北师大版线段的垂直平分线
线段的垂直平分线(第1课时)教学课件--北师大版初中数学八年级(下)
第一章 三角形的证明
1.3线段的垂直平分线(第1课时)
学习目标
1. 学会综合法证明线段的垂直平分线的性质定理和判断定 理。(重点) 2.通过探索、发现、猜测、证明等过程,发展学生的推理 证明的能力、规范证明的书写格式。(难点)
新课导入
知识回顾
1.点P在线段AB的垂直平分线上,PA=7,则PB=__7___. 2.如右图,在Rt△ABC中,∠B=900,ED是AC的垂直平分线,交AC于点D, 交BC于点E,已知∠BAE=300,则∠C的度数为__3__0_°__.
情景导入
如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头, 使它到两个仓库的距离相等,码头应建在什么位置?
A
C
B
知识讲授
线段垂直平分线的性质定理
我们曾经利用折纸的方法得到:线段垂直平分线上的点到这条线 段两个端点距离相等.你能证明这一结论吗?
知识讲授
线段垂直平分线上的点到这条线段两个端点距离相等.
几何语言:
如图,∵PA=PB(已知),
A
∴点P在AB的垂直平分线上(到一条线段
两个端点距离相等的点,在这条线段的
垂直平分线上).
P B
温馨提示:这个结论经常用来证明点在直线上(或直线经过某一点) 的根据之一.
随堂训练
1. 如图,已知AB是线段CD的垂直平分线,E是AB上的一
点,如果EC=7cm,那么ED= 7 cm;如果∠ECD=60 °, 那么∠EDC= 60 °.
符号语言:
P在线段AB的垂直平分线上 PA PB
温馨提示:这个结论是经常用来证明两条线段相 A
等的根据之一.
∟
P B
例1 如图:直线MN是线段AB的垂直平分线,点C为垂足,请问在图
线段的垂直平分线课件北师大版初中数学八年级下册
P
A
C
B
归纳总结 1.判定:到一条线段两个端点距离相等的点,在这条线 段的垂直平分线上. 2.条件:点到线段两端点距离相等; 3.结论:点在线段垂直平分线上. 4.几何语言:如图,∵PA=PB, ∴点P在线段AB的垂直平分线上. 5.作用: ①作线段的垂直平分线的根据; ②可用来证线段垂直、相等.
第一章 三角形的证明 3.线段的垂直平分线
情境导入
如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头, 使它到两个仓库的距离相等,码头应建在什么位置?
学习目标
1.探索证明线段垂直平分线的性质和判定. 2.能运用线段垂直平分线性质和其判定解决实际问题. 3.经历“探索-发现-猜想-证明”的过程,进一步体会证明的 必要性,增强证明意识和能力,发展推理能力.
2.作用:可用来证明两线段相等.
随堂练习
1.如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为
E,交AC于D,若△DBC的周长为35cm,则BC的长为( C )
A. 5cm
B.10cm
C. 15cm
D. 17.5cm
解析:∵△DBC的周长为BC+BD+CD=35cm, 又∵DE垂直平分AB, ∴AD=BD,故BC+AD+CD=35cm. ∵AC=AD+DC=20cm, ∴BC=35-20=15(cm).
我有哪些收获呢? 与大家共分享!
课堂总结
北师大版七年级数学下册5.线段垂直平分线的性质及画法课件
新知探究
练一练:1.如图①所示,直线CD是线段AB 的垂直平分线,点P 为直线CD上的一
点,且PA=5,则线段PB 的长为( B)
A. 6
B. 5
C. 4
C
P
D. 3
A
D E
A 图① D
B
B
C
图②
2.如图②所示,在△ABC 中,BC=8cm,边AB 的垂直平分线交AB 于点D,交
边AC 于点E, △BCE 的周长等于18cm,则AC的长是10cm .
课堂小结
线段的垂直 平分的性质
和画法
性质 画法
内容
线段的垂直平分线上的点到线 段的两个端点的距离相等 .
作 用 见垂直平分线,得线段相等 .
1、分别以线段的两个端点为圆心,以大于 二分之一线段的长为半径作弧,两弧在线 段两侧交于两点; 2、连接两个交点,即可作出所求线段的垂 直平分线 .
课堂小测
P2
P1
A
B
P3A _=___ P3B
l
新知探究
猜想:点P1,P2,P3,… 到点A 与点B 的距离分别相等. 由此你能得到什么结论? 命题:线段垂直平分线上的点和这条线段两个端点的距离相等. 你能验证这一结论吗?
新知探究
验证结论 已知:如图,直线l⊥AB,垂足为C,AC =CB,点P 在直线l 上. 求证:PA =PB.
D.三边垂直平分线的交点
课堂小测
3.已知线段AB,在平面上找到三个点D,E,F,使DA=DB,EA=EB,FA=FB,
这样的点的组合共有 无数 种. 4.下列说法: ①若点P,E是线段AB的垂直平分线上两点,则EA=EB,PA=PB; ②若PA=PB,EA=EB,则直线PE垂直平分线段AB; ③若PA=PB,则点P必是线段AB的垂直平分线上的点; ④若EA=EB,则经过点E的直线垂直平分线段AB. 其中正确的有 ① ② ③ (填序号).
北师大版八年级数学下册1.3线段垂直平分线 线段垂直平分线的性质与判定-讲练课件-(共30张PPT)
4.判定:到一条线段两个端点距离相等的点,在这条线段的 垂直平分
线 上.
几何语言:
∵ AP=BP ,
∴点P在AB的垂直平分线上.
5.如图,直线PO与AB交于点O,PA=PB,则下列结论中正确的是
(D)
A.AO=BO
B.PO⊥AB
C.PO是AB的垂直平分线
D.点P在AB的垂直平分线上
例2
如图,在△ABC中,AB=AC,点O是△ABC内一点,且OB=
∠ = ∠,
证明:在△ABM和△ABN中, = ,
∠ = ∠,
∴△ABM≌△ABN( ASA ).
∴AM=AN,BM=BN.
∴点A,B都落在MN的垂直平分线上.
∴AB垂直平分MN.
7.如图,在△ABC中,AB=BC,∠ABC=120°,AB的垂直平分
线DE交AC于点D,连接BD,若AC=12.
点.已知PA=4,则线段PB的长为 4 .
2.如图,若AC=AD,BC=BD,则( B )
A.CD垂直平分AB
B.AB垂直平分CD
C.CD平分∠ACB
D.以上均不对
3.如图,AD⊥BC于点D,BD=DC,点C在AE的垂直平分线上,
则AB,AC,CE的长度关系为( D )
A.AB>AC=CE
B.AB=AC>CE
数学(RS版)
八年级下册
第一章 三角形的证明
第7课
线段垂直平分线的性质与判定
新课学习
线段垂直平分线的性质
1.性质:线段垂直平分线上的点到这条线段两个端点的距离 相等 .
几何语言:
∵CD是AB的垂直平分线,
∴ AC=BC .
北师大版八下数学1.3《线段的垂直平分线》知识点精讲
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点(两交点交与线段的同侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
方法之二:1、连接这两个交点。
原理:两点成一线。
等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。
)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。
)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。
)垂直平分线的判定①利用定义.②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)例1.如图,已知:在△ABC中,∠C=90°∠A=30°,BD平分∠ABC交AC于D.求证:D在AB的垂直平分线上.分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明BD=DA即可.证明:∵∠C=90,°∠A=30°(已知),∴∠ABC=60°(Rt△的两个锐角互余)又∵BD平分∠ABC(已知)∴∠DBA=1/2∠ABC=30°=∠A∴BD=AD(等角对等边)∴D在AB的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).例2.如图,已知:在△AB C中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于E,交BC于F。
北师大版八年级数学(下)第一章 线段的垂直平分线
1.3线段的垂直平分线一、知识点梳理1.线段垂直平分线性质定理:①线段垂直平分线垂直平分某条线段②线段垂直平分线上的点到这条线段的两个端点的距离相等2.线段垂直平分线判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上3.作图要求:掌握尺规作图做已知线段的垂直平分线4.三角形外心:三角形三条边垂直平分线的交点二、经典题型总结题型一:利用线段垂直平分线的性质求线段长题型二:利用三角形的垂直平分线的性质求角度题型三:利用线段垂直平分线解决与周长有关问题题型四:利用作线段垂直平分线解决实际问题题型五:线段垂直平分线的判定定理的应用三、解题技巧点睛1.若题目中出现“求一点到某几个点的距离相等”则可以想到运用垂直平分线的性质画出中垂线2.三角形外心也是三角形外接圆的圆心,锐角三角形的外心在三角形的内部,直角三角形的外心在三角形的斜边中点,钝角三角形的外心在三角形的外部3.求两条线短的最短距离,通常是想到过一个已知点做已知直线的对称点,连接对称点与另一个已知点的连线即为最短距离。
4.灵活运用垂直平分线逆定理解决题目四、易错点分析在运用线段垂直平分线计算周长的时候容易出现错误五、典型例题分析题型一:利用线段垂直平分线的性质求线段长例题:在△ABC中,AC=5,AB的垂直平分线DE交AB、AC于点E、D.(1)若△BCD的周长为8,求BC之长. (2)若BC=4,求△BCD的周长.题型二:利用三角形的垂直平分线的性质求角度例题:如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=___∘.题型三:利用线段垂直平分线解决与周长有关问题例题:如图,在直角中,∠BAC=90∘,AB=8 ,AC=6 ,DE 是AB 边的垂直平分线,垂足为D ,交BC 于点E ,连接AE ,则△ACE 的周长为________.题型四:利用作线段垂直平分线解决实际问题例题:如图,某城市规划局为了方便居民的生活,计划在三个住宅小区A,B,C 之间修建一个购物中心,试问:该购物中心应建于何处,才能使得它到三个小区的距离相等?题型五:线段垂直平分线的判定定理的应用如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D,求证:点D在AB的垂直平分线上.六、中考真题再现(2019.长沙.9题)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是A.20° B.30° C.45° D.60°(2019.江苏.15题)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD 平分∠ACB.若AD=2,BD=3,则AC的长.七、习题巩固训练1.如图所示,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线交AB于D,交AC于E,连接BE,则∠EBC的度数是()A.15°B.20°C.65°D.100°2.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45°B.60°C.50°D.55°3.如图,在等腰中,,,的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则的度数是A. B. C. D.4.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是______.5.如图,线段AB的垂直平分线与BC的垂直平分线的交点P恰好在AC上,且AC=10cm,则B点到P点的距离为______.6.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=__________.7.如图,AD和EF分别是△ABC中BC与AB垂直平分线,且BE+CE=20cm,则AB=.8.如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,则AF=.9.在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB,AC交于点D,E,则∠BCD的度数为10.如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则的周长的最小值为______.11.如图,某校两个班的学生分别在C,D两处参加植树活动,现要在道路AO,OB的交叉区域内设一个茶水供应点M,使点M到两条路的距离相等,且MD=MC,这个茶水供应点应建在何处?12.如图所示,Rt△ABC中,∠C=90°,AC=4,BC=3.(1)根据要求用尺规作图:作斜边AB边上的高CD,垂足为D;(2)求CD的长.13.如图在△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE(垂足为D)交BC的延长线于点E,求线段CE的长.14.如图所示,∠BAC=∠ABD,AC=BD,点O是AD,BC的交点,E是AB的中点.求证:OE 是线段AB的垂直平分线.15.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F,若∠MFN=70°,求∠MCN的度数.16.两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)17.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).18.铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.19.已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?20.已知:如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?21.如图,在△ABC中,∠ACB=90°,点D,E在AB上,且AF垂直平分CD,BG垂直平分CE(1)求∠ECD的度数;(2)若∠ACB为α,则∠ECD的度数能否用含α的式子来表示.22.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF ⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=6,BC=7,求△ABC的周长.23.如图,OE,OF分别是△ABC中AB,AC边的中垂线(即垂直平分线),∠OBC、∠OCB的平分线相交于点I,试判定OI与BC的位置关系,并给出证明.24.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.。
北师大版八年级数学下册教材配套教学课件 1.3.2线段的垂直平分线(第2课时)(课件)
例:已知一个等腰三角形的底边和底边上的高,求作这个等a腰三角形
已知:如图,线段a,h.
求作:△ABC,使AB=AC,BC=a,高AD=h.
h
M
作法:1.作BC=a;
A
2.作线段BC的垂直平分线MN交BC于D点;
3.以D为圆心,h长为半径作弧交MN于A点;
4.连接AB,AC.
△ABC就是所求作的三角形.
PB=PC
试试看,你会写出证明过程吗?
P
B
C
m
PA=PC
点P在AC的垂
直平分线上
三角形三边的垂直平分线交于一点.这一点到三角形三个顶点的距离相等.
已知:在△ABC中,边AB、BC的垂直平分线相交于点O.
求证:点O在边AC的垂直平分线上,且OA=OB=OC. A
证明:连接OA,OB,OC.
∵点O在线段AB的垂直平分线上, ∴OA=OB 同理OB=OC,∴OA=OC.
作法:
1.分别以点A和B为圆心,以大于AB的一半长为半径
画弧,两弧相交于点C和D;
A
2.连接直线CD.
直线CD就是线段AB的垂直平分线.
C B
D
二、探究新知
某区政府为了方便居民的生活,计划在三个住宅小区A、B、C之间
修建一个购物中心,试问该购物中心应建于何处,才能使得它到三个小
区的距离相等?
A
B
C
aA
c
b
P
B
C
分别作出锐角三角形、直角三角形、钝角三角形三边的垂直平分线, 说明交点分别在什么位置.
锐角三角形三边的垂直平分线交点在三角形内; 直角三角形三边的垂直平分线交点在斜边上; 钝角三角形三边的垂直平分线交点在三角形外.
北师大版八年级下册1.3线段的垂直平分线教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了线段垂直平分线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对线段垂直平分线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
(1)理解线段垂直平分线的概念:线段垂直平分线的定义涉及到垂直与平分两个要素,学生可能难以同时理解这两个要素。
(2)运用垂直平分线性质解决实际问题:学生在解决实际问题时,可能难以将线段垂直平分线的性质与问题情境相结合,不知道如何运用。
(3)垂直平分线判定定理的应用:学生可能难以理解判定定理的证明过程,以及在具体问题中如何使用该定理。
(2)线段垂直平分线的性质:熟练掌握线段垂直平分线上的点到线段两端点的距离相等的性质,并能运用该性质解决相关问题。
(3)垂直平分线判定定理:掌握如何判断一条直线是否为线段的垂直平分线,即一条直线垂直平分线段,那么线段上的任意一点到这条直线的距离都相等。
举例:讲解线段垂直平分线的定义时,可以通过实际操作让学生观察垂直和平分的直观表现;在讲解性质时,可以通过具体图形让学生验证线段垂直平分线上的点到线段两端点的距离相等。
五、教学反思
北师大版数学八年级下册《线段的垂直平分线》教案
北师大版数学八年级下册《线段的垂直平分线》教案一. 教材分析《线段的垂直平分线》是北师大版数学八年级下册的一章内容。
本章主要介绍线段的垂直平分线的性质和判定方法。
通过学习本章,学生能够理解线段的垂直平分线的概念,掌握其性质和判定方法,并能够运用到实际问题中。
二. 学情分析学生在学习本章之前,已经学习了线段的基本概念和性质,具备了一定的几何基础。
但是,对于线段的垂直平分线的概念和性质可能较为抽象,需要通过实例和练习来加深理解。
同时,学生可能对于证明过程和方法还不够熟练,需要通过练习和指导来提高。
三. 教学目标1.知识与技能:学生能够理解线段的垂直平分线的概念,掌握其性质和判定方法,并能够运用到实际问题中。
2.过程与方法:学生能够通过观察、操作、证明等方法,探索线段的垂直平分线的性质和判定方法。
3.情感态度与价值观:学生能够培养对几何学科的兴趣和好奇心,提高对问题的思考和解决能力。
四. 教学重难点1.重点:线段的垂直平分线的性质和判定方法。
2.难点:证明过程和方法的运用。
五. 教学方法1.引导法:通过问题和情境引导学生思考和探索,激发学生的学习兴趣和主动性。
2.示范法:通过教师的示范和讲解,引导学生理解和掌握知识。
3.练习法:通过练习和实例,巩固学生的知识和技能。
六. 教学准备1.教具准备:黑板、粉笔、几何图形、直尺、圆规等。
2.教学资源:教案、PPT、练习题等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾线段的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT或板书,介绍线段的垂直平分线的定义和性质,同时给出一些实例来说明。
3.操练(10分钟)教师提出一些练习题,让学生独立完成。
通过练习,让学生加深对线段的垂直平分线的性质和判定方法的理解。
4.巩固(10分钟)教师选取一些练习题,进行讲解和解析。
通过讲解,帮助学生巩固所学知识,并解决学生在练习中遇到的问题。
5.拓展(10分钟)教师提出一些拓展问题,引导学生进行思考和讨论。
线段的垂直平分线 第一课时-八年级数学下册课件(北师大版)
2 到三角形三个顶点的距离都相等的点是这个三角形的( D ) A.三条高的交点 B.三条角平分线的交点 C.三条中线的交点 D.三条边的垂直平分线的交点
3 如图,点D 在△ABC 的BC 边上,且BC=BD+AD, 则点D 在线段( B )的垂直平分线上. A.AB B.AC C.BC
D.不确定
A.16
B.15
C.14
D.13
3 如图,已知AC⊥BC,BD⊥AD,AC,BD 相交于点O,如果 AC=BD,那么下列结论:①AD=BC;②∠ABC=∠BAD;③ ∠DAC=∠CBD;④点O 在线段AB 的垂直平分线上.
其中正确的是( D ) A.①②③
B.②③④
C.①③④
D.①②③④
4 如图,已知△ABE 中,AB,AE 边上的垂直平分线m1, m2分别交BE 于点C,D,且BC=CD=DE. (1)求证:△ACD 是等边三角形; (2)求∠BAE 的度数.
(1)证明:∵AD∥BC,∴∠ECF=∠ADE. ∵E 为CD 的中点,∴CE=DE. 在△FEC 与△AED 中,
∠FEC=∠AED, CE=DE, ∠ECF=∠EDA, ∴△FEC ≌ △AED (ASA). ∴CF=AD.
(2)解:当BC=6时,点B 在线段AF 的垂直平分线上.理由: ∵BC=6,AD=2,AB=8, ∴AB=BC+AD. 又∵CF=AD,BC+CF=BF, ∴AB=BF. ∴点B 在线段AF 的垂直平分线上.
2
2
(4)不需要修改.
线段:在线段垂直平分线上的点到线段两个端点 距离都相等. 判定:与线段两个端点距离相等的点都在线段的 垂直平分线上. 线段垂直平分线的集合定义: 线段垂直平分线可以看作是与线段两个端点距离 相等的所有点的集合.
北师大版八年级数学下册1.3线段的垂直平分线及作图
提示:AB是线段CD的垂直平 分线能带给我们哪些新的条 件?
合作探究
合作探究
逆命题: 到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上.
证明思路: 1.PA=PB能判定△PAB为何种特殊形状 2.等腰三角形 “三线合一” 3.顶角顶点P一定在线段AB的垂直平分线上
∵c,a,b分别是AB,BC,AC的垂直平分线(已知), ∴c,a,b相交于一点P,且PA=PB=PC
aA
c
b
P
B
C
合作探究
(1)已知三角形的一条边及这条边上的高,你能作出三角形吗? 如果能,能作出几个?所作出的三角形都全等吗? C
A
D
B
合作探究
(2)已知等腰三角形的底及底边上的高,你能用尺规作出等腰 三角形吗?能作几个?
1.垂直平分线的性质定理
“
“
三
二
个 定
2.垂直平分线的判定定理
个 作
理 ”
aA
图 ”
c
b
P
B
C
合作探究 垂直平分线的判定定理
几何语言描述: 如图, ∵PA=PB(已知),
∴点P在AB的垂直平分线上
合作探究
剪一个三角形纸片通过折叠找出每条边的垂直平分线.
aA
观察这三条垂直平分线,你发现了什么?
结论:三角形三条边的垂直平分线相交于一点. c
b
如何证明这个结论呢?
P
B
C
证明思路:我们知道,两条直线相交只有一个交点。要想证明 三条直线相交于一点只要能证明两条直线的交点在第三条直线上 即可.可应用垂直平分线的逆定理来证明.
北师大版八年级数学下册课件:线段的垂直平分线(1)
解:∵DE 是 AB 边上的垂直平分线, ∴EA=EB,AD=1AB,
2
∵△BCE 的周长为 16 cm, ∴BC+CE+BE=BC+CE+EA=BC+AC=16 cm, ∵△ABC 的周长为 24 cm,∴BC+AC+AB=24 cm, ∴AB=24-16=8 cm, ∴AD=1AB=4 cm.
∴Rt△AED≌Rt△AFD(HL),∴AE=AF. 又∵DE=DF,∴AD 垂直平分 EF.
★11.如图,AB=AC,DB=DC,E是AD延长线上的一点,BE是否 与CE相等?试说明理由. 解:BE=CE.理由如下:连接BC, ∵AB=AC, ∴点A在线段BC的垂直平分线上. 同理,点D也在线段BC的垂直平分线上. ∵两点确定一条直线, ∴AD是线段BC的垂直平分线. ∵E是AD延长线上的点,∴BE=CE.
2
7.【例4】(北师8下P32、人教8上P93)如图,在△ABC中,AD是 ∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:AD垂直平分 EF. 证明:∵AD是∠BAC的平分线, DE⊥AB,DF⊥AC, ∴DE=DF, ∠AED=∠AFD=90°.
在 Rt△AED 和 Rt△AFD 中, AD=AD, DE=DF,
谢谢大家多提宝贵意见
如图,∵CA=CB,PC⊥AB,
几何 ∴ PA=PB.
语言
2.(北师8下P23改编)如图,在△ABC中,直线DE垂直平分线段 AB,垂足为E,交BC于点D,∠B=60°,∠C=50°,则∠CAD的 度数为 10° .
知识点三:线段垂直平分线的判定定理
内容
到一条线段两个端点距离 的垂直平分线上
相等
如图,∵ PA=PB , 几何 ∴点P在AB的垂直平分线上
语言
北师大版八年级数学下册《线段的垂直平分线》说课课件
教学难点 是在认识定理内涵的基础上,通过证明来验证定理 的合理性,从而使对定理的认识从感性上升到理性, 能说出作图的根据,认识作图也是定理的直接应用, 理解证明“三线共点”的方法。
教法和学法
本课通过多媒体辅助手段,以学生自主探索为中心 组织课堂教学活动,以合适学生心理特征的情境问题为 依托,以情境的展开探索为发展途径,实现“问题情 境——规律——发展”这一过程。在整个教学过程中, 教师通过启示、引导,让学生自主探索、合作交流。体 现了教师是课堂的组织者、引导者、参与者。
实际应用 练习
想一想:
已知:如图,点A、B、C表示三个村庄,现在要建一个深水 井泵站,向三个村庄分别送水,为使三条输水管的长度相同, 水泵站应建在何处?说说你的理由。
A
B
C
练一练:
A
已知:如图,在△ABC中,AC的垂 直平分线分别交AB和BC于点D、E, E 且AD=BD, 求证:D在BC的垂直平分线上。
C
D B
作图应用
做一做1:
用尺规作线段的垂直平分线. 已知:如图,线段AB . 求作:线段AB的垂直平分线.
A
B
议一议:
(1)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几 个?所作出的三角形都全等吗?
(2)已知等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?能
作几个?
做一做2:
在这一过程中学生通过自主学习和与老师的互动交 流,积极思考,积极发表自己的见解,切身感受学习数 学的快乐,突现学生的主体地位,培养学生的创新意识。
学情分析
知识掌握上,在七年级(下)第七章中已经了解了“线 段垂直平分线上的点到这条线段两个端点的距离相等”这一 结论,所以知识的过渡上不会有困难,只是对该结论的正确 性产生置疑。
北师大版七年级数学下册《5.3第2课时线段垂直平分线的性质》说课稿
北师大版七年级数学下册《5.3 第2课时线段垂直平分线的性质》说课稿一. 教材分析《5.3 第2课时线段垂直平分线的性质》这一节内容,是北师大版七年级数学下册中的一节重要课程。
在此之前,学生已经学习了线段、射线、直线等基本概念,并了解了线段的性质。
本节课主要引导学生探究线段垂直平分线的性质,为学生进一步学习几何图形的性质和证明打下基础。
教材从生活中的实例出发,引导学生发现线段垂直平分线的一些性质,如垂直平分线上的点到线段两端点的距离相等,垂直平分线与线段所在的平面垂直等。
这些性质不仅有助于提高学生对几何图形的认识,还能激发学生学习数学的兴趣。
二. 学情分析七年级的学生已经具备了一定的几何图形基础,对线段、射线、直线等概念有了初步的了解。
但学生在学习过程中,可能对线段垂直平分线的性质理解不够深入,需要教师在教学中进行引导和启发。
此外,学生在这一阶段的学习兴趣和动机较为重要,应注重激发学生的学习兴趣。
三. 说教学目标1.知识与技能目标:使学生了解线段垂直平分线的性质,能够运用这些性质解决一些简单问题。
2.过程与方法目标:通过观察、实验、推理等方法,培养学生的几何思维能力。
3.情感、态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 说教学重难点1.教学重点:线段垂直平分线的性质。
2.教学难点:理解并证明线段垂直平分线上的点到线段两端点的距离相等。
五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等。
2.教学手段:利用多媒体课件、几何画板等辅助教学。
六. 说教学过程1.导入:通过生活中的实例,引导学生发现线段垂直平分线的一些性质。
2.新课讲解:讲解线段垂直平分线的性质,引导学生进行实验验证。
3.例题解析:运用线段垂直平分线的性质解决一些简单问题。
4.巩固练习:学生自主练习,教师进行解答和指导。
5.课堂小结:总结本节课所学内容,强调线段垂直平分线的性质。
北师大版数学八年级下册1.3《线段的垂直平分线》教案
北师大版数学八年级下册1.3《线段的垂直平分线》教案一. 教材分析《线段的垂直平分线》是北师大版数学八年级下册第1章《几何图形及其性质》的第三节内容。
本节主要让学生掌握线段的垂直平分线的性质,并会运用这些性质解决实际问题。
教材通过引入线段的垂直平分线,引导学生探究其性质,从而培养学生的几何思维和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了线段的基本概念,如长度、中点等,并学习了直线的性质。
但学生对线段的垂直平分线可能较为陌生,因此需要通过实例让学生直观地感受和理解线段的垂直平分线的概念和性质。
三. 教学目标1.让学生理解线段的垂直平分线的概念,掌握其性质。
2.培养学生运用线段的垂直平分线解决实际问题的能力。
3.培养学生的几何思维和观察、操作、推理能力。
四. 教学重难点1.线段的垂直平分线的概念及其性质。
2.如何运用线段的垂直平分线解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等,引导学生观察、操作、推理,从而让学生掌握线段的垂直平分线的性质,并能运用到实际问题中。
六. 教学准备1.教学PPT或黑板。
2.线段模型或实物。
3.练习题。
七. 教学过程导入(5分钟)教师通过一个实际问题引入本节内容:在一条线段上,如何找到一个点,使得该点到线段两端点的距离相等?引导学生思考并猜测这样的点可能在线段的某个特殊位置。
呈现(10分钟)教师展示线段的垂直平分线的定义和性质,引导学生观察、操作,并解释线段的垂直平分线的意义。
通过实例让学生直观地感受线段的垂直平分线的性质。
操练(10分钟)教师给出几个练习题,让学生独立完成。
题目包括判断题、选择题和应用题,旨在让学生巩固线段的垂直平分线的性质,并学会运用到实际问题中。
巩固(10分钟)学生分组讨论,分享各自解题的心得体会,互相提问,教师巡回指导。
教师选取部分学生的作业进行点评,指出其优点和不足,并给予针对性的指导。
拓展(10分钟)教师引导学生思考:线段的垂直平分线在实际生活中有哪些应用?让学生举例说明,并引导学生运用线段的垂直平分线解决实际问题。
线段的垂直平分线课件数学北师大版八年级下册
EF, PQ 相交于一点 O,且 OA=OB=OC.
拓展 几种三角形三条边的垂直平分线交点
的情况如图 1-3-6 所示 .
知3-讲
感悟新知
知3-练
例3 如图 1-3-7, OE, OF 所在 直线分 别是 △ ABC 中
AB, AC 边的垂直平分线,∠ OBC,∠ OCB 的平分
线相交于点 I,试判断 OI 与 BC 的位置关系,并给予
感悟新知
知2-练
(2)∠ ABE= ∠ ADE.
证明:易知四边形ABCD是以直线AC为对称轴的
轴对称图形,∴∠ABE=∠ADE.
感悟新知
知3-讲
知识点 3 三角形三条边的垂直平分线的性质定理
性质定理
三角形三条边的垂直平分线相交于一点,并且这
一点到三个顶点的距离相等 .
感悟新知
知3-讲
特别解读
因为三角形任意两条边的垂直平分线一定交
第一章
三角形的证明
1.3
线段的垂直平分线
学习目标
1 课时讲授
线段垂直平分线的性质定理
线段垂直平分线的判定定理
三角形三条边的垂直平分线的性质
2 课时流程
逐点
导讲练
定理
用尺规作已知直线(或线段)的垂线
课堂
小结
作业
提升
感悟新知
知识点 1 线段垂直平分线的性质定理
1. 性质定理
知1-讲
线段垂直平分线上的点到这条线段两个端点
线上,思路有两种:
一是作垂直,证平分;二是取中点,证垂直 .
2. 用判定定理证明线段的垂直平分线,必须证
明两个点在线段的垂直平分线上 .
感悟新知
例2
北师大版数学八下.1线段的垂直平分线课件
图5
22
综合运用
练习1:如图5, 直线PC是线段AB的垂直平分 线,且PC⊥AB于C,E为PC上一点,D为AB上一
点,下列结论一定成立的是(C) A.AP=AE B.PA=PD C.PA=PB
D.PB=AE
图5 性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.
23
综合运用
已知:如2,线段AB,PA=PB.
E
求证:点P在线段AB的垂直平分线上.
证明:过点P作直线EF⊥AB,垂足为C, 则PC是△PAB的高.
C F 图2
14
探究新知
已知:如图2,线段AB,PA=PB.
求证:点P在线段AB的垂直平分线上.
证明:过点P作直线EF⊥AB,垂足为C,
则PC是△PAB的高.
∵PA=PB
条件:某个点为线段垂直平分线上的点 结论:这个点到这条线段两个端点的距离相等
逆命题:如果有一个点到线段两个端点距离相 等,那么这个点在这条线段的垂直平分线上.
12
探究新知
逆命题:到一条线段两个端点距离相等的点, 在这条线段的垂直平分线上. 思考:这个命题是真命题吗?如何证明?
13
探究新知
逆命题:到一条线段两个端点距离相等的点,在这条 线段的垂直平分线上.
第一章 三角形的证明
1.3.1 线段的垂直平分线
激活思维
探究新知
双基巩固
综合运用
1
学习目标
重点:
1.探索并证明线段垂直平分线的性质定理 2.探索并证明线段垂直平分线的判定定理 3.理解线段垂直平分线性质与判定的关系
难点:
线段垂直平分线性质与判定定理的关系
2
激活思维
第3讲 线段的垂直平分线八年级数学下册同步讲义(北师大版)
第3讲 线段的垂直平分线 1.掌握线段的垂直平分线的性质定理及其逆定理,会画已知线段的垂直平分线.2.能运用线段的垂直平分线的性质理及其逆定理解决简单的几何问题及实际问题. 知识点01 线段的垂直平分线定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线. 线段垂直平分线的尺规作图求做线段AB 的垂直平分线作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线.要点诠释:作弧时的半径必须大于21AB 的长,否则就不能得到交点了. 线段的垂直平分线定理线段垂直平分线上的任意一点到这条线段两个端点的距离相等.要点诠释: 线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.【知识拓展1】已知A 和B 两点在线段EF 的中垂线上,且∠EBF =100°,∠EAF =70°,则∠AEB 等于( )A .95°B .15°C .95°或15°D .170°或30°知识精讲目标导航【即学即练1】如图,在△ABC中,直线l为边BC的垂直平分线,l交AC于点Q,∠ABC的角平分线与l 相交于点P.若∠BAC=60°,∠ACP=24°,则∠PQC是()A.34°B.36°C.44°D.46°【即学即练2】如图,在△ABC中,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC 于点F,连接AE、AF,若△AEF的周长为2,则BC的长是()A.2B.3C.4D.无法确定【知识拓展2】如图,在△ABC中,AB=5,△ABD的周长是12,直线DE垂直平分BC,垂足为E,交AC 于点D,则AC=.【即学即练1】如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB 于E,量得△BDC的周长为17m,请你替测量人员计算BC的长是.【即学即练2】如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E.若CE平分∠ACB,∠B =42°,则∠A=.【知识拓展3】如图,△ABC中,∠C=90°,∠A=30°,AB边上的垂直平分线DE,交AC于点D,交AB于点E,连接BD,求证:BD平分∠CBA.【即学即练1】如图,在ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.(1)若∠CAE=∠B+30°,求∠B的大小;(2)若∠CAE=∠B,AD=3,求AC的长.【即学即练2】如图,在△ABC中,∠BAC=62°,∠B=78°,AC的垂直平分线交BC于点D.(1)求∠BAD的度数;(2)若AB=8,BC=11,求△ABD的周长.C B AD CBA D E【即学即练3】如图,在△ABC 中,AB 、AC 边的垂直平分线相交于点O ,分别交BC 边于点M 、N ,连接AM ,AN .(1)若△AMN 的周长为6,求BC 的长;(2)若∠MON =30°,求∠MAN 的度数;(3)若∠MON =45°,BM =3,BC =12,求MN 的长度.知识点02 线段的垂直平分线逆定理线段的垂直平分线逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线,也就是线段的垂直平分线可以看做是和这条线段两个端点的距离相等的点的集合.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.【知识拓展1】如图,已知AB=AC,∠ABD=∠ACD,求证AD 是线段BC 的垂直平分线.【即学即练1】如图,P 是∠MON 的平分线上的一点,PA⊥OM,PB⊥ON,垂足分别为A 、B .求证:PO 垂直平分AB .知识点03 线段的垂直平分线定理与逆定理综合应用【知识拓展1】已知:如图,AB=AC ,DB=DC ,E 是AD 上一点. 求证:BE=CE .【知识拓展2】如图Rt△ABC中,∠ABC=90°,D是AB边上的点,AD的垂直平分线EF交AC于E,垂足为F,ED的延长线与CB的延长交于点G.求证:点E在GC的垂直平分线上.知识点04实际应用问题【知识拓展1】某旅游景区内有一块三角形绿地ABC,如图所示,现要在道路AB的边缘上建一个休息点M,使它到A,C两个点的距离相等.在图中确定休息点M的位置.能力拓展一.解答题(共4小题)1.如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为17cm,求△ABC的周长.2.已知:E是∠AFB的平分线上一点,EC⊥F A,ED⊥FB,垂足分别为C、D.求证:FE是CD的垂直平分线.3.如图,在△ABC中,边AC的垂直平分线DE交AC于E,交BC于点D,∠C=60°.(1)△ACD是什么特殊三角形?请说明理由;(2)若AE=5cm,△ABD的周长为16cm,求△ABC的周长.4.已知直线l及其两侧两点A、B,如图.(1)在直线l上求一点P,使P A=PB;(2)在直线l上求一点Q,使l平分∠AQB.(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)分层提分题组A 基础过关练一.选择题(共8小题)1.(2020秋•平房区期末)到△ABC的三个顶点距离相等的点是()A.三条中线的交点B.三条角平分线的交点C.三条高线的交点D.三条边的垂直平分线的交点2.(2021春•龙岗区期末)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.26cm B.21cm C.28cm D.31cm3.(2021春•惠来县期末)《中共中央国务院关于促进农民增加收入若干政策的意见》中提出“进一步精简乡镇机构和财政供养人员,积极稳妥地调整乡镇建制,有条件的可实行并村”.《中共中央国务院关于积极发展现代农业扎实推进社会主义新农村建设的若干意见》中明确提出“治理农村人居环境,搞好村庄治理规划和试点,节约农村建设用地”.以上两个政策出台后,山东陆陆续续开展了村庄合并某地兴建的幸福小区的三个出口A、B、C的位置如图所示,物业公司计划在不妨碍小区规划的建设下,想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在()A.三条边的垂直平分线的交点处B.三个角的平分线的交点处C.三角形三条高线的交点处D.三角形三条中线的交点处4.(2021春•罗湖区校级期末)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12B.10C.8D.65.(2021秋•中山市期中)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC、AC于D、E两点,△ABC的周长为18,AE=3,则△ABD的周长()A.12B.15C.18D.216.(2020秋•天宁区期中)如图,在△ABC中,AB边的垂直平分线DE,分别与AB边和AC边交于点D和点E,BC边的垂直平分线FG,分别与BC边和AC边交于点F和点G,又△BEG的周长为16,且GE =1,则AC的长为()A.16B.15C.14D.137.(2021秋•抚顺县期末)如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.13cm C.19cm D.10cm8.(2021秋•兴城市期中)如图,在△ABC中,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若AC=6,AB =8,BC=4,则△BEC的周长()A.10B.12C.8D.14二.填空题(共7小题)9.(2021•遂宁)如图,在△ABC中,AB=5,AC=7,直线DE垂直平分BC,垂足为E,交AC于点D,则△ABD的周长是.10.(2021春•揭东区期末)如图,在△ABC中,AC垂直平分线DE分别与BC、AC交于D、E,△ABD的周长是13,AE=5,△ABC的周长是.11.(2021春•罗湖区校级期末)如图,△ABC中,∠ACB=90°,D、E是边AB上两点,且CD垂直平分BE,CE平分∠ACD,若BC=2,则AC的长为.12.(2021秋•大连期中)如图,在△ABC中,DE是AC的垂直平分线,AE=4,AD=5,则△ACD的周长为.13.(2021秋•铁岭县期末)如图,∠A=80°,O是AB,AC垂直平分线的交点,则∠BOC的度数是°.14.(2021秋•广州月考)如图,在△ABC中,DE是AB的垂直平分线,且分别交AB,AC于点D,E,若∠A=45°,∠C=65°,则∠EBC的度数为.15.(2021秋•越秀区校级期中)如图,在△ABC中,∠BAC=126°,MP和NQ分别是AB和AC的垂直平分线,则∠P AQ的度数.三.解答题(共7小题)16.(2021秋•阳东区期中)如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=20°,求∠C的度数.17.(2019春•龙岗区期末)如图,C,D是AB的垂直平分线上两点,延长AC,DB交于点E,AF∥BC交DE于点F.求证:(1)AB是∠CAF的角平分线;(2)∠F AD=∠E.18.(2021秋•玉屏县期中)如图所示,已知AB=AC=20cm,DE垂直平分AB,垂足为E,DE交AC于点D,若△EBC的周长为35cm,求BC的长.19.(2021春•昌图县期末)如图,在△ABC中,∠BAC=90°,∠C=65°,AD⊥BC,EF是边AB的垂直平分线,交BC于点E,交AB于点F,求∠DAE的度数.20.(2020秋•番禺区期末)如图,△ABC中,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G,连接AE,AG.(1)若△AEG的周长为10,求线段BC的长;(2)若∠BAC=104°,求∠EAG的度数.21.(2021春•罗湖区校级期末)如图,在四边形ABCD中,M,N分别是CD,BC的中点,且AM⊥CD,AN⊥BC.(1)求证:∠BAD=2∠MAN;(2)连接BD,若∠MAN=70°,∠DBC=40°,求∠ADC.22.(2021春•高州市期末)如图,在四边形ABCD中,BD所在的直线垂直平分线段AC,过点A作BC的平行线AF交CD于F,延长AB、DC交于点E.求证:(1)AC平分∠EAF;(2)∠F AD=∠E.题组B 能力提升练一.选择题(共3小题)1.(2020秋•南沙区期末)如图,已知直线PC是线段AB的垂直平分线,∠APC=50°,则∠B=()A.40°B.50°C.55°D.60°2.(2021•越秀区模拟)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点D,交AB 于点E,连接AD,AD将∠CAB分成两个角,且∠CAD:∠BAD=2:5,则∠ADC的度数是()A.70°B.75°C.80°D.85°3.(2021春•乾县期末)如图,在△ABC中,AB边的中垂线DE,分别与AB、AC边交于点D、E两点,BC 边的中垂线FG,分别与BC、AC边交于点F、G两点,连接BE、BG.若△BEG的周长为16,GE=1.则AC的长为()A.13B.14C.15D.16二.填空题(共4小题)4.(2019秋•无锡期末)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为cm.5.(2021春•商河县校级期末)如图,在△ABC中,DE和DF分别是边AB和AC的垂直平分线,且D点在BC边上,连接AD,则∠BAC=°.6.(2020秋•连山区期末)如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠F AC=65°,则∠B的度数为.7.(2021秋•千山区期中)如图,在△ABC中,BC=8,AB的中垂线交BC于点D,AC的中垂线交BC于点E,则△ADE的周长等于.题组C 培优拔尖练1.(2021春•叶县期末)如图,在△ABC中,∠B=30°,∠C=40°.(1)尺规作图:①作边AB的垂直平分线交BC于点D;②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠DAE的度数.2.(2021春•市南区期末)如图所示,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于点F、E.求证:DF∥AC.证明:∵AD平分∠BAC∴∠=∠(角平分线的定义)∵EF垂直平分AD∴=(线段垂直平分线上的点到线段两个端点距离相等)∴∠BAD=∠ADF()∴∠DAC=∠ADF(等量代换)∴DF∥AC()3.(2020秋•遵化市期末)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.4.(2021秋•东平县期中)如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.5.(2020秋•雁塔区校级期末)如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE 于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
继续练习
1.随堂练习 2.数学理解
课堂小结, 畅谈收获:
一、线段垂直平分线的性质定理. 二、线段垂直平分线的判定定理. 三、用尺规作线段的垂直平分线.
已知直线 l 和 l 上一点P,利用尺规作l的垂线,使它经过
如图,A、B表示两个仓库,要在A、B一侧的河岸边建 造一个码头,使它到两个仓库的距离相等,码头应建在什 么位置?
A
B
几何画板演示线段垂直平分线的性质
线段垂直平分线的性质:
定理:线段垂直平分线上的点到线段两个端 点的距离相等.
已知:如图,直线MN⊥AB,垂足是C,且AC=BC,
P是MN上的点.
M
求证:PA=PB.
作法:1.分别以点A和B为圆心,以
大于
1 2
AB的长为半径作弧,两弧相交
A
于点C和D.
2.作直线CD.
直线CD就是线段AB的垂直平分 线.
C B
D
1.如图,已知AB是线段CD的垂直平分线,E是AB上
的一点,如果EC=7cm,那么ED=
cm;如果
∠ECD=60°,那么∠EDC=
.
C
A
E
B D
用心想一想,马到功成
P
证明:∵MN⊥AB,
∴∠PCA=∠PCB=90°
∵AC=BC,PC=PC,
A
∴△PCA≌△PCB(SAS) ;
C
B
N
∴PA=PB(全等三角形的对应边相等).
用心想一想,马到功成
你能写出这个定理的逆命题吗?它是真命题吗?
定理:线段垂直平分线上的点到线段两个端点的距离相等.
如果有一个点到线段两个端点的距离相等,那么这 个点在这条线段的垂直平分线上.即到线段两个端点的 距离相等的点在这条线段的垂直平分线上.
复习与思考
1.直角三角形全等的判定方法有 (SSS,SAS,ASA,AAS,HL) 2线段的垂直平分线是指(垂直且平分一条线段的直线) 3互逆定理是指 (如果一个定理的逆命题经过证明是真命题,那么
它也是一个定理,其中一个定理是另一个定理的逆 定理)
4尺规作图是指 (用没有刻度的直尺和圆规作图)
用心想一想,马到功成
∴△APC≌△BPC(SAS).
∴AC=BC,∠PCA=∠PCB
又∵∠PCA+∠PCB=180°∴∠PCA=∠PCB=90°
∴P点在线段AB的垂直平分线上.
线段垂直平分线的判定:
定理:到线段两个端点的距离相等的点在 这条线段的垂直平分线上.
想一想,做一做
用尺规作线段的垂直平分线. 已知:线段AB. 求作:线段AB的垂直平分线.
∴∠PCA=∠PCB(全等三角形的对应角相等).
又∵∠PCA+∠PCB=180°,
∴∠PCA=∠PCB=∠90°,即PC⊥AB
∴P点在AB的垂直平分线上.
已知:线段AB,点P是平面内一点且PA=PB.
求证:P点在AB的垂直平分线上.
P
A
C
B
证法三:过P点作∠APB的角平分线交AB于点C.
∵AP=BP,∠APC=∠BPC,PC=PC,
当我们写出逆命题时,就想到判断它的真假.如 果真,则需证明它;如果假,则需用反例说明.
已知:线段AB,点P是平面内一点且PA=PB.
求证:P点在AB的垂直平分线上.
P
A
C
B
证明:过点P作已知线段AB的垂线PC,PA=PB,PC=PC, ∴Rt△PAC≌Rt△PBC(HL).
∴AC=BC, 即P点在AB的垂直平分线上.
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
已知:线段AB,点P是平面内一点且PA=PB.
求证:P点在AB的垂直平分线上.
P
证法二:取AB的中点C,过P,C作直线. A
C
B
∵AP=BP,PC=PC.AC=CB,
∴△APC≌△BPC(SSS).
点P.
C
已知:直线l和l上一点P.
求作:PC⊥ l .
P A
作法:1、以点P为圆心,以任意长为半径来自弧,与直线l 相交于点A和B.
2.作线段AB的垂直平分线PC.
直线PC就是所求的垂线.
l
B