(完整word版)数的整除特征专项训练

合集下载

人教版小学数学小升初思维拓展(知识梳理+典题精讲+专项训练) 专题7-数的整除特征

人教版小学数学小升初思维拓展(知识梳理+典题精讲+专项训练) 专题7-数的整除特征

专题7-数的整除特征小升初数学思维拓展数论问题专项训练(知识梳理+典题精讲+专项训练)1、整除是整数问题中一个重要的基本概念.如果整数a除以自然数b,商是整数且余数为0,我们就说a能被b整除,或b能整除a,或b整除a,记作b丨a.此时,b是a的一个因数(约数),a是b的倍数。

2、数的整除特征。

(1)能被2整除的数的特征:如果一个整数的个位数是偶数,那么它必能被2整除.(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除.(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除.(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.【典例一】计算1133555779⨯、四个同学给出了四个不同的答案,只有一个正确,一个同学利用学过的一些数的倍数的特征很快找到了它,它是()A.632254965B.632244965C.632234965D.632213965【答案】A【分析】等式左边55779是3的倍数,那么1133555779⨯的积也应该是3的倍数;据此选择即可。

【解答】解:632254965是3的倍数,632244965不是3的倍数,632234965不是3的倍数,632213965不是3的倍数,所以只有632254965是正确的。

故选:A 。

【点评】解答此题通过发现55779是3的倍数,根据能被3整除的特征判断。

【典例二】试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答是“能”,则只要举出一种排法;如果回答是“不能”,则需给出说明。

(完整word版)小学数学解题方法解题技巧之整除及数字整除特征(word文档良心出品)

(完整word版)小学数学解题方法解题技巧之整除及数字整除特征(word文档良心出品)

第一章小学数学解题方法解题技巧之整除及数字整除特征【数字整除特征】例1 42□28□是99的倍数,这个数除以99所得的商是__。

(上海市第五届小学数学竞赛试题)讲析:能被99整除的数,一定能被9和11整除。

设千位上和个位上分别填上数字a、b,则:各位上数字之和为[16+(a+b)]。

要使原数能被9整除,必须使[16+(a+b)]是9的倍数,即(a+b)之和只能取2或11。

又原数奇位上的数字和减去偶位上数字和的差是(8+a-b)或(b-a-8),要使原数能被11整除,必须使(8+a-b)或(b-a-8)是11的倍数。

经验证,(b-a-8)是11的倍数不合。

所以a-b=3。

又a+b=2或11,可求得a=7,b=4。

从而很容易求出商为427284÷99=4316。

例2 某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是__。

(1993年全国小学数学奥林匹克初赛试题)讲析:因为2、3、4、5、6、7、8、9的最小公倍数是2520。

而1993000÷2520=790余2200。

于是再加上(2520-2200)=320时,就可以了。

所以最后三位数字依次是3、2、0。

例3 七位数175□62□的末位数字是__的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。

(上海市第五届小学数学竞赛试题)讲析:设千位上和个位上的数字分别是a和b。

则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。

要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。

则有 b-a=8,或者a-b=3。

①当 b-a=8时,b可取9、8;②当 a-b=3时,b可取6、5、4、3、2、1、0。

所以,当这个七位数的末位数字取7时,不管千位上数字是几,这个七位数都不是11的倍数。

例4 下面这个四十一位数55......5□99 (9)(其中5和9各有20个)能被7整除,那么中间方格内的数字是__。

(初中数学)数的整除性精选题练习及答案

(初中数学)数的整除性精选题练习及答案

(初中数学)数的整除性精选题练习及答案阅读与思考设a,b是整数,b≠0,如果一个整数q使得等式a=bq成立,那么称a能被b整除,或称b整除a,记作b|a,又称b为a的约数,而a称为b的倍数.解与整数的整除相关问题常用到以下知识:1.数的整除性常见特征:①若整数a的个位数是偶数,则2|a;②若整数a的个位数是0或5,则5|a;③若整数a的各位数字之和是3(或9)的倍数,则3|a(或9|a);④若整数a的末二位数是4(或25)的倍数,则4|a(或25|a);⑤若整数a的末三位数是8(或125)的倍数,则8|a(或125|a);⑥若整数a的奇数位数字和与偶数位数字和的差是11的倍数,则11|a.2.整除的基本性质设a,b,c都是整数,有:①若a|b,b|c,则a|c;②若c|a,c|b,则c|(a±b);③若b|a,c|a,则[b,c]|a;④若b|a,c|a,且b与c互质,则bc|a;⑤若a|bc,且a与c互质,则a|b.特别地,若质数p|bc,则必有p|b或p|c.例题与求解【例1】在1,2,3,…,2 000这2 000个自然数中,有_______个自然数能同时被2和3整除,而且不能被5整除.(“五羊杯”竞赛试题) 解题思想:自然数n能同时被2和3整除,则n能被6整除,从中剔除能被5整除的数,即为所求.【例2】已知a,b是正整数(a>b),对于以下两个结论:①在a+b,ab,a-b这三个数中必有2的倍数;②在a+b,ab,a-b这三个数中必有3的倍数.其中( )A.只有①正确B.只有②正确C.①,②都正确D.①,②都不正确(江苏省竞赛试题)解题思想:举例验证,或按剩余类深入讨论证明.ab能被198整除,求a,b的值.(江苏省竞赛试题)【例3】已知整数13456ab能被9,11整除,运用整除的相关特性建立a,b的等式,解题思想:198=2×9×11,整数13456求出a,b的值.【例4】已知a ,b ,c 都是整数,当代数式7a +2b +3c 的值能被13整除时,那么代数式5a +7b -22c 的值是否一定能被13整除,为什么?(“华罗庚金杯”邀请赛试题)解题思想:先把5a +7b -22c 构造成均能被13整除的两个代数式的和,再进行判断.【例5】如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如:把86放在415左侧,得到86 415能被7整除,所以称86为415的魔术数),求正整数n 的最小值,使得存在互不相同的正整数1a ,2a ,…,n a ,满足对任意一个正整数m ,在1a ,2a ,…,n a 中都至少有一个为m 的“魔术数”.解题思想:不妨设7i i a k t =+(i =1,2,3,…,n ;t =0,1,2,3,4,5,6)至少有一个为m 的“魔术数”.根据题中条件,利用10k i a m +(k 是m 的位数)被7除所得余数,分析i 的取值.【例6】一只青蛙,位于数轴上的点k a ,跳动一次后到达1k a +,已知k a ,1k a +满足|1k a +-k a |=1,我们把青蛙从1a 开始,经n -1次跳动的位置依次记作n A :1a ,2a ,3a ,…,n a .⑴ 写出一个5A ,使其150a a ==,且1a +2a +3a +4a +5a >0;⑵ 若1a =13,2000a =2 012,求1000a 的值;⑶ 对于整数n (n ≥2),如果存在一个n A 能同时满足如下两个条件:①1a =0;②1a +2a +3a +…+n a =0.求整数n (n ≥2)被4除的余数,并说理理由.(2013年“创新杯”邀请赛试题)解题思想:⑴150a a ==.即从原点出发,经过4次跳动后回到原点,这就只能两次向右,两次向左.为保证1a +2a +3a +4a +5a >0.只需将“向右”安排在前即可.⑵若1a =13,2000a =2 012,从1a 经过1 999步到2000a .不妨设向右跳了x 步,向左跳了y 步,则1999132012x y x y +=⎧⎨+-=⎩,解得19990x y =⎧⎨=⎩可见,它一直向右跳,没有向左跳. ⑶设n A 同时满足两个条件:①1a =0;②1a +2a +3a +…+n a =0.由于1a =0,故从原点出发,经过(k -1)步到达k a ,假定这(k -1)步中,向右跳了k x 步,向左跳了k y 步,于是k a =k x -k y ,k x +k y =k -1,则1a +2a +3a +…+n a =0+(22x y -)+(33x y -)+…(n n x y -)=2(1x +2x +…+n x )-[(22x y +)+(33x y +)+…+(n n x y +)]=2(2x +3x +…+n x )-()12n n -.由于1a +2a +3a +…+n a =0,所以n (n -1)=4(2x +3x +…+n x ).即4|n (n -1).能力训练A 级1.某班学生不到50人,在一次测验中,有17的学生得优,13的学生得良,12的学生得及格,则有________人不及格.2.从1到10 000这1万个自然数中,有_______个数能被5或能被7整除.(上海市竞赛试题)3.一个五位数398ab 能被11与9整除,这个五位数是________.4.在小于1 997的自然数中,是3的倍数而不是5的倍数的数的个数是()A .532B .665C .133D .7985.能整除任意三个连续整数之和的最大整数是( )A .1B .2C .3D .6 (江苏省竞赛试题)6.用数字1,2,3,4,5,6组成的没有重复数字的三位数中,是9的倍数的数有()A .12个B .18个C .20个D .30个 (“希望杯”邀请赛试题)7.五位数abcde 是9的倍数,其中abcd 是4的倍数,那么abcde 的最小值为多少?(黄冈市竞赛试题)8.1,2,3,4,5,6每个使用一次组成一个六位数字abcdef ,使得三位数abc ,bcd ,cde ,def 能依次被4,5,3,11整除,求这个六位数.(上海市竞赛试题)9.173□是个四位数字,数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9,11,6整除.”问:数学老师先后填入的这3个数字的和是多少?(“华罗庚金杯”邀请赛试题)B级1.若一个正整数a被2,3,…,9这八个自然数除,所得的余数都为1,则a的最小值为_________,a的一般表达式为____________.(“希望杯”邀请赛试题) 2.已知m,n都是正整数,若1≤m≤n≤30,且mn能被21整除,则满足条件的数对(m,n)共有___________个.(天津市竞赛试题) 3.一个六位数1989x y能被33整除,这样的六位数中最大是__________.4.有以下两个数串1,3,5,7,,1991,1993,1995,1997,19991,4,7,10,,1987,1990,1993,1996,1999⎧⎨⎩同时出现在这两个数串中的数的个数共有( )个.A.333 B.334 C.335 D.3365.一个六位数1991a b能被12整除,这样的六位数共有( )个.A.4 B.6 C.8 D.126.若1 059,1 417,2 312分别被自然数n除时,所得的余数都是m,则n-m的值为( ).A.15 B.1 C.164 D.1747.有一种室内游戏,魔术师要求某参赛者相好一个三位数abc,然后,魔术师再要求他记下五个数:acb,bac,bca,cab,cba,并把这五个数加起来求出和N.只要讲出N的大小,魔术师就能说出原数abc是什么.如果N=3 194,请你确定abc.(美国数学邀请赛试题) 8.一个正整数N的各位数字不全相等,如果将N的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N,则称N为“拷贝数”,试求所有的三位“拷贝数”.(武汉市竞赛试题)9.一个六位数,如将它的前三位数字与后三位数字整体互换位置,则所得的新六位数恰为原数的6倍,求这个三位数.(“五羊杯”竞赛试题)10.一个四位数,这个四位数与它的各位数字之和为1 999,求这个四位数,并说明理由.(重庆市竞赛试题)11.从1,2,…,9中任取n 个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n 的最小值.(2013年全国初中数学竞赛试题)数的整除性答案例1 267 提示:333-66=267.例2 C 提示:关于②的证明:对于a ,b 若至少有一个是3的倍数,则ab 是3的倍数.若a ,b 都不是3的倍数,则有:(1)当a =3m +1,b =3n +1时,a -b =3(m -n );(2)当a =3m +1,b =3n +2时,a +b =3(m +n +1);(3)当a =3m +2,b =3n +1时,a +b =3(m +n +1);(4)当a =3m +2,b =3n +2时,a -b =3(m -n ).例3 a =8.b =0提示:由9|(19+a +b )得a +b =8或17;由11|(3+a -b )得a -b =8或-3.例4 设x ,y ,z ,t 是整数,并且假设5a +7b -22c =x (7a +2b +3c ) +13(ya +zb +tc ).比较上式a ,b ,c的系数,应当有⎪⎩⎪⎨⎧-=+=+=+2213371325137t x z x y x ,取x =-3,可以得到y =2,z =1,t =-1,则有13 (2a +b -c )-3(7a +2b +3c )=5a +7b -22c .既然3(7a +2b +3c )和13(2a +b -c )都能被13整除,则5a +7b -22c 就能被13整除.例5 考虑到“魔术数”均为7的倍数,又a 1,a 2,…,a n 互不相等,不妨设a 1 <a 2<…<a n ,余数必为1,2,3,4,5,6,0,设a i =k i +t (i =1,2,3,…,n ;t =0,1,2,3,4,5,6),至少有一个为m 的“魔术数”,因为a i ·10k +m (k 是m 的位数),是7的倍数,当i ≤b 时,而a i ·t 除以7的余数都是0,1,2,3,4,5,6中的6个;当i =7时,而a i ·10k 除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当i =7时,依抽屉原理,a i ·10k 与m 二者余数的和至少有一个是7,此时a i ·10k +m 被7整除,即n =7.例6 (1)A 5:0,1,2,1,0.(或A 5:0,1,0,1,0) (2)a 1000=13+999=1 012. (3)n 被4除余数为0或1.A 级1.1 2.3 143 3.39 798 4.A 5.C 6.B—————+0+0+0+e 能被9整除,所以e 只能取8.因此—abcde 最小值为 10 008.8.324 561提示:d +f -e 是11的倍数,但6≤d +f ≤5+6=11,1≤e ≤6,故0≤d +f -e ≤10,因此d +f -e =0,即5+f =e ,又e ≤d ,f ≥1,故f =l ,e =6,9.19 提示:1+7+3+□的和能被9整除,故□里只能填7,同理,得到后两个数为8,4.B 级1.2 521 a =2 520n +1(n ∈N +)2.573.719 895提示:这个数能被33整除,故也能被3整除.于是,各位数字之和(x +1+9+8+9+y )也能被3整除,故x +y 能被3整除.4.B5.B6.A 提示:两两差能被n 整除,n =179,m =164.7.由题意得—acb +—bac +—bca +—cab +—cba =3 194,两边加上—abc .得222(a +b +c )=3194+—abc∴222(a +b +c ) =222×14+86+—abc .则—abc +86是222的倍数.且a +b +c >14.设——abc +86=222n 考虑到——abc 是三位数,依次取n =1,2,3,4.分别得出——abc 的可能值为136,358,580,802,又因为a +b +c >14.故——abc =358.8.设N 为所求的三位“拷贝数”,它的各位数字分别为a ,b ,c (a ,b ,c 不全相等).将其数码重新排列后,设其中最大数为——abc ,则最小数为——cba .故N = ——abc -——cba =(100a +10b +c )- (100c +10b +a )=99(a -c ).可知N 为99的倍数.这样的三位数可能是198,297,396,495,594,693,792,891,990.而这9个数中,只有954- 459=495.故495是唯一的三位“拷贝数”.9.设原六位数为———abcdef ,则6×———abcdef =———defabc ,即6×(1000×——abc +——def )=1000×——def +——abc ,所以994×——def -5 999×——abc ,即142×——def =857×——abc , ∵(142,857)=1,∴ 142|—abc ,857|——def ,而——abc ,——def 为三位数,∴—abc =142,——def =857,故———abcdef =142857.10.设这个数为——abcd ,则1 000a +100b +10c +d +a +b +c +d =1 999,即1 001a +101b +11c +2d =1 999,得a =1,进而101b +11c +2d =998,101b ≥998-117-881,有b =9,则11c +2d =89,而0≤2d ≤18,71≤11c ≤89,推得c =7,d =6,故这个四位数是1 976.11.当n =4时,数1,3,5,8中没有若干个数的和能被10整除.当n =5时,设a 1a 2,…,a 5是1,2,…,9中的5个不同的数,若其中任意若干个数,它们的和都不能被10整除,则125,,,a a a 中不可能同时出现1和9,2和8,3和7,4和6,于是125,,,a a a 中必定有一个为5,若125,,,a a a 中含1,则不含9,于是,不含4(45110)⨯++=,故含6;不含3(36110)⨯++=,故含7;不含2(21710)⨯++=,故含。

(完整word版)数的整除特性练习题.docx

(完整word版)数的整除特性练习题.docx

(完整word版)数的整除特性练习题.docx数的整除专题训练知识梳理:性质 1. 如果一个自然数的末两位数能被 4(或 25)整除,那么这个自然数就能被4(或 25)整除,否则这个数就不能被 4(或 25)整除。

性质 2. 如果一个自然数的末三位数能被 8(或 125)整除,那么这个自然数就能被 8(或 125)整除,否则这个数就不能被 8(或 125)整除。

性质 3. 如果一个数的各个数位上的数字和能被9 整除,那么这个数就能被9 整除,否则这个数就不能被 9 整除。

性质4. 如果一个自然数的奇数位上数字和与偶数位上数字和的差能被11 整除,那么这个数便能被11 整除,否则这个数便不能被11 整除。

性质5.如果一个数的末三位数字所表示的数与末三位以前的数字所表示的数的差能被11(7、13)整除,那么这个数就能被11(7、13)整除,否则这个数就不能被 11(7、13)整除。

例题精讲:1. 三年级共有75 名学生参加春游,交的总钱数为一个五位数“ 2□7□5”元,求每位学生最多可能交多少元?解:先求出满足条件的最大五位数。

75=25 × 3 ,则这个五位数是25 和 3 的倍数。

因为是 25 的倍数,所以十位为7 或 2,设千位为 x,如十位为 7,则使 2+x+7+7+5=21+x为 3 的倍数的 x 最大为 9,得此五位数为 29775;如十位为 2,则使 2+x+7+2+5=16+x为 3 的倍数的 x 最大为 8,得此五位数为 28725。

所以,满足题意的最大五位数为29775。

29775 ÷ 75=397(元) ,即每位学生最多可能交397 元。

2.小勤想在电脑上恢复已经删除掉的 72 个文件,可是他只记得这些文件的总大小是“ *679.*KB ”,“* ”表示小勤忘掉的第一个和最后一个数字( 两个数字可能不同 ) ,你能帮他算出这两个数字吗?解:“ *679. * ”能被 72 除尽,则“ *679* ”应是 72 的倍数。

数学整除特性练习题

数学整除特性练习题

数学整除特性练习题1. 问题:小明有一些苹果,他将这些苹果分成了3堆,第一堆有5个苹果,第二堆有8个苹果,第三堆有11个苹果。

问,这些苹果总共能否被2整除?解答:首先,我们知道一个数能否被2整除,只需要看这个数的个位数字是否能被2整除。

若个位数字为0,2,4,6或8,则这个数能被2整除;若个位数字为1,3,5,7或9,则这个数不能被2整除。

现在,我们来看一下这三堆苹果的总数。

第一堆有5个苹果,个位数字是5;第二堆有8个苹果,个位数字是8;第三堆有11个苹果,个位数字是1。

将这三个个位数字相加,5 + 8 + 1 = 14。

14的个位数字是4,不能被2整除。

因此,这些苹果的总数不能被2整除。

2. 问题:小明有一些糖果,他将这些糖果分成了4堆,第一堆有9个糖果,第二堆有12个糖果,第三堆有15个糖果,第四堆有18个糖果。

问,这些糖果总共能否被3整除?解答:一个数能否被3整除,可以通过以下方法判断:将这个数的各个位数字相加,若相加的结果能被3整除,则这个数能被3整除;若相加的结果不能被3整除,则这个数不能被3整除。

现在,我们来看一下这四堆糖果的总数。

第一堆有9个糖果,各位数字是9;第二堆有12个糖果,各位数字是1+2=3;第三堆有15个糖果,各位数字是1+5=6;第四堆有18个糖果,各位数字是1+8=9。

将这四个个位数字相加,9 + 3 + 6 + 9 = 27。

27能被3整除。

因此,这些糖果的总数能被3整除。

3. 问题:小明有一些玩具,他将这些玩具分成了2堆,第一堆有7个玩具,第二堆有13个玩具。

问,这些玩具总共能否被5整除?解答:我们可以观察到,如果一个数的个位数字为0或5,那么这个数能被5整除。

否则,不能被5整除。

现在,我们来看一下这两堆玩具的总数。

第一堆有7个玩具,个位数字是7;第二堆有13个玩具,个位数字是3。

将这两个个位数字相加,7 + 3 = 10。

10的个位数字是0,能被5整除。

因此,这些玩具的总数能被5整除。

六年下册奥数试题:数的整除特征(一)全国通用(含答案)

六年下册奥数试题:数的整除特征(一)全国通用(含答案)

第1讲数的整除特征(一)知识网络数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。

(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。

(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(7)个位上是0、2、4、6、8的数都能被2整除。

(8)个位上是0或者5的数都能被5整除。

(9)若一个整数各位数字之和能被3整除,则这个整数能被3整除。

(10)若一个整数末尾两位数能被4整除,则这个数能被4整除。

(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。

(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除。

重点·难点数的整除概念、性质及整除特征为解决一些整除问题带来了很大方便,在实际问题中应用广泛。

要学好数的整除问题,就必须找到规律,牢记上面的整除性质,不可似是而非。

学法指导能被2和5,4和25,8和125整除的数的特征是分别看这个数的末一位、末两位、末三位。

三位。

我们可以综合推广成一条:我们可以综合推广成一条:我们可以综合推广成一条:末末n 位数能被(或)整除的数,整除的数,本身必能被本身必能被(或)整除;反过来,末n 位数不能被(或)整除的数,本身必不能被(或)整除。

例如,判断253200、371601能否被16整除,因为,所以只要看各数的末四位数能否被16整除。

学习这一讲知识要学会举一反三。

经典例题[例1]在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。

思路剖析这个六位数分别被3、4、5整除,故它应满足如下三个条件:(1)各位数字和是3的奇数;(2)末两位数组成的两位数是4的倍数;的倍数;(3)末位数为0或5。

数的整除的练习题

数的整除的练习题

数的整除的练习题一、选择题1. 一个整数a能被整数b(b≠0)整除,a叫做b的倍数,b叫做a的因数。

这种说法正确吗?A. 正确B. 错误2. 以下哪个数是3的倍数?A. 12B. 45C. 78D. 913. 一个数的最小倍数是它本身,这种说法正确吗?A. 正确B. 错误4. 如果一个数能被2整除,那么它一定是偶数,这种说法正确吗?A. 正确B. 错误5. 一个数的因数的个数是有限的,这种说法正确吗?A. 正确B. 错误二、填空题1. 能被2整除的数的特征是其个位数字是______、______、______、______、______或______。

2. 一个数的约数包括1和这个数的本身,这种说法是______的。

3. 一个数的倍数的个数是______的。

4. 一个数的最小约数是______,最大的约数是______。

5. 如果一个数是偶数,那么它的因数中一定包含______。

三、判断题1. 所有的偶数都能被4整除。

(对/错)2. 一个数的倍数一定大于它的约数。

(对/错)3. 一个数的约数的个数是奇数。

(对/错)4. 一个数的约数中,最小的是1,最大的是它本身。

(对/错)5. 一个数的倍数中,最小的是它本身。

(对/错)四、解答题1. 请找出小于100的数中,能被3整除的数。

2. 证明:如果一个数能被9整除,那么这个数的各位数字之和也能被9整除。

3. 一个数的约数中,最大的约数是它本身,最小的约数是1,这种说法正确吗?为什么?4. 请解释什么是完全数,并给出一个例子。

5. 如果一个数的各位数字之和能被3整除,那么这个数本身也能被3整除,这种说法正确吗?为什么?五、应用题1. 一个班级有48名学生,如果每组有相同数量的学生,那么每组最多可以有多少名学生?2. 一个数的约数有1、2、3、6,这个数是多少?3. 一个数的倍数有6、12、18、24,这个数是多少?4. 如果一个数的约数中,最小的约数是2,最大的约数是8,那么这个数是多少?5. 一个数的倍数有2、4、8、16,这个数的约数有哪些?。

(完整版)数的整除特征专项训练

(完整版)数的整除特征专项训练

数的整除特征专项训练一、性质1、如果整数A、B都能被C整除,那么他们的和A+B或差A-B也能被C整除。

例如:8整除64,8整除24,那么8整除64+24或64-24。

2、如果A能被B整除,B能被C整除,那么A能被C整除。

例如:30能被15整除,15能被5整除,那么30能被5整除。

二、数的整除特征能被2整除的数的特征:个位数字是0、2、4、6、8。

能被3整除的数的特征:各位数字之和是3的倍数。

能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

能被5整除的数的特征:个位数字是0或5。

能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

能被9整除的数的特征:各位数字之和是9的倍数。

能被11整除的数的特征:奇数位上的数字之和与偶数位上的数字之和的差能被11整除。

能被7、11、13整除的数的特征:末三位数与末三位数以前的数所组成的数之差能被7、11、13整除。

一个三位数连续写偶数次,所得的数能被7、11、13整除三、例题与练习例1、判断下面的数是否能整除。

例2、判断下面的数是否能整除。

例3、四位数2□2□能同时被8、9整除,那么这个四位数是多少?练一练在3□2□的方框里填入合适的数字,使这个四位数能被15整除,这样的四位数中最大的是多少?例4、将1、2、3、4这四个数任意排列,可组成若干个四位数,在这些四位数中,能被11整除的数最小是多少?能被4整除的数最小是多少?1、由1、2、3这三个数任意排列,可组成若干个三位数,在这些三位数中,能被11整除的数有哪些?2、从0、3、5、7这四个数中选择三个数,排成一个三位数,使它能同时被2、3、5整除,这样的三位数最大的是哪个?3、在568后面补上三个数字,组成一个六位数,使它能被3、4、5整除,这个六位数最小是多少?例5、某个七位数1993口口口能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是多少?1、四位数45□□能同时被4、9整除,这个四位数最小是多少?2、六位数36□2□□能同时被3、4、5整除,这个六位数最大是多少?3、用0、2、3、5、6这五个数字中的四个能组成能被11整除的四位数,这些四位数中最小的一个是多少?4、七位数23□354□能被72整除,两个□中的数的乘积是多少?5、已知五位数3□6□5是75的倍数,这样的五位数最大的一个是多少?6、由1、2、5、6、7、9这六个数字所组成的六位数中,能被11整除的最大的数是多少?。

第1章数的整除(基础典型易错压轴)分类专项训练(原卷版)

第1章数的整除(基础典型易错压轴)分类专项训练(原卷版)

第1章数的整除(基础、典型、易错、压轴)分类专项训练【基础】一、单选题1.(2021·上海松江·期末)下面说法中,正确的语句是()A.3.6能被1.8整除B.互素的两个正整数没有公因数C.1既不是素数也不是合数D.任意一个数a的倒数是1a2.(2021·上海·九年级专题练习)三个连续的正整数的和一定是()A.奇数B.偶数C.素数D.合数3.(2017·上海市玉华中学期中)一个汽车站内有两路公共汽车,甲路汽车每隔m分钟发一次车,乙路汽车每隔n分钟发一次车(m、n均为正整数),这两路汽车同时发车后,紧接的下次又同时发车的时间(分钟)是m和n的()A.公因数B.最大公因数C.公倍数D.最小公倍数4.(2021·上海虹口·期末)下列说法正确的是()A.一个素数只有一个因数B.所有偶数都是合数C.一个合数至少有3个因数D.素数都是奇数5.(2020·上海市静安区实验中学课时练习)在51=3⨯17中,3和17都是51的()A.素因数B.倍数C.素数D.质数6.(2020·上海市静安区实验中学课时练习)12的素因数是()A.2,2,3 B.1,2,3 C.4,6,12 D.1,2,3,47.(2020·上海市静安区实验中学课时练习)100以内(包括100)的自然数中,素数有25个,那么合数有()个。

A.74 B.75 C.76 D.无法确定8.(2020·上海市静安区实验中学课时练习)在正整数中,2是()A.最小的奇数B.最小的合数C.最小的素数9.(2020·上海市静安区实验中学课时练习)一个素数()A.没有因数B.只有一个因数C.只有两个因数D.有三个因数10.(2020·上海市静安区实验中学课时练习)如果A=2⨯2⨯3,B=2⨯3⨯3.那么A和B的最大公因数是()A .2B .3C .6D .1211.(2020·上海市静安区实验中学课时练习)下列各组数中,不是互素的是( )A .1和23B .13和33C .22和143D .91和15812.(2021·上海·九年级专题练习)下列说法中正确的是( )A .一个数的倍数总比它的因数大B .任何正整数的因数至少有两个C .1是所有正整数的因数D .在正整数中,所有的偶数都是合数二、填空题13.(2019·上海静安·期中)10以内的素数有____________.14.(2020·上海静安·期末)分解素因数30=____________.15.(2021·上海长宁·期末)如果237A =⨯⨯,235B =⨯⨯,那么A 和B 的最小公倍数是______. 16.(2020·上海市静安区实验中学课时练习)42的素因数有_________________________.17.(2020·上海市静安区实验中学课时练习)最小的素数是__________,最小的合数是__________. 18.(2020·上海市静安区实验中学课时练习)1~10以内既是偶数又是素数的数是_____;既是奇数又是合数的数是_______;既不是素数,也不是合数的数是________.19.(2020·上海市静安区实验中学课时练习)相邻两数的最大公因数是_____.20.(2020·上海市静安区实验中学课时练习)16和20的公因数有________________,它们的最大公因数是_______________.21.(2020·上海市静安区实验中学课时练习)7和28的最大公因数是______.22.(2021·上海·九年级专题练习)在 12和9,14和15, 18和1中,互素的是___________________; 23.(2020·上海市静安区实验中学课时练习)如果除了_________和__________以外,还有其他因数,这样的数叫做_______________.24.(2020·上海市静安区实验中学课时练习)正整数可以分成_______,素数和________三类. 25.(2020·上海市静安区实验中学课时练习)求几个整数的最大公因数,只要把它们所有的公有的_____________连乘,所得的积就是它们的最大公因数.三、解答题26.(2020·上海市静安区实验中学课时练习)把下面各数填在适当的圈内.1,2,3,4,7,9,13,16,23,27,31,39,41,47,55,67,79,87,95.【典型】一、单选题1.有一个三位数,百位数字是最小的奇数,十位上是0,个位上是一位数中最大的偶数.这个数是( ) A .102 B .201 C .801 D .1082.a 是b 的3倍(b 不为0),a 和b 的最大公因数是( )A .aB .bC .3D .无法确定二、填空题3.7和28的公因数有________,它们的最大公因数是________.4.如果1a b +=,那么a 与b 的最大公因数是______;如果3a b =÷,那么a 与b 的最大公因数是_____.三、解答题5.把一张长30厘、宽24厘米的长方形纸裁成同样大小面积尽可能大的正方形,纸没有剩余,可以裁多少个正方形?(画出示意图)【易错】1.对于自然数n ,如果能找到自然数a 和b ,(a 、b 均不为0)使得n =a +b +ab ,那么n 就称为“好数”.如3=1+1+1×1,所以3是“好数”.在1到100这100个自然数中,有多少个“好数”?【压轴】一、填空题1.两个数之和为90,且它们的最大公因数为15,则这两个数为________________,________________.2.用0、1、2三个数字组成一个能被12整除的最小四位数是________.二、解答题3.一个正整数,由N个数字组成,若它的第一位数可以被1整除,它的前两位数可以被2整除,前三位数可以被3整除,…,一直到前N位数可以被N整除,则这样的数叫做“精巧数”.如:123的第一位数“1”可以被1整除,前两位数“12”可以被2整除,“123”可以被3整除,则123是一个“精巧数”.(1)243 “精巧数”(填是或不是);3246 “精巧数”(填是或不是);(2)若四位数123k是一个“精巧数”,请直接写出k的值.4.有三根铁丝,长分别为45米、36米、63米,要把它们都截成同样长的小段,每段长都是整数且不许有剩余,共能截多少个小段?5.不超过100的正整数中,能被25整除的数有哪些?不超过1000的正整数中,能被125整除的数有哪些?6.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?7.用96朵红花和72朵白花做花束,如果每个花束里的红花朵数都相等,每个花束里的白花朵数也都相等.每个花束里最少有几朵花?8.一本陈年老账上记着:84只桶共□22.4□元.□处字迹已不清楚,请把□处数字补上,并求出桶的单价.9.两个数的最大公因数是21.最小公倍数是252,则这两个数的和是多少?10.在自然数1到100中所有的具有6个因数的自然数的和是多少?11.算式()()()12342930⨯-⨯⨯-⨯⨯⨯-的积为正数还是负数?积的末尾有多少个零?12.12345679899100⨯⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯的积的末尾有几个连续的0?13.已知a 是一个素数,b 是一个偶数,22018a b +=,求b 的值,并把它分解素因数.14.如果某个小于100的正整数同时具备下列条件:①这个数与1的差是素数;②这个数被2除所得的商也是素数;③这个数除以9的余数是5.那么我们称这样的数是幸运数.在那么两位数中,最大的幸运数是几?15.如果一个自然数n能被不超过的所有的非0自然数整除,我们称自然数n为“牛数”.请写出所有的牛数.。

六年级下册数学专题练习:6、整除及数字整除特征 全国通用(含解析)

六年级下册数学专题练习:6、整除及数字整除特征 全国通用(含解析)

6、整除及数字整除特征【数字整除特征】例1 42□28□是99的倍数,这个数除以99所得的商是__。

(上海市第五届小学数学竞赛试题)讲析:能被99整除的数,一定能被9和11整除。

设千位上和个位上分别填上数字a、b,则:各位上数字之和为[16+(a+b)]。

要使原数能被9整除,必须使[16+(a+b)]是9的倍数,即(a+b)之和只能取2或11。

又原数奇位上的数字和减去偶位上数字和的差是(8+a-b)或(b-a-8),要使原数能被11整除,必须使(8+a-b)或(b-a-8)是11的倍数。

经验证,(b-a-8)是11的倍数不合。

所以a-b=3。

又a+b=2或11,可求得a=7,b=4。

从而很容易求出商为427284÷99=4316。

例2 某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是__。

(1993年全国小学数学奥林匹克初赛试题)讲析:因为2、3、4、5、6、7、8、9的最小公倍数是2520。

而1993000÷2520=790余2200。

于是再加上(2520-2200)=320时,就可以了。

所以最后三位数字依次是3、2、0。

例3 七位数175□62□的末位数字是__的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。

(上海市第五届小学数学竞赛试题)讲析:设千位上和个位上的数字分别是a和b。

则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。

要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。

则有 b-a=8,或者a-b=3。

①当 b-a=8时,b可取9、8;②当 a-b=3时,b可取6、5、4、3、2、1、0。

所以,当这个七位数的末位数字取7时,不管千位上数字是几,这个七位数都不是11的倍数。

例4 下面这个四十一位数55......5□99 (9)(其中5和9各有20个)能被7整除,那么中间方格内的数字是__。

11倍数的特点(word文档良心出品)

11倍数的特点(word文档良心出品)

11倍数的特点数的整除(能被7、9、11、13整除的数的特征)专题训练知识梳理:1、整数a除以整数b(b≠0),所得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)。

2、如果整数a能被整数b(b≠0)整除,则称a是b的倍数,b是a的约数。

3、能被9整除的数,其数字和一定是9的倍数.4、能被11整除的数的特征是这个数的奇数位数字之和与偶数位数字之和的差能被11整除。

5、一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位以前的数字组成的数的差(以大减小)能否被7(11或13)整除。

例题精讲1、判断47382能否被3或9整除?分析:能被3或9整除的数的特点是这个数各数位上的数字和是3或9的倍数。

47382各个数位的数字相加和是24,24是3的倍数但不是9的倍数。

解:47382能被3整除,不能被9整除2、判断42559,7295871能否被11整除?分析:一个三位以上的整数能否被11整除,只须看这个数的奇数位数字之和与偶数位数字之和的差能否被11整除。

解:42559奇数位的数字和为4+5+9=18,偶数位的数字和为2+5=7,18-7=11是11的倍数,所以42559能被11整除;7295871奇数位的数字和为7+9+8+1=25,偶数位的数字和为2+5+7=14,25-14=11是11的倍数,所以7295871也能被11整除。

3、32335能否被7整除?分析:一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位以前的数字组成的数的差(以大减小)能否被7(11或13)整除。

解:335-32=303,303不能被7整除,所以32335不能被7整除。

专题特训1、把516至少连续写几次,所组成的数能被9整除?2、四位数36AB能同时被2、3、4、5、9整除,则A=B=?3、173□是一个四位数,在这个□中先后填入3个数,所得到的3个四位数依次能被9、11、6整除,先后填入的3个数分别是几?4、九位数8765□4321能被21整除,□中应填几?5、用1~7七个数字组成不重复数字且能被11整除的七位数,最大的七位数与最小七位的数差是多少?6、一个五位数a236b能被63整除,这个五位数是多少?7、如果六位数1992口口能被105整除,那么它的最后两位数是多少?8、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数可能是多少?9、一个六位数23□56□是88的倍数,这个数除以88所得的商可能是多少?10、42□28□是99的倍数,这个数除以99所得的商是多少?。

整除特点练习题

整除特点练习题

整除特点练习题1. 整除特点的概念在数学中,两个数中,如果一个数被另一个数整除,我们就说这个数具有整除特点。

例如,如果一个数能够被2整除,那么它具有2的整除特点。

2. 举例说明整除特点a) 数字末尾为0或者偶数时,可以被2整除。

例如,12、240、100都具有2的整除特点。

b) 个位、十位、百位数字之和能被3整除时,可以被3整除。

例如,45、333、900都具有3的整除特点。

c) 个位数字为0或者5时,可以被5整除。

例如,25、450、505都具有5的整除特点。

d) 个位数字为0并且它前面的数字是偶数时,可以被10整除。

例如,10、30、120都具有10的整除特点。

e) 个位数字为0时,可以被任何整数整除。

例如,100、1000、50000都具有任何整数的整除特点。

3. 练习题a) 请列举出满足以下条件的数:i) 能被2和3同时整除;ii) 能被2、3和5同时整除;iii) 能被3、5和10同时整除。

b) 请找出满足以下条件的最小正整数:i) 能被2、3、5和10同时整除;ii) 能被1、2、3、4、5、6、7、8、9、10全部整除。

4. 解答a)i) 满足条件的数为6、12、18、24、30...以此类推。

ii) 满足条件的数为30、60、90、120、150...以此类推。

iii) 满足条件的数为30、60、90、120、150...以此类推。

b)i) 最小正整数为30,它能被2、3、5和10同时整除。

ii) 最小正整数为2520,它能被1、2、3、4、5、6、7、8、9、10全部整除。

5. 总结整除特点是数学中常见的一个概念,通过对数字的特定规律进行观察和分析,我们可以找出满足整除特点的数。

这种特点的应用广泛,不仅可以用于数学题目的解答,还可以用于简化计算和解决实际问题。

通过练习题的训练,我们可以更好地理解和掌握整除特点的应用。

数的整除(能被7、9、11、13整除的数的特征)专题训练

数的整除(能被7、9、11、13整除的数的特征)专题训练

数的整除(能被7、9、11、13整除的数的特征)专题训练知识梳理:1、整数a除以整数b(b≠0),所得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)。

2、如果整数a能被整数b(b≠0)整除,则称a是b的倍数,b是a的约数。

3、整除的数,其数字和一定是9的倍数.4、能被11整除的数的特征是这个数的奇数位数字之和与偶数位数字之和的差能被11整除。

5、一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位以前的数字组成的数的差(以大减小)能否被7(11或13)整除。

例题精讲1、判断47382能否被3或9整除?分析:能被3或9整除的数的特点是这个数各数位上的数字和是3或9的倍数。

47382各个数位的数字相加和是24,24是3的倍数但不是9的倍数。

解:47382能被3整除,不能被9整除2、判断42559,7295871能否被11整除?分析:一个三位以上的整数能否被11整除,只须看这个数的奇数位数字之和与偶数位数字之和的差能否被11整除。

解:42559奇数位的数字和为4+5+9=18,偶数位的数字和为2+5=7,18-7=11是11的倍数,所以42559能被11整除;7295871奇数位的数字和为7+9+8+1=25,偶数位的数字和为2+5+7=14,25-14=11是11的倍数,所以7295871也能被11整除。

3、32335能否被7整除?分析:一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位以前的数字组成的数的差(以大减小)能否被7(11或13)整除。

解:335-32=303,303不能被7整除,所以32335不能被7整除。

专题特训1、把516至少连续写几次,所组成的数能被9整除?2、四位数36AB能同时被2、3、4、5、9整除,则A=B=?3、173□是一个四位数,在这个□中先后填入3个数,所得到的3个四位数依次能被9、11、6整除,先后填入的3个数分别是几?4、九位数8765□4321能被21整除,□中应填几?5、用1~7七个数字组成不重复数字且能被11整除的七位数,最大的七位数与最小七位的数差是多少?6、一个五位数a236b能被63整除,这个五位数是多少?7、如果六位数1992口口能被105整除,那么它的最后两位数是多少?8、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数可能是多少?9、一个六位数23□56□是88的倍数,这个数除以88所得的商可能是多少?10、42□28□是99的倍数,这个数除以99所得的商是多少?1、解:能被9整除的数的特点是各数位的数字和能被9整除,5+1+6=12,至少再连续写三次,得到516516516各数字的和为36,才能被9整除。

六年级下册奥数试题数的整除特征(二)全国通用(含答案).docx

六年级下册奥数试题数的整除特征(二)全国通用(含答案).docx

第2讲数的整除特征(二)知识网络上一章我们已经学习了被2、3、5、8、9、25、125等整除的数的特征和一些整除的基本性质,但作为奥林匹克竞赛仅仅掌握以上知识还不够,这一讲继续学习有关数的整除知识。

(1)能被7、11和13整除的数的特征:如果一个数的末三位数字所表示的数与末三以前的数字所表示的差(一定要大数减小数)能被7、11或13整除,那么这个数就能被7、11或13整除。

(2)能被11整除的数的特征还有:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

重点•难点同学们在牢记上面整除的数的特征的同时,重点应弄清楚能被7、11、13整除的数为什么有上面的特征。

学法指导上面数的整除特征可以结合例子来理解。

例如:443716,判断它能否被7、11、13整除的方法是:716 —443=273。

因为273能被7整除,所以443716能被7整除;因为273不能被11整除,所以443716 不能被11整除;因为273能被13整除,所以443716能被13整除。

记忆要理论联系实际。

经典例题[例1]用1、9、8、8这四个数字能排成几个被11除余8的四位数?思路剖析能被11整除的数的特征是这个数的奇位数字之和与偶位数字之和的差能被11整除。

一个数要能被11除余8,那么这样的数加上3后,就能被11整除了,于是得到被11除余8的数的特征是:将偶位数字相加得到一个和数,再将奇位数字相加再加上3,得到另一个和数,如果这两个和数之差能被11整除,那么这个数就是被11除余8的数。

解答要把1、9、8、8排成被11除余8的四位数,可以把这四个数字分成两组,每组两个数字,其中一组作为千位和十位数,它们的和记作p,另外一组作为百位和个位数,它们之和加上3记作q,且p 和q的差能被11整除,满足要求的分组只可能是p=1+8=9, q= (9+8)+3=20, q—p=20 —9=11,所以1988是被11除余8的四位数。

能被4、7、8、11、13整除的数的特征及习题

能被4、7、8、11、13整除的数的特征及习题

能被4、7、8、11、13整除的数的特征及其它一、被4或25整除的数的特征如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.二、被7整除的数的特征方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除.此法也适用于判断能否被11或13整除的问题。

如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.方法3、首位缩小法,在首位或前几位,减于7的倍数.例如,判断456669能不能被7整除,456669—420000=36669,只要32669能被7整除即可。

上海教育版六上第1章《数的整除》word单元测验

上海教育版六上第1章《数的整除》word单元测验

上海市康健外国语实验中学六年级数学六()班姓名:学号:日期:年月日第一章数的整除测验(2)第一章数的整除测验(2)分数________________一、填空题1. 算式15÷5=3中,能被整除;2. 12的因数有;3. 最小的自然数是,最小的正整数是;4. 8和12的最小公倍数是;5. 18的因数中,奇数有,偶数有;6. 与任何一个正整数互素的数是;7. 10以内既是素数又是偶数的数是;8.用一个数去除30、45、60都能整除,这个数最大是;9.从3、0、8、5中任选取几个数字,组成能被2整除的最大三位数是,能被5整除的最小的四位数是。

10. 如果a和18的最大公因数是a,那么最小公倍数是;11. 三个连续的奇数中,最小的数是χ,则最大的数是;12. 两个合数相乘的积是96,这两个合数可以是(全部写出)。

二、选择题13. 己知正整数a能整除23,那么a是…………………………()A.46B.23C.任何自然数D.1和2314. 最小的奇数加上最小的素数的和是…………………………()A.2B.3C.4D.515. 下列说法是正确的个数是……………………………………()①2.4÷1.2=2,可以说2.4被1.2整除。

②一个整数没有最大的倍数,有最大的因数。

③因为12÷6=2,所以说12是倍数,6是因数。

④能被2整除的数,一定也能被10整除。

A.0个B.1个C.2个D.3个16. 下列分解素因数正确的是……………………………………()A.18=2×3×3B.18=1×2×3×3C.18=2×9D.2×3×3=1817. 下列各数中,与6是互素的合数是…………………………()A.8B.9C.11D.35三、简答题18. 把102和385分别分解素因数。

19. 求48和36的最大公因数和最小公倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数的整除特征专项训练
一、性质
1、如果整数A、B都能被C整除,那么他们的和A+B或差A-B也能被C整除。

例如:8整除64,8整除24,那么8整除64+24或64-24。

2、如果A能被B整除,B能被C整除,那么A能被C整除。

例如:30能被15整除,15能被5整除,那么30能被5整除。

二、数的整除特征
能被2整除的数的特征:个位数字是0、2、4、6、8。

能被3整除的数的特征:各位数字之和是3的倍数。

能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

能被5整除的数的特征:个位数字是0或5。

能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

能被9整除的数的特征:各位数字之和是9的倍数。

能被11整除的数的特征:奇数位上的数字之和与偶数位上的数字之和的差能被11整除。

能被7、11、13整除的数的特征:末三位数与末三位数以前的数所组成的数之差能被7、11、13整除。

一个三位数连续写偶数次,所得的数能被7、11、13整除
三、例题与练习
例1、判断下面的数是否能整除。

例2、判断下面的数是否能整除。

例3、四位数2□2□能同时被8、9整除,那么这个四位数是多少?
练一练
在3□2□的方框里填入合适的数字,使这个四位数能被15整除,这样的四位数中最大的是多少?
例4、将1、2、3、4这四个数任意排列,可组成若干个四位数,在这些四位数中,能被11整除的数最小是多少?能被4整除的数最小是多少?
1、由1、
2、3这三个数任意排列,可组成若干个三位数,在这些三位数中,能被11整除的数有哪些?
2、从0、
3、5、7这四个数中选择三个数,排成一个三位数,使它能同时被2、3、5整除,这样的三位数最大的是哪个?
3、在568后面补上三个数字,组成一个六位数,使它能被3、
4、5整除,这个六位数最小是多少?
例5、某个七位数1993口口口能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是多少?
1、四位数45□□能同时被4、9整除,这个四位数最小是多少?
2、六位数36□2□□能同时被
3、
4、5整除,这个六位数最大是多少?
3、用0、2、3、5、6这五个数字中的四个能组成能被11整除的四位数,这些四位数中最小的一个是多少?
4、七位数23□354□能被72整除,两个□中的数的乘积是多少?
5、已知五位数3□6□5是75的倍数,这样的五位数最大的一个是多少?
6、由1、2、5、6、
7、9这六个数字所组成的六位数中,能被11整除的最大的数是多少?。

相关文档
最新文档