1.3.3正弦定理余弦定理应用举例(3课时)

合集下载

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例考点梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数.【助学·微博】解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.考点自测1.(2012·江苏金陵中学)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________.解析记三角形三边长为a-4,a,a+4,则(a+4)2=(a-4)2+a2-2a(a-4)cos120°,解得a=10,故S=12×10×6×sin 120°=15 3.答案15 32.若海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.解析由正弦定理,知BCsin 60°=ABsin(180°-60°-75°).解得BC=56(海里).答案5 63.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为________海里/时.解析由正弦定理,得MN=68sin 120°sin 45°=346(海里),船的航行速度为3464=1762(海里/时).答案176 24.在△ABC中,若23ab sin C=a2+b2+c2,则△ABC的形状是________.解析由23ab sin C=a2+b2+c2,a2+b2-c2=2ab cos C相加,得a2+b2=2ab sin ⎝ ⎛⎭⎪⎫C +π6.又a 2+b 2≥2ab ,所以 sin ⎝ ⎛⎭⎪⎫C +π6≥1,从而sin ⎝ ⎛⎭⎪⎫C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形.答案 等边三角形5.(2010·江苏卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b a +a b=6cos C ,则tan C tan A +tan C tan B 的值是________.解析 利用正、余弦定理将角化为边来运算,因为b a +a b =6cos C ,由余弦定理得a 2+b 2ab =6·a 2+b 2-c 22ab ,即a 2+b 2=32c 2.而tan C tan A +tan C tan B =sin C cos C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B =sin C cos C ·sin Csin A sin B =c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 答案 4考向一 测量距离问题【例1】 如图所示,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.(1)求证:AB =BD ;(2)求BD .(1)证明 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .(2)解 在△ABC 中,AB sin ∠BCA =AC sin ∠ABC, 即AB =AC sin 60°sin 15°=32+620(km),因此,BD =32+620(km)故B 、D 的距离约为32+620 km.[方法总结] (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.(3)应用题要注意作答.【训练1】 隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解 如题图所示,在△ACD 中,∵∠ADC =30°,∠ACD =120°,∴∠CAD =30°,AC =CD =3(千米).在△BDC 中,∠CBD =180°-45°-75°=60°.由正弦定理,可得BC =3sin 75°sin 60°=6+22(千米).在△ABC 中,由余弦定理,可得AB 2=AC 2+BC 2-2AC ·BC cos ∠BCA ,即AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-23·6+22cos 75°=5, ∴AB =5(千米).所以两目标A ,B 间的距离为5千米.考向二 测量高度问题【例2】 (2010·江苏)某兴趣小组要测量电视塔AE 的高度H (单位:m)如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?解 (1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD 得H tan α+h tan β=H tan β解得H =h tan αtan α-tan β=4×1.241.24-1.20=124. 因此,算出的电视塔的高度H 是124 m.(2)由题设知d =AB ,得tan α=H d .由AB =AD -BD =H tan β-h tan β,得tan β=H -h d ,所以tan(α-β)=tan α-tan β1+tan αtan β=h d +H (H -h )d ≤h 2H (H -h ), 当且仅当d =H (H -h )d,即d =H (H -h )=125×(125-4)=555时,上式取等号.所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.故所求的d 是55 5 m.[方法总结] (1)测量高度时,要准确理解仰、俯角的概念.(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形应用正、余弦定理.(3)注意竖直线垂直于地面构成的直角三角形.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A 的仰角为θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得BCsin∠BDC=CDsin∠CBD,所以BC=CD sin∠BDCsin∠CBD=s·sin βsin(α+β)在Rt△ABC中,AB=BC tan∠ACB=s tan θsin βsin(α+β).考向三运用正、余弦定理解决航海应用问题【例3】我国海军在东海举行大规模演习.在海岸A处,发现北偏东45°方向,距离A(3-1)km的B处有一艘“敌舰”.在A处北偏西75°的方向,距离A 2 km的C处的“大连号”驱逐舰奉命以10 3 km/h的速度追截“敌舰”.此时,“敌舰”正以10 km/h的速度从B处向北偏东30°方向逃窜,问“大连号”沿什么方向能最快追上“敌舰”?解设“大连号”用t h在D处追上“敌舰”,则有CD=103t,BD=10t,如图在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22.∴∠ABC=45°,∴BC与正北方向垂直.∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即“大连号”沿东偏北30°方向能最快追上“敌舰”.[方法总结] 用解三角形知识解决实际问题的步骤:第一步:将实际问题转化为解三角形问题;第二步:将有关条件和求解的结论归结到某一个或两个三角形中.第三步:用正弦定理和余弦定理解这个三角形.第四步:将所得结果转化为实际问题的结果.【训练3】(2013·广州二测)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC=120°,AB=12(海里),AC=10×2=20(海里),∠BCA=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28(海里).所以渔船甲的速度为BC2=14海里/时.(2)在△ABC中,因为AB=12(海里),∠BAC=120°,BC=28(海里),∠BCA=α,由正弦定理,得ABsin α=BCsin 120°.即sin α=AB sin 120°BC=12×3228=3314.高考经典题组训练1.(四川卷改编)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC、ED,则sin∠CED=________.解析在Rt△EAD和Rt△EBC中,易知ED=2,EC=5,在△DEC中,由余弦定理得cos∠CED=ED2+EC2-CD22ED·EC=2+5-12×2×5=31010.∴sin∠CED=1010.答案10 102.(2011·新课标卷)在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________.解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C -2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C +α),其中tan α=32,α是第一象限角.由于0°<C <120°,且α是第一象限角,因此AB +2BC 有最大值27.答案 273.(湖北卷改编)若△ABC 的三边长为连续三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C =________.解析 由A >B >C ,得a >b >c .设a =c +2,b =c +1,则由3b =20a cos A ,得3(c+1)=20(c +2)·(c +1)2+c 2-(c +2)22(c +1)c,即3(c +1)2c =10(c +1)(c +2)(c -3),解得c =4,所以a =6,b =5.答案 6∶5∶44.(2·陕西卷)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船达到D 点需要多长时间?解 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,所以∠ADB =180°-(45°+30°)=105°,在△ADB 中,由正弦定理得DB sin ∠DAB =AB sin ∠ADB, 所以DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=103(海里), 又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203(海里),在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC=300+1 200-2×103×203×12=900,所以CD =30(海里),则需要的时间t =3030=1(小时).所以救援船到达D 点需要1小时.(江苏省2013届高三高考压轴数学试题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =5,b =4,cos(A -B )=3231. (Ⅰ) 求sin B 的值;(Ⅱ) 求cos C 的值.分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.若渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)________.答案 13.5 km/h2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=33×30=10 3 (m),由余弦定理得,MN = 900+300-2×30×103×32=300=10 3 (m). 答案 10 33.某人向正东方向走x km 后,他向右转150°,然后朝新方向走3 km ,结果他离出发点恰好 3 km ,那么x 的值为________.解析 如图,在△ABC 中,AB =x ,BC =3,AC =3,∠ABC =30°,由余弦定理得(3)2=32+x 2-2×3x ×cos 30°,即x 2-33x +6=0,解得x 1=3,x 2=23,经检测均合题意.答案 3或2 34.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC=105°,∠ADC =60°,则AB 的长为________.解析 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC=60°,所以AC =a .①在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .②在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .答案 22a5.(2010·新课标全国卷)在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2,若△ADC 的面积为3-3,则∠BAC =________.解析 由A 作垂线AH ⊥BC 于H .因为S △ADC =12DA ·DC ·sin 60°=12×2×DC ·32=3-3,所以DC =2(3-1),又因为AH ⊥BC ,∠ADH =60°,所以DH =AD cos 60°=1,∴HC =2(3-1)-DH =23-3.又BD =12CD ,∴BD =3-1,∴BH =BD +DH = 3.又AH =AD ·sin 60°=3,所以在Rt △ABH 中AH =BH ,∴∠BAH =45°.又在Rt △AHC 中tan ∠HAC =HC AH =23-33=2-3, 所以∠HAC =15°.又∠BAC =∠BAH +∠CAH =60°,故所求角为60°.答案 60°6.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析 在△BCD 中,CD =10(米),∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=102(米).在Rt △ABC 中,tan 60°=AB BC ,AB =BC tan 60°=106(米).答案 10 6二、解答题(每小题15分,共30分)7.(2011·常州七校联考)如图,在半径为3、圆心角为60°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N 、M 在OB 上,设矩形PNMQ 的面积为y ,(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设∠POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.解 (1)①∵ON =OP 2-PN 2=3-x 2,OM =33x ,∴MN =3-x 2-33x ,∴y =x ⎝⎛⎭⎪⎫3-x 2-33x ,x ∈⎝ ⎛⎭⎪⎫0,32. ②∵PN =3sin θ,ON =3cos θ,OM =33×3sin θ=sin θ,∴MN =ON -OM =3cos θ-sin θ,∴y =3sin θ(3cos θ-sin θ),即y =3sin θcos θ-3sin 2θ,θ∈⎝ ⎛⎭⎪⎫0,π3. (2)选择y =3sin θcos θ-3sin 2θ=3sin ⎝ ⎛⎭⎪⎫2θ+π6-32, ∵θ∈⎝ ⎛⎭⎪⎫0,π3,∴2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴y max =32. 8.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由. 解 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400= 900⎝ ⎛⎭⎪⎫t -132+300. 故当t =13时,S min =103(海里),此时v =10313=303(海里/时).即,小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2,∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30海里/时.故v=30海里/时时,t取得最小值,且最小值等于2 3.此时,在△OAB中,有OA=OB=AB=20海里,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.。

正、余弦定理及应用举例

正、余弦定理及应用举例

02
余弦定理
定义与性质
定义
余弦定理是三角形中的重要定理,它 描述了三角形三边与其对应角的余弦 值之间的关系。
性质
余弦定理具有对称性,即交换任意两 边及其对应的角,定理仍然成立。此 外,余弦定理还可以用来判断三角形 的形状。
证明方法
证明方法一
利用向量的数量积和向量模长的性质来 证明余弦定理。
VS
定理应用举例
总结词
正弦定理在解决三角形问题中具有广泛的应用,例如求三角形边长、角度等。
详细描述
利用正弦定理,我们可以解决许多三角形问题,例如求三角形的边长、角度等。例如,已知三角形的 两边及其夹角,我们可以利用正弦定理求出第三边的长度。此外,正弦定理还可以用于判断三角形的 解的个数和类型,以及解决一些几何作图问题。
正、余弦定理及应用 举例
目录
• 正弦定理 • 余弦定理 • 正、余弦定理的综合应用 • 正、余弦定理的扩展与推广 • 正、余弦定理在数学竞赛中的应用
01
正弦定理
定义与性质
总结词
正弦定理是三角形中一个基本的定理 ,它描述了三角形边长和对应角的正 弦值之间的关系。
详细描述
正弦定理是指在一个三角形中,任意 一边与其对应的角的正弦值的比等于 三角形外接圆的直径,也等于其他两 边与它们的对应角的正弦值的比。
证明方法二
通过作高线,将三角形转化为直角三角形 ,再利用勾股定理来证明余弦定理。
定理应用举例
应用一
已知三角形的两边及其夹角,求第三边。
应用二
判断三角形的形状。例如,如果一个三角形中存在两个角相等,则 这个三角形是等腰三角形。
应用三
解决一些实际问题,如测量、工程设计等。例如,在测量中,可以 利用余弦定理来计算两点之间的距离。

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用余弦定理和正弦定理是解决三角形问题中常用的数学定理。

它们可以帮助我们求解三角形的边长、角度和面积等。

本文将分别介绍余弦定理和正弦定理的应用,并通过实例来说明它们的具体使用方法。

一、余弦定理的应用余弦定理是一个用来描述三角形边长和夹角之间关系的定理。

在任意三角形ABC中,假设边长分别为a、b、c,而对应的夹角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosC1. 求解三角形边长假设我们已知一个三角形的两个边长a和b,以及它们夹角C的大小。

我们可以通过余弦定理来求解第三个边长c。

例如,已知三角形ABC中,边AB的长度为5,边AC的长度为8,而夹角B的大小为60度。

按照余弦定理,我们可以用下式来计算边BC的长度:BC² = AB² + AC² - 2·AB·AC·cosB代入具体数值,即可求得:BC² = 5² + 8² - 2·5·8·cos60°BC² = 25 + 64 - 80·0.5BC² = 89 - 40BC² = 49BC = √49 = 7因此,边BC的长度为7。

2. 求解三角形夹角在某些情况下,我们已知三角形的三个边长,但需要求解其中一个夹角的大小。

余弦定理同样可以解决这个问题。

例如,已知三角形ABC的边长分别为a=4、b=7、c=9。

我们想要求解夹角C的大小。

根据余弦定理,我们可以得到:c² = a² + b² - 2ab·cosC代入具体数值,我们可以得到:9² = 4² + 7² - 2·4·7·cosC81 = 16 + 49 - 56·cosC16 + 49 - 81 = 56·cosC-16 = 56·cosCcosC = -16 / 56 = -0.2857由于余弦函数的定义域为[-1, 1],该结果无解,即无法构成三角形。

余弦定理与正弦定理-用余弦定理、正弦定理解三角形(第三课时)高一数学(北师大版2019必修第二册)

余弦定理与正弦定理-用余弦定理、正弦定理解三角形(第三课时)高一数学(北师大版2019必修第二册)

变式 1.(2011 年上海)在相距 2 千米的 A,B 两点处测量目标 C,
若∠CAB=75°,∠CBA=60°,求 A,C 两点之间的距离.
解:由条件知:C=180°-75°-60°=45°, 由正弦定理得sAinCB=sAinBC, 即siAn6C0°=sin245°. 解得 AC= 6.
例2:在△ABC 中,若 2cosBsinA=sin ,试判断CABC 的形 状.
2.余弦定理
a2= b2+c2-2bccos A ,b2= a2+c2-2accos B ,c2
= a2+b2-2abcos C .余弦定理可以变形:cos A
b2+c2-a2
a2+c2-b2
a2+b2-c2
= 2bc ,cos B= 2ac ,cos C= 2ab .
3.三角形中常用的面积公式
(1)S=12ah(h 表示边 a 上的高);
2
2
整理,得4cos2 C 4cos C 1 0,解得cos C 1 , 2
0 C 180,C 60.
(2)由余弦定理得c2 a2 b2 2abcos C,
即7=a2+b2-ab,∴7=(a+b)2-3ab, 由条件a+b=5,得7=25-3ab,ab=6,
SABC
1 2
absin
b=2,a=x,如 c 有两组解,则 x 的取值范围是

解 : 当 asinB< b< a 时 , 三 角 形 ABC 有 两 组 解 . 又 b=2, B=60°, a=x, 如 果 三 角 形 ABC 有 两 组 解 ,
那 么 x 应 满 足 xsin60°< 2< x, 即 2< x< 4
3
,
10

正弦定理与余弦定理的应用

正弦定理与余弦定理的应用

正弦定理与余弦定理的应用正弦定理和余弦定理是中学数学中重要的几何定理,它们在解决三角形相关问题时起着关键作用。

本文将以实际例子为基础,详细介绍正弦定理和余弦定理的应用。

一、正弦定理的应用正弦定理是解决三角形边长和角度之间关系的重要工具。

它的表达式为:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的边长,$A$、$B$、$C$为对应的角度。

例子一:已知三角形$ABC$中,$AB=5$,$BC=8$,$\angle B=45^\circ$,求$\angle A$和$\angle C$的大小。

解析:根据正弦定理可得:$\frac{5}{\sin A}=\frac{8}{\sin 45^\circ}$。

通过求解可得$\sin A=\frac{5\sin 45^\circ}{8}$,进而得到$\angle A=\sin^{-1}\left(\frac{5\sin 45^\circ}{8}\right)$。

同理,可以求得$\angle C=180^\circ-\angle A-\angle B$。

通过计算可得$\angle A\approx 28.07^\circ$,$\angle C\approx106.93^\circ$。

例子二:已知三角形$ABC$中,$AB=6$,$BC=9$,$\angle A=30^\circ$,求$AC$的长度。

解析:根据正弦定理可得:$\frac{6}{\sin 30^\circ}=\frac{AC}{\sin C}$。

通过求解可得$\sin C=\frac{AC\sin 30^\circ}{6}$,进而得到$AC=\frac{6\sin C}{\sin30^\circ}$。

由于$\sin C=\sin (180^\circ-\angle A-\angle B)$,可以通过计算得到$AC\approx 10.39$。

余弦定理、正弦定理应用举例

 余弦定理、正弦定理应用举例

解:在△BCD 中,BC=31 km,BD=20 km,CD=21 km, 由余弦定理得
cos∠BDC=BD2+2BCDD·C2-D BC2=2022×+2201×2-23112=-17.
∴cos∠ADC=17,∴sin∠ADC=
1-cos2∠ADC=4
7
3 .
在△ACD 中,由条件知 CD=21 km,∠BAC=20°+40°
二、创新应用题 5.某地电信局信号转播塔建在一山坡上,如图所示,施工人
员欲在山坡上 A,B 两点处测量与地面垂直的塔 CD 的高, 由 A,B 两地测得塔顶 C 的仰角分别为 60°和 45°,又知 AB 的长为 40 m,斜坡与水平面成 30°角,求该转播塔的高度.
解:如图所示,由题意,得∠ABC=45°-30°=15°, ∠DAC=60°-30°=30°. ∴∠BAC=150°,∠ACB=15°, ∴AC=AB=40 m,∠ADC=120°,∠ACD=30°. 在△ACD 中,由正弦定理,得 CD=ssiinn∠ ∠CAADDC×AC=ssiinn13200°°×40=403 3(m). 故转播塔的高度为403 3 m.
[微思考] (1)在距离的测量问题中,如果构造的三角形知道三个内角能
解出三角形的边长吗? 提示:不能.要解一个三角形,至少要知道这个三角形的 一条边的长. (2)两个不能到达的点之间能否求出两点之间的距离? 提示:能.利用测角仪和皮尺测量相关的角、边,利用正、 余弦定理求出两点间的距离.
(二)基本知能小试 1.判断正误
在△ADC 和△BDC 中,应用正弦定理得 AC=sin[18a0s°i-nγ+β+δγ+δ]=siansiβn+γ+γ+δδ, BC=sin[180°a-sinαγ+β+γ]=sinaαs+inβγ+γ. 计算出 AC 和 BC 后,再在△ABC 中,应用余弦定理计算 出 A,B 两点间的距离 AB= AC2+BC2-2AC·BCcos α.

正弦定理和余弦定理的应用

正弦定理和余弦定理的应用

建筑设计:确 定建筑物的最 佳设计方案, 例如高度、角
度和长度等
机械设计:计 算齿轮的旋转 角度和速度, 以确保机械设 备的正常运行
水利工程:计 算水流的流速 和方向,以设 计合理的排水 系统或水电站
Part Four
正弦定理和余弦定 理的应用技巧和注
意事项
应用技巧
掌握基本公式:熟悉正弦定理和余弦定理的基本公式,能够熟练运用。
理解几何意义:理解正弦定理和余弦定理在几何图形中的应用,能够根 据图形特点选择合适的定理。
灵活变换形式:能够根据问题需要,灵活变换正弦定理和余弦定理的形 式,简化计算过程。
注意适用范围:明确正弦定理和余弦定理的适用范围,避免在不适合的 情况下使用。
注意事项
适用范围:正 弦定理和余弦 定理适用于直 角三角形,注 意角度的取值
水利工程:在水利工程中,如大坝、水库和水电站的设计和建设中,需要利用正弦定理和余弦 定理进行水流角度和速度的计算,以确保工程的安全性和稳定性。
Part Three
正弦定理和余弦Байду номын сангаас 理的实例分析
几何学中的实例分析
直角三角形中的 正弦定理应用
等腰三角形中的 余弦定理应用
任意三角形中的 正弦定理和余弦 定理综合应用
正弦定理是解三角形的重要工具,可以用于计算角度、边长等。
余弦定理的定义
余弦定理公式: a²=b²+c²-2bc cos A
适用范围:解决 任意三角形边长 和角度的问题
证明方法:利用 向量的数量积和 向量的模长公式 进行证明
应用举例:通过 余弦定理可以求 出三角形的任意 一边长度和角度
定理的证明和推导
定理
Part Two

正弦定理余弦定理应用举例

正弦定理余弦定理应用举例
三角函数与几何问题的联 系
正弦定理和余弦定理是三角函数与几何问题 之间的桥梁,它们将几何形状的边长和角度 联系起来,为解决几何问题提供了重要的工 具。
实际应用价值
正弦定理和余弦定理在现实生活中有着广泛 的应用,例如测量、建筑、航海等领域,通
过这些定理可以解决许多实际问题。
未来发展方向
要点一
理论完善
判断三角形是否为等腰三角形
通过比较三角形的两边长度和对应的角的正弦值或余弦值, 可以判断三角形是否为等腰三角形。
判断三角形是否为等边三角形
如果三角形的三个角都相等,则它们的正弦值和余弦值也相 等,利用这个性质可以判断三角形是否为等边三角形。
求解三角形面积
利用正弦定理计算三角形面积
已知三角形的两边长度和夹角,可以通过正弦定理计算出三角形的面积。
正弦定理余弦定理应用举例
$number {01}
目 录
• 正弦定理的应用 • 余弦定理的应用 • 正弦定理与余弦定理的综合应用 • 实际应用举例 • 总结与展望
01
正弦定理的应用
计算角度
计算已知两边及夹角时的角度
已知三角形的两边及其夹角,可以使用正弦定理计算出该角的大小。
计算已知两边及非夹角时的角度
求解三角形面积
公式
$S = frac{1}{2}absin C$
例如
在三角形ABC中,已知a=3, b=4, C=60°,则三角形的面积为 $frac{3sqrt{3}}{2}$。
03
正弦定理与余弦定理的综合 应用
判断三角形形状
1 2
3
判断三角形是否为直角三角形
利用正弦定理和余弦定理,可以判断三角形是否满足勾股定 理的条件,从而确定是否为直角三角形。

正弦定理和余弦定理应用举例 Microsoft Word 文档

正弦定理和余弦定理应用举例 Microsoft Word 文档

1、一艘轮船按照北偏西30度,的方向以每小时45海里的速度航行,一个灯塔M原来在轮船的北偏东10度的方向,经过20分钟后,灯塔在轮船的北偏东70度方向上,求灯塔和轮船原来的距离.现在这样可以用余弦定理了cos60°=(AB^2+BC^2-AC^2)/2AB*BCBC=2a,AC=15,这样肯定能用含有a的式子表示AB然后在左边那个三角形里就能根据勾股定理求出a。

但是我这种算法特别不好算,你再等等,我想一想还有什么办法。

【同步教育信息】一. 本周教学内容:1. 正弦定理和余弦定理应用举例2. 解三角形全章总结教学目的:1. 能够正确运用正弦定理、余弦定理等知识、方法解决一些与测量以及几何计算有关的实际问题。

2. 通过对全章知识的总结提高,帮助学生系统深入地掌握本章知识及典型问题的解决方法。

二. 重点、难点:重点:解斜三角形问题的实际应用;全章知识点的总结归纳。

难点:如何在理解题意的基础上将实际问题数学化。

知识分析:一. 正弦定理和余弦定理应用举例 1. 解三角形应用题的基本思路 (1)建模思想解三角形应用问题时,通常都要根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出三角形的边角的大小,从而得出实际问题的解。

这种数学建模思想,从实际问题出发,经过抽象概括,把它转化为具体问题中的数学模型,然后通过推理演算,得出数学模型的解,再还原成实际问题的解,用流程图可表示为:(2)解三角形应用题的基本思路:−−−→−−−−→−−−−→画图解三角形检验、结论实际问题数学问题(解三角形)数学问题的解实际问题的解2. 解三角形应用题常见的几种情况:(1)实际问题经抽象概括,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解。

(2)实际问题经抽象概括后,已知量与未知量涉及到两个(或两个以上)三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求出其他三角形中的解,有时需设出未知量,从几个三角形中列出方程,解方程得出所要求的解。

正弦定理第3课时正弦定理和余弦定理的应用课件-2024-2025学年高一下人教A版必修

正弦定理第3课时正弦定理和余弦定理的应用课件-2024-2025学年高一下人教A版必修

sin B,
cos B
所以sin B = cos Acos B − sin Asin B = cos(A + B) = −cos C = 1,
2
又0
<
B
<
π,所以B
3
=
π6.
课中探究
(2)求2a2c+2 b2的最小值.
解:由(1)可知,sin B = −cos C > 0,所以cos C < 0,则
(1)若sin
B
=
2,求cos
3
A;
解:因为6S
=
a(b
+
c),所以6
×
1 2
acsin
B
=
a(b
+
c),
又sin B = 2,所以3ac × 2 = a(b + c),整理得ac = ab,
3
3
所以b = c,则C = B,所以cos A = −cos B + C = −cos 2B =
−1
+
2sin2B
∵ cos B = 14,∴ sin B =
1 − cos2B =
15,4∴△ NhomakorabeaABC的面积S
=
1 2
acsin
B
=
1 2
×
4
×
2
×
15 4
=
15.故选A.
课中探究
(2)在△ ABC中,A = 60∘ ,b = 1,△ ABC的面积为 3,则a =
___1_3_.
[解析] 因为在△ ABC中,A = 60∘ ,b = 1,S△ABC = 3,
推论:①S△ABC

(优质课)正、余弦定理及其应用

(优质课)正、余弦定理及其应用

BD2 + CD2 - CB2 202 + 212 - 312 1 cosβ = = =- , 2BD·CD 2×20×21 7
返回目录
∴sinβ=
4 3 . 7
而sinα=sin(β-60°)=sinβcos60°-sin60°cosβ ° ° °
4 3 1 3 1 5 3 = × + × = , 7 2 2 7 14 21 AD 在△ACD中, 中 = o sin60 sinα
考点三
应用问题
某观测站C在城 的南偏西 由城A出发的一 某观测站 在城A的南偏西 °的方向 由城 出发的一 在城 的南偏西20°的方向,由城 条公路,走向是南偏东 ° 在 处测得公路上 处测得公路上B处有一 条公路 走向是南偏东40°,在C处测得公路上 处有一 走向是南偏东 千米,正沿公路向 城走去,走了 人,距C为31千米 正沿公路向 城走去 走了 千米后到 距 为 千米 正沿公路向A城走去 走了20千米后到 此时CD间的距离为 千米,问 这人还要走多少 达D处,此时 间的距离为 千米 问:这人还要走多少 处 此时 间的距离为21千米 千米才能到达A城 千米才能到达 城?
3. 2
∵a>b,∴A=60°或A=120°. ∴ ° ° ①当A=60°时,C=180°- 45°- 60°=75°, ° ° ° ° °
bsinC 6 + 2 = . ∴c= sinB 2
②∵当A=120°时,C=180°- 45°- 120°=15°, ° ° ° ° °
bsinC 6 − 2 = . ∴c= sinB 2
正弦定理、 正弦定理、余弦 定理及应用
a = 1.正弦定理 sinA 正弦定理: 正弦定理
b sinB

《正余弦定理的应用》课件

《正余弦定理的应用》课件
《正余弦定理的应用》 ppt课件
目录
Contents
• 正余弦定理的基本概念 • 正余弦定理的应用场景 • 正余弦定理的实际应用案例 • 正余弦定理的扩展应用 • 总结与展望
01 正余弦定理的基本概念
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形边长和对应角正弦值之间 的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应的角的正弦值的比等于其他两 边的比,即 a/sinA = b/sinB = c/sinC = 2R,其中a、b、c分别代表三角形的三 边,A、B、C分别代表与三边对应的角,R代表三角形的外接圆半径。
余弦定理的定义
总结词
余弦定理是三角形中另一个重要的定 理,它描述了三角形边长的平方和与 对应角的余弦值之间的关系。
详细描述
余弦定理是指在一个三角形中,任意 一边的平方和等于其他两边平方和减 去2倍的这两边与它们夹角的余弦的乘 积,即 a² = b² + c² - 2bc cosA。
正余弦定理的相互关系
总结词
正弦定理和余弦定理是相互关联的,它们可以互相推导。
详细描述
根据正弦定理,我们可以推导出余弦定理。例如,在△ABC中,由正弦定理可知 a/sinA = b/sinB = c/sinC = 2R ,则 a² = (2RsinA)² = 4R²sin²A,同理 b² = 4R²sin²B,c² = 4R²sin²C。将这三个等式代入余弦定理的公式中, 即可得到余弦定理的证明。反之亦然,也可以由余弦定理推导出正弦定理。
02 正余弦定理的应用场景
三角形的边角关系问题
总结词
解决三角形边角关系问题时,正余弦定理可以提供重要的数 学工具。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点,测得 BCA= 60, ACD=30,CDB= 45, BDA= 60 求A、B两点间距离 .
不可到达点 A

B
60 45
60 30
可到达点 D 40m C
解:CD=40m,
并且在C、D两点分别测得∠BCA=60°, ∠ACD=30°,
∠CDB=45°, ∠BDA=60°. 在⊿ADC和⊿BDC中,应用
三角形边与角的关系:
cos B c2 a2 b2 , 2ca
cos C a2 b2 c2 。 2ab
1、A B C 180
2、 大角对大边,小角对小边 。
余弦定理的应用条件:
(1)已知三边,求三个角;或者已知三边的比例,求 三个角 (2)已知两边和它们的夹角,求第三边和其它两角; (3)已知两边及对角,求第三边和其它两角
4
44
得A+ ,故A= .
42
4
【例8】在 ABC中,已知AC=3,sinA+cosA= 2.
正弦定理、余弦定理、面积公式的灵活应用
【例8】在 ABC中,已知AC=3,sinA+cosA= 2.
1 求sinA的值; 2若 ABC的面积S=3,求BC的值.
【解析】1由sinA+cosA= 2sin(A+ )= 2,
4
得sin( A+ )=1.
4
由此及0 A ,即 A+ 5 ,
[解] 如图8所示,在△ABC中,∠A=45°,∠ABC=
90°+30°=120°,∴∠ACB=180°-45°-120°=15°,AB=
30×0.5=15(n
mile).由正弦定理,得
AC sin∠ABC

sin∠ABACB,
∴AC=
AB·sin∠ABC sin∠ACB

15×sinsi1n51°20°=
即 30 = AC ,所以AC=30sin 30 .
sin15 sin 30
sin15
则点A到直线BC的距离
d=AC·sin 45=30sin 30 sin 45 40.8. sin15
由于40.8 38,故
此船不改变航向也无触礁的危险.
30 2

[例6] 在△ABC中,BC=5,AC=4,cos∠CAD= 31 且AD=
【解析】如图,设A、C分别表示 缉私艇、走私船的位置,设经过 x小时后在B处追上. 则有 AB=14x,BC=10x,ACB=120.
所以14x2=122+10x2-240x cos120,
所以x=2,
则AB=28,BC=20,sin=20sin120=5 3 .
28
14
所以追及所需的时间为2小时,sin = 5
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西

点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
B
75o C 51o 55m A
例1:如图,在河岸边有一点A,河对岸有一点B,要 测量A,B两点的距离,先在岸边取基线AC,测得 AC=120 m,∠BAC=45°,∠BCA=75°,求A, B两点间的距离.
不可到达点 A

B
60 45
60 30
可到达点 D
C
这样在⊿ABC中,∠BCA=60°, AC 20( 3 1), BC 40. 由余弦定理得: AB AC 2 BC 2 2 AC BC cos
202( 3 1)2 402 2 20( 3 1) 40 cos 60 20 6. 答:A,B两点间的距离为 20 6米.
(20 2 )2 (40 2 )2 2 20 2 40 2 cos 60 20 6. 答:A,B两点间的距离为 20 6米.
练习2.一货轮在海上由西向东航行,在A处望见灯塔C在货轮的东北 方向,半小时后在B处望见灯塔C在货轮的北偏东30°方向.若货 轮的速度为30 n mile/h,当货轮航行到D处望见灯塔C在货轮的 西北方向时,求A,D两处的距离.
1.3.3 应用举例
解斜三角形公式、定理
正弦定理:a b c 2R sin A sin B sinC
余弦定理:
a2 b2 c2 2bc cos A
cos A b2 c2 a2 , 2bc
b2 a2 c2 2ac cos B
c2 a2 b2 2abcosC
不可到达点 A

B
60 45
60 30
可到达点 D 40m C
解:CD=40m,
并且在C、D两点分别测得∠BCA=60°, ∠ACD=30°,
∠CDB=45°, ∠BDA=60°. 在⊿ADC和⊿BDC中,应用
正弦定理得
40 sin 30
40 sin 30
AD

s in[180

(30
=202+(10 2)2-2 20 10 2 2 2
=200,所以B1B2=10 2.
因此,乙船的速度为10 2 60=30 2(海里 / 小时). 20
答:乙船每小时航行30 2海里 / 小时.
例4.如图, 在山顶 铁塔上B处测得地 面上一点A的俯角
54040',在塔底
C处测得A处的俯
3
2+ 2
6 ×15(n
mile). 在△ACD中,∵∠A=∠D=45°,
∴△ACD是等腰直角三角形,
∴AD= 2AC=15(3+ 3)(n mile).
∴A,D两处的距离是15(3+ 3) n mile.
【变式练习3】
如图,甲船以每小时30 2海里的速度向正北方 向航行,乙船按固定方向匀速直线航行.当甲 船位于A1处时,乙船位于甲船的北偏西105方向 的B1处,此时两船相距20海里.当 甲船航行20分钟到达A2处时,乙船 航行到甲船的北偏西120方向的B2 处,此时两船相距10 2海里.问乙 船每小时航行多少海里?
∴722+×x27-×x272=722+×27x×2-2x42. 如图 2 所示,∵AD 是 BC 边上的中线,
∴可设 CD=DB=x,
则 CB=a=2x. ∵c=4,b=7,AD=72,
解得 x=92. ∴a=2x=9.
• 迁移变式2
如图,在△ABC中,已知B=45°,D是BC边上的一点, AD=5,AC=7,DC=3,求AB的长.

三角形的面积公式
SABC

1 2
absin C

1 2
bcsin A

1 2
acsin B
正弦定理和余弦定理在实际测量中有许 多应用: (1)测量距离. (2)测量高度. (3)测量角度.
实际应用问题中有关的名称、术语
1.仰角、俯角、视角。
(1)当视线在水平线上方时,视线与水平线所成角叫 仰角。
解:在△ACD 中,由余弦定理,得
cosC=AC2+2ACCD·C2-D AD2=722+×372×-352=1114. ∵C 为三角形的内角,∴C∈(0,π), ∴sinC= 1-cos2C= 1-11142=5143. 在△ABC 中,由正弦定理,得sAinBC=sAinCB,
∴AB=ACsi·nsiBnC=7s×in45154°3=5 2 6.
答:山的高度约为150米。
【变式练习】
(2015·湖北高考)如图,一辆汽车在一条水平的公路上 向正西行驶,到 A 处时测得公路北侧一山顶 D 在西偏北 30 的方向上,行驶 600m 后到达 B 处,测得此山顶在西 偏北 75°的方向上,仰角为 30°,则此山的高度 CD=
__1_0_0___6___m.

45

60)]
sin 45
20
2,
BD 40 40 2 . sin 45
不可到达点 A

B
60 45
60 30
可到达点 D
C
这样在⊿ABD中,∠BDA=60°, AD 20 2 , BD 40 2 . 由余弦定理得: AB AD2 BD2 2 AD BD cos
【解析】在 ABC 中,
CAB 30 ,ACB 75 30 45 , 根据正弦定理知,
BC AB , sin BAC sin ACB
BC AB sin BAC 600 1 300 (2 m),

sin ACB
22
2
所以 CD BC tan DBC 300
BD,求△ABC的面积.
32
C
[解] 设 CD=x,则 AD=BD=5-x,
在△CAD 中,由余弦定理可知:
D
cos∠CAD=52-×x4×2+54-2-xx2=3321,解得 x=1.
A
B
在△CAD 中,由正弦定理可知:sAinDC=sin∠CDCAD,
∴sinC=CADD· 1-cos2∠CAD=4 1-33122=38 7.
正弦定理得
AC

40 sin(45 60) sin[180 (30 45
60)]
40 sin105 sin 45
20(
3 1),
BC

s in[180
40 sin 45 (60 30

45)]
40 sin 45 sin 45

40.
【解析】连结A1B2.依题意知
A1B1=20,A2 B2=10
2,A1
A2=
20 60

30
2=10
2.
易知B2 A2 A1=60,所以 A1A2B2是等边三角形,
相关文档
最新文档