数学建模案例_停车场的优化设计

合集下载

数学建模在交通规划中的应用分析

数学建模在交通规划中的应用分析

数学建模在交通规划中的应用分析引言:交通规划是一个涉及到人们出行、交通系统运行和城市发展的重要领域。

如何合理规划道路、优化交通信号灯、提高交通效率等问题一直是交通规划师们关注的焦点。

数学建模的出现为交通规划带来了新的思路和方法。

本文将从多个角度分析数学建模在交通规划中的应用。

1.流量预测道路的流量预测是交通规划的重要环节,它能帮助决策者合理规划道路并提前做好交通疏导准备。

通过采集交通数据,利用数学模型可以对道路流量进行准确预测。

例如,可以利用时间序列模型分析历史的交通数据,通过对历史数据的趋势性分析来预测未来的交通流量。

同时,深度学习技术可以应用于交通数据的处理,通过训练神经网络模型,可以提高交通流量预测的准确性。

2.路网优化路网优化是交通规划中的重要课题,目的是通过调整道路布局、设计交通信号灯方案等措施,来提高整个交通系统的效率。

数学建模可以辅助决策者寻找最佳的路网优化方案。

例如,可以利用图论中的最短路径算法来确定最佳的路线规划,从而缩短出行时间。

同时,利用动态规划算法可以确定最佳的交通信号灯控制策略,减少交通拥堵情况的发生。

3.公共交通规划公共交通是城市交通体系中不可或缺的组成部分,对于人们的出行有着重要影响。

数学建模可以帮助规划师们确定最佳的公共交通线路、线网以及班次等。

例如,可以利用网络优化模型来确定最佳的公交线路配置,通过建立多目标规划模型,平衡各项指标的需求,使得公交线路覆盖范围更广、等候时间更短。

4.停车场规划随着城市交通的不断发展,停车难问题日益突出。

合理的停车场规划是解决这一问题的有效手段。

利用数学建模,可以确定最佳的停车场布局方案。

例如,可以通过模拟仿真方法,对停车场的各项指标进行评估和优化,比如停车位使用率、车辆流动性等。

结论:数学建模在交通规划中的应用已经取得了一定的成果,并为决策者提供了重要的决策支持。

然而,交通规划是一个复杂的系统工程,仍然需要继续深化数学建模技术和方法的研究。

数学建模竞赛案例分析

数学建模竞赛案例分析

数学建模竞赛案例分析数学建模竞赛是一项旨在培养学生创新思维、动手能力和团队合作精神的活动。

参与竞赛的学生需要运用数学理论和方法解决实际问题,并通过建立模型、分析数据和验证结果等步骤,最终得出科学可行的结论。

本文将从一个具体的数学建模竞赛案例出发,进行深入分析。

案例介绍该案例是关于城市交通流量优化的问题。

某城市的交通拥堵问题日益严重,市政府决定通过优化交通信号灯的配时方案来减轻拥堵程度。

但是,在使用传统方式设置配时方案时,往往难以真实反映实际交通状况,造成传统方式不够准确和高效的问题。

因此,这个案例要求参赛队伍通过建模分析,给出一种更科学、更精确的交通信号灯优化方案。

建模分析团队成员首先分析了交通拥堵问题的原因,确定了车流量和信号灯配时之间的关系。

然后,他们在分析的基础上建立了一个数学模型,将交通信号灯的配时问题转化为优化问题。

针对所建模型,他们设计了相应的算法,并利用计算机进行模拟实验。

结果验证为了验证模型的准确性和有效性,他们选择了某主干道进行实地测试。

对于测试数据的采集,他们设计了专门的采样方案并进行了多次采样。

通过对数据的统计分析,他们得出了不同交通流量下的最优配时方案,并与之前的传统方案进行了对比。

结果表明,他们提出的优化方案在减轻拥堵程度、提高道路通行效率方面效果明显,证明了所建模型的准确性和可行性。

问题讨论在结果验证过程中,团队成员对模型的局限性和可扩展性进行了深入讨论。

他们提出了一些可能改进的方案,如增加交通流量的动态性、考虑多种车辆类型等。

同时,他们还针对模型的实用性进行了讨论,提出了一些具体的应用建议。

同时,他们也意识到建模过程中的一些假设和限制条件,比如忽略行人的影响等,需要在实际应用中进行进一步研究。

结论通过这个案例的分析,团队成员不仅提高了数学建模的能力,还学会了如何团队合作和实际应用建模成果。

同时,他们也发现了数学建模在实际问题解决中的潜力和局限性。

这个案例为他们提供了一个宝贵的学习机会,使他们的数学建模水平得到全面提升。

停车场-数学建模

停车场-数学建模

停车场-数学建模停车场泊车位模型摘要现如今随着机动车辆的增加,车辆停放困难的问题逐渐加重,我们现在就来讨论New England的一个镇上的某停车场为场景的数学模型。

对单个停车位进行分析得出车位最佳角度,然后对整个停车区域进行规划得出车位布局,再用模糊评判来进行停车位效度评价,比较好的解决了问题。

在对停车场泊车位优化设计的模型中,我们考虑一种把车间距空间并入车辆所在的空间的方式,形成一个矩形,因其可以在空间无间隙密铺从而简化分析过程。

通过分析单个车辆进入泊车位的车辆状态得到车辆的最小转弯半径,再通过非整数规划得到单个车位最佳设计角度,然后拓展到整个规划区域,最后得出停车场泊车位的整个规划,最终的设计方案总共能够提供98个泊车位,空间时间利用效率较高。

对停车场的车位效度评价,采用模糊评价模型,从停车场的安全性、便捷性和效率性三个方面来建立效度评价指标体系,得到三个一级指标,再从进出停车场、进出停车位和停车场内行车等方面考虑建立二级指标,得出比较全面的效度评价指标体系,最后再根据指标体系用层次分析法和模糊评价来进行车位效度评价。

关键词:层次分析模糊评价转弯半径停车角度1、问题的叙述在New England的一个镇上,有一位于街角处面积100 200平方英尺的停车场,场主请你代为设计停车车位的安排方式,即设计在场地上划线的方案。

容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车,但是对于那些缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。

为了减少因停车造成意外损失的可能性,场主可能不得不雇佣一些技术熟练的司机专门停车;另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。

当然通道越宽,场内所容纳的车辆数目也越少,这将使得场主减少收入。

2、问题分析一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。

数学方法在城市交通流量中的应用

数学方法在城市交通流量中的应用

数学方法在城市交通流量中的应用在现代城市的快速发展过程中,城市交通由于人口增加、车辆增多等原因,交通拥堵问题逐渐凸显。

为了解决这一问题,数学方法被广泛应用于城市交通流量的研究和管理中,旨在提高交通流效率,改善居民的出行体验。

本文将介绍数学在城市交通流量中的应用,并分析其对交通管理和规划的影响。

1. 路网设计与规划在城市交通规划中,数学模型能够帮助设计师确定最佳的道路网络布局。

通过数学方法,可以进行路口疏导策略的规划和路段容量的优化。

例如,使用图论和网络流模型可以计算不同路段的最短路径,并确定交通主干道和环线道路的位置。

这样的规划能够减少交通拥堵,提高道路的通行能力。

2. 交通信号灯优化数学方法也常用于优化城市交通信号灯的控制策略。

通过数学建模,可以对交通信号灯的时序和周期进行优化。

以交叉路口为例,可以利用优化算法计算每个方向的绿灯时间,使得交通流畅且平衡。

控制信号灯的时序和周期能够减少交通堵塞,提高交通流的效率。

3. 交通拥堵预测数学模型还可以应用于交通拥堵的预测和预警。

通过对历史交通流量数据的分析,可以建立拥堵预测模型。

这些模型可以基于时间序列分析或机器学习算法,预测交通状况,并提供相应的预警措施。

通过提前预测拥堵,交通管理者可以采取措施调整交通流量,减少拥堵的出现。

4. 车流动力学模拟数学方法在车流动力学模拟方面也具有重要的应用。

通过建立车辆之间的相互作用模型,可以模拟交通流量的行为与演化。

这些模型可以用于研究交通流量的稳定性、瓶颈效应等。

通过车流动力学模拟,可以帮助交通管理者制定合理的交通控制策略,提高交通流的效率。

5. 停车场优化城市交通流量问题的一个重要方面是停车。

数学方法可以用于优化停车场的布局和管理。

通过数学建模,可以确定停车位的数量和位置,以最大程度地提高停车资源的利用效率。

通过合理的停车场布局和车辆调度策略,可以减少寻找停车位的时间和交通拥堵。

综上所述,数学方法在城市交通流量中具有重要的应用价值。

数学建模竞赛用到优化的赛题

数学建模竞赛用到优化的赛题

数学建模竞赛中,优化问题是一个重要的赛题类型。

优化问题是指在一定的约束条件下,通过寻找最优解,使得目标函数达到最大值或最小值的问题。

在实际生活中,优化问题广泛应用于各个领域,如生产、运输、金融等。

在数学建模竞赛中,优化问题的赛题设计通常要求参赛队伍运用数学知识和建模技巧,对现实生活中的问题进行建模,并寻求最优解。

这类赛题的特点是问题背景真实、数据丰富,参赛队伍需要充分挖掘数据中的有用信息,建立合适的数学模型,并通过优化求解得到符合实际意义的解。

为了更好地解决优化问题,参赛队伍需要掌握以下几个关键步骤:1. 问题分析:在解决优化问题时,首先要明确问题的背景和目标,分析问题中的约束条件,确定目标函数。

这是解决优化问题的基础。

2. 建立模型:根据问题分析的结果,建立合适的数学模型。

常见的优化模型有线性规划、非线性规划、整数规划、动态规划等。

选择合适的模型有助于更高效地求解问题。

3. 求解算法:优化问题的求解方法有很多,如单纯形法、遗传算法、粒子群优化算法、模拟退火算法等。

选择合适的求解算法可以提高求解效率和精度。

4. 模型验证与优化:在得到优化解后,需要对模型进行验证,分析模型的可行性和有效性。

如有必要,可以对模型进行优化,以提高模型的性能。

5. 撰写论文:在完成优化问题的建模和求解后,需要将整个过程和结果撰写成论文。

论文应包括问题分析、模型建立、求解方法、结果分析等内容,并注重论文的结构和语言表达。

总之,在数学建模竞赛中,优化问题是一个具有挑战性的赛题类型。

通过解决优化问题,参赛队伍可以锻炼自己的数学建模能力、实践能力和团队协作能力,为未来的学术研究和职业发展打下坚实基础。

关于停车场数学建模问题汇总

关于停车场数学建模问题汇总

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学院(请填写完整的全名):参赛队员(打印并签名) :1.2.3.日期: 2013 年 11 月 2 日评阅编号(教师评阅时填写):汽车车库库存的优化方案摘要本文研究的是关于汽车车库库存的问题,通过分析汽车参数以及车库数据,对车库进行合理的规划,建立了倾斜泊车模型、单向排列模型、交叉排列模型,利用AutoCAD对以上模型进行逐一的分析,分别回答了题目所给的所有问题。

针对问题一,首先分析了传统平行泊车的弊端,平行泊车难度较大,需要司机较高的驾驶技术,因此,我们建立了倾斜泊车模型。

查阅了相关汽车的资料并根据汽车的参数了解汽车的最小转弯半径。

其次通过对车库空间利用率以及道路通畅度的综合考虑,我们认为当停车位与通道成一定夹角时效果最佳,并利用最小的转弯半径求得极限角度。

最后根据实际环境中的不确定因素,我们将停车位大小适当进行增加,大大提高了安全性。

针对问题二,首先,根据题目中所给条件,即可以把车子先行调出,然后再调动内部的车,使内部车辆可以驶出。

为了进一步提高车库的利用率,我们决定设计一个去掉通车道,只保留消防车道的方案。

其次,我们根据停车位不同的排列方式设计了两种不同的模式,即单向排列模型及交叉排列模型。

分别得出这两种模型的函数关系式,再通过小轿车和商务车两种车位所占面积,小轿车和商务车驶入停车位最佳角度等情况,分别计算出两种模型各能停多少辆小轿车和商务车在车库中。

数学建模中的优化算法应用实例

数学建模中的优化算法应用实例

数学建模中的优化算法应用实例数学建模是一种有效的解决实际问题的方法,而优化算法则是数学建模中不可或缺的工具之一。

优化算法能够寻找最优解,最大化或最小化某个目标函数,有着广泛的应用领域。

本文将介绍数学建模中的几个优化算法应用实例,以展示其在实际问题中的作用和价值。

一、车辆路径规划优化在实际的物流配送领域中,如何合理地规划车辆路径,使得总运输成本最小、配送效率最高,是一个关键问题。

优化算法在车辆路径规划中起到了至关重要的作用。

通过建立数学模型,基于某个目标函数(如最小化总运输成本),可以采用遗传算法、模拟退火算法等优化算法,快速找到最优解,从而提高物流配送的效率和效益。

二、资源分配优化在资源分配问题中,常常需要考虑到各种限制条件,如最大化利润、最小化生产成本等。

优化算法能够帮助决策者在有限的资源下做出最优的分配决策。

例如,对于生产调度问题,可以利用线性规划等优化算法,将生产计划与订单需求进行匹配,使得生产成本最小化、交货期最短化。

三、供应链优化供应链管理中的优化问题也是实际应用中的重点关注点之一。

通过数学建模和优化算法,可以实现供应链中物流、库存、订单等多个环节的优化。

例如,在供应链网络设计中,可以使用整数规划算法来寻找最优仓储和配送中心的位置,从而降低总运输成本;在需求预测和库存管理中,可以利用模拟退火算法等优化算法,提高供应链的响应速度和利润率。

四、机器学习模型参数优化在机器学习领域,模型参数的选择对模型的性能和准确性有着重要的影响。

通过建立数学模型,可以将模型参数优化问题转化为参数寻优问题,进而采用优化算法求得最优参数。

例如,在神经网络的训练过程中,可以利用遗传算法、粒子群优化算法等进行参数调整,提高模型的预测准确性和泛化能力。

五、能源系统优化能源系统的优化是实现可持续发展的重要方向之一。

通过优化算法,可以针对能源系统进行容量规划、发电机组简化和能源分配等问题的优化。

例如,在微电网系统优化中,可以利用整数规划等算法,实现可再生能源与传统能源的协同供电,最大化清洁能源的利用率。

数学建模优秀论文停车场泊车位的优化设计与效度评价

数学建模优秀论文停车场泊车位的优化设计与效度评价

停车场泊车位的优化设计与效度评价:随着汽车消费量剧增,“停车难”已经成为一个较为严重的社会问题。

我们以某小区露天停车场为背景,用排队论对该服务系统进行了分析,并通过建立整数规划模型对其泊车位布置进行了优化设计,最后用模糊综合评价法对停车场效度进行了度量。

在对停车场泊车位优化设计的模型中,我们考虑一种把车间距空间和马路空间并入车辆所在的空间的方式,形成新的“空间单元矩形”,因其可以在空间无间隙密铺从而简化分析过程。

同时设定了“最大内接矩形”作为优先标准,建立了整数规划模型,对“最大内接矩形”空间内的车位进行了优化设计,用LINGO 软件编程处理,而对其余的区域采用观察法和穷举法进行设计,最终的设计方案总共能够提供102个泊车位,空间利用效率较高。

在对停车场效度评价的模型中,我们选择的是模糊综合评价方法,同时采用层次分析法构建指标体系并确定指标权重,然后基于稳健性打分原则,对各指标进行打分,在形成评判集的基础上进行了综合评价。

用MATLAB软件编程处理,结果显示综合评价值为4.85,停车场的效度处于较好的状态。

在对车位优劣进行评价时,我们援用了目标规划的思路,用四个依次优先级递增的指标进行评价。

在筛选车位时我们又援用了决策理论中淘汰“次优方案”的思路,根据优先级逐渐把“次劣”泊车位排除,最后发现在采用我们设计的泊车方案的前提上,整个停车场右下角的车位是最劣车位,最不受欢迎。

关键词:泊位设计排队论整数规划多目标规划模糊综合评价法层次分析法一、问题的重述随着我国的汽车消费增长并逐渐普及开来,“停车难”的问题已经越来越凸显出来,成为了困扰人们正常生活和交通秩序的重要因素。

究其本质,“停车难”问题的根源在于停车位供给短缺和停车位需求旺盛之间的供需矛盾,真正意义上解决这个难题有待于车辆停放设施的增加速度跟上车辆的迅猛增加。

但是在短期内难以改变车辆停放设施数目的情况下,通过优化设计提高停车场的运行效率,对于局部缓解“停车难”的现状有着重大的意义。

2023全国大学生数学建模竞赛模拟题

2023全国大学生数学建模竞赛模拟题

2023全国大学生数学建模竞赛模拟题第一部分:问题描述在2023年全国大学生数学建模竞赛中,我们将考虑以下问题:问题一:某大学计划对校园内的停车管理进行优化。

假设校园内有N个停车位(N为正整数),每个停车位只能停放一辆车。

现在需要设计一个停车系统,使得所有车辆能够尽可能高效地停放在停车位上。

请你们给出一个数学模型,以及相应的优化策略,以满足停车位利用效率最大化的要求。

问题二:某电商公司为了提高货物的配送效率,需要选址一些配送中心,以覆盖尽可能多的用户。

假设已知用户的分布情况和需求量,在这些信息的基础上,请你们设计一个数学模型,并给出选址策略,以最大化用户的满意度,同时尽量减少配送的时间和成本。

第二部分:问题分析与数学模型建立问题一:停车管理优化我们首先定义问题的目标函数,即停车位利用效率的优化目标。

假设停车场内每个停车位的编号为i(i=1,2,...,N),对于每个停车位,我们引入二进制变量x_i,表示该停车位是否被使用,其中x_i=1表示被占用,x_i=0表示空闲。

接着,我们需要确定约束条件。

显然,每个停车位只能被一辆车使用,即∑x_i ≤ 1 (i=1,2,...,N)其中,∑表示求和。

为了使停车位利用效率最大化,我们可以引入一个系数p_i,表示第i个停车位的利用效率,取值范围为[0,1]。

利用效率越高,则p_i越接近1,反之越接近0。

我们可以根据停车位距离出入口的远近、停车位所在区域的拥挤程度等因素来确定p_i的取值。

然后,我们可以构建目标函数:Maximize ∑p_i*x_i (i=1,2,...,N)最后,我们将目标函数和约束条件整合,形成一个数学模型。

问题二:配送中心选址对于问题二,我们可以将用户的需求量作为权重,即需求量越高的用户对配送中心的选择影响越大。

假设有M个可能的配送中心位置(M为正整数),每个位置编号为j(j=1,2,...,M),我们引入二进制变量y_j,表示第j个位置是否选址为配送中心,其中y_j=1表示选址,y_j=0表示不选址。

数学建模之优化模型

数学建模之优化模型

数学建模之优化模型在我们的日常生活和工作中,优化问题无处不在。

从如何规划一条最短的送货路线,到如何安排生产以最小化成本并最大化利润,从如何分配资源以满足不同的需求,到如何设计一个系统以达到最佳的性能,这些都涉及到优化的概念。

而数学建模中的优化模型,就是帮助我们解决这些复杂问题的有力工具。

优化模型,简单来说,就是在一定的约束条件下,寻求一个最优的解决方案。

这个最优解可以是最大值,比如利润的最大化;也可以是最小值,比如成本的最小化;或者是满足特定目标的最佳组合。

为了更好地理解优化模型,让我们先来看一个简单的例子。

假设你有一家小工厂,生产两种产品 A 和 B。

生产一个 A 产品需要 2 小时的加工时间和 1 个单位的原材料,生产一个 B 产品需要 3 小时的加工时间和 2 个单位的原材料。

每天你的工厂有 10 小时的加工时间和 8 个单位的原材料可用。

A 产品每个能带来 5 元的利润,B 产品每个能带来 8 元的利润。

那么,为了使每天的利润最大化,你应该分别生产多少个A 产品和 B 产品呢?这就是一个典型的优化问题。

我们可以用数学语言来描述它。

设生产 A 产品的数量为 x,生产 B 产品的数量为 y。

那么我们的目标就是最大化利润函数 P = 5x + 8y。

同时,我们有加工时间的约束条件 2x +3y ≤ 10,原材料的约束条件 x +2y ≤ 8,以及 x 和 y 都必须是非负整数的约束条件。

接下来,我们就可以使用各种优化方法来求解这个模型。

常见的优化方法有线性规划、整数规划、非线性规划、动态规划等等。

对于上面这个简单的例子,我们可以使用线性规划的方法来求解。

线性规划是一种用于求解线性目标函数在线性约束条件下的最优解的方法。

通过将约束条件转化为等式,并引入松弛变量,我们可以将问题转化为一个标准的线性规划形式。

然后,使用单纯形法或者图解法等方法,就可以求出最优解。

在这个例子中,通过求解线性规划问题,我们可以得到最优的生产方案是生产 2 个 A 产品和 2 个 B 产品,此时的最大利润为 26 元。

数学建模与优化在工程设计中的应用

数学建模与优化在工程设计中的应用

数学建模与优化在工程设计中的应用随着时代的变迁,科技的不断进步,越来越多的发明和创新应运而生,使我们的生活更加舒适和便利。

而这些科技创新和产品的制造离不开数学建模和优化技术的应用,工程设计也不例外。

一、数学建模在工程设计中的应用数学建模在工程设计中起到的是非常重要的作用,能够对原型进行加工快速虚拟验证,提前消除一些由于设计缺陷而带来的制造工艺问题,减少开发周期,降低生产成本。

同时,数学建模还可以为原型的精度和一致性提供有效的量化手段,并在开发的最初阶段就提供设计输出和检验。

以汽车行业为例,数学建模技术广泛应用于汽车的设计与制造。

在设计阶段,汽车制造商需要进行零件的设计和装配,及其与主轴并联或正交安装。

此时,数学建模技术可以模拟零件的坐标和轨迹,并通过模拟进行删除或添加零部件,以快速评估其性能,并降低开发成本。

二、数学优化在工程设计中的应用数学优化技术的应用可以帮助制造商在生产过程中快速寻找最佳解决方案,对工艺进行优化,提高产品生产效率并降低成本。

在机器人与自动化领域中,数学优化技术是不可或缺的基础。

它将好的优化策略应用于机器人和自动化服务中,从而使较少的资源得到更好的利用。

机器人和自动化系统中的运动控制和路径规划面临许多挑战。

这些挑战主要包括复杂的环境扰动、目标物体未知位置的影响以及许多其他确定因素。

数学优化技术能够帮助解决这些问题。

例如,可以使用优化算法在具有约束目标的情况下生成运动轨迹。

这些目标可能包括以最短时间、低耗能等的方式实现自由移动等方案。

总的来说,在工程设计中数字化转型是非常重要的,既能提高产品质量,又能降低生产成本。

数学建模和优化在这个过程中扮演着至关重要的角色,将帮助生产者实现更高效和更可持续的生产方式,为我们的经济和可持续发展提供支持。

数学建模中的优化与控制问题

数学建模中的优化与控制问题
节。
特点:线性系统 控制具有简单、 易于分析和设计 的优点,适用于 一些较为简单的
系统。
应用场景:在工程、 经济、生物等领域 中,对于一些可以 近似为线性系统的 对象,可以采用线 性系统控制方法进
行优化和控制。
局限性:线性系统 控制对于非线性系 统的描述和控制效 果有限,对于一些 复杂的系统可能需 要采用更为复杂的
特点:整数规划 问题在求解过程 中具有较高的难 度,因为整数约 束使得可行解的 范围大大缩小。
应用领域:整 数规划广泛应 用于组合优化、 生产计划、物 流运输等领域。
求解方法:常 见的整数规划 求解方法包括 穷举法、割平 面法、分支定
界法等。
数学建模中的控制 问题
定义:线性系统控 制是数学建模中的 一种重要方法,通 过建立线性方程组 来描述系统的动态 行为,并采用控制 策略对系统进行调
应用领域:生产计划、物流、金融等
求解方法:单纯形法、分解法等
定义:在数学建模中,非线性规划是寻 找一组变量的最优解,使得某个目标函 数达到最小或最大值,同时满足一系列 约束条件。
应用领域:包括但不限于金融、经济、工 程和科学计算等领域。
特点:目标函数或约束条件至少有一个是 非线性的。
求解方法:常见的求解非线性规划的方法 包括梯度下降法、牛顿法、拟牛顿法等。
案例背景:交通信号灯在城市交通中起着至关重要的作用,如何实现高效、合理的控制 是关键问题。
建模过程:通过建立数学模型,对交通信号灯的配时进行优化,提高道路通行效率。
控制策略:采用智能控制算法,如模糊控制、神经网络等,实现自适应调节。
案例结论:通过实际应用,证明优化后的交通信号灯控制能够有效提高道路通行效率, 减少拥堵。
数学建模中的优化与 控制问题

数学建模在交通规划中有哪些应用

数学建模在交通规划中有哪些应用

数学建模在交通规划中有哪些应用在当今社会,交通规划对于城市的发展和居民的生活质量起着至关重要的作用。

数学建模作为一种强大的工具,为交通规划提供了科学、精确和有效的方法。

那么,数学建模在交通规划中究竟有哪些具体的应用呢?首先,数学建模在交通流量预测方面发挥着关键作用。

通过收集和分析历史交通数据,建立数学模型,可以预测未来不同时间段、不同路段的交通流量。

例如,使用时间序列模型或者基于机器学习的方法,能够考虑到诸如节假日、天气状况、特殊事件等多种因素对交通流量的影响。

这有助于交通管理部门提前做好准备,合理调配交通资源,比如调整信号灯时间、安排交警执勤等,以减少交通拥堵的发生。

在道路网络设计中,数学建模也不可或缺。

规划者需要确定道路的布局、宽度和连接方式,以满足未来的交通需求。

通过建立数学模型,可以模拟不同设计方案下的交通流分布和运行效率。

比如,利用图论和网络优化算法,找到最优的道路连接方式和最短路径,从而提高整个道路网络的通行能力。

同时,还可以考虑不同类型车辆的行驶特点和需求,以及行人、自行车等非机动交通的因素,使道路网络设计更加人性化和综合化。

交通信号控制是交通规划中的一个重要环节,数学建模同样能提供有效的解决方案。

传统的固定时间信号灯控制往往不能适应实时变化的交通流量,导致交通效率低下。

而基于数学建模的智能交通信号控制系统,可以根据实时监测到的交通流量数据,动态调整信号灯的时长。

例如,通过建立排队论模型,可以计算出在不同交通流量下,最优的信号灯周期和绿信比,从而减少车辆等待时间,提高路口的通行能力。

公共交通规划也是交通规划的重要组成部分。

数学建模可以帮助确定公交线路的布局、站点设置和发车频率。

通过建立乘客出行需求模型和公交运营成本模型,可以在满足乘客出行需求的前提下,优化公交线路和运营方案,降低运营成本,提高公交服务的质量和吸引力。

例如,使用离散选择模型来分析乘客对公交线路和站点的选择行为,从而合理规划公交站点的位置和覆盖范围。

数学建模应用案例

数学建模应用案例

数学建模应用案例嘿,你知道数学建模吗?它的应用可广啦,就像一把神奇的钥匙,能打开好多问题的大门呢!比如说在交通规划方面,我有个朋友在交通局工作,他们就遇到了一个大难题。

城市里的车越来越多,道路拥堵得不行。

这时候数学建模就派上用场啦!他们通过收集各种交通数据,像车流量、道路宽度、红绿灯时间等等,然后建立数学模型。

经过一番研究,他们找到了优化交通信号灯时间的方法,就像给交通装上了一个智能调节器。

结果你猜怎么着?道路拥堵情况明显改善了,大家上下班都节省了不少时间呢!你说数学建模厉害不厉害?哇哦,数学建模在经济领域也有大作为呢!我认识一个做投资的大哥,他在分析股票市场的时候就用到了数学建模。

他把各种经济指标、公司财务数据等都纳入模型中,就像一个精明的猎手在收集猎物的踪迹。

通过这个模型,他能预测股票的走势,从而做出更明智的投资决策。

有一次,他凭借数学建模成功预测了一只股票的上涨趋势,赚了不少钱呢!这数学建模简直就是他的赚钱法宝呀!你对股票投资感兴趣吗?要是懂数学建模,说不定也能在股市里如鱼得水哦!哎呀,在环境保护方面,数学建模也能发挥重要作用哦!我有个同学是环保志愿者,他们团队在研究河流污染治理的时候就用到了数学建模。

他们测量河流的流速、污染浓度、周边污染源等数据,建立模型来分析污染的扩散情况和治理效果。

就像给河流做了一个详细的“体检报告”。

通过这个模型,他们制定了更有效的治理方案,让河流逐渐恢复了清澈。

你看,数学建模是不是为保护环境出了一份力呀?我们都应该感谢它呢!嘿呀,数学建模在医疗领域也有精彩表现哦!我听说有个医院在研究疾病传播规律的时候,就用数学建模来帮忙。

他们收集患者的发病时间、地点、接触人群等信息,建立模型来预测疾病的传播趋势。

这就像给疾病画了一张“行动路线图”。

医生们根据这个模型可以提前采取防控措施,更好地保护大家的健康。

比如说在流感季节,通过数学建模可以更合理地安排疫苗接种和医疗资源分配,减少疾病的传播。

系泊系统的设计数学建模

系泊系统的设计数学建模

系泊系统的设计数学建模一、引言系泊系统是一种常见的海洋工程设施,用于将船只或其他海洋结构物固定在水面或水下的一种装置。

设计一个高效可靠的系泊系统对于确保船只安全停靠以及海洋工程设施的稳定非常重要。

本文将介绍系泊系统设计的数学建模方法,通过数学模型来分析和优化系泊系统的设计。

二、系统建模1. 系泊系统的力学模型系泊系统的力学模型是研究系泊系统的基础。

通过力学原理和静力学平衡条件,可以建立系泊系统的力学方程。

其中包括各个力的平衡方程、物体的运动方程等。

通过求解这些方程,可以得到系泊系统的各个参数,如系泊绳的张力、浮标的位置等。

2. 系泊系统的动力学模型系泊系统在海洋环境中受到风浪等外界力的作用,因此需要考虑系统的动力学特性。

通过建立动力学模型,可以分析系泊系统的振动特性和响应能力。

常用的方法包括振动方程的建立和求解、频域分析等。

通过分析动力学模型,可以得到系泊系统的自然频率、阻尼比等参数。

三、优化设计1. 系泊系统的参数选择在设计系泊系统时,需要选择合适的参数,如系泊绳的长度、材料、直径等。

通过数学模型,可以分析不同参数对系泊系统性能的影响,从而选择最佳的参数组合。

例如,通过分析系泊绳的长度与稳定性的关系,可以确定最佳的系泊绳长度。

2. 系泊系统的布置方式系泊系统的布置方式也对系统性能有重要影响。

通过数学模型,可以分析不同布置方式对系统稳定性、抗风浪性能等的影响。

例如,通过分析不同锚点数量和位置的影响,可以选择最佳的系泊系统布置方式。

四、案例分析以某港口停泊船只的系泊系统设计为例,利用数学建模方法对系统进行优化设计。

通过建立力学模型和动力学模型,分析系泊系统的力学特性和动力学特性。

通过优化参数选择和布置方式,得到最佳的系泊系统设计方案。

五、结论通过数学建模方法,可以对系泊系统的设计进行分析和优化。

通过建立力学模型和动力学模型,可以分析系泊系统的力学特性和动力学特性。

通过优化参数选择和布置方式,可以得到最佳的系泊系统设计方案。

2018年数学建模c题

2018年数学建模c题

2018年数学建模c题2018年数学建模C题:停车场规划与优化一、问题描述随着城市的发展,停车场的需求越来越大,因此对于停车场的规划与优化变得尤为重要。

本次数学建模C题将围绕停车场规划与优化展开,目标是设计一个高效、公平、可持续的停车场管理系统。

二、问题分析1.确定问题类型:本题是一个优化问题,需要找到最优的停车场设计方案,以最大化停车场的利用率和满足用户需求。

2.明确目标函数:最大化停车场的利用率和满足用户需求,可以通过设计合理的收费策略、停车位分配策略、出入控制策略等来实现。

3.约束条件:需要考虑的约束条件包括停车场的容量限制、车辆的停车时间限制、车辆的类型限制等。

4.变量选择:需要考虑的变量包括停车场的收费标准、停车位数量、停车位分配方式、出入控制方式等。

5.建模方法:可以采用运筹学中的优化算法,如线性规划、整数规划等,结合实际情况建立数学模型。

三、模型建立1.确定目标函数:最大化停车场的利用率和满足用户需求,可以通过设计合理的收费策略来实现。

设停车场的总收益为目标函数,记为Z。

2.确定约束条件:需要考虑的约束条件包括停车场的容量限制、车辆的停车时间限制、车辆的类型限制等。

设停车场的最大容量为C,车辆的平均停车时间为T,车辆的类型数量为N。

3.变量选择:需要考虑的变量包括停车场的收费标准、停车位数量、停车位分配方式、出入控制方式等。

设停车场的收费标准为p,停车位数量为n,停车位分配方式为m,出入控制方式为k。

4.建立数学模型:最大化收益Z=p*n*T,约束条件包括C>=n,T>=0,N>=m>=1,k为布尔值(0或1)。

四、算法设计1.初始化变量:根据实际情况,设定初始的停车位数量n、收费标准p、停车位分配方式m、出入控制方式k等。

2.循环计算:采用循环的方式,逐步增加或减少停车位数量n,同时调整收费标准p、停车位分配方式m、出入控制方式k等,计算每个方案下的收益Z。

数学建模的实际案例与反思

数学建模的实际案例与反思

数学建模的实际案例与反思数学建模作为一门现代应用数学的分支,通过将数学方法与实际问题相结合,对问题进行定量分析和求解,为解决实际问题提供了全新的视角和方法。

在实践中,数学建模也经常面临着各种挑战和困难。

本文将以数学建模的实际案例为线索,对该领域的发展和应用进行反思,并探讨其未来的发展方向。

案例一:城市交通流量优化面对城市交通日益严重的拥堵问题,如何优化交通流量已成为城市规划者和交通管理者亟待解决的难题。

这一问题就可以通过数学建模来进行分析和求解。

首先,可以用数学模型对交通状况进行建模,包括车辆数量、行驶速度等参数;然后,通过对数据进行分析和优化算法的设计,得到最优的交通流量方案。

该方法不仅可以减少行程时间,还能提高整体交通效益,为城市交通管理提供科学依据。

案例二:股票市场波动预测股票市场波动对投资者而言是一个关键的问题,准确预测市场的波动趋势有助于投资者做出明智的决策。

数学方法可以通过建立股票市场的数学模型,结合历史数据和相关经济指标,对市场波动进行预测。

这样的建模方法可以帮助投资者降低风险,提高投资收益,为投资领域的决策提供科学依据。

案例三:疾病传播模型疾病的传播对公共卫生和社会稳定具有重要影响,针对不同的传染病,可以利用数学建模的方法来进行疫情预测和控制策略的制定。

通过构建传染病传播的数学模型,可以对疫情传播的趋势进行预测和分析,进而制定相应的防控措施。

这种模型的应用可以提前发现潜在的疫情蔓延风险,快速响应并有效地减少疫情扩散。

数学建模的实际案例给我们展示了数学在实际生活中的广泛应用和价值。

通过数学建模,我们可以对各个领域的问题进行系统的分析、预测和优化,为决策和问题解决提供科学依据。

然而,数学建模也存在着一些挑战和困难。

首先,实际问题的复杂性和多样性给数学建模带来了挑战。

不同的问题需要使用不同的数学模型和方法进行建模,而选择合适的模型和方法需要对问题进行深入的了解和分析,这对建模者的数学素养和领域知识要求较高。

数学建模中的优化问题

数学建模中的优化问题
30
奥运会临时超市网点设计
23
奥运会临时超市网点设计
(找关键性语句)
2008 年北京奥运会的建设工作已经进入全面设计 和实施阶段。奥运会期间,在比赛主场馆的周边 地区需要建设由小型商亭构建的临时商业网点, 称为迷你超市( Mini Supermarket, 以下记做 MS ) 网,以满足观众、游客、工作人员等在奥运会期 间的购物需求,主要经营食品、奥运纪念品、旅 游用品、文体用品和小日用品等。在比赛主场馆 周边地区设置的这种 MS ,在地点、大小类型和总 量方面有三个基本要求:满足奥运会期间的购物 需求、分布基本均衡和商业上赢利。
22
奥运会临时超市网点设计
(找关键性语句)
2008 年北京奥运会的建设工作已经进入全面设计 和实施阶段。奥运会期间,在比赛主场馆的周边 地区需要建设由小型商亭构建的临时商业网点, 称为迷你超市( Mini Supermarket, 以下记做 MS ) 网,以满足观众、游客、工作人员等在奥运会期 间的购物需求,主要经营食品、奥运纪念品、旅 游用品、文体用品和小日用品等。在比赛主场馆 周边地区设置的这种 MS ,在地点、大小类型和总 量方面有三个基本要求:满足奥运会期间的购物 需求、分布基本均衡和商业上赢利。
20
奥运会临时超市网点设计
(找关键性语句)
2008 年北京奥运会的建设工作已经进入全面设计 和实施阶段。奥运会期间,在比赛主场馆的周边 地区需要建设由小型商亭构建的临时商业网点, 称为迷你超市( Mini Supermarket, 以下记做 MS ) 网,以满足观众、游客、工作人员等在奥运会期 间的购物需求,主要经营食品、奥运纪念品、旅 游用品、文体用品和小日用品等。在比赛主场馆 周边地区设置的这种 MS ,在地点、大小类型和总 量方面有三个基本要求:满足奥运会期间的购物 需求、分布基本均衡和商业上赢利。

2023数学建模c题思路

2023数学建模c题思路

2023数学建模C题思路
题目:某城市有100万个家庭,每个家庭有1.5辆汽车。

该城市有1000个公共停车场,每个停车场可以停放1000辆汽车。

为了缓解停车难问题,该城市决定建设更多的公共停车场。

假设每个新停车场可以停放n辆汽车,并且每个家庭至少有一辆汽车需要停放。

问题:
1.计算该城市需要建设多少个新停车场才能满足需求。

2.假设每个新停车场的建设成本为100万元,计算建设这些新停车场需要多少资金。

思路:
1.计算总的汽车数量:100万个家庭,每个家庭1.5辆汽车,所以总共有100万× 1.5
= 150万辆汽车。

2.计算需要的停车场数量:每个停车场可以停放1000辆汽车,所以需要的停车场数
量为150万辆÷ 1000辆/个= 1500个停车场。

3.计算需要建设的新停车场数量:假设每个新停车场可以停放n辆汽车,那么需要建
设的新停车场数量为1500个- 1000个= 500个。

4.计算建设这些新停车场需要的资金:每个新停车场的建设成本为100万元,所以需
要的资金为500个× 100万元/个= 5亿元。

结论:
该城市需要建设500个新停车场才能满足需求,建设这些新停车场需要的资金为5亿元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

案例16 停车场的优化设计随着城市车辆的增加,停车位的需求量也越来越大,停车困难已逐渐成为市民们头疼的问题。

要解决停车难问题,除了尽可能的增加停车场以外,对停车场进行优化设计也能在一定程度上缓解这一供需矛盾。

停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。

本文的目的就是希望分析一下这一情况,找出缓解停车困难的有效办法。

假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。

因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”, 而通道越宽越多,就会使得容纳的车辆数越少。

所以我们的问题就是要确定在满足车辆能够自由进出的实际需求下,如何进行停车位置和车行通道的设计,才能够停放更多的车辆,从而做到既方便停车又能获得最大的经济效益。

我们先来看看生活中非货运车辆大小的种类。

根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。

其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。

根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。

我们设小轿车所占的比例为0.9α=,大型客车所占的比例为10.1α-=,当然现实中也有不少全为小轿车设计的停车场,例如小区的地下车库。

再来看看车位的大小。

根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。

另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长5L C =米,宽 2.5W C =米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。

设停放大客车需要长12.5L B =米,宽3W B =米,其中包括0.1米的标志线宽度和必要的汽车之间的横向间距。

考虑到汽车从通车道驶入车位一般得转弯,所以车辆的最小转弯半径也是停车场设计所要考虑的重要参数。

所谓最小转弯半径,就是汽车转弯时转向中心到汽车外侧转向车轮轨迹间的最小距离。

根据实际调查,可设小轿车的最小转弯半径为1 5.5C =米,与此同时,汽车转弯时转向中心到汽车内侧转向车轮轨迹间的最小距离为21 1.7 3.8C C =-=米,如图1所示。

对于大客车,我们设其最小转弯半径为110B =米,与此同时,大型车转弯时转向中心到内侧转向车轮轨迹间的最小距离为21 2.27.8B B =-=米。

本文的目的就是讨论应当整体设计车位的排布。

对于给定的停车场,我们的目标就是尽可能多地增加车位数,或者说,使每辆车占据的停车场面积尽可能小。

一 仅有一种车型的局部车位位置大型客车和小轿车在停车时占地面积相差很大,一般都是分区停泊的。

现在,让我们先来看看只限于停放小轿车的简单情况,并且先不考虑停车场的实际大小,只是来研究一下应当如何给出局部设计,才能使每辆车占据的停车场地面积最小。

对于每一个车位,为了便于该车位上的小轿车自由进出,必须有一条边是靠通道的,设该矩形停车位的长边与通道的夹角为(0)2πθθ≤≤,其中2πθ=便是车辆垂直从通道驶入车位,0θ=就是车辆从通道平行驶入车位,即平时所说的平行泊车。

为了留出通道空间和减少停车面积,显然,我们可以假设该通道中的所图1有车位都保持着和该车位相同的角度平行排列,如图2所示。

上图中,小轿车是自东向西行驶顺时针转弯θ角度驶入车位的。

我们来具体研究一下小轿车驶入车位的情况,见图3,其中1C 为最小转弯半径,R 为通道的最小宽度。

我们假定小轿车的最外端在半径为1C 的圆周上行驶,且此时轿车的最内端在半径为2C 的圆周上随之移动,然后以θ角度进入停车位,所以通道的最小宽度12cos R C C θ=-。

在保证车辆能够自由进出的前提下,本着要求通道宽度尽量小的原则,我们来看一下一排车位之间的各个数据,见图4。

图2图3每辆车均以角度θ停放,用W 表示小轿车停车位宽度,L 表示小轿车停车位长度(这里L 的最上方并没有取到最上端是考虑到车身以外的小三角形区域可以留给对面停车位使用),o L 表示停车位末端的距离,易见他们分别是停车角θ的函数,且有sin W C W θ= 1sin cos 2L W L C C θθ=+ 01(cot )cos 2L W L C C θθ=+ 11cos 2W L C θ= 现在按照图4所示,计算一下每辆车占据的停车场面积()S θ.考虑最佳排列的极限情况,假设该排车位是无限长的,可以忽略该排车位两端停车位浪费掉的面积012L L •,因为它们被平均到每个车位上去的公摊面积很小,可以不计。

从车辆所占的停车位来看,它占据的面积为W L •,另外,它所占的通道的面积为W R •。

考虑到通道对面(也就是图4的下部)也可以有类似的一排车位可以相互借用此通道,所以可以对占用的通道面积减半,于是我们得到:()212cos cos 122sin 2sin 2sin W W W W L C C C C C S WL WR C C θθθθθθ=+=++- (1) 我们的目标就是求出()S θ的最小值。

将1 5.5C =米,2 3.8C =米,5L C =米, 2.5W C =米代人(1)式,可得图4() 6.875 1.625cos 12.5sin sin S θθθθ=+-,()21.625 6.875cos sin S θθθ-'=, 所以当 1.62513cos 6.87555θ==,即76.33θ︒≈时,()S θ达到最小,且(){}min 19.18S θ=平方米。

需要说明的是,当0θ=时车位与车道平行,此时每辆车都得采用平行泊车的方式进入车位,这是现实生活中马路边的停车位常见的情况,在一般的停车场中几乎很少看到。

平行泊车对驾驶员的技术要求较高,所以我们不考虑这样的情况。

事实上,即便要计算在这种情况下每单位车辆所占据的停车场面积()S θ也不困难,只不过对于平行泊车,所要求的每个车位的长和宽不应再是上面所说的L C 和W C ,特别是停车位的长度L C 将变得更长(否则,停泊的车辆将无法进出),其所要求的行车道的最小宽度也得足够大,以便能让泊车车辆通过,车位图形需按小轿车路线重新绘制,读者可以自行计算并得到这些数据,计算结果表明,平行泊车是每辆车所占的平均面积明显地大于平方米。

上述对车位的局部分析表明,当停车位与通道夹角76.33θ︒≈时,可以使每单位车辆占据停车场的面积达到最小。

二 仅有一种车型的全局车位排列上面的局部分析告诉我们,如果保持一排车位方向一致,且与单向通道的夹角为76.33θ︒≈,可使单位车辆占据的面积最小,此时宽度为R 的单向通道分别提供给其两边的停车位使用。

在通道两边都各安排一排小轿车车位时,考虑到路线的单行性质,通道两边的停车位角度θ应该相对,如图5所示。

对每一排停车位,其一边为通道,另一边则可以是另一排停车位或者是停车场的边缘。

所以停车排数C P 最多只能是通道数I P 的两倍,即:2C I P P ≤ (2)另一方面,如果按照一排停车位,一条通道,一排停车位这样三排一组的形式加以组合,依次排列,确实也可以达到2C I P P =。

即(2)式中的等号是可以成立的。

此时,车位数可以达到停车位位置的最大值,排列情况同样可以见图5. 图5显示,在每排车位数相当大或者说,在不考虑整个停车场四角浪费的那些面积时,我们可以使每单位车辆占用的停车场面积最小,并且对于小轿车来说,此最小值在车位角度76.33θ︒≈时达到。

我们再来计算一下停泊车辆均为大型客车时的最佳角度,将模型(1)修改为:()212cos cos 2sin 2sin 2sin W W W W L B B B B B S B B θθθθθθ=++- (3) 并且将相应数据代人(3)得到:()157.2cos 37.5sin sin S θθθθ=+-, ()27.215cos sin S θθθ-'= 取θ使()0S θ'=,即7.2cos 0.4815θ==,求得当61.31θ︒≈,此时每单位大型客车占据的停车场面积最小,每辆车占据的面积为()50.66S θ=(平方米)。

综上所述,对于只有一种车型的足够大的停车场,按照现有的车辆尺寸大小图5计算,我们将采用图5的排列方式设计停车位。

对于小轿车,设计车位角度为76.33︒,单位车辆占据的停车场面积为平方米。

对于大型客车,设计的车位角度为61.31︒,单位车辆占据的停车场面积为平方米。

三 两种车型的停车场设计的理想情况对于两种车型,即小轿车和大型客车同时存在的情况,如果对于足够大的停车场地,我们可以根据:(1)9:1αα-=的比例要求,计算出所需的小轿车车位排数和大型客车车位排数,以及每排的停车数目。

根据第二部分的讨论,我们可以按一排停车位,一行通车道,一排停车位这样三排为一组的方式组合出停车场的结构,设小轿车有g C 组,大型客车有g B 组,每组的一排长度为G 米。

根据第一部分,对于小轿车的停车位置宽度 2.5 2.573sin sin 76.33W C W θ︒===(米),而对于大型客车,其停车位置的宽度3 3.420sin sin 61.31W B W θ︒===(米)。

所以,对于小轿车,每一组可以停放的车辆数目为22.537G •,该停车场中总共可以停放22.537g C G••辆小轿车,而对于大型客车,同样可以得总车位数为23.420g B G。

根据22:9:12.537 3.420g g C G B G ••••=的比例要求,我们可以得到: 6.77:1g g C B =。

综上所述,对于足够大的停车场地,我们可以用一排停车位,一条通车道,一排停车位为一组的形式来平行设计车位,大体结构可参见图 5.至于小轿车组和大型客车组的比例,可以按照近似于:1的形式,例如,取近似值7:1,13:2,20:3,27:4,34:5等比例建造。

四 具体停车场车位设计上面我们讨论的都是理想情况,现实中很多停车场的占地面积并不一定很大,而且从图5的设计安排来看,理想情况下的每一组车位都必须为车辆能够自由进出而设置一个入口和一个出口,这样的设计既不经济也不安全。

特别是对于某些收费的停车场或者要重点考虑安全设施的停车场,将不得不在众多的出入口设置收费点或关卡而增加成本,这显然不是最好的安排,那么对于一个具体形状和面积给定的停车场,我们将根据前面理想情况的讨论做出改进,以得到更合理的设计规划。

相关文档
最新文档