2018年初中数学竞赛模拟试题(含答案)
2018年全国初中数学联合竞赛试题(含解答)
2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。
(C) $-\frac{1}{3}$。
(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。
注:本题也可用特殊值法来判断。
2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。
(B) $1$。
(C) $0$。
(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。
最新2018全国初中数学竞赛试题及答案
【答】 .
解:设报3的人心里想的数是 ,则报5的人心里想的数应是 .
于是报7的人心里想的数是 ,报9的人心里想的数是 ,报1的人心里想的数是 ,报3的人心里想的数是 .所以
,
解得 .
三、解答题(共4题,每题20分,共80分)
11.已知抛物线 与动直线 有公共点 , ,
. ………………10分
又l是⊙O的过点C的切线,所以 . ………………15分
所以, ,于是DE‖FG,故DF=EG.
………………20分
14.n个正整数 满足如下条件: ;
且 中任意n-1个不同的数的算术平均数都是正整数.求n的最大值.
由于
≥ ,
所以, ≤2008,于是n ≤45.
结合 ,所以,n ≤9. ………………15分
另一方面,令 ,…, ,
,则这9个数满足题设要求.
综上所述,n的最大值为9. ………………20分
. ③
………………10分
t的取值应满足
≥0, ④
且使方程③有实数根,即
= ≥0, ⑤
解不等式④得 ≤-3或 ≥1,解不等式⑤得 ≤ ≤ .
作EF⊥BC,垂足为F.设EF=x,由 ,得CF=x,于是BF=20-x.由于EF‖AC,所以
,
即 ,
解得 .所以 .
10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 .
(A) (B) (C)1 (D)2
【答】A.
解:因为△BOC ∽ △ABC,所以 ,即
2018全国初中数学竞赛试题及参考答案
中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题<共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)qfRgF4dw271.设1a =,则代数式32312612a a a +--的值为( >.<A )24 <B )25 <C )10 <D )122.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:<a b ,)△<c d ,)=<ac bd ad bc ++,).如果对于任意实数u v ,, 都有<u v ,)△<x y ,)=<u v ,),那么<x y ,)为( >.qfRgF4dw27<A )<0,1) <B )<1,0) <C )<﹣1,0) <D )<0,-1)3.若1x >,0y >,且满足3y y x xy x x y==,,则x y +的值为( >.<A )1 <B )2 <C )92<D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( >.<A )1324S S S S < <B )1324S S S S = <C )1324S S S S > <D )不能确定5.设3333111112399S =++++,则4S 的整数部分等于( >. <A )4 <B )5 <C )6 <D )7 二、填空题<共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .NW2GT2oy018.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=<x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .NW2GT2oy019.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .NW2GT2oy01三、解答题<共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线<第8题)<第10题)<第12题)223y x =于P ,Q 两点. <1)求证:∠ABP =∠ABQ ;<2)若点A 的坐标为<0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解读式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案 一、选择题1.A解:因为71a =-, 17a +=, 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得<x y ,)=<1,0).3.C<第13题)<第14题)解:由题设可知1y y x -=,于是341y y x yx x -==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEF S S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即 ()2121242x x x x +-<,164m ∆=-≥0,所以1642m -<, 164m ∆=-≥0,<第4题)解之得 3<m ≤4.7.19解: 在36对可能出现的结果中,有4对:<1,4),<2,3),<2,3),<4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=.NW2GT2oy01 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又因为2BD AC =,于是 22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.22213113122()2222416y x x x =+-+-=+--+. 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =. 当12x =或1时,2y 取到最小值12,故22b =. 所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则<第8题)22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AF CB AC =,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(), 解得a +b =49<另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QC QH ,,,,. <第10题)因为AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:<1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , .设点A 的坐标为<0,t ),则点B 的坐标为<0,-t ).设直线PQ 的函数解读式为y kx t =+,并设P Q,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是 222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P QQ P Q Q Q P x x x x x x x x x x x x x x --===--- 又因为PQx PCQD x =-,所以BC PC BDQD=.因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ , 故∠ABP =∠ABQ .<第12题)<第13题)<2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由<1)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以AC 2-,AD =2.因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PCACDQAD =,即a b =,所以a b +=.由<1)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=, 于是可求得2a b =将2b =代入223y x =,得到点Q 的坐标,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解读式为1y x =+.根据对称性知,所求直线PQ 的函数解读式为1y x =+,或1y +. 解法二 设直线PQ 的函数解读式为y kx t =+,其中1t =. 由<1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x = 将223Q Q y x =代入上式,平方并整理得4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1>得3322P Q x x t =-=-,32P Q x x k +=.若32Q x =,代入上式得 3P x =-, 从而 23()33P Q k x x =+=-.同理,若3Q x =, 可得32P x =-, 从而 23()33P Q k x x =+=.所以,直线PQ 的函数解读式为313y x =-+,或313y x =+. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP . 由于2AB AC =,所以相似比为2. 于是22324AQ AP BQ CP ====,.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是33PQ AP ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()2883AB PQ AP BQ =++=+ .故 213673sin 60282ABC S AB AC AB ∆+=⋅︒==. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018年初中数学联赛试题及参考答案_一_
则使得(x@y)@z+(y@z)@x+(z@x)@y=0 的 整
数 组 )(x,y,z)的 个 数 为 ( ).
(A)1 (B)2 (C)3 (D)4
答 (D).
(x@y)@z= (x+y-xy)@z= (x+y-xy)+z
- (x+y-xy)z=x+y+z-xy-yz-zx+xyz,
由 对 称 性 ,同 样 可 得
+3ab]=0,
又a-b=2,所 以 2-2[4+4ab]+2[4+3ab]=
0,解得ab=1.所 以a2+b2= (a-b)2 +2ab=6,a3 -
b3=(a-b)[(a-b)2+3ab]=14,a5 -b5 = (a2 +b2)
(a3-b3)-a2b2(a-b)=82.
5.对任意的 整 数 x,y,定 义 x@y=x+y-xy,
(y@z)@x=x+y+z-xy-yz-zx+xyz,(z
@x)@y=x+y+z-xy-yz-zx+xyz.
所以,由已知可得 x+y+z-xy-yz-zx+xyz
=0,即 (x-1)(y-1)(z-1)= -1.
所以,x,y,z 为整数时,只能有以下几种情况:
烄x-1=1, 烄x-1=1, 烅y-1=1, 或烅y-1=-1, 烆z-1=-1, 烆z-1=1,
2018 5 > 33 =6133.
又 M = (20118+20119+ … +20130)+ (20131+
1 2032+
…
+20150)>20130×13+20150×20=813324350,
所以
1 M
<813324350=6111138455,故
1 M
的填空题 (本题满分28分,每小题7分)
4.若实数a,b 满 足a-b=2,(1-a)2 - (1+b)2
2018八年级数学竞赛试题(含答案)
2018八年级数学竞赛试题(含答案)八年级数学竞赛试卷考试时间:100分钟总分:150分姓名:班级:得分:一、选择题(每题5分,共50分)1、下列各式成立的是()A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d )2、已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是((A )x >0(B )x <0 (C )x <1 (D )x >1 3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B 或∠C4、某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是()A 、从图中可以直接看出喜欢各种球类的具体人数;B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系5、已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为().A .2B .-4C .-2或-4D .2或-46、设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定7、已知b>a>0,a 2+b 2=4ab ,则ba b a -+等于( ). A .-21B . 3C .2D .-38、将一个正方形分割成n 个小正方形(n>1),则n 不可能取( ).A .4B .5C .8D .99、若x 取整数,则使分式1-2x 36x +的值为整数的x 值有( ). (A)3个 (B)4个 (C)6个 (D)8个10、已知1x ,2x ,3x 的平均数为5,1y ,2y ,3y 的平均数为7,则1123x y +,2223x y +,3323x y +的平均数为( )(A)31 (B)313 (C)935 (D)17二、填空题(每题8分,共40分)11、点O 为线段 A B 上一点,∠AOC = 10? ,∠COD = 50? ,则∠BOD = 或A O B12、已知 m >0 ,且对任意整数 k ,2018123k m+均为整数,则m 的最大值为.13、已知某三角形的三条高线长 a ,b ,c 为互不相等的整数,则 a + b + c 的最小值为.14、如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有则=15、如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.二、简答题(每题20分,共60分) 16、现有两种理财方式供王老师选择.方案一:购买一款分红产品,前三年每年年初交 10 万元,第 6 年年初返 6 万元,以后每年处返1.5 万元;方案二:购买一款年利率5%,满一年计息的储蓄产品,第一年初存款10 万元,接下来两年每年年初追加本金 10 万元,并将之前的本息全部续存.请问哪个选择更划算?请说明理由.(参考数据:1.054 + 1.053 + 1.052 =3.47563125 )y x yx y x -+=*()()31*191211**0。
2018年初中数学联赛试题及答案
2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。
2018年新知杯上海市初中数学竞赛试题及答案
2018年新知杯上海市初中数学竞赛参考解答一、填空题(第1-5小题每题8分,第6-10小题每题10分,共90分) 1、对于任意实数a,b ,定义,a ∗b=a (a +b ) +b, 已知a ∗2.5=28.5,则实数a 的值是 。
【答案】4,132-2、在三角形ABC 中,22b 1,,2a AB BC a CA =-==,其中a,b 是大于1的整数,则b-a= 。
【答案】03、一个平行四边形可以被分成92个边长为1的正三角形,它的周长可能是 。
【答案】50,944、已知关于x 的方程4322(3)(2)20x x k x k x k ++++++=有实根,并且所有实根的乘积为−2,则所有实根的平方和为 。
【答案】55、如图,直角三角形ABC 中, AC=1,BC =2,P 为斜边AB 上一动点。
PE ⊥BC ,PF ⊥CA ,则线段EF 长的最小值为 。
6、设a ,b 是方程26810x x ++=的两个根,c ,d 是方程28610x x -+=的两个根,则(a+ c )( b + c )( a − d )( b − d )的值 。
【答案】2772第五题图BA7在平面直角坐标系中有两点P (-1,1) , Q (2,2),函数y =kx −1 的图像与线段PQ 延长线相交(交点不包括Q ),则实数k 的取值范围是 。
【答案】1332k <<8方程xyz =2018的所有整数解有 组。
【答案】729如图,四边形ABCD 中AB =BC =CD ,∠ABC =78°,∠BCD =162°。
设AD ,BC 延长线交于E ,则∠AEB = 。
【答案】21°10、如图,在直角梯形ABCD 中,∠ABC =∠BCD = 90°,AB =BC =10,点M 在BC 上,使得ΔADM 是正三角形,则ΔABM 与ΔDCM 的面积和是 。
【答案】300-二、(本题15分)如图,ΔABC 中∠ACB =90°,点D 在CA 上,使得CD =1, AD =3,并且∠BDC =3∠BAC ,求BC 的长。
2018年全国初中数学联赛(初三组)初赛试卷
2018年九年级数学竞赛试卷含答案(本试卷共三道大题,满分120分)班级:_____________ 姓名: ________________ 分数:一、选择(本题共8个小题,每小题5分,共40分)1、篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中的镂空部分) ( )2、已知两圆的半径R 、r 分别为方程0652=+-x x 的两根,两圆的圆心距为1,两圆的位置关 系是( ) A .外离 B . 外切 C .相交 D .内切3、已知:4x =9y =6,则y 1x 1+等于( )A 、2 B 、1 C 、21D 、23 4、抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为( )A .b=2,c=0 B. b=2, c=2 C . b= -2,c=-1 D. b= -3, c=25、若不等式组⎩⎨⎧>++<+-mx x m x 1104的解集是4>x ,则( )A 、29≤mB 、5≤mC 、29=m D 、5=m6、已知0221≠+=+b a b a ,则ba的值为( )A 、-1 B 、1 C 、2 D 、不能确定7、任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解:q p n ⨯=(q p ≤)可称为正整数n 的最佳分解,并规定qpn F =)(.如:12=1×12=2×6=3×4,则43)12(=F ,则在以下结论: ①21)2(=F ②83)24(=F ③若n 是一个完全平方数,则1)(=n F ④若n 是一个完全立方数,即3a n =(a 是正整数),则an F 1)(=。
2018年初中数学联赛试题(含答案)
12018年初中数学联赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当△ABC 为等边三角形时,其边长为( )A.6B.22C.23D.322.如图,在矩形ABCD 中,∠BAD 的平分线交BD 于点E ,AB =1,∠CAE =15°,则BE=( )A.33 B.222-1 33.设p ,q 均为大于3的素数,则使p 2+5pq+4q 2为完全平方数的素数对(p ,q )的个2数为( )A.1B.2C.3D.44.若实数a ,b 满足a-b=2,()()22114a b ba-+-=,则a 5-b 5=( )A.46B.64C.82D.1285.对任意的整数x ,y ,定义xy =x +y -xy ,则使得(xy )z +(yz )x +(zx )y =0的整数组(x ,y ,z )的个数为( )A.1B.2C.3D.46.设11112018201920202050M =++++,则1M的整数部分是( ) A.60 B.61 C.62 D.63二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,BC =2AB ,CE ⊥AB 于E ,F 为AD 的中点,若∠AEF=48°,则∠B=_______.32.若实数x ,y 满足()3311542x y x y +++=,则x +y 的最大值为_______. 3.没有重复数字且不为5的倍数的五位数的个数为_______.4.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则555a b cabc++=_______.第一试(B)一、选择题:(本题满分42分,每小题7分)1.满足(x 2+x-1)x+2的整数x 的个数为( )A.1B.2C.3D.42.已知x 1,x 2,x 3 (x 1<x 2<x 3)为关于x 的方程x 3-3x 2+(a+2)x-a=0的三个实数根,则22211234x x x x -++=( )A.5B.6C.7D.83.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CD=4CE ,∠EFB=∠FBC ,则tan ∠AB F =( )4A.12B.35C.2D.24.=的实数根的个数为( )A.0B.1C.2D.35.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为( )A.4B.5C.6D.76.已知实数a ,b 满足a 3-3a 2+5a=1,b 3-3b 2+5b=5,则a +b =( )A.2B.3C.4D.5二、填空题:(本题满分28分,每小题7分)1.已知p ,q ,r 为素数,且pqr 整除pq +qr +rp -1,则p +q +r =_______.2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为_______.3.已知D是△ABC内一点,E是AC的中点,AB=6,BC=10,∠BAD=∠BCD,∠EDC=∠ABD,则DE =_______.4.已知二次函数y=x2+2(m+2n+1)x+(m2+4n2+50)的图象在x轴的上方,则满足条件的正整数对(m,n)的个数为_______.第二试(A)一、(本题满分20分)设a,b,c,d为四个不同的实数,若a,b为方程x2-10cx-11d=0的根,c,d为方程x2-10ax-b=0的根,求a+b+c+d的值.二、(本题满分25分)如图,在扇形OAB中,∠AOB=90°,OA=12,点C在OA 上,AC=4,点D为OB的中点,点E为弧AB上的动点,OE与CD的交点为F.56(1)当四边形ODEC 的面积S 最大时,求EF ; (2)求CE +2DE 的最小值.三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.第二试(B )一、(本题满分20分)若实数a ,b ,c 满足(a+b+c)11195555a b c b c a c a b ⎛⎫++= ⎪+-+-+-⎝⎭,求(a+b+c)111a b c ⎛⎫++ ⎪⎝⎭的值.二、(本题满分25分)如图,点E在四边形ABCD的边AB上,△ABC和△CDE都是等腰直角三角形,AB=AC,DE=DC.. (1)证明:ADBC;(2)设AC与DE交于点P,如果∠ACE=30°,求DPPE三、(本题满分25分)设x是一个四位数,x的各位数字之和为m,x+1的各位数字之和为n,并且m与n的最大公约数是一个大于2的素数.求x.7。
最新-2018年全国初中数学竞赛试题及答案(初三) 精品
2018年“TRULY ®信利杯”全国初中数学竞赛试题参考答案和评分标准一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填得零分)1. 已知实数b a ≠,且满足)1(33)1(2+-=+a a ,2)1(3)1(3+-=+b b .则ba a ab b+的值为( ). (A )23 (B )23- (C )2- (D )13- 答:选(B )∵ a 、b 是关于x 的方程()03)1(312=-+++x x的两个根,整理此方程,得0152=++x x ,∵ 0425>-=∆, ∴ 5-=+b a ,1=ab . 故a 、b 均为负数. 因此()232222-=-+-=+-=--=+abab b a ab abb a ab b a ab a b b a a a b b .2. 若直角三角形的两条直角边长为a 、b ,斜边长为c ,斜边上的高为h ,则有 ( ).(A )2h ab = (B )h b a 111=+ (C )222111hb a =+ (D )2222h b a =+ 答:选(C )∵ 0>>h a ,0>>h b ,∴ 2h ab >,222222h h h b a =+>+; 因此,结论(A )、(D )显然不正确.设斜边为c ,则有c b a >+,ab ch h b a 2121)(21=>+,即有 hb a 111>+, 因此,结论(B )也不正确.由ab h b a 212122=+化简整理后,得222111h b a =+, 因此结论(C )是正确的. 3.一条抛物线c bx ax y ++=2的顶点为(4,11-),且与x 轴的两个交点的横坐标为一正一负,则a 、b 、c 中为正数的( ). (A )只有a (B )只有b (C )只有c (D )只有a 和b 答:选(A )由顶点为(4,11-),抛物线交x 轴于两点,知a >0. 设抛物线与x 轴的两个交点的横坐标为1x ,2x ,即为方程02=++c bx ax的两个根.由题设021<x x ,知0<ac,所以0<c . 根据对称轴x =4,即有02>-a b,知b <0.故知结论(A )是正确的.4.如图所示,在△ABC 中,DE ∥AB ∥FG ,且FG 到DE 、AB 的距离之比为1:2. 若△ABC 的面积为32,△CDE 的面积为2,则△CFG的面积S等于( ).(A )6 (B )8 (C )10 (D )12 答:选(B )由DE ∥AB ∥FG 知,△CDE ∽△CAB ,△CDE ∽△CFG ,所以41322===∆∆CAB CDE S S CACD, 又由题设知21=FA FD ,所以 31=AD FD , AC AC AD FD 41433131=⨯==,故DC FD =,于是41212=⎪⎭⎫ ⎝⎛=∆∆CFG CDE S S ,8=∆CFG S . 因此,结论(B )是正确的.(第4题图)5.如果x 和y 是非零实数,使得3=+y x 和03=+x y x ,那么x +y 等于( ).(A )3 (B )13 (C )2131- (D )134- 答:选(D )将x y -=3代入03=+x y x ,得0323=+-x x x .(1)当x >0时,0323=+-x x x ,方程032=+-x x 无实根; (2)当x <0时,0323=--x x x ,得方程032=--x x 解得2131±=x ,正根舍去,从而2131-=x . 于是2137213133-=-+=-=x y . 故134-=+y x .因此,结论(D )是在正确的.二、填空题(共5小题,每小题6分,满分30分) 6. 如图所示,在△ABC 中,AB =AC ,AD =AE ,︒=∠60BAD ,则=∠EDC (度). 答:30°解:设α2=∠CAD ,由AB =AC 知αα-︒=-︒-︒=∠60)260180(21B ,α+︒=︒-∠-︒=∠6060180B ADB , 由AD =AE 知,α-︒=∠90ADE , 所以︒=∠-∠-︒=∠30180ADB ADE EDC .7.据有关资料统计,两个城市之间每天的电话通话次数T 与这两个城市的人口数m 、n (单位:万人)以及两城市间的距离d (单位:km )有2d kmnT =的关系(k 为常数) . 现测得A 、B 、C 三个城市的人口及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话通话次数为 次(用t 表示).答:2t(第6题图)解:据题意,有k t 21608050⨯=, ∴t k 532=. 因此,B 、C 两个城市间每天的电话通话次数为2645532320100802tt k T BC =⨯=⨯⨯=. 8.已知实数a 、b 、x 、y 满足2=+=+y x b a ,5=+by ax ,则=+++)()(2222y x ab xy b a .答:5-解:由2=+=+y x b a ,得4))((=+++=++bx ay by ax y x b a , ∵ 5=+by ax , ∴ 1-=+bx ay .因而,5))(()()(2222-=++=+++by ax bx ay y x ab xy b a . 9. 如图所示,在梯形ABCD 中,AD ∥BC (BC >AD ),︒=∠90D ,BC =CD =12, ︒=∠45ABE ,若AE =10,则CE 的长为 . 答:4或6解:延长DA 至M ,使BM ⊥BE . 过B 作BG ⊥AM ,G 为垂足.易知四边形BCDG 为正方形, 所以BC =BG . 又GBM CBE ∠=∠, ∴ Rt △BEC ≌Rt △BMG .∴ BM =BE ,︒=∠=∠45ABM ABE , ∴△ABE ≌△ABM ,AM =AE =10.设CE =x ,则AG =x -10,AD =x x -=--2)10(12,DE =x -12. 在Rt △ADE 中,222DE AD AE +=, ∴ 22)12()2(100x x -++=, 即024102=+-x x , 解之,得41=x ,62=x .(第9题图)(第7题图)故CE 的长为4或6.10.实数x 、y 、z 满足x+y +z =5,xy +yz +zx =3,则z 的最大值是 .答:313解:∵ z y x -=+5,35)5(3)(32+-=--=+-=z z z z y x z xy , ∴ x 、y 是关于t 的一元二次方程035)5(22=+-+--z z t z t的两实根.∵ 0)35(4)5(22≥+---=∆z z z ,即0131032≤--z z ,0)1)(133(≤+-z z .∴ 313≤z ,当31==y x 时,313=z . 故z 的最大值为313.三、解答题(共4题,每小题15分,满分60分)11.通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散. 学生注意力指标数y 随时间x (分钟)变化的函数图象如图所示(y 越大表示学生注意力越集中). 当100≤≤x 时,图象是抛物线的一部分,当2010≤≤x 和4020≤≤x 时,图象是线段. (1)当100≤≤x 时,求注意力指标数y 与时间x 的函数关系式;(2)一道数学竞赛题需要讲解24分钟. 问老师能否经过适当安排,使学生在听这道题时,注意力的指标数都不低于36. 解:(1)当100≤≤x 时,设抛物线的函数关系式为c bx ax y ++=2,由于它的图象经过点(0,20),(5,39),(10,48),所以⎪⎩⎪⎨⎧=++=++=.4810100,39525,20c b a c b a c 解得,51-=a ,524=b ,20=c .所以20524512++-=x x y ,100≤≤x . …………………(5分)(第11(A )题图)(2)当4020≤≤x 时,7657+-=x y .所以,当100≤≤x 时,令y =36,得2052451362++-=x x ,解得x =4,20=x (舍去);当4020≤≤x 时,令 y =36,得765736+-=x ,解得74287200==x . ……………………(10分) 因为24742447428>=-,所以,老师可以经过适当的安排,在学生注意力指标数不低于36时,讲授完这道竞赛题. ……………………(15分) 12.已知a ,b 是实数,关于x ,y 的方程组⎩⎨⎧+=--=bax y bx ax x y ,23 有整数解),(y x ,求a ,b 满足的关系式.解:将b ax y +=代入bx ax x y --=23,消去a 、b ,得xy x y -=3, ………………………(5分)3)1(x y x =+.若x +1=0,即1-=x ,则上式左边为0,右边为1-不可能. 所以x +1≠0,于是111123+-+-=+=x x x x x y .因为x 、y 都是整数,所以11±=+x ,即2-=x 或=x 0,进而y =8或=y 0. 故⎩⎨⎧=-=82y x 或⎩⎨⎧==0y x ………………………(10分) 当⎩⎨⎧=-=82y x 时,代入b ax y +=得,082=+-b a ;当⎩⎨⎧==00y x 时,代入b ax y +=得,0=b . 综上所述,a 、b 满足关系式是082=+-b a ,或者0=b ,a 是任意实数.………………………(15分)13.D 是△ABC 的边AB 上的一点,使得AB =3AD ,P 是△ABC 外接圆上一点,使得ACB ADP ∠=∠,求PD PB的值.解:连结AP ,则ADP ACB APB ∠=∠=∠,所以,△APB ∽△ADP , …………………………(5分) ∴AD AP AP AB =, 所以223AD AD AB AP =•=,∴AD AP 3=, …………………………(10分) 所以3==ADAPPD PB . …………………………(15分) 14.已知0<a ,0≤b ,0>c ,且ac b ac b 242-=-,求ac b 42-的最小值. 解:令c bx ax y ++=2,由0<a ,0≤b ,0>c ,判别式042>-=∆ac b ,所以这个二次函数的图象是一条开口向下的抛物线,且与x 轴有两个不同的交点)0,(1x A ,)0,(2x B ,因为021<=acx x ,不妨设21x x <,则210x x <<,对称轴02≤-=abx ,于是 c a ac b b a ac b b x =--=-+-=2424221, ………………(5分)所以aac b a ac b b c a b ac 242444222--≥--=≥-, …………………(10分) 故442≥-ac b ,当1-=a ,b =0,c =1时,等号成立.所以,ac b 42-的最小值为4. ………………………(15分)(第13(A )题图)(第14(A )题图)。
2018年太原市初中数学竞赛试题(含答案)
2018年太原市初中数学竞赛一、选择题(每小题7分,共42分)1.若x+y=1,x3+y3=13,则x5+y5的值是().(A)11311131 ()()() 8181243243B C D2.已知(x>0),则222241629x xy yx xy y+-+-的值是().(A)241616 ()()() 392527B C D3.在凸多边形中,四边形有两条对角线,五边形有5条对角线.观察探索凸十边形有()条对角线.(A)29 (B)32 (C)35 (D)384.已知△ABC中,AD=8,则△ABC外接圆的半径为().(A)8 (B)9 (C)10 (D)125.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12,16=52-32).已知智慧数按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2 006年智慧数是()(A)2 672 (B)2 675 (C)2 677 (D)2 6806.图1是山西省某古宅大院窗棂图案:图形构成10×21的长方形,•空格与实木的宽度均为1,那么,这种窗户的透光率(即空格面积与全部面积之比)是().(A)25(B)345()()7911C D二、填空题(每小题7分,共42分)1.如图2,已知正方形ABCD 的顶点坐标为A (1,1),B (3,1),C (3,3),D (1,3),直线y=2x+b 交AB 于点E ,交CD 于点F .则直线在y 轴上的截距b 的变化范围是_______. 2.一次函数y=ax+b•的图像L 1关于直线y=•-•x•轴对称的图像L 2的函数解析式是____________. 3.不论m 取任何实数,抛物线y=x 2+2mx+m 2+m-1的顶点都在一条直线上,则这条直线的函数解析式是_______. 4.当a<0时,方程x │x │+│x │-x-a=0的解为__________.5.某广场地面铺满了边长为36cm 的正六边形地砖.现在向上抛掷半径为的圆碟,圆碟落地后与地砖间的间隙不相交的概率大约是________.6.将红、白、黄三种小球,装入红、白、黄三个盒子中,•每个盒子中装有相同颜色的小球.已知:(1)黄盒中的小球比黄球多; (2)红盒中的小球与白球不一样多; (3)白球比白盒中的球少.则红、白、黄三个盒子中装有小球的颜色依次是________.三、(16分)将一个三位数abc 的中间数码去掉,成为一个两个数ac ,且满足abc =9ac +4c (•如155=9×15+4×5).试求出所有这样的三位数.四、(16分)已知二次函数y=a x2+4ax+4a-1的图像是C1.(1)求C1关于点R(1,0)中心对称的图像C2的函数解析式;(2)设曲线C1、C2与y轴的交点分别为A、B,当│AB│=18时,求a的值.五、(17分)求方程2x2+5xy+2y2=2 006的所有正整数解.六、(17分)如图3,已知AB为⊙O的弦,M为AB的中点,P为⊙O上任意一点,以点P 为圆心、2MO为半径作圆并交⊙O于点C、D,AC、BD交于点Q,请问:(1)点Q是△PAB的什么“心”?(2)点Q是否在⊙P上?试证明你的结论.提示:(1)三角形的三条高线交于一点,称为垂心定理,此点称为垂心.(2)三角形有内心、外心、重心、垂心等.参考答案一、1.A.由x3+y3=(x+y)(x2-xy+y2)=13,x+y=1,有x2-xy+y2=13.又因x2+2xy+y2=1,则3xy=23,xy=29.由21,,321,.93x y xxyy⎧+==⎧⎪⎪⎪⎨⎨=⎪⎪=⎩⎪⎩解得故x5+y5=321331124324324381+==.2.D由原方程得2(xy)-2=0.=t,则方程变形为2t2-3t-2=0,即(2t+1)(t-2)=0.解得t1=2,t2=-12(舍去),故xy=4.将x=4y代入分式,得222241629x xy yx xy y+-+-=22(161616)16(3249)27yy+-=+-.3.C 画图观察探索知多边形:四五六七八九十对角线条数: 2 5 9 14 20 27 35规律是: 2+3 5+4 9+5 14+6 20+7 27+8 4.D如图,延长AD交外接圆于点E,则AE为直径.联结BE,知△ABE•为直角三角形,•有AB2=AD·AE.因此,半径为12.5.C观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2•组开始每组的第一个数都是4的倍数.归纳可得第n组的第一个数为4n(n≥2).因2 006=3×668+2,所以,第2 006个智慧数是第669组中的第2•个数,•即为4•×669+1=2 677.6.B观察图1的结构规律,知长方形面积为10×21=210,空格图形面积为2(9+8+7+6+5+4+3+2+1)=90.则透光率=903 2107=.二、1.-3≤b≤-1.由直线y=2x+b随b的数值不同而平行移动,知当直线通过点A时,得b=-1;• 当直线通过点C时,得b=-3.故-3≤b≤-1.2.y=1ax+ba.直线y=ax+b与x轴、y轴的交点分别为A1(-ba,0),B(0,b),则点A1、B2关于直线y=-x•轴对称的点为A2(0,ba),B2(-b,0),利用待定系数法或斜率、截距关系知,过点A2、B2的直线为y=1ax+ba.故一次函数y=ax+b的图像关于直线y=-x轴对称的图像的函数解析式为y=1ax+ba.3.y=-x-1.将二次函数变形为y=(x+m)2+m-1,知抛物线的顶点坐标为,1. x my m=-⎧⎨=-⎩.消去m,得x+y=-1.4.当a<0时,若x≥0,方程为x2-a=0,得x2=a<0,无解;若x<0,方程为-x2-2x-a=0,即 x2+2x+a=0.此时,△=4-4a>0.解得=-15.49欲使圆碟不压地砖间的间隙,则圆碟的圆心必须落在与地砖同中心、•且边与地砖边彼此平行、距离为的小正六边形内(如图).作OC1⊥A1A2,且C1C2.因A1A2=A2O=36,A2C1=18,所以,C12则C2O=C1O-C1C2=又因C22O,所以,B22.而B1B2=B2O,则小正六边形的边长为24cm.故所求概率为P=221222122436B BA A==小正六边形的面积正六边形地砖面积=49.6.黄、红、白.由条件(2)知红盒不装白球,由条件(3)知白盒不装白球,故黄盒装白球.假设白盒装黄球,由条件(3)知白球比黄球少,这与条件(1)矛盾,故白盒装红球,红盒装黄球.三、因abc=100a+10b+c=,ac=10a+c,由题意得100a+10b+c=9(10a+c)+4c.化简得5(a+b )=6c . 这里0≤a 、b 、c ≤9,且a ≠0. 因为5是质数,所以,5,1,2,3,4,5,6,6.5,4,3,2,1,0.c a a b b ==⎧⎧⎨⎨+==⎩⎩故 则abc =155,245,335,425,515,605.四、(1)由y=a (x+2)2-1,可知抛物C 1的顶点为M (-2,-1).由图知点M (-2,-1)关于点R (1,0)中心对称的点为N (4,1),以N (4,1)为顶点,与抛物线C 1关于点R (1,0)中心对称的图像C 2也是抛物线,且C 1与C 2的开口方向相反,故抛物线C 2的函数解析式为y=-a (x-4)2+1,即y=-a x 2+8ax-16a+1.(2)令x=0,得抛物线C 1、C 2与y 轴的交点A 、B 的纵坐标分别为4a-1和-16a+1,故│AB │=│(4a-1)-(-16a+1)│=│20a-2│. 注意到│20a-2│=18.当a ≥110时,有20a-2=18,得a=1; 当a<110时,有2-20a=18,得a=-45.五、方程两端分解因式得(2x+y )(x+2y )=2×17×59. 不妨先设x ≥y ≥1,则有 ① 2x+y ≥x+2y>x+y>1. 由此,只有三种情况: 259,2118,21003,234,217,2 2.x y x y x y x y x y x y +=+=+=⎧⎧⎧⎨⎨⎨+=+=+=⎩⎩⎩或或 由式②、③得x+y=31. 再由31,28259,3;x y x x y y +==⎧⎧⎨⎨+==⎩⎩解得由式④、⑤得x+y=45,与式①矛盾;由式⑥、⑦得x+y=335,与式①矛盾.故原方程的正整数解为2833;28. x xy y==⎧⎧⎨⎨==⎩⎩.六、分析:当点P在弦AB的垂直平分线MO上时,点Q也在直线MO上,此时,PQ⊥AB,•故考虑Q为△PAB的垂心.(1)如图,作⊙O的直径BE,联结PD、DE、EA.因为∠BAE=90°,所以,AE∥MO.因M为AB中点,则AE=2MO.于是,有AE=PD.故四边形APDE为等腰梯形,DE∥PA.又因为∠BDE=90°,BD⊥DE,所以,BD⊥PA,即点Q在△PAB的顶点B到底边PA•的垂线上.联结PE、PC.因AE=PC=2MO,则四边形ACPE也为等腰梯形,所以,PE∥AC.又∠BPE=90°,PE⊥PB,则AC⊥PB,即点Q在△PAB的顶点A到底边PB的垂线上.因Q是△PAB两条高的交点,故Q为△PAB的垂心.(2)联结PQ.根据垂心定理知PQ⊥AB,但AE⊥AB,则PQ∥AE.又因PE∥AC,即有PE∥AQ,则四边形AQPE为平行四边形.所以,PQ=AE=PC=2MO.故点Q在⊙P上.。
2018年全国初中数学竞赛试题及答案
若关于 m 的方程有正整数解,则
9 4n(n 1) 8 (2 n 1)2 l 2 ( l 为正整数),
即 l 2 (2n 1)2 8,[ l (2n 1)][( l (2 n 1)] 8
4
l (2n 1) 8 l (2n 1) 4
所以
,或
,
l (2n 1) 1 l (2n 1) 2
解得: n
5 4
所以 PQ= yp
yQ
( a2
3a
4)
(a2
3a
4) =
2
2a
8
即当 a= 0(属于 -2≤ a≤2)时, PQ 的最大值为 8。
12.已知 a , b 都是正整数,试问关于 x 的方程 x 2 abx 1 ( a b) 2
把它们求出来;如果没有,请给出证明.
-4
Q
-6
B
-8
-10
0 是否有两个整数解?如果有,请
但不多于 8 个,红球不少于 2 个,黑球不多于 3 个,那么上述取法的种数是(
)
( A )14
( B) 16
(C) 18
(D )20
解:选( B )。只用考虑红球与黑球各有 4 种选择:红球( 2,3,4,5 ),黑球( 0,1,2,3 )共 4× 4= 16 种
3.已知 a 、 b 、 c 是三个互不相等的实数,且三个关于 x 的一元二次方程 ax 2 bx c 0 ,
综上,存在正整数 a= 1, b=3 或 a=3, b=1,使得
方程 x 2 abx 1 (a b) 0 有两个整数解为 x1 1, x2 2 。 2
DE
13.如图,点 E, F 分别在四边形 ABCD 的边 AD , BC 的延长线上,且满足
初中数学竞赛“《数学周报》杯”2018年全国初中数学竞赛试题(含答案)
初中数学竞赛“《数学周报》杯”2018年全国初中数学竞赛试题(含答案)中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案答题时注意:1.⽤圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.⼀、选择题(共5⼩题,每⼩题6分,满分30分. 以下每道⼩题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有⼀个选项是正确的. 请将正确选项的代号填⼊题后的括号⾥. 不填、多填或错填都得0分)1.已知实数x y ,满⾜ 42424233y y x x -=+=,,则444y x+的值为().(A )7 (B )(C )(D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得212184x +==, 21122y --+==,所以444y x +=22233y x++- 2226y x=-+=7. 2.把⼀枚六个⾯编号分别为1,2,3,4,5,6的质地均匀的正⽅体骰⼦先后投掷2次,若两个正⾯朝上的编号分别为m ,n ,则⼆次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是().(A )512 (B )49 (C )1736 (D )12(第3题)【答】(C )解:基本事件总数有6×6=36,即可以得到36个⼆次函数. 由题意知=24m n ->0,即2m >4n .通过枚举知,满⾜条件的m n ,有17对. 故1736P =.3.有两个同⼼圆,⼤圆周上有4个不同的点,⼩圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).(A )6条(B ) 8条(C )10条(D )12条【答】(B )解:如图,⼤圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;⼩圆周上的两个点E ,F 中,⾄少有⼀个不是四边形ABCD 的对⾓线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,⾄少有两条不同于A ,B ,C ,D 的两两连线.从⽽这6个点可以确定的直线不少于8条.当这6个点如图所⽰放置时,恰好可以确定8条直线.所以,满⾜条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的⼀条弦,且1AB a =<.以AB 为⼀边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的⼀点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为().(A(B )1 (C(D )a 【答】(B )解:如图,连接OE ,OA ,OB .设D α∠=,则120ECA EAC α∠=?-=∠.⼜因为()1160180222ABO ABD α∠=∠=?+?- 120α=?-,所以ACE △≌ABO △,于是1AE OA ==.(第4题)5.将1,2,3,4,5这五个数字排成⼀排,最后⼀个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第⼀个数整除,那么满⾜要求的排法有().(A )2种(B )3种(C )4种(D )5种【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的⼀个满⾜要求的排列.⾸先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件⽭盾.⼜如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明⼀个偶数后⾯⼀定要接两个或两个以上的奇数,除⾮接的这个奇数是最后⼀个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满⾜条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1.⼆、填空题(共5⼩题,每⼩题6分,满分30分)6.对于实数u ,v ,定义⼀种运算“*”为:u v uv v *=+.若关于x 的⽅程1()4x a x **=-有两个不同的实数根,则满⾜条件的实数a 的取值范围是.【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠=+-+>?,,解得,0a >,或1a <-.7.⼩王沿街匀速⾏⾛,发现每隔6分钟从背后驶过⼀辆18路公交车,每隔3分钟从迎⾯驶来⼀辆18路公交车.假设每辆18路公交车⾏驶速度相同,⽽且18路公交车总站每隔固定时间发⼀辆车,那么发车间隔的时间是分钟.【答】4.解:设18路公交车的速度是x ⽶/分,⼩王⾏⾛的速度是y ⽶/分,同向⾏驶的相邻两车的间距为s ⽶.每隔6分钟从背后开过⼀辆18路公交车,则s y x =-66.①每隔3分钟从迎⾯驶来⼀辆18路公交车,则s y x =+33.②由①,②可得 x s 4=,所以4=xs.即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为.【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB .⼜//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==.因此 1122FC FN NC AB AC =+=+=9.9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆⼼I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为.【答】163.解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r ,BC 边上的(第8题)(第8题答案)⾼为a h ,则11()22a ABC ah S abc r ==++△,所以a r ah a b c=++.因为△ADE ∽△ABC ,所以它们对应线段成⽐例,因此a a h r DEh BC-=,所以 (1)(1)a a a h r r aDE a a a h h a b c-=?=-=-++ ()a b c a b c +=++,故 879168793DE ?+==++().10.关于x ,y 的⽅程22208()x y x y +=-的所有正整数解为.【答】481603232.x x y y ====??,,,解:因为208是4的倍数,偶数的平⽅数除以4所得的余数为0,奇数的平⽅数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213?,(第9题答案)其中s ,t 都是偶数.所以222(13)213(13)s t -=?-+≤2222131511?-<.所以13s -可能为1,3,5,7,9,进⽽2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从⽽13s -=7.于是62044s s t t ====??,,;,因此 481603232.x x y y ====??,,,三、解答题(共4题,每题15分,满分60分)11.在直⾓坐标系xOy 中,⼀次函数b kx y +=0k ≠()的图象与x 轴、y 轴的正半轴分别交于A ,B 两点,且使得△OAB 的⾯积值等于3OA OB ++.(1)⽤b 表⽰k ;(2)求△OAB ⾯积的最⼩值.解:(1)令0=x ,得0y b b =>,;令0=y ,得00bx k k=-><,.所以A ,B 两点的坐标分别为0)(0)b AB b k -(,,,,于是,△OAB 的⾯积为 )(21kbb S -?=.由题意,有3)(21++-=-?b kbk b b ,解得 )3(222+-=b b b k ,2b >.……………… 5分(2)由(1)知21(3)(2)7(2)10()222b b b b b S b k b b +-+-+=?-==--21027)72b b =-++=++-≥1027+,当且仅当1022b b -=-时,有S =102+=b ,1-=k 时,不等式中的等号成⽴.所以,△OAB ⾯积的最⼩值为1027+. ……………… 15分12.是否存在质数p ,q ,使得关于x 的⼀元⼆次⽅程20px qx p -+=有有理数根?解:设⽅程有有理数根,则判别式为平⽅数.令2224q p n ?=-=,其中n 是⼀个⾮负整数.则2()()4q n q n p -+=.……………… 5分由于1≤q n -≤q +n ,且q n -与q n +同奇偶,故同为偶数.因此,有如下⼏种可能情形:222q n q n p -=??+=?,, 24q n q n p -=??+=?,, 4q n p q n p -=??+=?,, 22q n p q n p -=??+=?,, 24.q n p q n ?-=?+=?,消去n ,解得22251222222p p p q p q q q p q =+=+===+,,,,.……………… 10分对于第1,3种情形,2p =,从⽽q =5;对于第2,5种情形,2p =,从⽽q =4(不合题意,舍去);对于第4种情形,q 是合数(不合题意,舍去).⼜当2p =,q =5时,⽅程为22520x x -+=,它的根为12122x x ==,,它们都是有理数.综上所述,存在满⾜题设的质数. ……………… 15分13.如图,△ABC 的三边长B C aC Ab A ===,,,a b c ,,都是整数,且a b ,的最⼤公约数为2.点G 和点I 分别为△ABC 的重⼼和内⼼,且90GIC ∠=?.求△ABC 的周长.解:如图,延长GI ,与边BC CA ,分别交于点P Q ,.设重⼼G 在边BC CA ,上的投影分别为E F ,,△ABC 的内切圆的半径为r ,BC CA ,边上的⾼的长分别为a b h h ,,易知CP =CQ ,由PQC GPC GQC S S S =+△△△,可得 ()123a b r GE GF h h =+=+,即 222123A B C A B C A B CS S Sa b c a b=?+ ?++??△△△,从⽽可得 6aba b c a b++=+. ……………… 10分因为△ABC 的重⼼G 和内⼼I 不重合,所以,△ABC 不是正三⾓形,且b a ≠,否则,2a b ==,可得2c =,⽭盾.不妨假设a b >,由于()2a b =,,设()1111221a a b b a b ===,,,,于是有1111126a b ab a b a b =++为整数,所以有11()12a b +,即()24a b +.于是只有1410a b ==,时,可得11c =,满⾜条件.因此有35a b c ++=.所以,△ABC 的周长为35.……………… 15分(第13题)(第13题答案)。
2018年江苏省第十八届初中数学竞赛试题(含解答)
江苏省第十八届初中数学竞赛试题(初三年级)一、选择题:(每小题7分,共42分)1.在直角坐标系中,若一点的纵、横坐标都是整数,则称该点为整点。
设k 为整数,当直线2y x =-与y kx k =+的交点为为整点时,k 的值可以取( )A. 4个B.5个 C .6个 D.7个2.如图,AB 是⊙O 的直径,C 为AB 上一个动点(C 点不与A 、B 重合),CD ⊥AB ,AD 、CD 分别交⊙O 于E 、F ,则与AB •AC 相等的一定是( )A .AE •ADB .AE •EDC .CF •CD D .CF •FD3.在ABC 与'''A B C ∆中,已知AB <A ′B ′,BC <B ′C ′,CA <C ′A ′。
下列结论:(1)ABC ∆的边AB 上的高小于'''A B C ∆的边A ′B ′上的高;(2)ABC ∆的面积小于'''A B C ∆的面积(3)ABC ∆的外接圆半径小于'''A B C ∆的外接圆半径(4)ABC ∆的内切圆半径小于'''A B C ∆的内切圆半径其中,正确结论的个数为( )A.0B.1C.2D.44.设()()2211S 11x x +=+-,那么S 与2的大小关系是( )A .S =2B .S <2C .S >2D .S 与2的大小与x 的取值有关5.折叠圆心为O 、半径为10cm 的圆形纸片,使圆周上的某一点A 与圆心O 重合。
对圆周上的每一点,都这样折叠纸片,从而都有一条折痕。
那么,所有折痕所在直线上点的全体为( )A .以O 为圆心、半径为10cm 的圆周;B .以O 为圆心、半径为5cm 的圆周;C.以O 为圆心、半径为5cm 的圆内部分;D.以O 为圆心、半径为5cm 的圆周及圆外部分6.已知x ,y ,z 都是实数,且2221x y z ++=,则 m xy yz xz =++( )A .只有最大值;B .只有最小值;C .既有最大值又有最小值;D .既无最大值又无最小值二、填空题:(每小题7分,共56分)7.如图是一个树形图的生长过程,依据图中所示的生长规律,第15行的实心圆点的个数等于______________.8.设1230.1aaa 为四位十进制纯小数,i a (i=1,2,3)只取0或1。
2018年北京市中学生数学竞赛初二试题(含答案)
2018年北京市中学生数学竞赛初二试题一、选择题(每小题5分,共25分)1.在1~100这100个自然数中,质数所占的百分比是().(A)25% (B)24% (C)23% (D)22%2.一个三角形的三边长都是整数,它的周长等于10,则这个三角形是().(A)直角三角形(B)钝角三角形(C)恰有两边相等的三角形(D)恰有一个内角为60°的三角形3.已知n为正整数,S=1+2+…+n.则S的个位数字不能取到的数字是().(A)0,1,2,3 (B)3,4,5,6(C)3,5,6,8 (D)2,4,7,94.如图1,四边形ABCD的对角线AC、BD相交于点O.S△AOB=4,S△COD=9.则S四边形的最小值是().ABCD(A)22 (B)25 (C)28 (D)32(1)(2) (3)5.如果│a-b│=1,│b+c│=1,│a+c│=2,则│a+b+2c│等于().(A)3 (B)2 (C)1 (D)0二、填空题(每小题7分,共35分)1.如图2,大圆的两条直线AC、BC垂直相交于点O,分别以边AB、BC、CD、DA为直径向大圆外侧作四个半圆,图中四个“月形”阴影的总面积是2cm2.•则大圆的半径等于_______cm.2.2 005被两位的自然数去除,可能得到的最大余数是_______.3.已知a2+bc=14,b2-2bc=-6.则3a2+4b2-5bc=_________.4.如图3,在凸六边形ABCDEF中,AD、BE、CF三线共点于O,•每相邻三个顶点所组成的三角形的面积都等于1,则S六边形ABCDEF=_______.5.有6个被12除所得余数都相同的自然数,它们的连乘积为971 425.则这6•个自然数之和的最小值是________.三、(15分)已知非零实数a、b、c满足a+b+c=0.求证:(1)a3+b3+c3=3abc;(2)(a bc-+b ca-+c ab-)(ca b-+ab c-+bc a-)=9.四、(15分)如图,在△ABC中,∠BAC=∠BCA=44°,M为△ABC形内一点,•使得∠MCA=30°,∠MAC=16°,求∠BMC的度数.五、(10分)某学生在黑板上写出了17个自然数,•每个自然数的个位数码只能是0,1,2,3,4这5个数字中的一个.证明:从这17个数中可以选出5个数,•它们的和能被5整除.参考答案一、1.A在1~100这100个自然数中,有质数2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97共25个,所以,其中质数所占的百分比是25%.2.C将10分拆成三个正整数之和,有10=1+1+8=1+2+7=1+3+6=1+4+5=2+2+6=2+3+5=2+4+4=3+3+4共八种情况.由“三角形两边之和大于第三边”可知,只有(2,4,4),(3,3,4)两组可构成三角形.由于等腰三角形两个底角都是锐角,于是,以2、4、4为边的等边三角形中,最小边2对的顶角也是锐角.以3、3、4为边的等腰三角形中,由32+32>42,•知顶角也是锐角.所以,以2、4、4为边的等腰三角形以及以3、3、4为边的等腰三角形都是锐角三角形,排除选项(A)、(B)•.•又由于等腰三角形中恰有一个内角为60°时变为等边三角形,与边为(2,4,4)、(3,3,4)的条件矛盾,排除选项(D).由(2,4,4)、(3,3,4)为边的三角形是恰有两边相等的三角形.3.D.由S=(1)2n n+,又n、n+1是两个连续的自然数,知n(n+1)的个位数字只能取0,2,6.•所以,S的个位数字只能是0,1,3,5,6,8这六个数字.因此,S的个位数字不能取到的是2,4,7,9.4.B如图1,设S△AOD=x,S△BOC=y,则S四边形ABCD=4+9+x+y≥13+2xy.由49xy=,有xy=36.所以,S四边形ABCD≥13+2xy=13+12=25.故S四边形ABCD的最小值是25.此时,AB∥DC,即四边形ABCD是梯形.5.A.由│a-b│=1,知a-b=1或a-b=-1;由│b+c│=1,知b+c=1或b+c=-1;由│a+c│=2,知a+c=2或a+c=-2.这样,可以得到23=8个三元一次方程组:(1)a-b=1,b+c=1,a+c=2;(2)a-b=1,b+c=1,a+c=-2;(3)a-b=1,b+c=-1,a+c=2;(4)a-b=1,b+c=-1,a+c=-2;(5)a-b=-1,b+c=1,a+c=2;(6)a-b=-1,b+c=1,a+c=-2;(7)a-b=-1,b+c=-1,a+c=2;(8)a-b=-1,b+c=-1,a+c=-2.对于(2)~(7),将前两个方程相加得到的a+c的值与后一个方程不同,所以,不会出现这六种情况.对于(1),有a=2-c,b=1-c,所以,a+b+2c=3.对于(8),有a=-2-c,b=-1-c,所以,a+b+2c=-3.故│a+b+2c│=3.二、1.1.由勾股定理知AD2+CD2=AC2.所以,上面半个大圆的面积等于以AD、CD为直径的两个半圆的面积.同理,下面半个大圆的面积等于以AB、BC为直径的两个半圆的面积.•因此,正方形ABCD的面积等于四个“月形”的总面积.容易计算,大圆的半径OD是1cm.2.85.由2 005依次被99,98,97,…去除,观察所得余数的值变化得2 005=99×20+25=98×20+45=97×20+65=96×20+85=95×21+10=94×21+31=93×21+52=92×21+73=91×22+3=90×22+25=89×22+47=88×22+69=87×23+4=86×23+27=85×23+50.以下的余数不会大于84,故可能得到的最大余数是85.3.18.3a2+4b2-5bc=3(a2+bc)+4(b2-2bc)=3×14+4×(-6)=18.4.6.如图5,连结BD、CE.因为S△BCD=S△ECD=1,所以,BE∥CD.因为S△BAF=S△EAF,所以,BE∥AF.因此,BE∥AF∥CD.同理,CF∥DE∥BA,AD∥FE∥BC.由AD、BE、CF三线共点于O,可知四边形OCDE、四边形OEFA、四边形OABC 都是平行四边形,易知,每个平行四边形的面积都等于2.5.150.因为971 425被12除余1,而971 425=5×5×7×7×13×61,其中被12除余5、余7、余1的质因数各都是两个,由于两个被12除余5(余7)的数的乘积被12除余1,而971 425与若干个1的积仍为971 425,被12除余1,所以,•只能是6个被12除余1的数的乘积为971 425.计算得知:971 425=1×1×1×1×1×971 425,这6个因数之和为1+1+1+1+1+971 425=971 430;971 425=1×1×1×1×13×74 725,这6个因数之和为1+1+1+1+13+74 725=74 742;971 425=1×1×1×13×25×2 989,这6个因数之和为1+1+1+13+25+2 989=3 030.事实上,设a、b都是被12除余1的大于1的自然数,且a≥b,则a≥b>2,易知ab>a×2=a+a>a+b.①根据式①得971 425=13×74 725>13+74 725=13+25×2 989>13+25+2 989=13+25+49×61>13+25+49+61.因为971 425=52×72×13×61=1×1×13×25×49×61,所以,971 425表为6•个被12除余1的自然数,它们和的最小值等于1+1+13+25+49+61=150.三、(1)由a+b+c=0,得a+b=-c,因此,(a+b)3=-c3.于是,有a3+3a2b+3ab2+b3=-c3.故a3+b3+c3=-3ab(a+b)=-3ab(-c)=3abc.(2).(a bc-+b ca-+c ab-)·ca b-=1+(b ca-+c ab-)·ca b-=1+22cab.同理,(a bc-+b ca-+c ab-)·ab c-=1+22abc.(a bc-+b ca-+c ab-)·bc a-=1+22bac故(a bc-+b ca-+c ab-)(ca b-+ab c-+bc a-)=1+22cab+1+22abc+1+22bac=3+3332()a b cabc++=3+23abcabc⨯=9.四、在△ABC中,由∠BAC=∠BCA=44°,得AB=BC,∠ABC=92°.如图6,作BD⊥AC于点D,延长CM交BD于点O,连结OA,则有∠OAC=∠MCA=30°,∠BAO=∠BAC-∠OAC=44°-30°=14°.∠OAM=∠OAC-∠MAC=30°-16°=14°.所以,∠BAO=∠MAO.又∠AOD=90°-∠OAD=90°-30°=60°=∠COD,所以,∠AOM=120°=∠AOB.又AO=AO,因此,△ABO≌△AMO.故OB=OM.由于∠BOM=120°,从而,∠OMB=∠OBM=1802BOM︒-∠=30°.所以,∠BMC=180°-∠OMB=150°.五、如果17个数的末位数字0,1,2,3,4每个都有,可选出5•个数的末位数字恰分别为0,1,2,3,4,则这5个数之和的末位数字为0,其和被5整除.如果17个数的末位数字不是0,1,2,3,4每个都有,则最多只有4•种不同的末位数字.这时,根据轴屉原理,这17个数中至少有5个数的末位数字一样.于是,这5•个数之和被5整除.。
2018八年级数学竞赛试题(含答案)
八年级数学竞赛试卷考试时间:100分钟 总分:150分姓名: 班级: 得分:一、选择题(每题5分,共50分)1、下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d )2、已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是((A )x >0(B )x <0 (C )x <1 (D )x >1 3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C4、某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( )A 、从图中可以直接看出喜欢各种球类的具体人数;B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系5、已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ).A .2B .-4C .-2或-4D .2或-46、设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定7、已知b>a>0,a 2+b 2=4ab ,则ba b a -+等于( ). A .-21B . 3C .2D .-38、将一个正方形分割成n 个小正方形(n>1),则n 不可能取( ).A .4B .5C .8D .99、若x 取整数,则使分式1-2x 36x +的值为整数的x 值有( ). (A)3个 (B)4个 (C)6个 (D)8个10、已知1x ,2x ,3x 的平均数为5,1y ,2y ,3y 的平均数为7,则1123x y +,2223x y +,3323x y +的平均数为( )(A)31 (B)313 (C)935 (D)17二、填空题(每题8分,共40分)11、点O 为线段 A B 上一点, ∠AOC = 10︒ , ∠COD = 50︒ ,则 ∠BOD = 或A O B12、已知 m >0 ,且对任意整数 k ,2018123k m+均为整数,则 m 的最大值为 . 13、已知某三角形的三条高线长 a ,b ,c 为互不相等的整数,则 a + b + c 的最小值 为 .14、如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有则=15、如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.二、简答题(每题20分,共60分) 16、现有两种理财方式供王老师选择.方案一:购买一款分红产品,前三年每年 年初交 10 万元,第 6 年年初返 6 万元,以后每年处返1.5 万元;方案二:购 买一款年利率 5%,满一年计息的储蓄产品,第一年初存款10 万元,接下来 两年每年年初追加本金 10 万元,并将之前的本息全部续存.请问哪个选择更划算?请说明理由.(参考数据:1.054 + 1.053 + 1.052 =3.47563125 )y x yx y x -+=*()()31*191211**017、一筐苹果,若分给全班同学每人3个,则还剩下25 个;若全班同学一起吃,其中5个同学每人每天吃1个,其他同学每人每天吃2个,则恰好用若干天吃完.问筐里最多共有多少个苹果?18、如图所示,有一张长为3、宽为1的长方形纸片,现要在这张纸片上画两个小长方形,使小长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,然后把它们剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值.八年级答案:一、C CADB BDBBA二、11、120度或者140度12、2/3 13、9 14、163/113 15、2 三、1617、18、。
2018年全国初中数学联赛试题参考答案和评分标准 精品
2018年全国初中数学联赛试题参考答案和评分标准精品2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题:(本题满分42分,每小题7分)1.已知$a=1+\frac{1}{2+1}$,$b=3-2$,$c=6-2$,那么$a,b,c$的大小关系是()A。
$a<b<c$B。
$a<c<b$XXX<a<c$D。
$b<c<a$答】C.因为 $\frac{1}{2+1}=\frac{1}{3}$,所以$a=1+\frac{1}{3}=\frac{4}{3}$,$b=1$,$c=4$。
因为 $\frac{1}{3}<1$,所以$a<\frac{4}{3}+1=\frac{7}{3}<c$,所以 $b<a<c$。
2.方程$x^2+2xy+3y^2=34$的整数解$(x,y)$的组数为()A。
3B。
4C。
5D。
6答】B.方程即$(x+y)^2+2y^2=34$,显然$x+y$必须是偶数,所以可设$x+y=2t$,则原方程变为$2t^2+y^2=17$。
因为$2t^2\leq 16$,所以$t=\pm 2$,从而可求得原方程的整数解为$(x,y)=(-7,3),(1,3),(7,-3),(-1,-3)$,共4组。
3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,$CE=1$,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为()A。
$\frac{65}{26}$B。
$\frac{3}{3}$C。
$\frac{2}{5}$D。
$\frac{9}{4}$答】D.过点C作$CP\parallel BG$,交DE于点P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年初中数学竞赛模拟试题
一、选择题(每小题5分,共30分) 1.方程1)
1(3
2
=-++x x x 的所有整数解的个数是( )个
(A )2 (B )3 (C )4 (D )5 2.设△ABC 的面积为1,D 是边AB 上一点,且
3
1
=AB AD .若在边AC 上取一点E ,使四边形DECB 的面积为43,则EA
CE 的值为( ) (A )
21 (B )31 (C )4
1
(D )51
3.如图所示,半圆O 的直径在梯形ABCD 的底边AB 上,且与其余三边BC ,CD ,DA 相切,若BC =2,DA =3,则AB 的长( )
(A )等于4 (B )等于5 (C )等于6 (D )不能确定
4.在直角坐标系中,纵、横坐标都是整数的点,称为整点。
设k 为整数,当直线2+=x y 与直线4-=kx y 的交点为整点时,k 的值可以取( )个 (A )8个 (B )9个 (C )7个 (D )6个
5.世界杯足球赛小组赛,每个小组4个队进行单循环比赛,每场比赛胜队得3分,败队得0分,平局时两队各得1分.小组赛完后,总积分最高的2个队出线进入下轮比赛.如果总积分相同,还有按净胜球数排序.一个队要保证出线,这个队至少要积( )分. (A )5 (B )6 (C )7 (D )8
6.从2,3,4,5这四个数中,任取两个数p 和q(p ≠q),构成函数y=px-2和y=x+q ,若两个函数图象的交点在直线x=2的左侧,则这样的有序数组(p ,q)共有( ) (A)12组 (B)10组 (C)6组 (D)15组 二、填空题(每小题5分,共30分) 7.当x 分别等于
20051,20041,20031,20021,20011,2000
1
,2000,2001,2002,2003,2004,2005时,计算代数式
2
2
1x x +的值,将所得的结果相加,其和等于 . 8.关于x 的不等式x b a )2(->b a 2-的解是x <
2
5
,则关于x 的不等式b ax +<0的解为 . 9.方程02
=++q px x 的两根都是非零整数,且198=+q p ,则p = .
10.如图所示,四边形ADEF 为正方形,ABCD 为等腰直角三角形,D 在BC 边上,△ABC 的面积等于98,BD ∶DC =2∶5.则正方形ADEF 的面积等于 .
·
D
C
O
B
A
11.设有n 个数1x ,2x ,…,n x ,它们每个数的值只能取0,1,-2三个数中的一个,且++21x x …
5-=+n x ,++2
221x x …192=+n x ,则++5251x x …5n x +的值是 .
12、如图2,⊙O 外接于边长为2的正方形ABCD ,P 为弧AD 上一点,且1AP =,则PA PC
PB
+= .
三、解答题(每小题15分,共60分)
13.如图,凸五边形ABCDE 中,已知S △ABC =1,且EC ∥AB ,AD ∥BC ,BE ∥CD ,CA ∥DE ,DB ∥EA .试求五边形ABCDE 的面积.
A
B
F
C
E
D
D
A B
C
E
F
14.在正实数范围内,只存在一个数是关于x 的方程
k x x kx x +=-++31
3
2的解,求实数k 的取值范围.
15.如图,一次函数的图象过点P (2,3),交x 轴的正半轴与A ,交y 轴的正半轴与B ,求△AOB 面积的最小值.
16.预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定数减少10个,总金额仍多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么甲、乙两商品支付的总金额是1563.5元.
(1)求x、y的关系式;
(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x、y 的值.
答案: 一、选择题
1.C 2.B 3.B 4.A 5.C 二、填空题
6.6 7.8-<x 8.-202 9.116 10.-125 三、解答题
11.∵ BE ∥CD ,CA ∥DE ,DB ∥EA ,EC ∥AB ,AD ∥BC ,
∴ S △BCD =S △CDE =S △DEA =S △EAB =S △ACB =S △ACF =1. 设S △AEF =x ,则S △DEF =x -1,
又△AEF 的边AF 与△DEF 的边DF 上的高相等, 所以,
x
x
AF DE -=
1,而△DEF ∽△ACF ,则有 x x
x AF DF S S ACF DEF -=-=⎪⎭⎫ ⎝⎛=∆∆1)1(2
22
. 整理解得 2
1
5-=
x . 故S ABCDE =3S △ABC +S △AEF =
2
5
5+. 12.原方程可化为0)3(322
=+--k x x ,①
(1)当△=0时,833-
=k ,4
3
21==x x 满足条件; (2)若1=x 是方程①的根,得0)3(13122
=+-⨯-⨯k ,4-=k .此时方程①的另一个根为2
1
,故原方程也只有一根2
1=
x ; (3)当方程①有异号实根时,02
3
21<+-=
k x x ,得3->k ,此时原方程也只有一个正实数根; (4)当方程①有一个根为0时,3-=k ,另一个根为2
3
=x ,此时原方程也只有一个正实根。
综上所述,满足条件的k 的取值范围是8
33
-
=k 或4-=k 或3-≥k . 13.解:设一次函数解析式为y kx b =+,则32k b =+,得32b k =-,令0y =得b
x k
=-
,则OA =b k
-.
令0x =得y b =,则OA =b .
222
1()21(32)214129
2124]212.
AOB b S b k
k k
k k k
∆=
⨯-⨯-=⨯--+=⨯
-=⨯+≥ 所以,三角形AOB 面积的最小值为12.
14.(1)设预计购买甲、乙商品的单价分别为a 元和b 元,则原计划是
1500=+by ax , ①
由甲商品单价上涨1. 5元、乙商品单价上涨1元,并且甲商品减少10个的情形,得
1529)1()10)(5.1(=++-+y b x a .②
再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形,得
5.1563)1()5)(1(=++-+y b x a , ③
由①、②、③得
⎩⎨
⎧=-+=-+.
5.685,
44105.1a y x a y x ④-⑤×2并化简,得
1862=+y x .
(2)依题意,有205<y x +2<210及1862=+y x ,54<y <3
255, 由y 是整数,得55=y ,从而得76=x . 答:(1)x 、y 的关系1862=+y x ;
(2)预计购买甲商品76个,乙商品55个.
④ ⑤。