732)÷3的余数。
2、甲数除以9,商12余3;乙数除以9,商28余6;丙数除以9,商31余5。
(甲数+乙数+丙数)÷9的余数是多少?答案:1、0 2、(3+6+5)÷9=1……5,所以余数是5。
初级挑战2(1)129÷7=18……3 (2)237÷5=47……() 71÷7=10……1 200÷5=4058÷7=8……2 37÷5=7……()(3)93÷4=23……()30÷4=7……()63÷4=15……()观察以上每组算式中的被除数和余数,你发现了什么?思维点拨:余数定理二:a与b的差除以c的余数,等于a、b分别除以c的余数之()。
高斯小学奥数五年级上册含答案_余数的性质与计算
第二十一讲余数的性质与计算37』桂除的余数足多少?我知沽玳,余数昂7!^1这一讲我们来学习余数问题.在整数的除法中,只有能整除和不能整除两种情况. 当不能整除时,就会产生余数.一般地,如果a是整数,b是整数(b丰0),若有a+ b=q r (也就是a b q r ), 0当r 0 时,我们称a 能被b 整除;当r 0 时,我们称a 不能被b 整除,r 为a 除以b 的余数,q 为a 除以b 的商余数问题和整除问题是有密切关系的,因为只要我们去掉余数,就能和整除问题联系在一起了.余数有如下一些重要性质.基本性质:被除数=除数X商(当余数大于0时也可称为不完全商)+余数除数=(被除数-余数)*商;商=(被除数-余数)十除数.余数小于除数.理解这条性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.例题1.用一个自然数去除另一个整数,商40,余数是16,被除数、除数的和是877,求被除数和除数各是多少?「分析」如果设除数为a,被除数可以表示为什么?练习1.甲、乙两数的和是2014,甲数除以乙数商99余14,求甲、乙两数.我们之前学过一些特殊数(如2、3、4、5、7、8、9、11、13、25、99、125)的整除1)一个数除以2或5的余数,等于这个数的个位数字除以2或5的余数;一个数除以4或25的余数,等于这个数的末两位数除以4或25的余数;一个数除以8或125的余数,等于这个数的末三位数除以8或125 的余数;2)一个数除以3或9的余数,等于这个数的各位数字和除以3或9的余数;特性.这些数的整除特性稍加改造,即可成为求解余数的一类简便算法:一个数除以99(包括11、33)的余数,等于将它两位截断再求和之后的余数;此外,求3和9的余数还可应用乱切的方法.(3)一个数除以11 的余数,等于它的奇位数字和减去偶位数字和除以11的余数,如果奇位数字和比偶位数字和小,则先加上若干个11 再减即可.(4)一个数除以7、11和13的余数,等于将它三位截断之后,奇数段之和减去偶数段之和除以7、11 和13 的余数,如果奇数段之和比偶数段之和小,则加上若干个7、11 或13再减即可.这种利用整除特性来计算余数的方法叫做特性求余法.例题2.1)20132013 除以4和8 的余数分别是多少?2)20142014 除以3和9 的余数分别是多少?分析」根据4、8、3、9 的特性,可以很快计算出结果.练习2.(1)20121221 除以5和25 的余数分别是多少?(2)20130209 除以3和9 的余数分别是多少?例题3.(1)123456789 除以7和11的余数分别是多少?87654321 呢?(2)360360360 除以99 的余数是多少?「分析」根据7、1、99 的特性,可以计算出结果.在截断的时候要特别小心.练习3.201420132012 除以13和99 的余数分别是多少?为了更好地了解余数的其它一些重要性质,我们再来做几个练习:1)211除以9的余数是 _______ ;(2)137除以9的余数是_________(3) 211 137的和除以9的余数是___________ ; ( 4) 211 137的差除以9的余数是(5)211 137的积除以9的余数是__________ ; (6) 1372除以9的余数是________比较上面的结果,我们发现余数还有一些很好的性质:和的余数等于余数的和;差的余数等于余数的差;积的余数等于余数的积•这三条性质分别称为余数的可加性、可减性和可乘性•在计算一个算式的结果除以某个数的余数时,可以利用上述性每个数都用它除以7的质进行简算.例如计算33 37 15 80的结果除以7的余数就可以像右侧这样计算•这一简算方法又称替换求余法•需要提醒大家的是,虽然上述三条计算余数的口诀朗朗上口,但并不严格,在使用时还需要注意:(1)如果替换之后余数的计算结果大于除数,还需要再次计算结果的余数.例如:在计算423 317除以6的余数时,利用“和的余数等于余数的和”,结果就变成了3 5 8, 8 6,所以还需要再次计算8除以6的余数是2,才是423 317除以6最后的余数•再比如:在计算423 317除以6的余数时,也会遇到3 5 15 6的情况,同样的还需要计算15除以6的余数是3,才是最终的结果.(2)在计算减法时,会出现余数不够减的情况,这时只要再加上除数或除数的倍数即可•例如:在计算423 317除以6的余数时,会发现结果变成了3 5不够减.此时,只要再加上6,用6 3 5 4来计算即可.例题4.一年有365天,轮船制造厂每天都可以生产零件1234个•年终将这些零件按6个一包的规格打包,最后一包不够6个.请问:最后一包有多少个零件?「分析」最后一包的零件数实际上就是零件总数除以19的余数.练习4.(1)123 456 789除以111 的余数是多少?(2)224468 6678的结果除以22 余数是多少?如果我们将“特性求余法”和“替换求余法”相结合,便可大大简化余数的计算.例题5.(1)87784 49235 81368除以4、9 的余数分别是多少?(2)365366+367368 369370除以7、11、13 的余数分别是多少?「分析」要把结果算出来,再求余数,计算量很大.看看如何利用“替换求余”以及“特性求余”的方法来进行求解.例题6.( 1) 2100的个位数字是多少?32014除以10 的余数是多少?(2) 32014除以7 的余数是多少?「分析」一个数的个位数字就是它除以10 的余数,大家来找一下个位数字的变化规律.小熊分粽子今天是端午节, 猴爸爸一大早就领着猴儿们去观看龙舟比赛。
五年级奥数知识讲义-余数问题(一)
在整数的除法中,只有能整除与不能整除两种情况,当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数基本关系式:被除数÷除数=商……余数(0≤余数<除数)余数基本恒等式:被除数=除数×商+余数知识梳理1. 一般地,如果是整数,是整数(不为0),若有,也就是,,我们称上面的除法算式为一个带余除法算式。
2.与的和除以c的余数,等于a、b分别除以c的余数之和,当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
3. a与b的乘积除以c的余数,等于a、b分别除以c的余数的积,当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例1一串数1、2、4、7、11、16、22、29、……这串数的组成规律为第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推,那么这串数左起第1992个数除以5的余数是_____。
分析与解:设这串数为a1、a2、a3、…、a1992、…,依题意知a=11a=1+12a=1+1+23a=1+1+2+34a=1+1+2+3+45……a=1+1+2+3+…+1991=1+996×19911992因为996÷5=199……1,1991÷5=398……1,所以996×1991的积除以5余数为1,1+996×1991除以5的余数是2。
因此,这串数左起第1992个数除以5的余数是2。
例2除以13所得的余数是_____。
分析与解:因为222222=2×111111=2×111×1001=2×111×7×11×13 所以222222能被13整除。
又因为2000=6×333+2,=,22÷13=1……9,所以要求的余数是9。
例3有一个自然数,用它分别去除63、90、130都有余数,三个余数的和是25。
五年级数奥--余数问题详细分析讲解
五年级数奥--余数问题(详细分析讲解)各种与余数有关的整数问题,其中包括求方幂的末位数字,计算具有规律的多位数除以小整数的余数,以及用逐步试算法找出满足多个余数条件的最小数等.1.分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【分析与解】因为两个数和的余数同余与余数的和.有101,126,173,193除以3的余数依次为2,0,2,1.则101号运动员与126,173,193号运动员依次进行了2,1,0盘比赛,共3盘比赛;126号运动员与101,173,193号运动员依次进行了2,2,l盘比赛,共5盘比赛;173号运动员与101,126,193号运动员依次进行了1,2,0盘比赛,共3盘比赛;193号运动员与101,126,173号运动员依次进行了0,1,0盘比赛,共1盘比赛.所以,打球盘数最多的运动是126号,打了5盘.评注:两个数和的余数,同余与余数的和;两个数差的余数,同余与余数的差;两个数积的余数,同余与余数的积.2.自然数的个位数字是多少?【分析与解】我们先计算的个数数字,再减去1即为所求.(特别的如果是O,那么减去1后的个位数字因为借位为9)将一个数除以10,所得的余数即是这个数的个位数字.而积的余数,同余余数的积.有2除以10的余数为2,2×2除以10的余数为4,2×2×2除以10的余数为8,2×2×2×2除以i0的余数为6;2×2×2×2×2除以i0的余数为除以10的余数为4, 除以10的余数为8, 除以10的余数为6;…………也就是说,n个2相乘所得的积除以10的余数每4个数一循环.因为67÷4=16……3,所以除以10的余数同余与2×2×2,即余数为8,所以除以10的余数为7.即的个位数字为7.评注:n个相同的任意整数相乘所得积除以10的余数每4个数一循环.3.算式7+7×7+…+ 计算结果的末两位数字是多少?【分析与解】我们只用算出7+7×7+…+7 的和除以100的余数,即为其末两位数字.7除以100的余数为7,7×7除以100的余数为49,7×7×7除以100的余数为43,7 ×7 ×7×7除以100的余数等于43×7除以100的余数为1;而除以100的余数等于的余数,即为7,……这样我们就得到一个规律除以100所得的余数,4个数一循环,依次为7,49,43,1.1990÷4=497……2,所以7+7×7+…+7×7×…的和除以100的余数同余.497×(7+49+43+1)+7+49=49756,除以100余56.所以算式7+7×7+…+ 计算结果的末两位数字是56.4.1990…1990除以9的余数是多少?【分析与解】能被9整除的数的特征是其数字和能被9整除,如果这个数的数字和除以9余a,那么再减去a而得到的新数一定能被9整除,因而这个新数加上a后再除以9,所得的余数一定为a,即一个数除以9的余数等于其数字和除以9的余数.的数字和为20×(1+9+9+0)=380,380的数字和又是3+8=11,11除以9的余数为2,所以除以9的余数是2.5.将1,2,3,…,30从左往右依次排列成一个51位数,这个数被11除的余数是多少?【分析与解】1,2,3,...,30这30个数从左往右依次排列成一个51位数为:123456...910 (15)...19202l...25 (2930)记个位为第l位,十位为第2位,那么:它的奇数位数字和为:0+9+8+7+6+…+l+9+8+7+6+…+1+9+7+5+3+l=115:它的偶数位数字和为:3+ + +8+6+4+2=53;它的奇数位数字和与偶数位数字和的差为115—53:62.而62除以1l的余数为7.所以将原来的那个51位数增大4所得到的数123456…910…15…192021…25…2934就是1l倍数,则将123456…910…15…192021…25…2934减去4所得到数除以11的余数为7.即这个51位数除以11的余数是7.评注:如果记个位为第1位,十位为第2位,那么一个数除以11的余数为其奇数位数字和A减去偶数位数字和B的差A-B=C,再用C除以1l所得的余数即是原来那个数的余数.(如果减不开可将偶数位数字和B减去奇数位数字和A,求得B-A=C,再求出C除以1l的余数D,然后将11-D即为原来那个数除以11的余数).如:123456的奇数位数字和为6+4+2=12,偶数位数字和为5+3+1=9,奇数位数字和与偶数位数字和的差为12-9=3,所以123456除以11的余数为3.又如:654321的奇数位数字和为1+3+5=9,偶数位数字和为2+4+6=12,奇数位数字和减不开偶数位数字和,那么先将12-9=3,显然3除以11的余数为3,然后再用11-3=8,这个8即为654321除以11的余数.6.一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是多少?商的个位数字是多少?余数是多少?【分析与解】这个数即为,而整除13的数的特征是将其后三位与前面的数隔开而得到两个新数,将这两个新数做差,这个差为13的倍数.显然有能够被13整除,而1994÷6=332……2,即而是13的倍数,所以除以13的余数即为33除以13的余数为7.有,而,所以除以13所得的商每6个数一循环,从左往右依次为2、5、6、4、1、0.200÷6=33……2,所以除以所得商的第200位为5.除以13的个位即为33除以13的个位,为2.即商的第200位(从左往右数)数字是5,商的个位数字是2,余数是7.7.己知:a= .问:a除以13的余数是几?【分析与解】因为1能被13整除,而1991÷3=663……2.有a= =1×1 +1×1 +1×+1×1 +…+1×1 +19911991所以a除以13的余数等于19911991除以13的余数8.8.有一个数,除以3余数是2,除以4余数是1.问这个数除以12余数是几?【分析与解】我们将这个数加上7,则这个数能被3整除,同时也能被4整除,显然能被12整除,所以原来这个数除以12的余数为12-7=5.9.某个自然数被247除余63,被248除也余63.那么这个自然数被26除余数是多少?【分析与解】我们将这个数减去63,则得到的新数能被247整除,也能被248整除,而相邻的两个整数互质,所以得到的新数能被247×248整除,显然能被26整除.于是将新数加上63除以26的余数等于63除以26的余数为11.所以这个自然数被26除余数是11.10.一个自然数除以19余9,除以23余7.那么这个自然数最小是多少?【分析与解】这个自然数可以表达为19m+9,也可以表达为23n+7,则有19m+9=23n+7,即23n-19m=2,将未知数系数与常数对19取模,有4n≡2(mod 19).n最小取10时,才有4n≡2(mod 19).所以原来的那个自然数最小为23×lO+7=237.评注:有时往往需要利用不定方程来清晰的表示余数关系,反过来不定方程往往需要利用余数的性质来求解.11.如图15-l,在一个圆圈上有几十个孔(少于100个).小明像玩跳棋那样从A 孔出发沿着逆时针方向,每隔几个孔跳一步,希望一圈以后能跳回到A孔.他先试着每隔2孔跳一步,结果只能跳到B孔.他又试着每隔4孔跳一步,也只能跳到B孔.最后他每隔6孔跳一步,正好回到4孔.问这个圆圈上共有多少个孔?【分析与解】设这个圆圈有n个孔,那么有n除以3余1,n除以5余1.n 能被7整除.则将n-1是3、5的倍数,即是15的倍数,所以n=15t+1,又因为凡是7的倍数,即15t+1=7A,将系数与常数对7取模,有t+1≡0(mod7),所以t取6或6与7的倍数和.对应孔数为15×6+l=91或91与105的倍数和,满足题意的孔数只有91.即这个圆圈上共有91个孔.12.某住宅区有12家住户,他们的门牌号分别是1,2,3,…,12.他们的依次是12个连续的六位自然数,并且每家的都能被这家的门牌整除.已知这些的首位数字都小于6,并且门牌是9的这一家的也能被13整除,问这一家的是什么数?【分析与解】设这12个连续的自然数为n+1,n+2,n+3,…,n+12,那么有它们依次能被1,2,3,…,12整除,显然有凡能同时被1,2,3,…,12整除.即n为1,2,3,…,12的公倍数.[1,2,3,…,12]=23×32×5×7×11=27720,所以n是27720的倍数,设为27720k.则有第9家的门牌为27720k+9为13的倍数,即27720k+9=13A.将系数与常数对13取模有:4k+9≡0(mod 13),所以后可以取l或1与13的倍的和.有要求n+1,n+2,n+3,…,n+12,为六位数,且首位数字都小于6,所以k只能取14,有7n=27720×14=388080.那么门牌是9的这一家的是388080+9=388089.13.有5000多根牙签,可按6种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8,7,6,5根为一包,那么最后也分别剩7,6,5,4根.原来一共有牙签多少根?【分析与解】设这包牙签有n根,那么加上1根后为n+1根此时有n+1根牙签即可以分成10根一包,又可以分成9根一包,还可以分成8、7、6、5根一包.所以,n+1是10、9、8、7、6、5的倍数,即它们的公倍数.[10,9,8,7,6,51=23×32×5×7=2520,即n+1是2520的倍数,在满足题下只能是2520×2=5040,所以n=5039.即原来一共有牙签5039根.14.有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?【分析与解】设这个除数为M,设它除63,90,130所得的余数依次为a,b,c,商依次为A,B,C.63÷M=A……a90÷M=B……b130÷M=C……ca+b+c=25,则(63+90+130)-(a+b+c)=(A+B+C)×M,即283-25=258=(A+B+C)×M.所以M是258的约数.258=2×3×43,显然当除数M为2、3、6时,3个余数的和最大为3×(2-1)=3,3×(3-1)=6,3×(6-1)=15,所以均不满足.而当除数M为43×2,43×3,43×2×3时,它除63的余数均是63,所以也不满足.那么除数M只能是43,它除63,90,130的余数依次为20,4,1,余数的和为25,满足.显然这3个余数中最大的为20.15.一个数去除551,745,1133,1327这4个数,余数都相同.问这个数最大可能是多少?【分析与解】这个数A除55l,745,1133,1327,所得的余数相同,所以有551,745,1133,1327两两做差而得到的数一定是除数A的倍数.1327-1133=194,1133-745=388,745-551=194,1327-745=582,1327-551=77 6,1133-551=582.这些数都是A的倍数,所以A是它们的公约数,而它们的最大公约数(194,388,194,582,776,582)=194.所以,这个数最大可能为194.。
五年级奥数讲义余数问题
第四讲 余数问题知识点:1、在有余数的除法里,如果被除数和除数都能被同一自然数整除,那么余数也能被这个自然数整除。
例如:60÷25=2……10,255,605,,那么一定有1052、在有余数的除法里,如果除数和余数能被同一自然数整除,那么被除数也能被这个自然数整除。
例如:3、一个自然数被另一个自然数n 除时,余数只能是0,1,2,……(n-1)。
例如:4、如果两个整数被另一自然数n 除时(n 为整数),余数相同,则它们的差必定能被n 整除。
例如:5、如果整数a 和b 除以同一个自然数m ,所得的余数相同,c 和d 除以同一自然数m ,余数也相同,那么a+c ,b+d 除以m 所得的余数也相同。
例如:一、例题讲解例1、被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和余数。
例2、一个自然数除以3余1,除以5余3,加上2就能被7整除,这个自然数最小是多少?例3、自然数a 除以7余3,自然数b 除以7余4,(a+b )除以7余几?例4、整数1111…111除以6的余数是几?2012个1例5、2012个7组成一个2012位数,被13除后余数是多少?商的各位数字之和是多少?例6、1~400的整数中,被3、5、7除都余2的数共有多少个?二、拓展训练1、有一个自然数,用它去除63、91、129得到3个余数的和是25,这个自然数是多少?2、在1~200这200个自然数中,被3或7除都余2的数有多少个?3、自然数a除以7余3,自然数b除以7余3,已知a大于b,那么a减去b的差除以7,余数是多少?4、有一个整数,除300、262、205得到相同的余数。
这个数多少?5、11+22+33+44+55+66+77+88+99除以3的余数是多少?三、能力检测1、71427和19的积被7除,余数是几?2、69、90、125被某个自然数除时,余数相同,试求这个自然数的最大值。
3、一个十几岁的男孩,把自己的岁数写在父亲的岁数之后,组成一个四位数,从这个四位数中减去他们父子两人岁数差的差得到4289。
小学五年级奥数课件 余数问题
290=291、2、5、29、10、58、
110÷A=□…b
145、280
160÷A=□…c
A:29、58
(170+660+160)÷A=…50
如果A=58 a=12 b=52
300÷A=…50
如果A=29 a=12 b=23
340-50=190
∴290被A整除 C=15
原式=(188+2088)×20÷2 =2276×10
除以:8×1=8 除以:10×10=100
100÷11=9…1
知识链接
2、特征求余法: ⑴ 尾数系,(2、5) ,(4、25) ,(8、125) ⑵ 和系,3,9 ⑶ 11:奇数位数字之和-偶数位数字之和的差. ⑷ . 7、11、13:截断法.
例题【五】(★ ★ ★ ★)
在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,
则将这几个数归为一组. 这样的数组共有
组.
要求:和的余数为7 余数依次是6,0,2,3,5 余数和是7:2+5, 0+2+5; 3+6+2+5; 0+2+5+3+6 共有4组符合题意要求。
例题【六】(★ ★ ★ ★)
六张卡片上分别标上2357、2367、4143、1419、2485、8465六个 数, 甲取4张,乙取1张,丙取1张,结果发现甲、乙各自手中卡片上的数之 和一个人是另一个人的8倍,则丙手中卡片上的数是 .
甲、乙手中卡数字和应9的倍数 以9的余数:8,0,3,6,1,5 因为,这个6个数的和除数是5, 所以,多了余5的卡片
例题【三】(★ ★ ★)
一年有365天,轮船制造厂每天都可以生产零件1234个. 年终将这些零件 按19个一包的规格打包,最后一包不够19个. 请问:最后一包有多少个零 件?
小学五年级奥数课件 同余问题
1. 带余除法表达式 2、复习余数定理. 3、同余问题初步.
本讲主线
1、带余除法被除数÷除数=商…余数 一般地,A÷B=c…d d=0 整除 D≠0 余数 2. 被除数-余数=除数×商.
小练习(ቤተ መጻሕፍቲ ባይዱ ★ )
1013除以一个两位数,余数是12. 求所有符合条件的两位数.
减余数,变整除, 1013-12=1001 1001=7×11×13 那么所有的两位数有11,13,77,91 因为“余数小于除数”, 所有,只有13,77,91符合
余5×余6+余0×余1,2007÷7=…5
例题【三】(★ ★ ★ ★ )
014年4月13日(星期日)是小学“希望杯”全国数学邀请赛举行 复赛的日子,那么这天以后的第2014+4×13天是星期
.
2014÷7,余数5 4÷7,余数是4 13÷7余数是6 根据余数定理, 5+4×6,除以7的余数是1 所以,之后的第2014+4×13天是一周。
知识链接
同余问题:
若a,b除以c的余数相同, 那么, (a-b)能被c整除 称a,b对于模c同余用 “同余式”表示为a≡b(modc)
例如,23、13除以5的余数都是3 那么,(23-13)可以被5整除.
例题【四】(★ ★ ★ )
学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将 这三种物品平分给每个班级,那么这三种物品剩下的数量相同. 请问学校共有多少个班?
拓展
用一个数除200余5,除300余1,除400余10,这个数是多 少?
13 195 299 390 15 23 30
200÷A=…5 300÷A=…1 400÷A=…10
知识链接
余数的三大性质: ⑴ 和的余数等于余数的和 ⑵ 差的余数等于余数的差 ⑶ 积的余数等于余数的积
20.五年级奥数第20讲——余数问题
学生课程讲义【基础知识】:两个整数相除或能整除(又称余数为零);若不能整除,则余数不为零,用式子表示有以下等价的两种:A=B·C+D(0≤D<B) A÷B=C(0≤D<B)A被称为被除数,B称为除数,C称为商,D称为余数(0≤D<B)。
本讲我们只讨论D≠0的情况。
巧妙地利用余数可以解决一些看似复杂(常常又很有趣)的问题。
余数应用的“巧妙”常在于它的“化简”功能。
(将对数的运算转化为对该数除以某数的余数的运算,而往往余数比该数要小得多)【例1】一个两位数除310,余数是37.求这样的两位数。
随堂练习1已知一个两位数除1477,余数是49.那么满足条件的所有两位数是()【例2】有一个整数,用它去除70,110,160所得到的3个余数和是50,这个整数是多少?随堂练习2两个整数相除商8,余16,并且被除数,除数,商及余数和是463。
那么被除数是()。
【例6】有一列数:1,3,9,25,69,189,517,……,其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前面两个数之和的2倍再加上1,那么着列数中的第2014个数除以6,得到的余数是()。
随堂练习61除以44的商,从小数点右边开始的第1位到第100位的各个数位的数字相加的和是()。
练习题一、填空题1、写出全部除109后余数为4的两位数。
2、任意写一个两位数,再将它重复3遍成一个8位数,将这个8位数除以这个两位数所得到的商再除以9,问得到的余数是多少?3、5122除以一个两位数得到的余数是66.求这个两位数。
4、甲、乙两数和是1088,甲数除以乙数商11余32.求甲、乙两数。
5、桌子上放着6包糖,分别装有3,4,5,7,9,13块糖,小华拿走2包,已知小明拿走的糖的块数是小华的2倍,那么剩下的那包糖中,糖有()块。
6、前2014个既能被2整除又能被3整除的正整数的和,除以9的余数是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 余数问题
知识点:
1、在有余数的除法里,如果被除数和除数都能被同一自然数整除,那么余数也能被这个自然数整除。
例如:60÷25=2……10,255,605,,那么一定有105
2、在有余数的除法里,如果除数和余数能被同一自然数整除,那么被除数也能被这个自然数整除。
例如:
3、一个自然数被另一个自然数n 除时,余数只能是0,1,2,……(n-1)。
例如:
4、如果两个整数被另一自然数n 除时(n 为整数),余数相同,则它们的差必定能被n 整除。
例如:
5、如果整数a 和b 除以同一个自然数m ,所得的余数相同,c 和d 除以同一自然数m ,余数也相同,那么a+c ,b+d 除以m 所得的余数也相同。
例如:
一、例题讲解
例1、被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和余数。
例2、一个自然数除以3余1,除以5余3,加上2就能被7整除,这个自然数最小是多少?
例3、自然数a 除以7余3,自然数b 除以7余4,(a+b )除以7余几?
例4、整数1111…111除以6的余数是几?
2012个1
例5、2012个7组成一个2012位数,被13除后余数是多少?商的各位数字之和是多少?例6、1~400的整数中,被3、5、7除都余2的数共有多少个?
二、拓展训练
1、有一个自然数,用它去除63、91、129得到3个余数的和是25,这个自然数是多少?
2、在1~200这200个自然数中,被3或7除都余2的数有多少个?
3、自然数a除以7余3,自然数b除以7余3,已知a大于b,那么a减去b的差除以7,余数是多少?
4、有一个整数,除300、262、205得到相同的余数。
这个数多少?
5、11+22+33+44+55+66+77+88+99除以3的余数是多少?
三、能力检测
1、71427和19的积被7除,余数是几?
2、69、90、125被某个自然数除时,余数相同,试求这个自然数的最大值。
3、一个十几岁的男孩,把自己的岁数写在父亲的岁数之后,组成一个四位数,从这个四位数中减去他们父子两人岁数差的差得到4289。
问男孩几岁,父亲几岁?
4、有一本故事书,每两页文字之间有3页插图,假如这本书有96页,而第一页是插图,这本书共有插图多少页?假如这本书有99页,而第一页是插图,这本书有插图多少页?
5、甲、乙、丙三数之和为100,甲数除以乙数,或丙数除以甲数,都是商5余1,乙数是几?。