工程类分式方程

合集下载

分式方程的工程问题和路程问题思路

分式方程的工程问题和路程问题思路

分式方程是高中数学中的一个重要知识点,它在工程问题和路程问题中有着广泛的应用。

通过分式方程,可以解决诸如管道工程、水利工程、交通运输等方面的实际问题。

本文将从工程问题和路程问题两个方面来探讨分式方程的应用思路。

一、工程问题中的分式方程应用1.1 管道工程在管道工程中,经常会遇到液体或气体在管道中流动的问题。

假设一个长为L的管道中有两个孔,已知从第一个孔流出液体的速度为V1,从第二个孔流出液体的速度为V2,要求求出流出液体的总量。

我们可以建立如下的分式方程来解决这个问题:$\frac{x}{V1} + \frac{L-x}{V2} = T$其中,x表示从第一个孔流出液体的时间,L-x表示从第二个孔流出液体的时间,T表示总时间。

通过解这个分式方程,可以求出流出液体的总量。

1.2 水利工程在水利工程中,经常需要计算水库的注水和排水问题。

假设一个水库的注水管每分钟注入水量为A,排水管每分钟排水量为B,如果注水管和排水管同时开启,求出水库的水位变化规律。

我们可以建立如下的分式方程来解决这个问题:$\frac{dV}{dt} = A - B$其中,dV/dt表示水库水位随时间的变化率。

通过解这个分式方程,可以求出水库水位随时间的变化规律。

1.3 其他工程问题除了管道工程和水利工程,分式方程还可以应用于其他工程问题,如风力发电机组的发电功率问题、地基沉降速度问题等。

在解决这些问题时,我们可以根据实际情况建立相应的分式方程,然后通过求解方程得出问题的答案。

二、路程问题中的分式方程应用2.1 交通运输在交通运输中,经常需要计算车辆的行驶时间和行驶距离。

假设一辆车以速度V1从A地出发到B地,再以速度V2从B地返回A地,已知车辆的往返总时间为T,求出车辆的行驶距离。

我们可以建立如下的分式方程来解决这个问题:$\frac{2x}{V1} + \frac{2(L-x)}{V2} = T$其中,x表示车辆往返的时间,L-x表示车辆返回的时间,T表示总时间。

分式方程应用题—工程问题

分式方程应用题—工程问题

分式方程应用题—工程问题工程问题:这类问题也涉及三个数量:工作量、工作效率和工作时间。

它们的数量关系是:工作量=工作效率*工作时间。

列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。

特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。

【类型一】工作量不统一,时间相同的工程问题,以时间为等量关系: 实际效率实际工作量原计划效率原计划工作量 1.某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。

2.某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。

3.某化肥厂计划在规定日期内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,求计划每天生产多少吨化肥?4.A 做90个零件所需要的时间和B 做120个零件所用的时间相同,又知每小时A 、B 两人共做35个机器零件。

求A 、B 每小时各做多少个零件。

【类型二】前后效率不同,时间提前了,以时间为等量关系: 提前的时间实际效率工作量计划效率工作量 - 1、某车间加工1200个零件后,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?2.某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%。

问原计划这项工程用多少个月。

3.某空调厂的装配车间,原计划用若干天组装150台空调,厂家为了使空调提前上市,决定每天多组装3台,这样提前3天超额完成了任务,总共比原计划多组装6台,问原计划每天组装多少台?4.某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产%25,可提前10天完成任务,问原计划日产多少台?5.某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的212倍,所以加工完比原计划少用9小时,求原计划和改进操作方法后每小时各加工多少个螺丝?6.打字员甲的工作效率比乙高%25,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?7.现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。

分式方程的应用——行程工程问题

分式方程的应用——行程工程问题

分式方程的应用——行程工程问题-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII方式方程的应用㈠一、要点精讲1、分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 .2、常见问题的基本关系量⑴ 行程问题:时间路程速度= 速度路程时间= 时间速度路程⨯= ⑵ 工程问题:工作时间工作总量工作效率= 工作效率工作总量工作时间= 工作时间工作效率工作总量⨯=二、课前热身1、A 地在河的上游,B 地在河的下游,若船从A 地开往B 地的速度为V 1,从B 地返回A 地的速度为V 2,则A 、B 两地间往返一次的平均速度为( )A .221V V + B .21212V V V V + C .21212V V V V + D .无法计算 2、(08大连)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________.3、一件工作甲单独做a 小时完成,乙单独做b 小时完成,甲、乙两人合作完成这件工作所需的小时数为A 、b a 11+;B 、ab 1;C b a +1;D 、ba ab + 4、某食堂有煤m 吨,原计划每天烧煤a 吨,现在每天节约煤b 吨,则可比计划多烧的天数是( )A 、b a m -;B 、b a m a m --;C 、b m ;D 、am b a m -- 5、一水池装有两个进水管,单独开甲管需a 小时注满空池,单独开乙管需b 小时注满空池,若同时打开两管,那么注满空池的时间是( )A .(b a 11+)小时B .ab 1 小时C .b a +1 小时D .ba ab +小时 三、典例精析考点一:行程问题1、(2010益阳)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少设货车的速度为x 千米/小时,依题意列方程正确的是 A.203525-=x x B.x x 352025=- C.203525+=x x D.xx 352025=+2. (2011长春)小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x 米/分.根据题意,下面列出的方程正确的是(A )28002800304x x-=. (B )28002800304x x -=. (C )28002800305x x -=. (D )28002800305x x -=. 2.(2011铜仁)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km 设他家到学校的路程是xkm ,则据题意列出的方程是( ) A.60512601015-=+x x B.60512601015+=-x x C.60512601015-=-x x D.5121015-=+x x .3、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的高速公路。

分式方程-工程

分式方程-工程

4.张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?5.为了建设社会主义新农村,华新村修筑了一条长3000m的公路,实际工作效率比原计划提高了20%,结果提前5天完成任务.问原计划每天应修路多长?8.某工厂的甲车间承担了加工2100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前12天完成任务.已知乙车间的工作效率是甲车间的1.5倍,求甲、乙两车间每天加工零件各多少个?9.一场特大暴雨造成遂渝高速公路某一路段被严重破坏.为抢修一段120米长的高速公路,施工队每天比原计划多修5米,结果提前4天完成抢修任务.问原计划每天抢修多少米?11.甲乙两个工程队合修一条公路,甲工程队比乙工程队每天多修50米,甲工程队修900米所用时间和乙工程队修600米所用时间相等,问甲乙两个工程队每天分别修多少米?12.为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:单位清淤费用(元/m3)淤泥处理费(元)甲公司18 5000乙公司20 0(1)若剑江河首批需要清淤的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由(体积可按面积×高进行计算)(2)若甲公司单独做了2天,乙公司单独做了3天,恰好完成全部清淤任务的一半;若甲公司先做2天,剩下的清淤工作由乙公司单独完成,则乙公司所用时间恰好比甲公司单独完成清淤任务所用时间多1天,则甲、乙两公司单独完成清淤任务各需多少时间?15.徒骇河风景区建设是今年我市重点工程之一.某工程公司承担了一段河底清淤任务,需清淤4万方,清淤1万方后,该公司为提高施工进度,又新增一批工程机械参与施工,工效提高到原来的2倍,共用25天完成任务.问该工程公司新增工程机械后每天清淤多少方?18.今年四、五月份我国西南地区遭遇历史罕见的旱灾,我国最大淡水湖鄱阳湖水位下降到历史同期最低点.某村有1 200亩稻田急需灌溉,为了提高灌溉效率,当地政府增派灌溉车辆,使得效率是原来的1.5倍,结果提前10天完成任务,求原计划每天灌溉稻田多少亩?20.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.22.甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?23.今年入春以来,湖南省大部分地区发生了罕见的旱灾,连续几个月无有效降水.为抗旱救灾,驻湘某部计划为驻地村民新建水渠3600米,为使水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?26.为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.32.某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天比甲工厂多加工20件.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?33.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?36.去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井大的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?37.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?40.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a天后,再由甲、乙两工程队合作天(用含a的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?41.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元,乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队?应付工程队费用多少元?44.(1)解方程组x-2y=33x-8y=13;(2)列方程解应用题:2010年春季我国西南五省持续干旱,旱情牵动着全国人民的心.“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务,求原计划每天生产多少吨纯净水?51.去年入秋以来,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?52.根据规划设计,某市工程队准备在开发区修建一条长300米的盲道.铺设了60米后,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加10米,结果共用了8天完成任务,该工程队改进技术后每天铺设盲道多少米?53.某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(完成工程的工期为整数)(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量的方案有几种?请你帮助设计出来(工程队分配工程量为正整百数).54.玉树地震后,有一段公路急需抢修,此项工程原计划由甲工程队独立完成,需要20天,在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,为抗震救灾赢得了宝贵时间,求乙工程队独立完成这项工程需要多少天?55.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.58.已知一台挖掘机的工作效率是一名工人工作效率的160倍.挖掘800米道路,一台挖掘机比80名工人少用10天.问一名工人和一台挖掘机每天各挖多少米?市道路建设工程指挥部,对城市1600米道路进行改建.原计划只用一台挖掘机完成,在挖掘2天后,为了加快进度,加入80名工人一起工作,则完成这项工作比原计划能提前几天?64.由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3:2,两队合做6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20 000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?66.我市在筹办“世界华人寻根节”期间,实施了一项治理环境的工程,经调查得知,甲工程队单独完成这项工程的时间是乙工程队的2倍,甲,乙两队合作完成这项工程需要10天时间,问甲,乙两队单独完成这项工程各需多少天?70.通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.72.在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?75.某市为了治理污水,需要铺设一条全长550米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,原计划每天铺设多少米管道?77.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?78.某单位现有480套旧桌椅需要请木工师傅进行修理.甲师傅单独修理这批桌椅比乙师傅多用10天;乙师傅每天比甲师傅多修8套;甲师傅每天修理费80元,乙师傅每天修理费120元.请问:(1)甲、乙两个木工师傅每天各修桌椅多少套?(2)在修理桌椅过程中,单位要指派一名工作人员进行质量监督,并发给他每天10元的交通补助.现有以下三种修理方案供选择:①由甲单独修理;②由乙单独修理;③由甲、乙共同合作修理.你认为哪种方案既省时又省钱?试比较说明.81.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x个零件,请按要求解决下列问题:(1)根据题意,填写下表:车间零件总个数平均每小时生产零件个数所用时间甲车间600 X乙车间900(2)甲、乙两车间平均每小时各生产多少个零件?84.某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务.求引进新设备前平均每天修路多少米?86.5.12汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务.厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半.首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务!根据两人对话,问该厂原来每天生产多少顶帐篷?88.某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.90.A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?91.在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷?93.2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷?99.在暴雨到来之前,武警某部承担了一段长150米的河堤加固任务,加固40米后,接到上级抗旱防汛指挥部的指示,要求加快施工进度,为此,该部队在保证施工质量的前提下,投入更多的兵力,每天多加固15米,这样一共用了3天完成了任务.问接到指示后,该部队每天加固河堤多少米?101.在“5•12”汶川大地震的“抗震救灾”中,某部队接受了抢修映秀到汶川的“213”国道的任务.需要整修的路段长为4800m,为了加快抢修进度,获得抢救伤员的时间,该部队实际工作效率比原计划提高了20%,结果提前2小时完成任务,求原计划每小时抢修的路线长度.104.A,B两地相距176 km,其间一处因山体滑坡导致连接这两地的公路受阻.甲,乙两个工程队接到指令,要求于早上8时,分别从A,B两地同时出发赶往滑坡点疏通公路.10时,甲队赶到立即开始作业,半小时后乙队赶到,并迅速投入“战斗”与甲队共同作业,此时甲队已完成了工程量的124.(1)若滑坡受损公路长1 km,甲队行进的速度是乙队的32倍多5 km,求甲,乙两队赶路的速度;(2)假设下午4点时两队就完成公路疏通任务,胜利会师.那么若只由乙工程队疏通这段公路时,需要多少时间能完成任务?107.随着合肥市大建设大发展的推进,金寨路修建起了高架桥.某工程队承担了铺设其中一段长3400米高架桥的任务,铺设了1800米后,该工程队改进技术,平均每天比原来多铺设10米,结果共用了100天完成任务.试问:该工程队改进技术后平均每天铺设道路多少米?109.在某道路拓宽改造工程中,一工程队承担了24千米的任务.为了减少施工带来的影响,在确保工程质量的前提下,实际施工速度是原计划的1.2倍,结果提前20天完成了任务,求原计划平均改造道路多少千米?113.某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品?114.为了支援青海省玉树地区人民抗震救灾,四川省某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划用10天完成.(1)按此计划,该公司平均每天应生产帐篷顶;(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?115.某校在教学楼前铺设小广场地面,其图案设计如图所示.矩形地面的长50米,宽32米,中心建一直径为10米的圆形喷泉,四周各角留一个长20米,宽5米的小矩形花坛,图中阴影处铺设广场地砖.(1)求阴影部分的面积S(π取3);(2)某人承包铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划1.5倍,结果提前4天完成了任务,问原计划每天铺多少平方米?116.某工人现在平均每天比原计划多生产5个机器零件,现在生产60个机器零件所需时间与原计划生产45个机器零件所需时间相同,现在平均每天生产多少个机器零件?120.某文具厂加工一种学生画图工具2500套,在加工了1000套后,采用了新技术,使每天的工作效率是原来的1.5倍,结果提前5天完成任务,求该文具厂原来每天加工多少套这种学生画图工具.121.金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.122.在社会主义新农村建设中,县交通局决定对某乡的村级公路进行改造,由甲工程队单独施工,预计180天能完成.为了提前完成任务,改由甲、乙两个工程队同时施工,100天就能完成.试问:若由乙工程队单独施工,需要多少天才能完成任务?123.某工厂要生产一批产品,甲车间单独完成需要40天,如果乙车间先做10天,甲乙两车间再一起合作20天恰好生产完这批产品.(1)乙车间单独生产这批产品需要多少天?(2)如果甲车间的生产费用为每天6500元,乙车间的生产费用为每天4500元,有以下三种方案可供选择:方案一:由甲车间单独生产这批产品;方案二:由乙车间单独生产这批产品;方案三:甲乙两车间同时合作生产这批产品.如从节约生产费用的角度考虑,工厂应选择哪个方案?请说明理由.124.张桑公路有一隧道,由A队单独施工,预计200天贯通,为了公路早日通车,由A,B两队同时施工,结果120天就贯通了.试问:如果由B队单独施工,需要多少天才能贯通?126.在新华南北路改造过程中,某路段工程招标时,工程指挥部接到甲、乙两个工程队的投标书.根据甲、乙两队的投标测算;若让甲队单独完成这项工程需要40天;若由乙队先做10天,剩下的工程由甲、乙两队合作20天可完成.(1)若安排乙队单独完成这项工程需要多少天?(2)为了缩短工期方便行人,若安排甲、乙两队共同完成这项工程需要多少天?129.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?130.A,B两地相距18公里,甲工程队要在A,B两地间铺设一条输送天然气管道,乙工程队要在A,B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道134.南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高40%(污水处理率=污水处理量污水排放量).(1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数)(2)预计我市2010年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2010年省会城市的污水处理率不低于70%”,那么我市2010年每天污水处理量在2007年每天污水处理量的基础上至少还需要增加多少万吨,才能符合国家规定的要求?135.高速公路有一次抢修任务,竞标资料显示:若由甲、乙两队合作施工,6天可以完成,共需工程费用10200元,若由甲队或乙队单独施工,那么甲队比乙队少用5天施工时间,但甲队每天的工作费用比乙队多300元,问应选哪个队施工经费较少?146.有一市政建设工程,若甲、乙两工程队合做,需要12个月完成;若甲队先做5个月,剩余部分再由甲、乙两队合做,还需要9个月才能完成.(1)甲、乙两工程队单独完成此项工程各需要多少个月?(2)已知甲队每月施工费用5万元,乙队每月施工费用3万元.要使该工程施工总费用不超过95万元,则甲工程队至多施工多少个月?152.在我市南沿海公路改建工程中,某段工程拟在30天内(含30天)完成.现有甲、乙两个工程队,从这两个工程队资质材料可知:若两队合做24天恰好完成;若两队合做18天后,甲工程队再单独做10天,也恰好完成.请问:(1)甲、乙两个工程队单独完成该工程各需多少天?(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲、乙两队各做多少天(同时施工即为合做)?最低施工费用是多少万元?158.为了完善城市交通网络,为便市出行,市政府决定修建东宝山交通隧道.现要使工程提前3个月完成,需将原定工作效率提高12%,求原计划完成这项工程需用多少个月?164.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.167.已知某项工程由甲、乙两队合做12天可以完成,共需工程费用13800元,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天,且甲队每天的工程费用比乙队多150元.(1)甲、乙两队单独完成这项工程分别需要多少天?。

分式方程应用-工程问题

分式方程应用-工程问题
▍花落又 一季要 爱就疯 狂,不爱 就坚强 一切终 将过去 °灬汐 颜丶迷 失在初 夏苏小 沫。 肆无忌惮的放纵╕谁先动情▼谁就输 了﹏纤 尘╰不 染沵最 珍贵゛ 死一般 的沉静 时 间会告诉我们什么是爱情你幸福了、 我就快 乐了失 去后才 懂得珍 惜先森, 不要酱 紫 嘛石头 剪刀 布失无所失丶黑沉沉的天空出现一道闪 电断的 弦散在 角落无 言的温 柔
╮心在风中破碎坚强背后是一颗脆弱 的心你 是我最 温暖的 回忆有 一种思 念叫度 日 如年唐小糖说好一起牵着手走过这一 生上帝 其实也 是个女 人月光 渲染悲
解:设原计划每天挖x米,则实际每天挖 x_(___1_+__5_0_%_)_ 米。
960 9604 x 1.5x
1.填空:
(1)一件工作甲单独做要m小时完成,乙单独做要
在分手后不够°成熟指尖丨绽放的温 柔手心 的余温 暗夜里 的哭声 丶雾里 看花一 个 人德对白ˊ时间是最可怕的毒药 ╮你把 我逼疯 勒~╰ つ女人 ,真该 对自己 好点不 吵 不闹不哭泣疯子一个丶若相守ぅ则卟 弃姐有 你学不 来的范 爱情、 纯属虚 构____ 熙 小末丶谈一场卜分手的恋爱。好么爱 哭的小 幽灵北 纬30° の想念 若你一 切安好 , 我便不开心粉丶黛佳人寻欢作乐﹏沵 若见到 他 替我问候他冰雨在你家楼下唱忐忑
练习1:某农场开挖一条长960米的渠道,开工后工作 效率比计划提高50%,结果提前4天完成任务。原计划 每天挖多少米?
工作效率比计划提高50%
每天比计划多挖50%
淡淡灬花香丶一朵闪耀的奇葩小别扭 つ゛慵 懒的小 喵喵_碎 碎念_ 那些年 ,我们 错 过的女孩错落的年华ヾ九零后╮的悲 伤谁会 懂只对 你有感 觉█ 青花瓷旧时风景看 轻了就看清了月老,你的红线太劣质 了他是 我的男 人、你 别碰街 角式_回 忆情歌 总

分式方程的应用.工程问题

分式方程的应用.工程问题
1 每天完成整个工程的 a 1 ,即甲队的工效为 a
乙工程队单独完成需要合作的工效之和为 ) b a b 1 1 ab 时间= 1 1 ba ab a b ab
例3.工作总量看成单位 1 的类型
3. 一项工程,甲工程队单独完成需要a天, 问甲队工作3天后,完成多少工作量? 4. 一项工程,乙工程队单独完成需要b天 ,问乙队工作10天后,完成了多少工作量?
原计划 实际上
a
a-5
30 a 30 a5
30
30
30 如果设原计划a天完成任务
30 3 则实际上( a-5)天完成了任务 a a 5
例2.分析
例2:某市为治理污水,需要铺设一段全长为300 m的 污水排放管道.铺设120 m后,为了尽量减少施工对城市交通 所造成的影响,后来每天的工效比原计划增加20%,结果共用 30天完成这一任务.求原计划每天铺设管道的长度.
2.设:选择恰当的未知数,注意单位和语言完整.
3.列:根据数量和相等关系,正确列出代数式和方
程.
4.解:认真仔细.
两次检验是: (1)是否是所列方程的解;
5.验:有两次检验. (2)是否满足实际意义.
6.答:注意单位和语言完整.且答案要生活化.
THANKS
解:设乙工程队单独完成这项工程需要x天
1 1 1 10+( + ) 20=1 解得:x 60 x 40 x 经检验:x 60是原方程的解

1 1 1 + 40 60
=24
答:乙工程队独立完成这项工程需要60天,两队合作只需24天
课堂小结
列分式方程解应用题的一般步骤
1.审:分析题意,找出数量关系和相等关系.

分式方程应用题工程问题

分式方程应用题工程问题

3������−6
3.如果 2<x<3,那么 ������−3 +
������−3
������−2 2−������

������ ������
的值为多少?
4. 若 ������ = 3,求 2������ 2 −xy −3������ 2 的值
������
������ 2 +3xy −������ 2
2. 一项建筑工程,有甲、乙两个施工队,已知甲单独施工要 6 天完成,乙单独施工要 8 天完成,如 果甲乙共同施工,问要几天才能完成?
3. 一项建筑工程, 有甲、 乙两个施工队, 已知甲 3 天完成整项工程的一半, 乙单独施工要 8 天完成, 如果甲先干 3 天,再由甲乙共同施工,=3,计算 (1)������ − ������ (2)������ − ������
1 1 ������ ������
8.
(1)若 ������−2 = 2无解,求 a 的值 (2)若
2(k+x ) ������ 2 −9
3������ +1
5
= x −3有增根,求 k 的值
变式:若 x − 2y = 0,求
3������ 2 +2xy −2������ 2 ������ 2 −xy −3������ 2
的值.
5. 若������ + ������ = 3,求
1
1
3������ +2������ b+3������ ������−ab +b
的值
6. 如果 a+b=5,ab=4,计算 (1)a2+b2(2)a-b
4.一项建筑工程, 有甲、 乙两个施工队, 已知甲单独施工要 6 天完成, 乙单独施工的时间是甲的 2 倍, 如果乙先干 3 天,再由甲乙共同施工,问要几天才能完成?

最新人教版八年级上册数学第十五章分式第59课时分式方程的应用(1)——工程问题

最新人教版八年级上册数学第十五章分式第59课时分式方程的应用(1)——工程问题

典型例题
知识点1
“t1=t2”型
【例1】甲、乙两人加工同一种玩具,甲加工90个玩具所用
的时间与乙加工120个玩具所用的时间相等,已知甲、乙两
人每天共加工35个玩具,求甲每天加工的玩具数.
解:设甲每天加工x个玩具,则乙每天加工
(35-x)个玩具.
由题意,得
解得x=15.经检验,x=15是原分式方程的解,且符合题意.
作10天完成了剩余的工程,乙工程队单独完成这项工程需
要几天?
返回目录

解:甲工程队单独完成这项工程需要10÷ =40(天),设乙

工程队单独完成这项工程需要x天.
依题意,得

×10=1- .

解得x=20.
经检验,x=20是原分式方程的解,且符合题意.
答:乙工程队单独完成这项工程需要20天.
返回目录
返回目录
A组
4. 已知甲做360个零件与乙做480个零件所用的时间相同,
两人每天共做140个零件,设甲每天做x个零件,根据题意,
可列方程为
( A )
返回目录
5. 甲、乙两位同学做中国结,已知甲每小时比乙少做6个,
甲做30个所用的时间与乙做45个所用的时间相同,求甲每
小时做中国结的个数.如果设甲每小时做x个,那么可列方
原来提高了50%,这样加工同样多的零件就少用1 h,求采用
新工艺前每小时加工的零件数.
解:设采用新工艺前每小时加工x个零件.
根据题意,可得
解得x=4.经检验,x=4是原分式方程的解.答:采用新工艺前
每小时加工4个零件.
返回目录
变式训练
2. 某车间有甲、乙两个小组,甲组的工作效率比乙组的工作效

列分式方程解应用题——工程问题-最全最精典

列分式方程解应用题——工程问题-最全最精典

可化为一元一次方程的分式方程应用题-—工程问题一.复习回顾:1、解方式方程并说明解分式方程的步骤2、工程问题基本量的关系?工作量 = 乘以甲的工作量+乙的工作量 = 合作工作量注:工作问题常把总工程看作是单位1,水池注水问题也属于工程问题。

二.例题分析例1:一工程甲队单独做2天后乙队单独做3天刚好完成.已知乙队单独完成这项任务比甲队单独完成多用两天,求甲乙队单独完成这项任务各需要多少天?例2:甲乙两个工程队合作一项工程,两队合作2天后,由乙队单独做1天就完成了全部工程。

已知乙队单独做所需天数是甲队单独做所需天数的倍,问甲乙单独做各需多少天?分析:解:由题意得::解之得:x=____ 经检验:________________∴原方程的根是________ 答:规定日期是____天方法二:工程规定日期就是甲单独完成工程所需天数,设为____天,那么乙单独完成工程所需的天数就是______天。

设工程总量为1,甲的工作效率就是___,乙的工作效率是______,依题意,列方程得______________解得_________.即规定日期是_____天.三:练习:1.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的错误!,求甲、乙两个施工队单独完成此项工程各需多少天?2.为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。

问原来规定修好这条公路需多长时间?3。

在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,•那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.4、一项工程,若甲乙两队单独完成甲队比乙队多用5天;若甲乙两队合作6天可以完成,(1)求两队单独完成各需多少天?(2)若这项工程甲乙两队合作6天完成后,应付给他们80000元的报酬,两队商量按各自完成工作量分配这笔钱。

分式方程应用题题型

分式方程应用题题型

分式方程应用题的常见类型题型1 工程问题1、政府计划对运动公园进行改造,这项工程先由甲工程队施工10天,完成了公园工程的1/4,为了加快工程进度,乙工程队也加入了施工,甲乙两工程队合作完成了剩下的工程,求乙工程队单独完成这项工程需要几天?解:设乙工程队单独完成需要x 天1114110420x x +=-= 经检验20x =是原方程的根所以乙工程队单独完成这项工程需要20天。

2、某工程队修建一条1 200 m 的道路,采用新的施工方式,工效提高了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前两天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?解:(1)设这个工程队原计划每天修建道路x 米,得1 200x = 1 200(1+50%)x +4,解得x =100.经检验,x =100是原方程的解.答:这个工程队原计划每天修建100 m .(2)设实际平均每天修建道路的工效比原计划增加y%,可得1 200100= 1 200100+100y%,解得y =20.经检验,y=20是原方程的解.答:实际平均每天修建道路的工效比原计划增加百分之二十.3、一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用的时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得1 x+11.5x=112,解得x=20,经检验,x=20是方程的解且符合题意.1.5x=30.答:甲公司单独完成此项工程需20天,乙公司需30天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元,根据题意,得12(y+y-1 500)=102 000,解得y=5 000.甲公司单独完成此项工程所需的施工费为20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费为30×(5 000-1 500)=105 000(元).∴甲公司的施工费较少.类型2 行程问题1、甲、乙两同学与学校的距离均为3 000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度.(2)当甲到达学校时,乙同学离学校还有多远?解:(1)设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意,得60012x+3 000-6002x=3 000x -2, 解得x =300.经检验,x =300是方程的解.答:乙骑自行车的速度为300米/分钟.(2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米.2、从贵阳到广州,乘特快列车的行程约为1 800 km ,高铁开通后,高铁列车的行程约为860 km ,运行时间比特快列车所用的时间减少了16 h .若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.解:设特快列车的平均速度为x km/h,根据题意可列出方程为1 800 x=8602.5x+16,解得x=91.检验:当x=91时,2.5x≠0.所以x=91是方程的解.答:特快列车的平均速度为91 km/h.类型3销售问题1、某学校后勤人员到一家文具店给九年级的同学购买考试用的文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?解:设九年级学生有x人,根据题意,得1 936x×0.8=1 936x+88,整理得0.8(x+88)=x,解得x=352.经检验,x=352是方程的解.答:这个学校九年级学生有352人.2、华昌中学开学初在金利源商场购进A、B两种品牌足球,购买A品牌足球花费了2 500元,购买B品牌足球花费了2 000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A 品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A 品牌足球售价比第一次购买时提高了8%,B 品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A 、B 两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B 品牌足球?解:(1)设购买一个A 品牌足球需x 元,则购买一个B 品牌足球需(x +30)元,根据题意,得2 500x =2 000x +30×2,解得x =50.经检验,x =50是原方程的解.则x +30=80.答:购买一个A 品牌足球需50元,购买一个B 品牌足球需80元.(2)设本次购买a 个B 品牌足球,则购进A 品牌足球(50-a)个,根据题意,得50×(1+8%)(50-a)+80×0.9a ≤3 260,解得a ≤3119.∵a 取正整数,∴a 最大值为31.答:此次华昌中学最多可购买31个B 品牌足球.3、(常德中考)某服装店用4 500元购进一批衬衫,很快售完.服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 985元,则第二批衬衫每件至少要售多少元?解:(1)设第二次购进衬衫x 件,则第一次购进衬衫2x 件,根据题意,得4 5002x -2 100x =10,解得x =15.经检验,x =15是此方程的解,则2x =30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)设第二批衬衫每件售价为y 元,根据题意,得30×(200-4 50030)+15(y -2 10015)≥1 985,解得y ≥17213.答:第二批衬衫每件至少要售17213元.。

分式方程的应用(行程、问题)

分式方程的应用(行程、问题)
检验解的合理性
将求得的未知数的值代入原分式方程进行检 验,确保解是合理的。
换元法
设定新变量
根据分式方程的特点,设定一个新变量代替原方 程中的某个部分,从而简化方程。
解新方程
解这个关于新变量的整式方程,得到新变量的值 。
建立新方程
用新变量表示原方程,得到一个关于新变量的整 式方程。
回代求解
将求得的新变量的值代回原方程,求出未知数的 值。
抛体运动中的射程和射高计算
在抛体运动中,物体的射程和射高与初速度、抛射角等因素有关。通过设立分式 方程,可以求出物体在抛体运动中的射程、射高以及其他相关信息。
03
工程问题中的分式方程
工作效率问题
工作总量与工作时间的关系
通过设定工作总量为单位“1”,根据工作效率的定义建立分式 方程,求解工作时间或工作效率。
01
02
03
04
观察法
通过观察分式方程的特点和结 构,直接找出方程的解或简化
方程的求解过程。
合并同类项法
将分式方程中的同类项进行合 并,从而简化方程的求解过程

分离常数法
将分式方程中的常数项分离出 来,得到一个更简单的分式方
程进行求解。
利用已知条件法
根据题目给出的已知条件,直 接代入分式方程进行求同的地点出发,以不同的速度 相对而行,最终在某一点相遇。通过设立分式方程,可以求出相 遇的时间、地点等关键信息。在追及问题中,一个物体追赶另一 个物体,通过设立分式方程可以求出追及的时间、距离等。
变速直线运动中的分式方程
平均速度的计算
在变速直线运动中,物体的速度会发生变化。通过设立分式方程,可以求出物 体在某段时间内的平均速度,进而计算出路程等其他相关信息。

分式方程工程问题20道及答案

分式方程工程问题20道及答案

分式方程工程问题20道及答案一.对角相乘4x=x+33x=3x=1分式方程要检验经检验,x=1是方程的解x/(x+1)=2x/(3x+3)+1两边乘3(x+1)3x=2x+(3x+3)3x=5x+32x=-3x=-3/2分式方程要检验经检验,x=-3/2是方程的解2/x-1=4/x^2-1两边乘(x+1)(x-1)2(x+1)=42x+2=42x=2x=1分式方程要检验经检验,x=1使分母为0,是增根,舍去所以原方程无解5/x^2+x - 1/x^2-x=0两边乘x(x+1)(x-1)5(x-1)-(x+1)=05x-5-x-1=04x=6x=3/2分式方程要检验经检验,x=3/2是方程的解5x/(3x-4)=1/(4-3x)-2乘3x-45x=-1-2(3x-4)=-1-6x+811x=7x=7/11分式方程要检验经检验x=7/11是方程的解1/(x+2) + 1/(x+7) = 1/(x+3) + 1/(x+6)通分(x+7+x+2)/(x+2)(x+7)=(x+6+x+3)/(x+3)(x+6) (2x+9)/(x^2-9x+14)-(2x+9)/(x^2+9x+18)=0(2x+9)[1/(x^2-9x+14)-1/(x^2+9x+18)]=0因为x^2-9x+14不等于x^2+9x+18所以1/(x^2-9x+14)-1/(x^2+9x+18)不等于0所以2x+9=0x=-9/2分式方程要检验经检验x=-9/2是方程的解7/(x^2+x)+1/(x^2-x)=6/(x^2-1)两边同乘x(x+1)(x-1)7(x-1)+(x+1)=6x8x-6=6x2x=6x=3分式方程要检验经检验,x=3是方程的解化简求值.[X-1-(8/X+1)]/[X+3/X+1] 其中X=3-根号2 [X-1-(8/X+1)]/[(X+3)/(X+1)]={[(X-1)(X+1)-8]/(X+1)}/[(X+3)/(X+1)]=(X^2-9)/(X+3)=(X+3)(X-3)/(X+3)=X-38/(4x^2-1)+(2x+3)/(1-2x)=18/(4x^2-1)-(2x+3)/(2x-1)=18/(4x^2-1)-(2x+3)(2x+1)/(2x-1)(2x+1)=1[8-(2x+3)(2x+1)]/(4x^2-1)=18-(4x^2+8x+3)=(4x^2-1)8x^2+8x-6=04x^2+4x-3=0(2x+3)(2x-1)=0x1=-3/2x2=1/2代入检验,x=1/2使得分母1-2x和4x^2-1=0.舍去所以原方程解:x=-3/2(x+1)/(x+2)+(x+6)/(x+7)=(x+2)/(x+3)+(x+5)/(x+6) 1-1/(x+2)+1-1/(x+7)=1-1/(x+3)+1-1/(x+6)-1/(x+2)-1/(x+7)=-1/(x+3)-1/(x+6)1/(x+2)+1/(x+7)=1/(x+3)+1/(x+6)1/(x+2)-1/(x+3)=1/(x+6)-1/(x+7)(x+3-(x+2))/(x+2)(x+3)=(x+7-(x+6))/(x+6)(x+7)1/(x+2)(x+3)=1/(x+6)(x+7)(x+2)(x+3)=(x+6)(x+7)x^2+5x+6=x^2+13x+42x=-9/2经检验,x=-9/2是方程的根.(2-x)/(x-3)+1/(3-x)=1(2-x)/(x-3)-1/(x-3)=1(2-x-1)/(x-3)=11-x=x-32-x=23-分式方程要检验4-经检验,x=2是方程的根二.1、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值.2、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路.又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间.3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达.已知B的速度是A的速度的3倍,求两车的速度.4、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半.乙型拖拉机单独耕这块地需要几天?5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件.求A、B每小时各做多少个零件.。

16.3.3分式方程的应用(工程问题)

16.3.3分式方程的应用(工程问题)

新课讲解
做一做 1. 抗洪抢险时,需要在一定时间内筑起拦洪大坝,甲 队单独做正好按期完成,而乙队由于人少,单独做 则超期3个小时才能完成.现甲、乙两队合作2个小 时后,甲队又有新任务,余下的由乙队单独做,刚 好按期完成.求甲、乙两队单独完成全部工程各需 多少小时?
分析:设甲队单独完成需要x小时,则乙队需要(x+3)小时. 根据等量关系“甲工效×2+乙工效×甲队 单独完成需要时间=1”列方 程.
月完成总工程的三分之一,这时乙队加入,两队又共同工作了
半个月,总工程全部完成.哪个队的施工速度快?
表格法分析如下:设乙单独完成这项工程需要x个月.
工作时间(月)
甲队
3
2
乙队
1
2
工作 效率
1
3 1
x
工作总量(1)
1 2
1 2x
新课讲解
等量关系:甲队完成的工作总量+乙队完成的工作总量=“1”
解:设乙单独完成这项工程需要x个月.记工作总量为1,
1 3
1
1 2
1 3
1 x
1
两队合作
1
2
11 x3
新课讲解
1.题中有“单独”字眼通常可知工作效率; 2.通常间接设元,如××单独完成需 x(单位时间),则可表示出 其工作效率; 3.弄清基本的数量关系,如本题中的“合作的工效=甲、乙两队工作 效率的和”. 4.解题方法:可概括为“321”,3指工程问题中的三量关系,即工作效 率、工作时间、工作总量;2指工程问题中的“两个主人公”,如甲队 和乙队,或“甲单独和两队合作”;1指工程问题中的一个等量关系, 即两个主人公工作总量之和=全部工作总量.
当x=11时,2x=22,所以乙用了240分钟,甲 用了120分钟,

分式方程之工程问题

分式方程之工程问题

例1.甲乙两个工程队承包一项工程。

如果是甲单独做,则刚好如期完成;如果是乙单独做,就要超过6个月才可完成。

现在由甲、乙两队共同施工4个月,剩下的由乙来完成,则刚好如期完成。

问:原来规定需多长时间完成这项工程。

解:设原来规定该工程需要x个月完工,则甲队单独做则刚好需要x个月,乙队单独施工则需要x+6个月;把该工程的工程量看成1,则甲的效率为1/x,乙的效率为1/(x+6)。

列方程式如下:[1/x+1/(x+6)]*4 + (x-4)/(x+6)= 1(8x+24)/x(x+6) + (x^2-4x)/x(x+6) =18x+24+x^2-4x=x(x+6)4x+24+x^2=x^2+6x24=2xx=12即原来规定该工程需要12月完成。

例2.一项工程,甲单独做比乙单独做少用5天,若甲乙合作,6天可完成。

问甲乙单独做几天可完成?解:设甲单独做x天可完成,则乙单独做(x+5)天可完成,则甲的工作效率为1/x,乙的工作效率为1/(x+5)。

由题意得6(1/x+1/x+5)=1 解得x=10,或x=-3 经检验都是原方程的根,但天数不能为负数,所以x=-3舍去。

所以x=10,x+5=15答:甲独做10天可完成,则乙独做15天可完成。

例3.甲,乙两人每时共能做35个机器零件,当甲做了90个零件时,乙做了120个。

问甲乙每时各做多少个机器零件?解:设甲每时做x个机器零件,则乙每时做(35-x)个。

由题意得90/x=120/35-x解得x=15 经检验x=15是原方程的根。

所以35-x=35-15=20答:甲每时做15个机器零件,则乙每时做20个。

例4.甲工程队工程付款1.5万,乙工程队工程付款1.1万三种施工方法:1·甲独做,刚刚完期2·乙独做,超时5天3·甲,乙合作4天工程,然后乙独做,刚好完期问:哪种方法最节省钱?解法1:设甲需要x天完成,则乙完成需要(x+5)天由题意可知4/x + x/x+5 =1(甲只做了4天,乙做了全部工期)解得:x=20解法2:设甲单独做要x天完成,那么乙要x+5天。

数学工程问题分式方程

数学工程问题分式方程

数学工程问题分式方程
分式方程是指方程中含有分式的方程,通常是分子和分母都含有未知数的方程。

解决分式方程的关键是消去分母,将方程化简为整式方程,然后求解未知数的值。

举例来说,考虑这个分式方程,(3x+1)/(2x-5) = 4。

首先,我们需要消去分母。

为了做到这一点,我们可以将等式两边乘以分母的倒数,即(2x-5)。

这样就得到了,(3x+1) = 4(2x-5)。

然后,我们将方程化简为整式方程,3x+1 = 8x-20。

接下来,我们解这个整式方程,将未知数 x 的值求解出来,3x-8x = -20-1,得到 -5x = -21,所以 x = 21/5。

这就是分式方程的解。

需要注意的是,有时方程的解可能是不合法的,比如导致分母为零的情况。

在解分式方程时,我们需要验证解是否合法。

除了这个具体的例子,分式方程还有很多不同的形式和类型,可以涉及一元或多元方程,有时还包括根式等。

解决分式方程的方法也有很多种,可以通过通分、消去分母等方式来求解。

在工程问题中,分式方程通常会涉及到控制系统、信号处理、电路分析等领域,需要根据具体情况进行求解和分析。

总的来说,解决数学工程中的分式方程需要灵活运用代数知识和分式运算法则,以及结合具体工程问题进行分析和求解。

希望这个回答能够帮助你理解分式方程及其在数学工程中的应用。

分式方程工程问题的解题技巧

分式方程工程问题的解题技巧

分式方程工程问题的解题技巧如下:
1.理解问题背景:首先,我们需要理解问题的背景和涉及的工程
概念。

例如,了解工作效率、工作时间和工作量的关系,以及如何用数学模型表示这些概念。

2.建立数学模型:根据问题描述,我们可以建立相应的数学方程。

对于工程问题,通常涉及到工作量、工作效率和工作时间之间的关系,可以用以下公式表示:
工作量= 效率× 时间
或者效率= 工作量/ 时间
或者时间= 工作量/ 效率
3.解方程:解分式方程时,我们通常需要消去分母,将其转化为
整式方程。

然后,我们可以使用代数方法(如因式分解、公式法等)来求解整式方程。

4.检验解的合理性:解出方程后,我们需要检验解的合理性。


包括检查解是否符合实际情况(如时间不能为负数),以及是否满足所有方程的条件。

5.应用实际情境:最后,我们需要将解应用到实际情境中,解释
其意义并给出合理的结论。

分式方程工程问题

分式方程工程问题

分式方程—工程问题例1 要在规定日期内加工一批机器零件,如果甲单独做,则刚好在规定日期内完成,乙单独做则要超过3天;现在甲、乙两人合作2天后,再由乙单独做,正好按期完成;问规定日期是多少天分析:设规定日期是x天,工作总量、工作效率、工作时间的关系如下表:等量关系:甲的工作总量+乙的工作总量=这批机器零件总量;解:设规定的日期为x天;根据题意得:解得x=6 经检验:x=6是原方程的根;答:规定日期是6天;说明:工程问题涉及的量有三个,即每天的工作量、工作的天数、工作的总量;它们之间的基本关系是:工作总量=每天的工作量×工作的天数;当工作总量没有给定时,通常把工作量看作“1”,则有每天的1工作量完成工作的天数解分式方程应用题,对于求得的根,不仅要检验它是否符合所列的方程,还要检验它是否符合题意;例2 某工作由甲、乙两人合做,原计划6天完成,他们共同合做了4天之后,乙被调走,因而甲又用了6天才全部完成,问甲、乙独做各需几天完成分析:此题是没有具体工作量的工程问题,所以设总工作量为1,甲独做需x天完成,则甲的效率为1x,从而乙的效率为11)6x-(;解:设甲单独做需x天完成,则甲的效率为1x,乙的效率为11)6x-(,所以乙独做需1116x-天完成;根据题意得;解这个方程,得x=18经检验:x=18是所列方程的解;答:甲单独完成需18天,乙单独完成需9天;例3 某工程,甲、乙两队合作2天完成工程的13,甲对独做所需天数是乙队独做所需天数的2倍,现由甲队先做4天后,甲、乙两队合做2天,余下的由乙队独做,共需几天完工分析:该题可分步解答,即先求出甲、乙两队单独干时,各用的天数,再确定两队实际干时所用天数;等量关系有:1甲、乙两队合做2天的工程=工作量的13;2甲队4天的工作量+甲、乙两队合作2天的工程量+乙队又单独的工程量=1;解:设乙单独干需x天完工,则甲单独干需2x天完工,根据题意,得去分母,整理得x=9经检验x=9是原方程的根;当x=9时,2x=18设共需y天完工,则该工程,甲干6天,乙干y-4天,根据题意,解得y=10答:先后共需10天完工;例4 王芳加工180个零件的时间,张楠可以加工240个,又已知王芳每小时比张楠少加工5个,求每人每小时各加工多少个零件解:设张楠每小时做x个零件,则王芳每小时做x-5个零件;整理,解得x=20经检验,x=20是所列方程的解;x-5=20-5=15答:王芳每小时加工15个零件,张楠每小时加工20个零件;说明:工作问题涉及三个基本量:工作量S,时间t,工作效率v,它们之间的关系s s t,v.v t ==例5 甲、乙两人分别加工零件1500个,乙用新技术,生产率是甲的3倍,因此乙比甲少用20个小时完成,问甲、乙每小时各加工多少个零件分析:这道题是工程问题工作量:甲,1500个,乙,1500个工作时间:甲用时间=乙用时间+20小时工作效率:乙的工作效率=3×甲的工作效率解:设甲每小时加工x个零件,乙每小时加工3x个零件;根据题意,列方程:方程两边都乘以3x,得1500+60x=1500×360x=4500-150060x=3000x=50经检验:x=50是所列方程的根;由x=50,3x=3×50=150答:甲每小时加工50个零件,乙每小时加工150个零件;。

分式方程应用题

分式方程应用题

分式方程应用题(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除分式方程应用题1.工程问题1.工作量=工作效率×工作时间,工作效率=工作量工作时间,工作时间=工作量工作效率2.完成某项任务的各工作量的和=总工作量=12.营销问题1.商品利润=商品售价一商品成本价2.商品利润率=商品利润商品成本价×100%3.商品销售额=商品销售价×商品销售量4.商品的销售利润=(销售价一成本价)×销售量3.行程问题1.路程=速度×时间,速度=路程时间,时间=路程速度;2.在航行问题中,其中数量关系是(同样适用于航空):顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度3.两车相遇问题,其中数量关系是:两车相向:车头车尾相错时间=甲车长+乙车长速度和两车同向:车头车尾相错时间=甲车长+乙车长速度差(速度差=较大车速减较小车速)【例】某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每少3元,比乙种原料每多1元,问混合后的单价每是多少元?总结升华:营销类应用性问题,涉及进货价、售货价、利润率、单价、混合价、赢利、亏损等概念,要结合实际问题对它们表述的意义有所了解.同时,要掌握好基本公式,巧妙建立关系式.随着市场经济体制的建立,这类问题具有较强的时代气息,因而成为中考常考的热点问题.【例】某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?【变式2】今年某大学在招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩?【例】甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.思路点拨:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程=速度×时间,应根据题意,找出追击问题中的等量关系.总结升华:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程.不同之处是:所列方程是分式方程,最后进行检验,既要检验其是否为所列方程的解,还要检验是否符合题意,即满足实际意义.举一反三:【变式1】一队学生去校外参观.他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?【变式2】农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度..【变式3】轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度..实战练习1、某校学生进行急行军训练,预计行60千米的路程在下午5时到达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、甲、乙两个工程队共同完成一项工程,乙队先单独做1天, 再由两队合作2天就完成全部工程,已知甲队与乙队完成此工作时间比是2:3,求甲、乙两队单独完成此项工程各需多少天?
2、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。

如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。

问原来规定修好这条公路需多长时间?
3、某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%。

问原计划这项工程用多少个月。

4、京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?
5、某人在公路上匀速行走,环路公共汽车每隔4分钟就有一辆与之迎面相遇;每隔6分钟就有一辆从后越过此人;汽车站每隔几分钟双向各发一辆车?
6、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。

乙型拖拉机单独耕这块地需要几天?
7、某项紧急工程,由于乙没有到达,只好由甲先开工,6小时后完成一半,乙到来后俩人同时进行,1小时完成了后一半,如果设乙单独x小时可以完成后一半任务,那么x应满足的方程是什么?
8、有一项工程,甲独做x天完成,乙独做比甲多用4天完成任务,那么乙独做需要天完成。

甲一天完成总工程的,乙一天完成总工程
8,的。

甲、乙合做一天完成总工程的。

若合做2天完成总工程的
15
则可列方程:
9、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?
10、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
方案一:甲队单独完成这项工程刚好如期完成;
方案二:乙队单独完成这项工程要比规定日期多用5天;
方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。

试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。

11、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?
12、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴求这种纪念品4月份的销售价格。

⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?
13、王明和李刚各自加工15个零件,王明每小时比李刚多加工1个,结果比李刚少用半小时完成任务,问:两人每小时各加工多少个零件?
14、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
方案一:甲队单独完成这项工程刚好如期完成;
方案二:乙队单独完成这项工程要比规定日期多用5天;
方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。

15、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进价比试销时的进价每千克多了0.5元,购进苹果数量是试销时的2倍。

⑴试销时该品种苹果的进价是每千克多少元?
⑵如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?
16、一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?(本题5分)
17、(2007辽宁沈阳课改,10分)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已
知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的4 5,求
甲、乙两个施工队单独完成此项工程各需多少天?
18、(2007四川德阳课改,8分)某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?
19、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的
3
2,厂家需付甲、丙两队共5500元.
⑴求甲、乙、丙各队单独完成全部工程各需多少天?
⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由
20、某项工程,需要在规定的时间内完成。

若由甲队去做,恰能如期完成;若由乙队去做,需要超过规定日期三天。

现在由甲乙两队共同做2天后,余下的工程由乙队独自去做,恰好在规定的日期内完成,求规定的日期是多少天?
21.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:
(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用6天;
(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
22.为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.
(1)按此计划,该公司平均每天应生产帐篷顶;
(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,
通过技术革新等手段使每位工人
....的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?
23. 金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两
个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3
2;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元.工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.
24、(2007辽宁沈阳课改,10分)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已
知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45
,求甲、乙两个施工队单独完成此项工程各需多少天?
25、(2007四川德阳课改,8分)某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?。

相关文档
最新文档