双筋矩形梁正截面承载力计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双筋矩形梁正截面承载力计算
一、双筋矩形梁正截面承载力计算图式
二、基本计算公式和适用条件
1.根据双筋矩形梁正截面受弯承载力的计算图式,由平衡条件可写出以下两个基本计算公式:
由
∑=0X 得:
s y s y c A f A f bx f =''+1α
由
∑=0M 得:
)(2001a h A f x h bx f M M s
y c u '-''+⎪⎭⎫ ⎝
⎛
-=≤α 式中'
y f —— 钢筋的抗压强度设计值; 's A —— 受压钢筋截面面积;
'a —— 受压钢筋合力点到截面受压边缘的距离。
其它符号意义同前。
2.适用条件 应用式以上公式时必须满足下列适用条件:
(1)0h x b ξ≤ (2)'
2a x ≥
如果不能满足(2)的要求,即'
2a x <时,可近似取'
2a x =,这时受压钢筋的合力将与受压区混凝土压应力的合力相重合,如对受压钢筋合力点取矩,即可得到正截面受弯承载力的计算公式为:
)(0a h A f M M s y u '-=≤
当b ξξ≤的条件未能满足时,原则上仍以增大截面尺寸或提高混凝土强度等级为好。只有在这两种措施都受到限制时,才可考虑用增大受压钢筋用量的办法来减小ξ。 三、计算步骤
(一)截面选择(设计题)
设计双筋矩形梁截面时,s A 总是未知量,而'
s A 则可能有未知或已知这两种不同情况。 1.已知M 、b 、h 和材料强度等级,计算所需s A 和'
s A (1)基本数据:c f ,y f 及'y f ,1α, 1β,b ξ
(2)验算是否需用双筋截面
由于梁承担的弯矩相对较大,截面相对较小,估计受拉钢筋较多,需布置两排,故取mm a 60=,a h h -=0。单筋矩形截面所能承担的最大弯矩为:
M bh f M b b c u <-=)5.01(201max 1ξξα,说明需用双筋截面。
(3)取0h x b ξ=,则
)5.01(201max 1b b c u bh f M ξξα-=
(4)计算受压钢筋
12u u M M M -=
)
(02
a h f M A y u s
'-'='
从构造角度来说,'s A 的最小用量一般不宜小于2φ12,即2
'm in 226mm A s =。
(5)求受拉钢筋总面积为
y
s y b c s f A f h b f A '
'+=
01ξα
(6)实际选用钢筋,画截面配筋图
2.已知M 、b 、h 和材料强度以及'
s A ,计算所需s A
(1)基本数据:c f ,y f 及'
y f ,1α, 1β,b ξ
(2)利用'
s A 求2s A 和2u M
y
y s
s f f A A ''=2
)(02s s y u a h A f M '-''=
(3)求1u M ,并由1u M 按单筋矩形截面求1s A
2
011s 2
1bh f M M M M c u u u αα=
-=
(4)根据s α求基本系数
)211(5.0s s αγ-+=,
s αξ211--=
(5)求x 并验算适用条件
'02a h x ≥=ξ
1
1h f M A s y u s γ=
(6)求受拉钢筋总面积为
21s s s A A A +=
(7)实际选用钢筋,画截面配筋图 (二)承载力复核
已知截面尺寸b 、h 和材料强度等级以及s A 和'
s A ,需复核构件正截面的受弯承载力,即求截面所能承担的弯矩。
(1)基本数据:c f ,y f 及'
y f ,1α, 1β,b ξ
(2)求x
s y s y c A f A f bx f =''+1α
(3)当0'
2h x a b ξ≤≤时
)(2001a h A f x h bx f M M s
y c u '-''+⎪⎭⎫ ⎝
⎛
-=≤α
(4)当'
2a x <时
)(0a h A f M M s y u '-=≤
(5)当0h x b ξ>时,则说明已为超筋截面。对于已建成的结构构件,其承载力只能按
0h x b ξ=计算,此时,将0h x b ξ=代入下式
)(2001a h A f x h bx f M M s
y c u '-''+⎪⎭⎫ ⎝
⎛
-=≤α 所得u M 即为此梁的极限承载力。如果所复核的梁尚处于设计阶段,则应重新设计使之不成为超筋梁。