高中数学 第1课时 集合的概念教案 新人教A版必修1
人教课标A版数学必修一1.1.1集合的含义与表示教案
1.1.1《集合的含义与表示》导学案班级组名:姓名【学习目标】A级目标:通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.B级目标:了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【重点难点】重点:集合的基本概念与表示方法.难点:选择恰当的方法表示一些简单的集合.【学习过程】一、课题引入问题1.军训前学校通知:8月30日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?问题2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?二、自主探究得出结论阅读课本第2~3页,完成下列探究任务[问题一]①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(1)班全体学生组成的集合,用a表示高一(1)班的一位同学,b是高一(2)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?[问题二]阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.[问题三]①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?三、合作交流,解决问题例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点例2.在数集{2x,x 2-x}中,实数x 的取值范围是什么?例3.试分别用列举法和描述法表示下列集合:(1) 小于10的所有自然数组成的集合;(2) 方程x 2=x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合.四.突破疑难例4.若集合A={}23,21,4a a a ---且3A -∈,求实数a 的值组成的集合.例5.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.【当堂检测】1. (1) A={1,3},判断元素3,5和集合A 的关系,并用符号表示.(2) 所有素质好的人能否表示为集合?(3) A={2,2,4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______.3.已知A={x ∈R |x=abcabc bc bc ac ac ab ab c c b b a a ||||||||||||||++++++,abc ≠0},用列举法表示集合A.4.用列举法表示下列集合:(1) 所有绝对值等于8的数的集合A;(2) 所有绝对值小于8的整数的集合B.5.试分别用列举法和描述法表示下列集合:(1) 方程x 2-2=0的所有实数根组成的集合;(2) 由大于10小于20的所有整数组成的集合.【课后反思】1.今天你的收获是什么?2.你有哪些方面需要努力?【课后巩固提高】1.说出下面集合中的元素:(1) {大于3小于11的偶数};(2) {平方等于1的数};(3) {15的正约数}.2.判断正误:(1)所有属于N 的元素都属于N *. ( )(2)所有属于N 的元素都属于Z . ( )(3)所有不属于N *的数都不属于Z . ( )(4)所有不属于Q 的实数都属于R . ( )(5)不属于N 的数不能使方程4x=8成立. ( )3.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数}; (5){x|x-36∈Z ,x ∈Z }. (6){(x,y)|x ∈N 且1≤x<4,y-2x=0};(7){(x,y)|x+y=6,x ∈N ,y ∈N }.4.用描述法分别表示下列集合:(1)二次函数y=x 2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.(4)方程ax+by=0(ab ≠0)的解;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)能被3整除的整数.5.定义集合运算:A ⊙B={z|z=xy(x+y),x ∈A,y ∈B},设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A.0B.6C.12D.186.集合A 中的元素由关于x 的方程kx 2-3x+2=0的解构成,其中k ∈R,若A 中仅有一个元素,求k 的值.7. 已知集合A 有三个元素2+a ,2)1(+a ,332++a a(1)若1A ∈,则集合A 中还有哪些元素?(2)若1A ∉,则a 应满足什么条件?拓展提升1.集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系.2.已知集合C={x|x=a+b,a ∈A,b ∈B}.(1)若A={0,1,2,3},B={6,7,8,9},求集合C 中所有元素之和S;(2)若A={0,1,2,3,4,…,2 005},B={5,6,7,8,9},试用代数式表示出集合C 中所有元素之和S;(3)联系高斯求S=1+2+3+4+…+99+100的方法,试求出(2)中的S.思路分析:先用列举法写出集合C,然后解决各个小题.答案:(1)列举法表示集合C={6,7,8,9,10,11,12},进而易求得S=6+7+8+9+10+11+12=63.(2)列举法表示集合C={5,6,7,…,2 013,2 014},由此可得S=5+6+7+…+2 013+2 014.(3)高斯求S=1+2+3+4+…+99+100时,利用1+100=2+99=3+98=…=50+51=101,进而得S=1+2+3+4+…+99+100=101×50=5 050.本题(2)中S=5+6+7+…+2 013+2 014=2 019×1 005=2 029 095.。
高中数学新人教A版必修1课件:第一章集合与函数概念1.1.3集合的基本运算(第1课时)并集和交集
集合运算时忽略空集致错
• 典例 4 集合A={x|x2-3x+2=0},B={x|x2-2x+a- 1=0},A∩B=B,求a的取值范围.
• [错解] 由题意,得A={1,2}.∵A∩B=B,∴1∈B,或者 2∈B,∴a=2或a=1.
• [错因分析] A∩B=B⇔A⊇B.而B是二次方程的解集,它
可能为空集,如果B不为空集,它可能是A的真子集,也可
B.{x|-4<x<-2}
• C.{x|-2<x<2} D.{x|2<x<3}
• [解析] N={x|x2-x-6<0}={x|(x-3)(x+2)<0}={x|- 2<x<3},
• ∴M∩N={x|-4<x<2}∩{x|-2<x<3}
• ={x|-2<x<2},故选C.
• 4.(202X·江苏,1)已知集合A={-1,0,1,6},B={x|x>0, x∈R},则A∩B=___{_1,_6_} ______.
• 2.并集和交集的性质并集
简单 性质
A∪A=___A___; A∪∅=___A___
常用 结论
A∪B=B∪A; A⊆(A∪B); B⊆(A∪B);
A∪B=B⇔A⊆B
交集
A∩A=___A___; A∩∅=___∅___
A∩B=B∩A; (A∩B)⊆A; (A∩B)⊆B;
A∩B=B⇔B⊆A
• 1.(202X·全国卷Ⅲ理,1)已知集合A={-1,0,1,2},B= {x|x2≤1},则A∩B= ( A )
• 将x=-2代入x2-px-2=0,得p=-1,∴A={1,-2},
• ∵A∪B={-2,1,5},A∩B={-2},∴B={-2,5},
集合的含义【新教材】人教A版高中数学必修第一册优秀课件
必备知识·探新知
1集.1合的第含1课义时【集新合教的材含】义人-教【A新版教高材中】数人学教必A修版 第(一20册19 优)秀高p中p t数课学件必 修第一 册课件 (共33 张PPT)
1.1 第1课时集合的含义-【新教材】人教A版 (2019 )高中 数学必 修第一 册课件 (共33 张PPT)
第一章
集合与常用逻辑用语
1.1 集合的概念
• 【素养目标】 • 1.通过实例了解集合的含义,掌握集合元素的三个特性,初步运用集
合元素的特性解决简单问题.(数学抽象) • 2.体会元素与集合之间的属于关系,记住并会应用常用数集的表示符
号.(逻辑推理) • 3.掌握集合的两种表示方法(列举法和描述法).(直观想象) • 4.能够运用集合的两种表示方法表示一些简单集合.(直观想象)
基础知识
•知识点1 集合与元素的含义 • 一 ___般__地__,_叫我做们集把合研(究se对t)(象简统称称为为集_).____元__素_(element),把一些元素组成的
• 通常总用体大写拉丁字母A,B,C,…表示________,用小写拉丁字母a,b,
c,…表示集合中的________.
集合
1集.1合的第含1课义时【集新合教的材含】义人-教【A新版教高材中】数人学教必A修版 第(一20册19 优)秀高p中p t数课学件必 修第一 册课件 (共33 张PPT)
1集.1合的第含1课义时【集新合教的材含】义人-教【A新版教高材中】数人学教必A修版 第(一20册19 优)秀高p中p t数课学件必 修第一 册课件 (共33 张PPT)
客观地判断,因此“中国著名的数学家”不能组成集合,故选C.
2.已知 a∈R,且 a∉Q,则 a 可以为( A )
高一数学集合与函数概念讲义新人教A版必修1
高一数学集合与函数概念讲义新人教A版必修1讲义一: 集合的含义与表示(Ⅰ)、基本概念及知识体系:1、了解集合的含义、领会集合中元素与集合的∈、∉关系;元素:用小写的字母a,b,c,…表示;元素之间用逗号隔开。
集合:用大写字母A ,B ,C ,…表示;2、能准确把握集合语言的描述与意义:列举法和描述法:注意以下表示的集合之区别:{y=x 2+1};{x 2-x-2=0},{x| x 2-x-2=0},{x|y=x 2+1};{t|y=t 2+1};{y|y=x 2+1};{(x,y)|y=x 2+1};∅;{∅},{0}3、特殊的集合:N 、Z 、Q 、R ;N*、∅;(Ⅱ)、典例剖析与课堂讲授过程:一、集合的概念以及元素与集合的关系:1、 元素:用小写的字母a,b,c,…表示;元素之间用逗号隔开。
集合:用大写字母A ,B ,C ,…表示;元素与集合的关系:∈、∉②、特殊的集合:N 、Z 、Q 、R ;N*、∅;③、集合中的元素具有确定性、互异性、无序性:★【例题1】、已知集合A={a-2,2a 2+5a,10},又-3∈A ,求出a 之值。
●解析:分类讨论思想;a=-1(舍去),a=-32▲★课堂练习:1、已知集合A={1,0,x },又x 2∈A ,求出x 之值。
(解:x=-1)2、已知集合A={a+2,(a+1)2,a 2+3a+3},又1∈A ,求出a 之值。
(解:a=0)二、集合的表示---------列举法和描述法★【例题3】、已知下列集合:(1)、1A ={n|n=2k+1,k ∈N,k ≤5};(2)、2A ={x|x=2k,k ∈N,k ≤3};(3)、3A ={x|x=4k +1,或x=4k -1,k ,N ∈k ≤3};问:(Ⅰ)、用列举法表示上述各集合;(Ⅱ)、对集合1A ,2A ,3A ,如果使k ∈Z,那么1A ,2A ,3A 所表示的集合分别是什么?并说明3A 与1A 的关系。
高中数学 第一章《集合》教案 新人教A版必修1
课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
集合第一课时教案数学必修第一章集合与函数概念11人教A版
第一章集合与函数的概念1.1 集合第一课时 1.1.1 集合的含义与表示1 教学目标[1]通过实例,使学生初步理解集合的概念,知道常用数集的概念及其记法[2]使学生体会元素与集合的“属于”关系[3]能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2 教学重点/难点教学重点:集合的基本概念与表示方法理解元素与集合之间的从属关系教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合掌握集合中元素的特性的应用3 专家建议这是高中数学的第一节课。
虽说在小学、初中都已渗透了这方面的内容,但集合这个概念还是很抽象。
在本节中,新的符号会比较多,对学生而言是一个难点,应让学生知道在某种意义上数学是一门研究符号的科学,在第一堂课就对数学符号有一个正确的认识。
要适当穿插学习数学的方法,让学生知道数学要自己摸索自己的学习方法。
在教学中尽可能创设一些情境,让学生自然、快乐、自觉地学习数学。
本节课要记的东西多,可让学生自己阅读,然后在老师的引导下思考问题,进一步解决问题。
在本节课的学习过程中,教师一方面让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想.在教学过程中通过恰当的应用信息技术,从而突破难点4 教学方法启发式讲授法5 教学过程5.1 复习引入【师】我们初中学过的实数自然数都还记得吗?它们之间有什么关系呢?【板演/PPT】5.2 实例引入【师】我们来看下下面这些实例【板演/PPT】⑴ 1~20以内的所有整数;⑵我国从1991~2015的25年内所发射的所有人造卫星;⑶某汽车厂2015年生产的所有汽车;⑷所有的正方形;⑸某中学2015年9月入学的高一学生全体.5.3 新知介绍[1]元素与集合的相关概念【师】我们试着总结下这些事例它们有什么共同点?【生】思考交流【师】我们生活中的很多东西都能构成集合,你能举出一些例子吗?通过以上分析,能给出集合的含义吗【板书\PPT】一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)集合常用大写字母A,B,C,D,…表示,元素常用小写字母a,b,c,d…表示[2]元素与集合的关系【师】如果用A表示我们学校全体高一学生组成的集合,用a表示高一学生中的一位同学,b 是高二年级的一位同学,那么a、b与集合A分别有什么关系?由此可见元素与集合之间有什么关系?我们怎样才能简单明了地表示它们的关系呢?【生】讨论交流【板书\PPT】如果a是集合A的元素,就说a属于集合A,记作a∈A如果b不是集合A的元素,就说b属于集合A,记作b?A[3]集合的表示方法【师】我们用什么方法来表示我们的集合呢【生】讨论与理解【师】归纳总结【板书/PPT】列举法:把集合中的元素一个一个地写在一对大括号内表示集合的方法描述法:把集合中元素共有的,也只有该集合中元素才有的属性描述出来,已确定集合的方法【师】同学们请看题【板书\PPT】用适当的方法表示下列集合(1)方程 -4=0的解组成的集合{-2,2}或{x| -4=0}(2)大于3小于9的实数组成的集合{x|3<x<9,x∈R}(3)所有奇数组成的集合{y|y=2n-1,n∈Z}[4]集合元素的性质【师】我们观察一下实例中的数据它们能不能构成组合它们都有什么特征呢?【生】理解与交流【师】总结【板书/PPT】(1)确定性:集合中的元素必须是确定的,任何一个元素都能明确它是或不是某个集合的元素(2)互异性:集合中的元素必须是互不相同的(3)无序性:集合中的元素是无先后顺序的。
高中数学 第一讲 集合的概念与运算教案(教师版) 新人教版
第一讲 集合的概念与运算教学目的: 理解集合、子集、交集、并集、补集的概念。
了解空集和全集的意义,了解属于、包含、相等关系的意义,能正确进行“集合语言”、“数学语言”“图形语言”的相互转化.教学重点: 交集、并集、补集的定义与运算.教学难点: 交集、并集、补集的定义及集合的应用.【知识概要】新课标教学目标: 1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 知识点1 集合某些指定的对象集在一起就成为一个集合。
集合中每个对象叫做这个集合的元素 点评:(1)集合是数学中不加定义的基本概念.构成集合的元素除了常见的数、式、点等数学对象之外,还可以是其他任何对象. (2)集合里元素的特性确定性:集合的元素,必须是确定的.任何一个对象都能明确判断出它是或者不是某个集合的元素.互异性:集合中任意两个元素都是不相同的,也就是同一个元素在集合中不能重复出现. 无序性:集合与组成它的元素顺序无关.如集合{a, b, c}与{c, a, b}是同一集合. (3)元素与集合的关系如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A (或a ∈A ).(4)集合的分类集合的种类通常可分为有限集、无限集、空集(用记号φ表示).有限集:含有有限个元素的集合(单元素集:只有一个元素的集合叫做单元素集。
集合的概念教案5篇
集合的概念教案5篇教师需要了解学生的学习偏好,以确保教案包括多种教学方法,以满足不同学生的需求,教案包括教学评估的方法,用于测量学生的学习成果和教学效果,以下是作者精心为您推荐的集合的概念教案5篇,供大家参考。
集合的概念教案篇1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:一、复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、例一用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-64.过原点的直线的集合解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1,3)} 6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}三、处理苏大《教学与测试》第一课含思考题、备用题四、处理《课课练》五、作业《教学与测试》第一课练习题集合的概念教案篇2一、说教材(1)说教材的内容和地位本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。
集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。
然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。
把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。
从知识结构上来说是为了引入函数的定义。
因此在高中数学的模块中,集合就显得格外的举足轻重了。
人教版(新教材)高中数学第一册(必修1)精品课件4:1.1 第1课时 集合的概念
名称 自然数集 正整数集 整数集 有理数集 实数集
符号 _N__ __N__+_或__N_*_ _Z__
_Q__
_R__
[题型探究] 题型一 集合的基本概念 例1 下列每组对象能否构成一个集合: (1)我们班的所有高个子同学; 解 “高个子”没有明确的标准,因此不能构成集合. (2)不超过20的非负数; 解 任给一个实数x,可以明确地判断是不是“不超过20的非负数”, 即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故 “不超过20的非负数”能构成集合;
[预习导引]
1.元素与集合的概念 (1)集合:把一些能够 确定的不同的对象看成一个整体,就说这个 整体是由这些对象的全体 构成的集合(或集). (2)元素:构成集合的 每个对象 叫做这个集合的元素. (3)集合元素的特性: 确定性、 互异性 .
2.元素与集合的关系
关系
概念
记法
如果 a是集合A 的元素, 属于
[即时达标]
1.下列能构成集合的是( C ) A.中央电视台著名节目主持人 C.上海市所有的中学生
B.我市跑得快的汽车 D.香港的高楼
【解析】A、B、D中研究的对象不确定,因此不能构成集合.
2.已知1∈{a2,a},则a=__-_1___.
【解析】当a2=1时,a=±1,但a=1时,a2=a,由元素的互异性 知a=-1.
【解析】深圳不是省会城市,而广州是广东省的省会.
4.已知① 5∈R;②13∈Q;③0∈N;④π∈Q;⑤-3∉Z.
【解析】序号 Biblioteka 否构成集合理由(1)
能
其中的元素是“三条边相等的三角形”
“难题”的标准是模糊的、不确定的,所以
(2)
不能
人教A版必修一 第一章 1.1.1集合的含义与表示方法 教案
方程x=x2
③由1到20以内的所有整数组成的集合。
所有正数
所有奇数
x-7<3的解集
y=x中y的取值组成的集合
y=1/x中x的取值组成的集合
一次函数y=x+3与y=-2x+6的图像的交点组成的集合
直角坐标系中,第一象限内所有的点组成的集合(不包括x轴y轴上的点)
对于③可以一一列举,但是20个数都写出来还是有点麻烦的;对于 如果用列举法,会出现省略号,要求读者找规律,才能知道这个集合表示的是正数集,奇数集。而至于 ,用列举法显然不适合。那有没有更好的办法呢?
4.集合的三种表示方法:自然语言,列举法,描述法
我们班所有的学生
我们班所有男生
③我们班所有高个子男生
我们班所有身高超过1米6的超级爱好DOTA游戏的男生。
我们班幸福的人
以上③ 都不是集合,因为它们所研究的对象都是不确定的,高个子?多高算高呢?每个人心中都有不一样的标准。超级爱好,幸福都是模棱两可的。
(三)集合元素的互异性,一个给定的集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的。(四)通常用大写的英文字母A,B,C……表示集合,用小写的啊,a,b,c……表示集合中的元素。如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于集合A,记作aA。
(六)集合的表示方法:列举法,描述法,Venn图
从上面例子,我们已经看到,可以用自然语言描述一个集合。除此之外Байду номын сангаас有什么方法呢?
列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。(强调花括号,元素之间用逗号隔开,无序性,互异性)说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序;集合中同一元素不能重复出现。
人教A版高中数学必修1教案完整版
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
(新教材)【人教A版】高一数学《1.1.1集合的含义》
【解析】1.选A.A中a=0时,显然不成立. 2.选A.a= + < + =4<5, 所以a∈A. a+1< + 2 +1=35, 4 4 所以a+1∈A,
44
a2=( )2+2 × +( )2=5+2 >5,
所以a22∉A, 2 3 3
6
=
<5,
所1 以 ∈1A.
3 2
第一章 集合与常用逻辑用语 1.1 集合的概念
第1课时 集合的含义
1.元素与集合 (1)元素:把研究对象统称为元素,常用小写的拉丁字母 a,b,c,…表示. (2)集合:一些元素组成的总体,简称集,常用大写拉丁 字母A,B,C,…表示.
(3)集合相等:指构成两个集合的元素是一样的. (4)集合中元素的特性:确定性、互异性和无序性.
【延伸·练】
数集A满足条件:若a∈A,则 ∈A(a≠1).若 ∈A,
求集合中的其他元素. 1 a
1
1 a
3
【解析】因为
1
∈A,所以
1
1 3
=2∈A,所以
1
2
=
3
1 1
1 2
-3∈A,所以1 3=-
1
∈A,所以
3 1
1 2
=ቤተ መጻሕፍቲ ባይዱ
1∈A.故当 1 ∈A
13 2
1 1 3
3
2
时,集合中的其他元素为2,-3,- 1 .
31 22
含有4个元素.其中正确的是 ( ) A.①②④ B.②③ C.③④ D.②④ 【解析】选B.①中的元素不能确定,④中的集合含有3 个元素,②③中的元素是确定的,所以②③能构成集合.
高一数学教案:1.1.1《集合的概念》 人教A版必修1
1.1.1集合的概念教学目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念教学过程:1.引入(1)章头导言(2)集合论与集合论的创始者-----康托尔(有关介绍可引用附录中的内容)2.讲授新课阅读教材,并思考下列问题:(1)有那些概念?(2)有那些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?(一)有关概念:1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈Aa∉(2)不属于:如果a不是集合A的元素,就说a不属于A,记作A要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集{Φ,}0{,0等符号的含义注:应区分Φ,}5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N*或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*课堂练习:教材第5页练习A、B小结:本节课我们了解集合论的发展,学习了集合的概念及有关性质课后作业:第十页习题1-1B第3题附录:集合论的诞生韩雪涛集合论是德国著名数学家康托尔于19世纪末创立的.十七世纪数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.康托尔的不朽功绩前苏联数学家柯尔莫戈洛夫评价康托尔的工作时说:“康托尔的不朽功绩在于他向无穷的冒险迈进”.因而只有当我们了解了康托尔在对无穷的研究中究竟做出了些什么结论后才会真正明白他工作的价值之所在和众多反对之声之由来.数学与无穷有着不解之缘,但在研究无穷的道路上却布满了陷阱.因为这一原因,在数学发展的历程中,数学家们始终以一种怀疑的眼光看待无穷,并尽可能回避这一概念.但试图把握无限的康托尔却勇敢地踏上了这条充满陷阱的不归路.他把无穷集这一词汇引入数学,从而进入了一片未开垦的处女地,开辟出一个奇妙无比的新世界.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.下面就让我们来看一下盒子打开后他释放出的是什么.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合那一章后,同学们应该对这句话不会感到陌生.但同学们在接受这句话时根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在.这种关于无穷的观念在数学上被称为潜无限.十八世纪数学王子高斯就持这种观点.用他的话说,就是“……我反对将无穷量作为一个实体,这在数学中是从来不允许的.所谓无穷,只是一种说话的方式……”而当康托尔把全体自然数看作一个集合时,他是把无限的整体作为了一个构造完成了的东西,这样他就肯定了作为完成整体的无穷,这种观念在数学上称为实无限思想.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是无足为怪的.然而康托尔并未就此止步,他以完全前所未有的方式,继续正面探讨无穷.他在实无限观念基础上进一步得出一系列结论,创立了令人振奋的、意义十分深远的理论.这一理论使人们真正进入了一个难以捉摸的奇特的无限世界.最能显示出他独创性的是他对无穷集元素个数问题的研究.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应――例如同学们很容易发现自然数集与正偶数集之间存在着一一对应关系――也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了代数数集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.这不但意味着无理数远远多于有理数,而且显然庞大的代数数与超越数相比而言也只成了沧海一粟,如同有人描述的那样:“点缀在平面上的代数数犹如夜空中的繁星;而沉沉的夜空则由超越数构成.”而当他得出这一结论时,人们所能找到的超越数尚仅有一两个而已.这是何等令人震惊的结果!然而,事情并未终结.魔盒一经打开就无法再合上,盒中所释放出的也不再限于可数集这一个无穷数的怪物.从上述结论中康托尔意识到无穷集之间存在着差别,有着不同的数量级,可分为不同的层次.他所要做的下一步工作是证明在所有的无穷集之间还存在着无穷多个层次.他取得了成功,并且根据无穷性有无穷种的学说,对各种不同的无穷大建立了一个完整的序列,他称为“超限数”.他用希伯莱字母表中第一个字母“阿列夫”来表示超限数的精灵,最终他建立了关于无限的所谓阿列夫谱系它可以无限延长下去.就这样他创造了一种新的超限数理论,描绘出一幅无限王国的完整图景.可以想见这种至今让我们还感到有些异想天开的结论在当时会如何震动数学家们的心灵了.毫不夸张地讲,康托尔的关于无穷的这些理论,引起了反对派的不绝于耳的喧嚣.他们大叫大喊地反对他的理论.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.作为对传统观念的一次大革新,由于他开创了一片全新的领域,提出又回答了前人不曾想到的问题,他的理论受到激烈地批驳是正常的.当回头看这段历史时,或许我们可以把对他的反对看作是对他真正具有独创性成果的一种褒扬吧.公理化集合论的建立集合论提出伊始,曾遭到许多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品.在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症,几次陷于精神崩溃.然而集合论前后经历二十余年,最终获得了世界公认.到二十世纪初集合论已得到数学家们的赞同.数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了.他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦.在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.今天,我们可以说绝对的严格已经达到了.”然而这种自得的情绪并没能持续多久.不久,集合论是有漏洞的消息迅速传遍了数学界.这就是1902年罗素得出的罗素悖论.罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R.现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不应属于自身,即R不属于R;另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R.这样,不论何种情况都存在着矛盾.这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地.绝对严密的数学陷入了自相矛盾之中.这就是数学史上的第三次数学危机.危机产生后,众多数学家投入到解决危机的工作中去.1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF公理系统.原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现.这就是集合论发展的第二个阶段:公理化集合论.与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论.公理化集合论是对朴素集合论的严格处理.它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机.公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.超限算术是数学思想的最惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一.这个成就可能是这个时代所能夸耀的最伟大的工作.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一.注:整系数一元n次方程的根,叫代数数.如一切有理数是代数数.大量无理数也是代数数.如根号2.因为它是方程x2-2=0的根.实数中不是代数数的数称为超越数.相比之下,超越数很难得到.第一个超越数是刘维尔于1844年给出的.关于π是超越数的证明在康托尔的研究后十年才问世.。
1.1集合的概念课件——高中数学人教A版必修第一册
问题6:集合的3种表示方法之描 述 法
一般地,设A是一个集合,我们把集合A中所有具有共同特征P(x)的元素 x组成的集合表示为:
{x∈A|P(x)},
这种表示集合的方法称为描述法.
温馨提示 :有时也用冒号或者分号代替竖线,写成
{x∈A:P(x)} 或 {x ∈A;P(x)}
问题6:集合的3种表示方法之描 述 法 例如,实数集R中,有限小数和无限循环小数都具有 的情势,这些数组成有理数集,我们将它表示为
(3)无序性一即集合中的元素没有次序之分.
1 . 判断下列元素的全体是否组成集合,并说明理由: (1)与定点A, B 等距离的点; (2) 高中学生中的游泳能手 .
(1)是,即线段AB 的垂直平分线。 (2)不是,因为游泳能手与不是能手没有具体的划分标准。
问题3:集合和元素怎么錶示?它们之间有什么关系?
一般来说:用大写拉丁字母A、B、C..等表示集合 用小写拉丁字母a,b,c...等表示元素
元素与集合的关系: 如果是α是集合A的元素,那么就说α属于集合A, 记作a ∈A; 如果是a 不是集合A的元素,那么就说a 不属于集合A, 记 作a≠ A; 比如,3∈自然数集;44奇数集
问题4;常用的数集比如自然数集怎么表示?
表示为x=2k+1(k∈Z) 的情势,那么x除以2的余数为1,它是一个奇数;
反之,如果x 是一个奇数,那么x除以2的余数为1,它能表示为x=2k+1 (k∈Z)的情势.
所以,x= 2k + 1(k∈Z )是所有奇数的一个共同特征,于是奇数集可以 表示为:{x∈Z|x=2k+1,k∈Z}
你能用这样的方法表示偶数集吗?{x∈Z|x=2k,k∈Z}
【自然数集】
新人教A版必修1高中数学集合的含义学案
高中数学 集合的含义学案新人教A 版必修1学习目标: 1、理解集合的含义。
2、了解元素与集合的表示方法及相互关系。
3、熟记有关数集的专用符号。
4、掌握集合中元素的三大特征。
学习重点:集合含义学习难点:集合含义的理解知识链接:在小学和初中,我们已经接触过一些集合,例如:自然数的集合,有理数的集合,不等式x-7<3的解集合等。
那集合的含义是什么呢?自己阅读教材P2-5页(8分钟)完成下列题目:(15分钟)1、集合元素的三大特征 , , 只要构成两个集合的元素是一样的,我们称这两个集合 .2、元素与集合的关系如果a 是集合A 的元素,就说a 属于集合A ,记作:a A ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作:a A .实例验证: 设B 表示“5以内的自然数”组成的集合,则5 B ,0.5 B , 0 B , -1 B .3、用符号∈或∉填空:0 N ,0 R ,3.7 N ,3.7 Z , .4、用列举法表示下列集合。
(1)大于3小于11的偶数:(2)方程2230x x --=的解;(3)由1—20以内的所有质数组成的集合。
5、用描述法表示下列集合。
(1)280x -> 由不等式的解集组成的集合 ( 2 )由大于2且小于5的所有实数组成的集合6、、求集合{2a, a 2+a }中元素应满足的条件?当堂检测:1. 下列说法正确的是( ).A .某个村子里的高个子组成一个集合B .集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合C .所有小正数组成一个集合D .1361,0.5,,,2242. 给出下列关系:① 12R =;②Q ;③3N +-∉;④.Q 其中正确的个数为( ).A .1个B .2个C .3个D .4个课后作业:1、用符号∈或∉填空:222(1)3_____;(2)3_____;(3)_____;;;____7Q N Q R Z N π2、已知A={X|X=3K-1,K ∈Z},用符号∈或∉填空:(1)5 A ; (2)7 A ; (3)-10 A ;3、设x ∈R ,集合2{3,,2}A x x x =-:(1)求元素x 所应满足的条件; (2)若2A -∈,求实数x .小结:。
数学:1.1.1《集合的含义与表示》教案(新人教A版必修1)
集合的含义及其表示一。
教学课题集合的含义及其表示二.教学目标1。
理解集合的含义;2.理解集合中元素的特性;3.掌握集合的三种表示方法;4.掌握常用集合的表示方法;5.理解空集的含义。
三.重 点1。
集合的含义2.集合中元素的特性,尤其是互异性;3.集合的三种表示方法。
四.难 点1.集合的含义;2.集合中元素的确定性;3.描述法表示集合。
五.教学过程(一)引例1.中国的直辖市:北京、上海、天津、重庆四个城市;2.徐州市第三十六中学高一(6)班:由在座的47位同学组成的一个集体;3.徐州市第三十六中学高一年级:由1~6班6个班级组成的一个集体。
这三个例子都有一个共同的特点:它们都是由某些确定的、不同的对象组成的一个集体。
(二)新课1.集合:在一定范围内某些确定的、不同的对象的全体构成一个集合;2.集合的元素:集合中的每一个对象称为该集合的元素。
注意:(1)。
★研究集合应首先弄清集合中的元素是什么?!(2).集合中的元素具有任意性,任何确定事物都可成为集合中的元素,集合中的元素也可以是集合。
举例:引例3(3)集合常用大写的拉丁字母表示;例集合A集合的元素常用小写的拉丁字母表示;3.元素与集合的关系:从属关系若a 是集合A 中的元素,则记作A a ∈;若a 不是是集合A 中的元素,则记作A a ∉或A a ∈;4.常用集合的字母表示自然数集N 正整数集+N (*N ) 整数集Z 有理数集Q 实数集R5.集合中元素的特性(1)☆确定性:对于一个给定的集合,它的元素的意义是明确的;有具体的标准。
因此,对于给定的一个集合和一个对象,这个对象是否为这个集合的元素,只有“是”和“不是”两种情况。
举例(什么叫做意义明确,有具体的标准):问:一个满头黑发的人,拔掉一根头发,是否还是满头黑发?(2)★互异性:对于一个给定的集合,它的任何两个元素都是不同的,相同对象放到同一集合中只能算一个元素。
举例:“book 中的字母”(3)无序性:集合与其中元素的排列顺序无关。
集合的概念课件-人教A版高中数学必修第一册
解题方法 (根据集合中元素的特性求解字母取值(范围)的3个步骤)
求解
根据集合中元素的确定性,解出字母的所有取值
检验 作答
根据集合中元素的互异性,对解出的值进行检验 写出所有符合题意的字母的取值
自主预习,回答问题
阅读课本3-5页,思考并完成以下问题
1.集合有哪两种表示方法?它们如何定义? 2.它们各自有什么特点? 3.它们使用什么符号表示?
(3)不能出现未被说明的字母.
[小试身手]
1.判断(正确的打“ √ ”,错误的打“×”)
(1)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}. ( × )
(2)集合{(1,2)}中的元素是1和2.
(×)
(3)集合A={xlx—1=0} 与集合B={1} 表示同一个集合.( √ )
答案: C
_个元素.
答案:2
所有解组成的集合中共有
题型分析 举一反三
题型一集合的含义
[例1] 考查下列每组对象,能构成一个集合的是(B ) ①某校高一年级成绩优秀的学生;
②直角坐标系中横、纵坐标相等的点;
③不小于3的自然数;
④202X年第23届冬季奥运会金牌获得者.
A.③④
B.②③④
C.②③
D.②④
解 题 方 法(判断一组对象能否组成集合的标准)
· 解题方法(描述法表示集合的2个步骤)
写代表元素
明确元素 的特征
分清楚集合中的元素是点还是数或是其 他的元素
将集合中元素所具有的公共特征,写在竖 线的后面
[跟踪训练二]
3. 用符号“∈”或“中”填空:
(1)A={xlx²—x=0}, 则1
A,—1
A;
(2)(1,2)
(新教材)人教A版必修第一册1.1 集合的概念
1.1 集合的概念最新课程标准:(1)通过实例,了解集合的含义,理解元素与集合的属于关系.(2)针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.知识点一 集合的概念1.元素:一般地,我们把研究对象统称为元素. 2.集合:把一些元素组成的总体叫做集合. 3.集合中元素的特征 特征 含义确定性集合中的元素是确定的,即给定一个集合,任何元素在不在这个集合里是确定的.它是判断一组对象是否构成集合的标准互异性 给定一个集合,其中任何两个元素都是不同的,也就是说,在同一个集合中,同一个元素不能重复出现 无序性集合中的元素无先后顺序之分4.集合相等只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.状元随笔 集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么,集合中的元素可以是点,也可以是一些人或一些物.知识点二 元素与集合的表示及关系 1.元素与集合的符号表示表示⎩⎪⎨⎪⎧元素:通常用小写拉丁字母a ,b ,c ,…表示.集合:通常用大写拉丁字母A ,B ,C ,…表示.2.元素与集合的关系 关系 语言描述 记法 示例a 属于集合A a 是集合 A 中的元素 a ∈A若A 表示由“世界四大洋”组成的集合,则太解析:选项A中两个集合的元素互不相等,选项B中两个集合一个是数集,一个是点集,选项C中集合M={0,1},只有D是正确的.答案:D3.集合{x∈N*|x-3<2}的另一种表示法是()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}解析:∵x-3<2,x∈N*,∴x<5,x∈N*,∴x=1,2,3,4.故选B.答案:B4.设-5∈{x|x2-ax-5=0},则集合{x|x2+ax+3=0}=________.解析:由题意知,-5是方程x2-ax-5=0的一个根,所以(-5)2+5a-5=0,得a=-4,则方程x2+ax+3=0,即x2-4x+3=0,解得x=1或x=3,所以{x|x2-4x+3=0}={1,3}.答案:{1,3}题型一集合的概念[经典例题]例1下列对象能构成集合的是()A.高一年级全体较胖的学生B.sin 30°,sin 45°,cos 60°,1C.全体很大的自然数D.平面内到△ABC三个顶点距离相等的所有点【解析】由于较胖与很大没有一个确定的标准,因此A,C不能构成集合;B中由于sin 30°=cos 60°不满足互异性;D满足集合的三要素,因此选D.【答案】 D述法表示为B ={x ∈Z |10<x <20}.大于10且小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B ={11,12,13,14,15,16,17,18,19}.找准元素,列举法是把元素一一列举.描述法注意元素的共同特征.教材反思本例题用列举法和描述法表示集合,关键是找准元素的特点,有限个元素一一列举,无限个元素的可以用描述法来表示集合,需要用一种适当方法表示.何谓“适当方法”,这就需要我们首先要准确把握列举法和描述法的优缺点,其次要弄清相应集合到底含有哪些元素.要弄清集合含有哪些元素,这就需要对集合进行等价转化.转化时应根据具体情景选择相应方法,如涉及方程组的解集,则应先解方程组.将集合的三种语言相互转化也有利于我们弄清楚集合中的元素.跟踪训练3 用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解集;(2)由所有小于13的既是奇数又是素数的自然数组成的集合; (3)方程x 2-2x +1=0的实数根组成的集合;(4)二次函数y =x 2+2x -10的图象上所有的点组成的集合.解析:(1)解方程组⎩⎨⎧ 2x -3y =14,3x +2y =8,得⎩⎨⎧x =4,y =-2,故解集可用描述法表示为⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎨⎧x =4,y =-2,也可用列举法表示为{(4,-2)}.(2)小于13的既是奇数又是素数的自然数有4个,分别为3,5,7,11.可用列举法表示为{3,5,7,11}.(3)方程x 2-2x +1=0的实数根为1,因此可用列举法表示为{1},方法归纳选用列举法或描述法的原则要根据集合元素所具有的属性选择适当的表示方法.列举法的特点是能清楚地展现集合的元素,通常用于表示元素个数较少的集合,当集合中元素较多或无限时,就不宜采用列举法;描述法的特点是形式简单、应用方便,通常用于表示元素具有明显共同特征的集合,当元素共同特征不易寻找或元素的限制条件较多时,就不宜采用描述法.课时作业 1一、选择题1.已知集合A 中元素x 满足-5≤x ≤5,且x ∈N *,则必有( )A .-1∈AB .0∈A C.3∈A D .1∈A解析:x ∈N *,且-5≤x ≤5,所以x =1,2.所以1∈A . 答案:D2.将集合⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎪⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧ x +y =52x -y =1用列举法表示,正确的是( ) A .{2,3} B .{(2,3)}C .{(3,2)}D .(2,3)解析:解方程组⎩⎨⎧x +y =5,2x -y =1,得⎩⎨⎧x =2,y =3.所以答案为{(2,3)}. 答案:B3.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,那么a 为( )A .2B .2或4C .4D .0解析:集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,a数a的值.解析:因为-3∈A,A={a-3,2a-1},所以-3=a-3或-3=2a-1.若-3=a-3,则a=0.此时集合A含有两个元素-3,-1,符合题意.若-3=2a-1,则a=-1,此时集合A含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a的值为0或-1.9.用适当的方法表示下列集合.(1)方程x(x2+2x+1)=0的解集;(2)在自然数集中,小于1 000的奇数构成的集合.解析:(1)因为方程x(x2+2x+1)=0的解为0或-1,所以解集为{0,-1}.(2)在自然数集中,奇数可表示为x=2n+1,n∈N,故在自然数集中,小于1 000的奇数构成的集合为{x|x=2n+1,且n<500,n∈N}.[尖子生题库]10.下列三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.(1)它们是不是相同的集合?(2)它们各自的含义是什么?解析:(1)它们是不相同的集合.(2)集合①是函数y=x2+1的自变量x所允许的值组成的集合.因为x可以取任意实数,所以{x|y=x2+1}=R.集合②是函数y=x2+1的所有函数值y组成的集合.由二次函数图象知y≥1,所以{y|y=x2+1}={y|y≥1}.集合③是函数y=x2+1图象上所有点的坐标组成的集合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:集合的概念
教学目标:集合、子集的概念,能利用集合中元素的性质解决问题,掌握集合问题的常规处理方法.
教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用. 教学过程:
(一)主要知识:1.集合、子集、空集的概念;两个集合相等的概念.
2.集合中元素的3个性质,集合的3种表示方法;
3.若有限集A 有n 个元素,
则A 的子集有2n 个,真子集有21n -,非空子集有21n -个,非空真子集有22n -个.
4.空集是任何集合的子集,空集是任何非空集合的真子集.
5.若A B B C ⊆⊆,,则A C ⊆
6.,,.A A B A B A A B A B ⊆⊆⊆
7.A B A B B ⊆⇔=;A B A B A ⊆⇔=.
(二)主要方法:
1.解决集合问题,首先要弄清楚集合中的元素是什么,即元素分析法的掌握.
2.弄清集合中元素的本质属性,能化简的要化简;
3.抓住集合中元素的3个性质,对互异性要注意检验;
4.正确进行“集合语言”和普通“数学语言”的相互转化. (三)典例分析:
问题1:已知集合{}3,M x x n n Z ==∈,{}
31,N x x n n Z ==+∈,
{}31,P x x n n Z ==-∈,且a M ∈,b N ∈,c P ∈,设d a b c =-+,则
.A d M ∈ .B d N ∈ .C d P ∈ .D d M
N ∈
问题2:设集合{}
224A x x a a ==++,{}
247B y y b b ==-+. ()1若a R ∈,b R ∈,试确定集合A 与集合B 的关系;
()2若a N ∈,b R ∈,试确定集合A 与集合B 的关系.
问题3:2008年第29届奥运会将在北京召开,现有三个实数的集合,既可以表示 为{},,1
b a a ,也可以表示为{}
2
,,0a a b +,则2008
2008a b +=
问题4:(02新课程)设1
24{|,}k M x x k Z ==+∈, 142{|k
N x x ==+,}k Z ∈
则 .A M N = .B M N ⊂≠ .C M
N .D M N =∅
问题5:①若{}
2|10,A x x ax x R =++=∈, {}1,2B =,且A B A =,求a 的范围
②设{}2120P x x x =+-≥,{}
132Q x m x m =-≤≤-,若Q P P =,求m 的范围
[机动]设2
()f x x px q =++,{|()}A x x f x ==,{|[()]}B x f f x x ==, (1)求证:A B ⊆;
(2)如果{1,3}A =-,求B .
(四)巩固练习:
1.选择:集合{}220P x x =-=( )、{}220Q x x x =+=( )、
{}22M y y x x ==+( )
、()2{,2T x y y x x ==+且0}y =( ). .A =∅ .B {}2,0=- .C ()(){}2,0,0,0-
.D 恰有一个元素 .E ()1,=-+∞ .F [)1,=-+∞
2.(06上海)已知集合{}1,3,21A m =--,集合{}23,B m =,若B A ⊆,则实数m 的
值为
3.满足{}{},,,,a b A a b c d ⊆⊆的集合A 的个数有 个;
满足{}
{},,,,a b A a b c d ⊆的集合A 的个数有 个.
(05湖北)设P 、Q 为两个非空实数集合,定义集合{|,}P Q a b a P b Q +=+∈∈, 若{0,2,5}P =,}6,2,1{=Q ,则P Q +中元素的个数是( )
.A 9 .B 8 .C 7 .D 6
4.调查某班50名学生,音乐爱好者40名,体育爱好者24名,则两方面都爱好的人数
最少是 ,最多是 5. {}20,A x x px q x R =++=∈{}2=,则p q +=
(五)课后作业:
1.集合{}2,P x x k k Z ==∈,{}21,Q x x k k Z ==+∈,{}41,R x x k k Z ==+∈,
a P ∈,
b Q ∈,设
c a b =+,则有( )
.A c P ∈ .B c Q ∈ .C c R ∈ .D 以上都不对
2.若A 、B 是全集I 的真子集,则下列四个命题①A B A =;②A B A =;
③()I A C B =∅;④A B I =.中与命题A B ⊆等价的有( ) .A 1个 .B 2个 .C 3个 .D 4个
3.集合8|,,3M y y x y Z x ⎧⎫
==
∈⎨⎬+⎩⎭
的元素个数是( ) .A 2个 .B 4个 .C 6个 .D 8个
4.集合()2{,x y y x =且}y x ==
5.如图,I 为全集,M 、P 、S 是I 的三个子集,则阴影部分所表示的集合是( )
.A ()M
P S .B ()M P S
.C ()()I M P C S .D ()()I M P C S
6.
已知集合
{}
16|,M x x m m Z ==+∈,
{}123|,,n N x x n Z ==-∈{}
1
26|,p P x x p Z ==+∈,则M 、N 、P 满足的关系是 ( ).A M N P = .B M N P = .C M
N
P .D M P N ⊆⊆
7. 设集合2{|60}P x x x =--<,{|0}Q x x a =-≥
(1)若P Q ⊆,求实数a 的取值范围;(2)若P Q =∅;求实数a 的范围;
8.设2{|2530}M x x x =--=,{|1}N x mx ==,若N M ⊆,则实数m 的取值
集合是
9.设集合{},,P x y x y xy =-+,{}2222,,0Q x y x y =+-,若P Q =,求,x y 的值
及集合P 、Q .
(六)走向高考:
1.(07全国Ⅰ)设a 、b R ∈,集合{1,,}{0,,}b
a b a b a
+=,则b a -=( )
.A 1 .B 1- .C 2 .D 2-
2.(07湖北)设P 和Q 是两个集合,定义集合{|P Q x x P -=∈,且}x Q ∉,如果 {}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于( )
.A {}|01x x << .B {}|01x x <≤ .C {}|12x x <≤ .D {}|23x x <≤
3.(06山东)定义集合运算:(){},,A B z z xy x y x A y B ==+∈∈⊙,设{}0,1A =,{}2,3B =,则集合A B ⊙的所有元素之和为( )
.A 0 .B 6 .C 12 .D 18
4.(06江苏)若A 、B 、C 为三个集合,A B B C =,则一定有( )
.A C A ⊆ .B A C ⊆ .C C A ≠ .D A =∅
5.(06上海文)已知{1,3,}A m =-,{3,4}B =,若B A ⊆,则实数m =
6.(05全国Ⅰ)设I 为全集,321S S S 、、是I 的三个非空子集,且1
23S S S I =,
则下面论断正确的是( ).A 12
3I C S S S =∅() .B 123I I S C S C S ⊆()
.C 12
3I I I C S C S C S =∅
.D 123I I S C S C S ⊆
()
7.(04湖北)设{|10}P m m =-<<,2{|440Q m R mx mx =∈+-<对任意实数
x 恒成立},则下列关系中成立的是( ) .A P Q .B Q P .C P Q = .D P Q =∅。