半导体激光器和发光二极管介绍概述
半导体激光器的应用与分类
![半导体激光器的应用与分类](https://img.taocdn.com/s3/m/80b1eac5d5bbfd0a79567378.png)
半导体激光器的应用与分类半导体光发射器是电流注入型半导体PN结光发射器件,具有体积小、重量轻、直接调制、宽带宽,转换效率高、高可靠和易于集成等特点,被广泛应用。
按照其发光特性,可分为激光二极管(又称半导体激光器或二极管激光器,Laser Diode,LD),通常光谱宽度不]于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emitting Diode,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent Dmde,SLD),光谱宽度不大于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emiltting,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent SLD),光谱宽度为30~50nm,本节重点介绍几种半导体激光器,钽电容简要介绍超辐射发光二极管。
半导体激光器的分类有多种方法。
按波长分:中远红外激光器、近红外激光器、可见光激光器、紫外激光器等;按结构分:双异质结激光器、大光腔激光器、分布反馈激光器、垂直腔面发射激光器;按应用领域分:光通信激光器、光存储激光器、大功率泵浦激光器、引信用脉冲激光器等;按管心组合方式分:单管、阵列(线阵、面阵);按注入电流工作方式分:脉冲、连续、准连续等。
LD主要技术摄技术指标有光功率、中心波长、光谱宽度、阈值电流、工作电流、工作电压、斜率效率和电光转换效率等。
半导体激光器的光功率是指在规定驱动电流条件下输出的光功率,该指标直接与工作电流对应,这体现了半导体激光器的电流驱动特性。
如果是连续驱动条件,T491T336M004AT则输出功率就是连续光功率,如果是脉冲驱动条件,输出的光功率可用峰值功率或平均功率来衡量。
hymsm%ddz半导体激光器的中心波长是指激光器所发光谱曲线的中心点所对应的波长,通常用该指标来标称激光器的发光波长。
光谱宽度是标志个导体激光器光谱纯度的一个指标,通常用光谱曲线半高度对应的光谱全宽来表示。
半导体激光器和发光二极管
![半导体激光器和发光二极管](https://img.taocdn.com/s3/m/b684e1956037ee06eff9aef8941ea76e58fa4a8f.png)
半导体激光器(LD)和半导体发光二极管(LED)
半导体光源的优点:
❖ 体积小、重量轻、耗电少、易于光纤耦合 ❖ 发射波长适合在光纤中低损耗传输 ❖ 可以直接进行强度调制 ❖ 可靠性高
光 纤 通 信 系统
1
第2讲
一. 激光原理的基础知识
1、光的吸收和放大 1)能级和能带
2)能级的光跃迁 3)光的吸收和放大
(1) 边发射结构
这是一种沿着有源区的结平面方向提取光的结构,上 面介绍的条形半导体激光器一般都采用这种结构提取光 。
(2) 面发射结构
这是由表面发射光的结构,它的发射结构又分成水平 腔和垂直腔结构。
光 纤 通 信 系统
29
第2讲
结构特点: 1) 发射方向垂直于或倾斜于PN结平面 2) 形成面发射的机理有多种情况,包括垂直腔型、水平腔型和 向上弯腔型激光器。其中,垂直腔面发射激光器(VCSEL)是 面发射激光器中最有前途的一种激光器 .
光 纤 通 信 系统
该能级被电子占据概率等于50%
该能级被电子占据概率大于50% 该能级被电子占据概率小于50%
11
第2讲
各种半导体中电子的统计分布
本征半导体 P型半导体 N型半导体
兼并型P型半导体 兼并型N型半导体 双兼并型半导体
光 纤 通 信 系统
12
第2讲
导带
禁带
Ef
价带
(a) 本征半导体
要APC • 高工作速率(达3Gb/s以上) ,高张弛振荡频率 • 易集成,低价格,高产量
光 纤 通 信 系统
32
第2讲
2、量子阱激光器
结构特点:有源区非常薄 量子阱(QW,Quantum Well) 半导体激光器是一种窄
发光二极管和半导体激光器
![发光二极管和半导体激光器](https://img.taocdn.com/s3/m/213261c06137ee06eff91846.png)
主要内容
概述 半导体物理基础 发光二极管的结构、原理和特性参数 半导体激光器的结构、原理和特性参数
概述
固体发光材料在电场激发下产生的发光现 象称为电致发光。它是将电能直接转换为光能 的过程。利用这种现象制成的器件称为电致发 光器件。 ★ 发光二极管
★
★ ★ ★
半导体激光器 液晶显示器
N2 E2 E1 E exp N1 kT
式中, k 1.381 1023 J/ K,为玻耳兹曼常数,T为热力学温度。
在热平衡状态下,总是有N1 N 2。受激吸收速率大于受激辐射速
率。当光通过这种物质时,光强按指数衰减,这种物质称为吸收 物质。 如果 N 2 N1,即受激辐射速率大于受激吸收速率,当光通过这种 物质时,就会产生放大作用,这种物质称为增益介质(或激活介 质)。
Pint 内量子效率 每秒钟内总的载流子复 合数量 h 注入 LED的电流强度 h 电子电量 I Ihc hint h hint q q 内量子效率
LED的外部量子效率和外部功率
hext
发射出的光子数目 内部产生的光子总数 1 c T 2 sin d 0 4
发光二极管(light emitting diode,LED),是利 用正向偏置PN结中电子与空穴的辐射复合发光的, 是自发辐射发光,发射的是非相干光。
光输出 N-AIyGa1-yAs
N P
反型异质结
P- GaAs
同型异质结
P-AIxGa1-xAs
双异质结半导体发光二极管的结构示意图
二、基本结构
1、面发光二极管
载流子注入
25 mm
5 mm
优点:LED到光纤的耦合效率高
半导体激光器和发光器件介绍
![半导体激光器和发光器件介绍](https://img.taocdn.com/s3/m/f07ee4a558fb770bf78a55b4.png)
4、相干性好
自然光由无数的原子与分子发射,产生波长各不相同的 杂乱光,合成后不能形成整齐有序的大振幅光波。相干长度只 有几个mm或几十cm。
激光是受激辐射,单色性、发散角小,在空间和时间上 有很好的相干性。两激光束合成后能形成相位整齐、规则有序 的大振幅光波。相干长度达到几十公里。采用稳频技术, HeNe激光线宽可压缩到10kHz,相干长度可达30km。
原理:由正向偏置电压产生的注入电流进行自发辐射而发光
0℃
输 出
25℃
光
功
70℃
率
50 100 150 电流/mA
LED驱动电路及伏安特性
RL为限流电阻
RLUccUF
I IF F
Ucc RL UF
UF和IF为二极管参数
例如:
GaAs电流选用20mA, GaP电流选用10mA,即可 获得足够亮度。
气体放电灯消耗的能量为白炽灯1/2-1/3
发光二极管(Light emitting diode)
由半导体PN结构成,其工作电压低、响应速度快、寿 命长、体积小、重量轻,因此获得了广泛的应用。
半导体中,由于空穴和电子的扩散,在PN结处形成势垒,从 而抑制了空穴和电子的继续扩散。当PN结上加有正向电压时, 势垒降低,电子由N区注入到P区,空穴则由P区注入到N区,称 为少数载流子注入。所注入到P区里的电子和P区里的空穴复合, 注入到N区里的空穴和N区里的电子复合,这种复合同时伴随着 以光子形式放出能量,因而有发光现象。
灯泵浦Nd:YAG激光 器
大功率激光器中,典型的Nd:YAG棒一般是长150mm, 直径7-10mm。泵浦过程中激光棒发热,限制了每个棒的 最大输出功率。单棒Nd:YAG激光器的功率范围约为50800W。
半导体发光材料
![半导体发光材料](https://img.taocdn.com/s3/m/82a1a522a200a6c30c22590102020740bf1ecd59.png)
半导体发光材料半导体发光材料是一种能够将电能转化为光能的材料,它在当今光电技术中发挥着重要的作用。
半导体发光材料的发展与应用已经极大地推动了显示技术、照明技术、激光技术等领域的发展,同时也为我们提供了更多的科技产品和便利。
半导体发光材料主要有发光二极管(LED)和半导体激光器(LD)两大类。
这两种材料的基本原理是通过施加电压使半导体中注入的电子跃迁到较低的能级,产生能量差大于光子能量的电子,从而激发发射特定波段的光。
其中,LED通过不同的材料和掺杂方法可以发射不同波长的光,实现了全彩色显示和照明;LD则可以实现高功率紧束的单色激光输出,广泛应用于光通信和材料加工等领域。
半导体发光材料具有许多优点,首先是高效能。
较传统的光源如白炽灯和荧光灯,半导体发光材料的能量转换效率更高,可以将电能转化为光能的比例提高至40%以上,大大节省了能源消耗。
其次,寿命长。
半导体发光材料的寿命能达到上万小时,远远超过传统的光源,大大减少了更换光源的频率和维护费用。
再次,体积小。
半导体发光材料具有小体积、轻质量等特点,方便了集成和应用。
以LED为例,它可以制作成各种不同形状的灯珠,方便用于各种光电产品。
半导体发光材料的应用领域非常广泛。
在显示技术方面,LED 已经广泛应用于室内和室外的显示屏幕、电视背光、车辆尾灯等领域,实现了更加真实、生动的图像和视频展示效果。
在照明技术方面,LED灯泡以其高效能、寿命长的优势逐渐取代了传统荧光灯和白炽灯,成为主流的照明光源。
在激光技术方面,半导体激光器不仅成为了医疗美容领域的重要工具,还在工业加工、光通信等领域发挥着重要作用。
然而,半导体发光材料也存在一些问题和挑战。
比如,半导体材料的成本较高,也对环境有一定的污染,需要进一步降低材料成本和环境污染。
此外,虽然已经取得了很大的进展,但半导体发光材料的颜色纯度和光输出强度仍有提高的空间,需要进一步研究和改进。
总之,半导体发光材料是当今光电技术中不可或缺的重要组成部分,它的出现和发展改变了我们的生活和工作方式。
发光二极管和半导体激光器
![发光二极管和半导体激光器](https://img.taocdn.com/s3/m/1113bd9d7f1922791688e848.png)
En exc
1
2 r
mr* m
EH n2
氢原子的基态电离能。
EH
mq4
8 02 h2
13.6(eV)
晶体的相对 电子和空穴的 介电常数 有效折合质量
1 mr*
1 mn*
1 m*p
Eg 价带顶
激子能级是分立的。
电子的有
n=1:激子的基态能级;
效质量
n=时,激子能级=0,相当于导带
底,电子和空穴完全摆脱了束缚。
• 等电子陷阱:由等电子杂质代替晶格基质原子而产 生的束缚态。
• 用等电子杂质代替基质原子不会增加电子或空穴, 而是形成电中性中心。例如:N就是GaP中P原子的 等电子杂质。
7.2 辐射复合与非辐射复合
7.2.1 非平衡载流子的辐射复合
6)等电子陷阱复合
• 产生“陷阱”(束缚态)的原因? 等电子杂质原子与被替位的基质原子之
空穴的有 效质量
7.2 辐射复合与非辐射复合
7.2.1 非平衡载流子的辐射复合
5)激子复合
• 对于自由激子,电子和空穴复合时会把能量释放出来 产生光子。
• 对于直接带隙半导体,自由激子复合发射光子的能量
为:
导带底
hv
Eg
En exc
En exc
• 对于间接带隙半导体,自由激子复 合发射光子的能量为
✓ 等电子杂质的电负性>(<)晶格原子的电负性,形成 电子(空穴)的束缚态,该等电子陷阱称为等电子的电 子(空穴)陷阱,该杂质称为等电子受主(施主)。
✓ 例如:N原子取代GaP中的P原子:形成电子的束缚态, N原子为等电子受主。Bi原子取代GaP中的P原子:形 成空穴的束缚态,Bi原子为等电子施主。
发光二极管与激光器
![发光二极管与激光器](https://img.taocdn.com/s3/m/41976cf9ba0d4a7302763a83.png)
一、
发光二极管的发光原理:
制作LED的材料是重掺杂的,热平衡状态下,N区有很多迁移率很高的电子,P区有较多迁移率较低的空穴。
由于PN结阻挡层的作用,两者不能自然复合。
当给PN结加以正向电压时,PN结中的电子和空穴辐射复合发光,是自发辐射发光。
激光器的发光原理:
激光器一般由三部分组成:工作介质,激励源,谐振腔。
其发光原理是给工作介质加以某种激励源,泵浦激励过程实现工作原子在上下能级间的粒子数反转分布,再通过工作物质中原子的自发辐射诱导受激辐射实现光的放大作用,经过谐振腔对光波模式的“筛选”和光学正反馈,最后形成持续震荡的相干光辐射,发射激光。
这两种光源的主要差别:
半导体激光器是基于载流子的受激跃迁辐射,发射的是相干光-激光;而二极管是基于注入的载流子的自发跃迁辐射,发射的是非相干光-荧光,而且LED的结构公差没有激光器那么严格,而且无粒子数反转、谐振腔等条件要求。
二、
光源波长与制作激光器所用的材料即工作介质密切相关。
工作介质可以是固体、气体、液体、半导体等。
激光器产生激光的条件之一是在特定的能级间实现粒子数的反转分布,从而使电子在能级之间跃迁完成发光。
不同的材料(工作介质)能级结构不同,能级差不同,电子跃迁所发射的光频也就不同,波长也就会不同,从而产生了不同颜色的光源。
所以不同材料的激光器产生激光的波长也不同。
举例说明:氩激光器产生的光波长为488nm,蓝光;氦氖激光器产生的光波长为543nm,绿光;红宝石激光器产生的光波长为694nm,红光。
关于发光二极管以及二极管激光器
![关于发光二极管以及二极管激光器](https://img.taocdn.com/s3/m/990aec1b6c85ec3a87c2c557.png)
发光二极管简称为LED。
由含镓(Ga)、砷(As)、磷(P)、氮(N)等的化合物制成。
当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管。
在电路及仪器中作为指示灯,或者组成文字或数字显示。
砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光,氮化镓二极管发蓝光。
因化学性质又分有机发光二极管OLED和无机光二极发管LED。
激光二极管包括单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。
量子阱激光二极管具有阈值电流低,输出功率高的优点,是目前市场应用的主流产品。
同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。
在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。
双异质结(DH)平面条形结构,这种结构由三层不同类型半导体材料构成,不同材料发射不同的光波长。
图中标出所用材料和近似尺寸。
结构中间有一层厚0.1~0.3 μm的窄带隙P型半导体,称为有源层;两侧分别为宽带隙的P型和N型半导体,称为限制层。
三层半导体置于基片(衬底)上,前后两个晶体解理面作为反射镜构成法布里-珀罗(F-P)谐振腔DH激光器工作原理:由于限制层的带隙比有源层宽,施加正向偏压后,P层的空穴和N层的电子注入有源层。
P层带隙宽,导带的能态比有源层高,对注入电子形成了势垒,注入到有源层的电子不可能扩散到P层。
同理,注入到有源层的空穴也不可能扩散到N层。
这样,注入到有源层的电子和空穴被限制在厚0.1~0.3 μm的有源层内形成粒子数反转分布,这时只要很小的外加电流,就可以使电子和空穴浓度增大而提高效益。
另一方面,有源层的折射率比限制层高,产生的激光被限制在有源区内,因而电/光转换效率很高,输出激光的阈值电流很低,很小的散热体就可以在室温连续工作。
图3.6 DH激光器工作原理(a) 双异质结构;(b) 能带;(c) 折射率分布;(d) 光功率分布异质结,两种不同的半导体相接触所形成的界面区域。
第八章 发光二极管和半导体激光器
![第八章 发光二极管和半导体激光器](https://img.taocdn.com/s3/m/7870e67da26925c52cc5bfca.png)
8.1 辐射复合与非辐射
8.1辐射复合和非辐射复合 8.1辐射复合和非辐射复合
在复合过程中电子多余的能量可以以辐射的形式(发射光子) 在复合过程中电子多余的能量可以以辐射的形式(发射光子)释放出 来, 这种复合称为辐射复合,它是光吸收的逆过程. 这种复合称为辐射复合,它是光吸收的逆过程. 在复合过程中电子的多余能量也可以以其它形式释放出来, 在复合过程中电子的多余能量也可以以其它形式释放出来,而不发射光 这种复合称为非辐射复合. 子,这种复合称为非辐射复合. 光电器件利用的是辐射复合过程,非辐射复合过程则是不利的. 光电器件利用的是辐射复合过程,非辐射复合过程则是不利的.了解半 导 体中辐射复合过程和非辐射复合过程是了解光电器件的工作机制和进行器件 设计的基础. 设计的基础.
K 2 K1 = ± q
(8-4)
q
恒的条件为
为声子的波矢,正号表示放出声子,负号表示吸收声子,相应能量守 为声子的波矢,正号表示放出声子,负号表示吸收声子,
hν = E 2 E1 ± hν p
(8-5)
≈ Eg
νp
hν p
为声子的能量, 一般比电子能量小得多,可以略去. 为声子的能量, 一般比电子能量小得多,可以略去.
q2 hν D A (r ) = E g (E d + E a ) + 4πkε 0 r
(8-6)
8.1辐射复合
3.施主受主对复合 3.施主受主对复合 GaP 材料,不同杂质原子和它们的替位状态会造成对的电离能不同. 对于 材料,不同杂质原子和它们的替位状态会造成对的电离能不同.例 如: E a + E d = 941meV 1.6 K 氧施主和碳受主杂质替代磷的位置, 氧施主和碳受主杂质替代磷的位置,在温度为 1.6K Ea + Ed = 956.6meV 时, ;而氧施主 杂质是磷替位和锌受主杂质是镓替位, 杂质是磷替位和锌受主杂质是镓替位,在温度为 时, . D-A对的发光在室温下由于与声子相互作用较强,很难发现D-A对复合的线光 对的发光在室温下由于与声子相互作用较强,很难发现D 谱.但是,在低温下可以明显地观察到对发射的线光谱系列.这种发光机构已为实 但是,在低温下可以明显地观察到对发射的线光谱系列. 验证实并对发光光谱作出了合理的解释. 验证实并对发光光谱作出了合理的解释.
发光二极管和激光二极管
![发光二极管和激光二极管](https://img.taocdn.com/s3/m/92d00e9c3086bceb19e8b8f67c1cfad6195fe931.png)
汽车照明和显示技术的升级,以及新能源汽车市场的快速 扩张,为发光二极管和激光二极管提供了新的增长点。
竞争格局及主要厂商介绍
发光二极管市场
目前,全球发光二极管市场呈现多元化竞 争格局,主要厂商包括日亚化学、欧司朗、 飞利浦、三星等。这些企业在技术研发、 生产规模和市场份额等方面具有较大优势。
VS
激光二极管市场
相对于发光二极管市场,激光二极管市场 集中度较高。主要厂商包括相干公司、IPG 光子、通快等。这些企业在高功率激光二 极管领域具有领先地位。
创新驱动因素及趋势预测
技术创新
随着材料科学、光学设计和制造工艺的不断进步,发光二极管和激光二极管的性能将不断提 升,成本将进一步降低。
应用拓展
发展历程
自1960年代初期激光二极管被发明以来,其经历了从低温工作 到常温工作、从低功率到高功率的发展历程。随着材料和制作 工艺的不断进步,激光二极管的性能不断提高,应用领域也不 断扩展。
现状
目前,激光二极管已经广泛应用于科研、工业、医疗、通信等 领域。随着技术的不断发展,激光二极管的性能和应用范围仍 在不断扩大。
除了传统照明和显示领域外,发光二极管和激光二极管在医疗、生物、通信等新兴领域的应 用也将不断拓展。
智能化和集成化
随着物联网、人工智能等技术的发展,发光二极管和激光二极管的智能化和集成化将成为未 来发展的重要趋势。例如,智能照明系统可以根据环境和用户需求自动调节亮度和色温;集 成化的激光模块可以减小体积、降低成本并提高可靠性。
加工过程中需要采用先进的微纳加工技 术,如光刻、刻蚀、薄膜沉积等,以精 确控制芯片的结构和尺寸。
封装技术与工艺
封装技术对于激光二极管的性能和使用寿命具有重要影响,需要采用合适的封装材 料和工艺,以确保器件的稳定性和可靠性。
半导体发光二极管
![半导体发光二极管](https://img.taocdn.com/s3/m/c0b035e577a20029bd64783e0912a21614797f39.png)
在低压(低于2伏)、小电流(几十毫安至200毫安)下工作,功耗小、体积小、可直接与固体电路连接使用; 稳定、可靠、寿命长(105~106小时);调制方便,通过调制LED的电流来调制光输出;光输出响应速度比较快 (1~100兆赫);价格便宜。 应用 LED可用作指示灯、文字-数字显示、光耦合器件、光通信系统光源等。
LED结构
对LED的要求
LED的特点
①提高内量子效率,要求尽量减少晶体缺陷和有害杂质;②提高外量子效率,结构要便于光收集、提取和发射; ③可以用携载信息的输出电流直接对光输出进行高速率的调制;④结构要有利于散热,减少因结温上升引起光功 率下降;⑤要有高的辐射度,因此必须应用直接带隙半导体和能够在高电流密度下驱动的结构。
υ=ΔE/h (Hz)
此式称为玻尔条件。式中h=6.626×10-34J·s。当发光二极管工作时,在正偏下,通常半导体的空导带被通 过结向其中注入的电子所占据,这些电子与价带上的空穴复合,放射出光子,这就产生了光。发射的光子能量近 似为特定半导体的导带与价带之间的带隙能量。这种自然发射过程叫作自发辐射复合(图1)。显然,辐射跃迁是 复合发光的基础。注入电子的复合也可能是不发光的,即非辐射复合。在非辐射复合的情况下,导带电子失去的 能量可以变成多个声子,使晶体发热,这种过程称为多声子跃迁;也可以和价带空穴复合,把能量交给导带中的 另一个电子,使其处于高能态,再通过热平衡过程把多余的能量交给晶格,这种过程称为俄歇复合。随着电子浓 度的提高,这种过程将变得更加重要。带间跃迁时,辐射复合和非辐射复合的两种过程相互竞争。有的发光材料 表现为辐射复合占优势。
光源
通信、信息处理和光耦合等应用要求LED有良好的方向性。适于光通信应用的两种主要光源是高辐射度LED和 半导体注入激光器。LED稳定、可靠、寿命长、驱动电路简单、功率对温度不敏感,广泛用作中、短距离(铁路、 电力、交通、公安等)光通信系统的光源。GaAlAs-GaAs面发光管的带宽为10~20兆赫,适用于二次群光通信系 统(可传输120路),传输距离大于5公里。GaAlAs-GaAs快速边发光管带宽50~100兆赫,适用于三级群光通信系统 (可传输480路),传输距离数公里。InGaAsP-InP LED可用于更长距离(大于10公里)的传输系统。此外,LED还用 于信息处理、图像传输、测距和传感等方面。
半导体器件应用半导体激光器与光电二极管的应用
![半导体器件应用半导体激光器与光电二极管的应用](https://img.taocdn.com/s3/m/5924856b443610661ed9ad51f01dc281e53a561a.png)
半导体器件应用半导体激光器与光电二极管的应用半导体器件应用——半导体激光器与光电二极管的应用半导体器件作为电子技术中的重要组成部分,广泛应用于各个领域。
其中,半导体激光器和光电二极管是常见的半导体器件,具有重要的应用价值。
本文将探讨半导体激光器和光电二极管的应用,并介绍它们在不同领域中的具体作用。
一、半导体激光器的应用半导体激光器是利用半导体材料电流注入产生的激射效应发出激光的器件。
它具有体积小、效率高、功率稳定等特点,因此在许多领域中有着广泛的应用。
1. 信息通信领域半导体激光器在信息通信领域中,被广泛应用于光纤通信、光存储等设备中。
例如,它可以作为激光器光源,用于传输高速、大容量的光信号。
此外,半导体激光器还可以用于光纤传感器,实现对光纤中的变形、温度等参数进行高精度检测。
2. 医疗领域在医疗领域中,半导体激光器可以用于激光手术、激光治疗等。
例如,它可以作为可控制的、高功率的激光器光源,用于进行精确的手术操作。
此外,半导体激光器还可以用于肿瘤治疗、皮肤美容等领域,发挥其独特的照射效果。
3. 工业制造领域在工业制造领域中,半导体激光器常被应用于激光切割、激光打标等设备中。
例如,它可以作为高功率的激光器光源,用于精确切割各种材料,如金属、塑料等。
另外,半导体激光器还可以用于激光焊接、激光清洗等工艺,提高生产效率和产品质量。
4. 生物医学领域在生物医学领域中,半导体激光器被广泛应用于细胞成像、蛋白质分析等研究中。
例如,它可以作为激发光源,用于激发荧光染料,实现对细胞、组织等生物样本的高清晰成像。
此外,半导体激光器还可以用于光谱分析、蛋白质定量等方面,为生物科学的发展提供了有力支持。
二、光电二极管的应用光电二极管是一种基于光电效应工作的半导体器件,具有高效率、快速响应等优点。
它广泛应用于光电探测、光电转换等领域。
1. 光电检测领域光电二极管在光电检测领域中起着重要的作用。
例如,在光电传感器中,光电二极管可以将光信号转换成电信号,实现对光强、光波长等参数的检测。
半导体发光二极管和半导体激光器在结构上的差异
![半导体发光二极管和半导体激光器在结构上的差异](https://img.taocdn.com/s3/m/a8c5ac869fc3d5bbfd0a79563c1ec5da51e2d651.png)
半导体发光二极管和半导体激光器在结构上的差异
半导体发光二极管(LED)和半导体激光器(LD)在结构上存在一些差异。
以下是其中一些主要的差异:
1. 结构设计:LED通常采用PN结构,而激光器则采用PN结构和衍射光栅或腔内反射镜等光学元件组成。
2. 激光器引入光学腔:LED并没有光学腔,而激光器在PN结构中引入光学腔以增强光的反射和准直,从而实现激光效应。
3. 相干辐射:激光器由于引入了光学腔,激发的光线在光学腔内进行多次正反射,形成相干辐射,从而产生准定向、单色和相干的激光输出。
而LED没有光学腔,输出的光线较为非相干,非准定向和非单色。
4. 电流注入区域:激光器的电流注入区域较小,一般在纳米或亚微米级别,而LED的电流注入区域相对较大,一般在微米级别。
5. 输出功率:激光器的输出功率较高,可以达到几十毫瓦到几瓦的级别,而LED的输出功率一般在几毫瓦以下。
总体而言,半导体激光器相对于半导体发光二极管具有更复杂的结构,引入了光学腔以实现激光效应,并且具有更高的输出功率和相干性。
而LED则更简单,输出功率相对较低且辐射为非相干性。
光纤通信原理第二章2 半导体激光器和发光二极管
![光纤通信原理第二章2 半导体激光器和发光二极管](https://img.taocdn.com/s3/m/ef059d4bbfd5b9f3f90f76c66137ee06eff94e3b.png)
+ B = m/n,
n ( 1 + sin n)= m
布喇格反射条件
2n = m
是波纹光栅的周期,也称为栅距;m为 整数;n为材料等效折射率;为波长
3.DFB激光器的优点
•单纵模 •光谱线宽窄 •动态单纵模 •线性好
DFB和DBR激光器
MQW-DFB-LD
§2.5半导体激光器的基本特性
垂直腔面发射激光器
垂直腔激光器的优点
• 发光效率高 , 850nm,10mA电流,1.5mW 功率
• 发射圆形光束,耦合效率高 • 阈值电流极低,工作电流也不高 • 可通过短腔(5~10µm)实现单纵模工作 • 高温度稳定性,200Mb/s速率以下应用,可
不需要APC • 高工作速率(达3Gb/s以上) ,高张弛振荡频
寿命长 可靠性高 调制电路简单 成本低
LD和LED的光谱比较
• 存在光学谐振机制,并在有源区建立 稳定的振荡 ---激光产生条件
在半导体激光器中光振荡主要采用 两种形式:
• F-P(法布里-珀罗)谐振腔:用半 导体晶体天然的解理面构成。
• DBR(分布布拉格反射器)—周期 性波纹结构
2.制作半导体激光器的材料
直接带隙的半导体材料:导带的最低点 和价带的最高点对应着相同的波数K。
降低器件的阈值电流密度 实现室温下连续工作
(2)按平行于PN结激光器
台面条形 激光器
平面条形 激光器
隐埋条形 激光器
宽面激光器
只有PN结中部与解 理面垂直的条形面积上 (10~30 m)有电流通过 的结构是条形结构。
条形激光器主要优 点是阈值电流低,发热 少,利于散热,可以改 善光谱特性。但受条宽 限制不宜作大功率输出 。
LED(发光二极管)和激光器
![LED(发光二极管)和激光器](https://img.taocdn.com/s3/m/bf0929b2b1717fd5360cba1aa8114431b80d8e5a.png)
LED(发光⼆极管)和激光器⼀、LED:发光⼆极管⼀、LED及其特点Light Emitting Diode,即发光⼆极管,是⼀种半导体固体发光器件,它是利⽤固体半导体芯⽚作为发光材料,当两端加上正向电压,半导体中的载流⼦发⽣复合引起光⼦发射⽽产⽣光。
LED可以直接发出红、黄、蓝、绿、青、橙、紫、⽩⾊的光。
LED的特点:LED使⽤低压电源,供电电压在6-24V之间,根据产品不同⽽异,所以它是⼀个⽐使⽤⾼压电源更安全的电源,特别适⽤于公共场所;效能:消耗能量较同光效的⽩炽灯减少80%;适⽤性:很⼩,每个单元LED⼩⽚是3-5 mm的正⽅形,所以可以制备成各种形状的器件,并且适合于易变的环境;稳定性:10万⼩时,光衰为初始的50%;响应时间:其⽩炽灯的响应时间为毫秒级,LED 灯的响应时间为纳秒级。
⼆、LED的发光原理及结构介绍发光⼆极管的核⼼部分是由p型半导体和n型半导体组成的晶⽚,在p型半导体和n型半导体之间有⼀个过渡层,称为p-n结。
在某些半导体材料的P N结中,注⼊的少数载流⼦与多数载流⼦复合时会把多余的能量以光的形式释放出来,从⽽把电能直接转换为光能。
PN结加反向电压,少数载流⼦难以注⼊,故不发光。
这种利⽤注⼊式电致发光原理制作的⼆极管叫发光⼆极管,通称LE D。
当它处于正向⼯作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜⾊的光线,光的强弱与电流有关。
⽽通过对其中发光材料的研究,⼈们逐渐开发出各种光⾊、光效率越来越⾼的L ED元件,但是⽆论怎么变化,LED总的发光原理和结构都没有发⽣太⼤的变化。
三、LED常⽤照明术语1、平均寿命:指⼀批灯⾄50%的数量损坏时的⼩时数。
单位:⼩时(h)。
2、经济寿命:在同时考虑灯泡的损坏以及光束输出衰减的状况下,其综合光束输出减⾄特定的⼩时数。
室外的光源为70%,室内的光源为80%。
3、⾊温:光源发射光的颜⾊与⿊体在某⼀温度下辐射光⾊相同时,⿊体的温度称为该光源的⾊温。
半导体二极管和发光二极管_概述及解释说明
![半导体二极管和发光二极管_概述及解释说明](https://img.taocdn.com/s3/m/e11eb6ad541810a6f524ccbff121dd36a32dc409.png)
半导体二极管和发光二极管概述及解释说明1. 引言1.1 概述半导体二极管和发光二极管是两种常见的电子元件,它们在现代电子技术领域发挥着重要的作用。
半导体二极管是一种基本的电子器件,具有良好的整流特性,可以将电流只在一个方向上进行传导,被广泛应用于电源、通信和计算机等领域。
而发光二极管则是在半导体二极管基础上进一步演化而来的元件,在通常情况下能够将电能转化为光能,并在光学显示、照明和通信等领域有广泛应用。
1.2 文章结构本文将分为五个主要部分对半导体二极管和发光二极管进行概述和解释说明。
首先,在引言部分对这两种元件做总体概述,并介绍文章的结构安排。
接下来,第二部分将详细阐述半导体二极管的基本原理、结构和工作方式,并探讨其广泛应用的领域。
第三部分将解释发光二极管的工作原理,介绍其不同的结构和分类,并探讨它在不同应用范围内的使用情况和未来发展趋势。
第四部分将比较分析半导体二极管和发光二极管的特点和区别,包括理论性能差异、应用场景选择比较以及技术发展前景对比评估。
最后,结论与展望部分将总结概括文章要点,并提出对未来发展的展望和建议。
1.3 目的本文旨在全面了解和阐述半导体二极管和发光二极管这两种重要电子元件的概念、原理、结构以及广泛应用领域。
通过对它们进行详细解释说明和比较分析,可以帮助读者更好地理解它们在现代电子技术中扮演的角色,并为相关领域中的技术研究和应用提供参考依据。
此外,还将对未来这两种元件的发展进行展望,并提出相关建议,旨在促进电子技术领域的进一步创新与发展。
2. 半导体二极管:2.1 基本原理:半导体二极管是一种基于半导体材料制造的电子器件。
它由两个不同掺杂的半导体材料构成,通常是P 型(正负载) 和N 型(负载) 的硅或锗晶体。
当二极管处于正向偏置状态时,即正压施加在P 区域上,而负压施加在N 区域上,电子会从N 区流向P 区,同时空穴从P 区流向N 区。
这种电荷移动形成了一个电流,在此过程中,在PN 结处生成一个电势垒。
半导体激光器与半导体光电器件
![半导体激光器与半导体光电器件](https://img.taocdn.com/s3/m/4900c95ecbaedd3383c4bb4cf7ec4afe04a1b192.png)
半导体激光器与半导体光电器件半导体激光器和半导体光电器件是现代光电技术中两个重要的组成部分。
它们在信息通信、医疗、材料加工等领域有着广泛的应用。
本文将介绍半导体激光器和半导体光电器件的基本原理、结构和应用。
一、半导体激光器半导体激光器是利用半导体材料的能带结构,通过电子与空穴的复合辐射出具有高单色性和高亮度的激光光束的装置。
其工作原理基于反向注入和激光放大效应。
半导体激光器的结构主要由两个半导体材料层组成,即n型和p型半导体。
当在p-n结形成时,通过外界电流注入,载流子在活性层内复合,产生受激辐射。
出射光束经由同轴光纤或反射镜进行耦合和提取,形成激光输出。
半导体激光器具有小型化、高效率、功耗低等优点,广泛应用于光通信、激光雷达、医疗美容以及材料加工等领域。
例如,它们在光存储设备中起到了至关重要的作用,可以实现高密度的数据写入和读取。
二、半导体光电器件半导体光电器件是将光信号转化为电信号或将电信号转化为光信号的器件。
根据其功能,半导体光电器件主要可分为光电二极管、光电探测器和光电发射器。
1. 光电二极管光电二极管是一种将光信号转化为电信号的器件。
它的结构与常规的二极管类似,但添加了响应光的材料。
当光照射到光电二极管上时,光能被吸收并通过光电效应转化为电能。
这种转化可以用于光电测量、光通信和光电传感等应用。
2. 光电探测器光电探测器是一种在低光下将光信号转化为电信号的器件。
它通常由光电二极管和放大电路组成。
光照射到光电探测器上后,产生的微弱电流通过放大电路放大,从而得到较大的输出信号。
光电探测器在低光条件下具有较高的灵敏度,广泛应用于夜视、红外探测等领域。
3. 光电发射器光电发射器是一种将电信号转化为光信号的器件。
它的结构与半导体激光器相似,通过激活半导体材料产生受激辐射,将电能转化为光能。
光电发射器常用于光通信和光纤传输等领域,将电信号转化为光信号后,可以通过光纤远距离传输,并在接收端进行光电转换。
发光二极管和激光二极管-需讲
![发光二极管和激光二极管-需讲](https://img.taocdn.com/s3/m/411a6d2ced630b1c59eeb5f6.png)
光学探头 冷 却 水 尾气管
生长参数: 生长参数: 温度、气压、原材料、 温度、气压、原材料、 流量、 流量、 掺杂剂量
有机源 NH3
尾 气 管
热 电 偶 GaN-MOCVD反应室管 反应室管
South China Normal University
South China Normal University
1. 同质结激光器
空带
普通掺杂
满带 p 空带
n
重掺杂
满带 p
n
South China Normal University
E内 p
E外
n p
E内
-
+ + + + +
-+ -+ -+ -+ -+
阻挡层
n
阻挡层 空带 eU0 空带
e(U0-V)
South China Normal University
3、决定LED强度因素 、决定 强度因素
注入的电子和空穴数目; 注入的电子和空穴数目; hv 非辐射复合中心的数目; 非辐射复合中心的数目; 辐射复合几率; 辐射复合几率; 出光效率 n p
South China Normal University
满带
p
p n 加正向偏压V 粒子数反转。电子空穴复合发光, 加正向偏压 → 粒子数反转。电子空穴复合发光, 由自发辐射引起受激辐射 受激辐射。 由自发辐射引起受激辐射。.
South China Normal University
n
满带
p-n结本身就形成 结本身就形成 一个光学谐振腔 光学谐振腔, 一个光学谐振腔, 它的两个端面就相 当于两个反射镜, 当于两个反射镜, 适当镀膜达到所要求 的反射系数,可形成 的反射系数, 光振荡并利于选频。 并利于选频 光振荡并利于选频。. 激励能源就是外接 激励能源就是外接 电源(电泵)。 电源(电泵)。 它提供正向电流, 它提供正向电流,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3-1 与激光器有关的概念
一、光子 1950年,爱因斯坦提出光量子学说。他认为光
是由能量为hf的光量子组成的,其中,h=6.626×10-34 J·S,称为普朗克常数,f是光波频率,人们称这些光量 子叫做光子。
不同频率的光子具有不同的能量,而携带信息的 光波它具有的能量只能是hf的整数倍,当光与物质相 互作用时,光子的能量作为一个整体被吸收或反射。
要使光产生振荡,必须是使光得到放大,而产生 光放大的前题,是物质中的受激辐射必须大于受激吸 收,因此,受激辐射是产生激光的关键。
被电子占据的概率为50% 若E< Ef:则f(E) > 1/2 若E>Ef :则f(E) < 1/2。 故:费米统计规律是:
物质粒子能级分布的基本规律, 它反映了物质中的电子按一定规 律占据能级。
三、光与物质的三种作用形式
光可以被物质吸收,也可以从物质中发射,爱因斯坦指出了 三种不同的基本过程如图3.2所示(下面简述E1、E2二能级系统 为例)。 (1)自发辐射 这是一种发光过程。 设原子的两个能级E1和E2,E1为低能级,E2为高能级,由于处 在高能级的电子不稳定,在未受外界激发的情况下,自发地跃 迁到低能级,在跃迁的过程中,根据能量守恒原理,发射出一 个能量为hf的光子,发射出的光子能量为两个能级之差:
工作参数
输出波长:
635nm 650nm 670nm 出光功率:
0~75mw 光斑直径:
工作电压:3V 4.5V 5V 6V
发光二极管图例
图 3.2*
圆形发光二极管工作参 数 波长:470nm 发光强度: 1000-4000mcd 正向电压;3.4v
光电检测器图例
图 3.3* 插拔式光电二极管 图3.4* APD雪崩光电二极管
光子概念的提出,使人们认识到,光不仅具有波 动性,而且还具有粒子性,而且两者不可分割(两重 性)。
二、费米能级
1、 原子能级的概念
物质是由原子组成,而原子又是由原子核和核外 电子构成,当物质中原子的内部能量变化时,即可能产 生光波。因此要研究激光的产生过程,就应了解原子能 级分布。
电子在原子核外按一定的轨道运动,就具有了一定 的电子能量,因此,电子运动的能量只能有某些允许的 数值,这些允许的数值,因轨道不同,而一个个分开的, 即不连续的,我们把这些分立的能量值,称为原子的不 同能级。(*04)
引言
一、 光纤通信系统对光源的基本要求: (1)稳定性好,可在室温下连续工作; (2)尺寸和结构要小; (3)光波应匹配光纤的两个低损耗波段; (4)信号调制容量大。
3
引言
二、 最常用的发光器件:
(1)LD:半导体激光二极管或称激光器(LD),发出的是激光. a. 极窄的光谱带宽;b. 极大的调制容量; c 有定向输出特性;d. 辐射具有光相干特性。 适用于长距离,大容量,高码速系统
(3)受激辐射
这是另一种发光过程,处于高能级E2的电 子当受到外来光子的激发而跃 迁到低能级E1, 同时放出一个能量为2hf的光子,由于这个过程 是在外来光子的激发下产生的,因此叫受激辐 射。
受激辐射的特点:
1°外来光子的能量等于跃迁的能级之差,hf=E2-E1 2°受激过程中发射出来的光子与外来光子不仅频率
式中:f (E() 概率) :为电子的费米分布函数
Ko:玻耳兹曼常数 T:绝对温度
K01.3 81 0 34 J,/K
E f :费米能级,它只反映电子在各能级中分布 情况的一个参数。
根据上式,我们可以得到图3.1所示的费米分布函数 曲线:
由图3.1可见:在T>0K时 若E=Ef:则f(E)=1/2,则说明该能级
优点:输出特性曲线线性好;使用寿命长;成本低. (2)LED:发光二极管或称发光管(LED),发出的是荧光。 a. 非相干的自发辐射; b.结构及工作方式简单; 适用于短距离,低速,模拟系统
缺点:谱线宽度较宽;调制速率较低;与光纤的耦合效率较低。
4
半导体激光器(LD)图例
图 3.1*
红光点状光斑激光器
半导体激光器和发光二极管介绍概述
构成光纤通信系统三大部分之一的光发射部 分的核心是产生激光或荧光的光源,它包括半导 体激光器LD(Laser Diode) 和半导体发光二极 管LED(Light Emitting Diode),它们的共同 特点是:体积小,重量轻,耗电量小。
激光,其英文LASER就是Light Amplification by Stimulated Emission of Radiation(受激辐射的光放大)的缩写。
相同,而且相位、偏振方向传播方向都相同,因 此称为全同光子。
3°这个过程可以使光得到放大,这是因为受激过 程中发射出来的光子与外来光子是全同光子,相 叠加的结果而使光增强,使入射光得到放大。因 此,受激辐射引起光放大,是产生激光的一个重 要的基本概念。
§3-2 激光器的一般工作原理
激光器是指激光的自激振荡器。
即 hfE2E1 ,则发射光子的频率: f E2 E1
h
自发辐射的特点如下: 1)这个过程是在没有外界作用的条件下, 而自发产生的,是自发跃迁。 2)由于发射出光子的频率决定于所跃迁的 能级,而发生自发辐射的高能级不是一个, 而可以是一系列的高能级,因此辐射光子 的频率亦不同,频率范围很宽。 3)即使有些电子是在相同的能级差间进行 跃迁,也就是辐射出的光子的频率相同时, 但由于它们是独立的,自发的辐射,因此, 它的发射方向和相位也子的的激发下,低能级上的
电子吸收了外来光子的能量,而跃迁到高能级 上,这个过程叫受激吸收。 受激吸收的特点: 1°这个过程必须在外来光子的激发下才能产生, 因此是受激跃迁。 2°外来光子的能量要等于电子跃迁的能级之差, 如E=E2-E1=hf 3°受激跃迁的过程中,不是放出能量,而是消 耗外来光能。
2、费米能级
物质中的电子不停地做无规则的运动,他们可以 在不同的能级间跃迁,即对于某一电子而言,它所具 有的能量时大时小,不断变化,而电子按能量大小的 分布却有一定规律。
在热平衡条件下,能量为E的能级被一个电子占 据的概率为:f(E) 1 1
1e[E (Ef)/K0T] 1exE p(Ef ) KT