2020高考数学最新二轮复习函数性质

合集下载

数学二轮复习专题练三核心热点突破专题六函数与导数第1讲函数图象与性质含解析

数学二轮复习专题练三核心热点突破专题六函数与导数第1讲函数图象与性质含解析

专题六函数与导数第1讲函数图象与性质高考定位1。

以基本初等函数为载体,考查函数的定义域、值域、最值、奇偶性、单调性和周期性;2.利用函数的图象研究函数性质,能用函数的图象与性质解决简单问题;3。

函数与方程思想、数形结合思想是高考的重要思想方法。

真题感悟1。

(2020·全国Ⅱ卷)设函数f(x)=ln|2x+1|-ln|2x-1|,则f(x)()A。

是偶函数,且在错误!单调递增B。

是奇函数,且在错误!单调递减C。

是偶函数,且在错误!单调递增D。

是奇函数,且在错误!单调递减解析f(x)=ln|2x+1|-ln|2x-1|的定义域为错误!.∵f(-x)=ln|-2x+1|-ln|-2x-1|=ln|2x-1|-ln|2x+1|=-f(x),∴f(x)为奇函数,故排除A,C。

又当x∈错误!时,f(x)=ln(-2x-1)-ln(1-2x)=ln 错误!=ln 错误!=ln 错误!,∵y=1+错误!在错误!上单调递减,由复合函数的单调性可得f(x)在错误!上单调递减。

故选D.答案D2。

(2019·全国Ⅰ卷)函数f(x)=错误!在[-π,π]的图象大致为()解析显然f(-x)=-f(x),x∈[-π,π],所以f(x)为奇函数,排除A;又当x=π时,f(π)=错误!〉0,排除B,C,只有D适合.答案D3.(2020·新高考山东、海南卷)若定义在R上的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是()A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]解析因为函数f(x)为定义在R上的奇函数,则f(0)=0。

又f(x)在(-∞,0)单调递减,且f(2)=0,画出函数f(x)的大致图象如图(1)所示,则函数f(x-1)的大致图象如图(2)所示。

当x≤0时,要满足xf(x-1)≥0,则f(x-1)≤0,得-1≤x≤0.当x>0时,要满足xf(x-1)≥0,则f(x-1)≥0,得1≤x≤3。

2020届高考数学二轮复习(全国通用)知识要点与典例精解:函数的图象与性质

2020届高考数学二轮复习(全国通用)知识要点与典例精解:函数的图象与性质

专题六 函数与导数 第1讲 函数的图象与性质[全国卷3年考情分析](1)高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域、分段函数、函数图象的判断及函数的奇偶性、周期性等.(2)此部分内容有时也出现在选择、填空中的压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.[例1] (1)已知f(x)=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A.-2B.2C.3D.-3(2)已知函数f(x)=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.[解析] (1)由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2,故选B. (2)当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,y =(1-2a )x +3a 必须取遍(-∞,1]内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.[答案] (1)B (2)⎣⎡⎭⎫0,12 [解题方略]1.函数定义域的求法求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.2.分段函数问题的5种常见类型及解题策略[跟踪训练]1.已知函数f (x )的定义域为[0,2],则函数g (x )=f ⎝⎛⎭⎫12x +8-2x 的定义域为( ) A.[0,3] B.[0,2] C.[1,2]D.[1,3]解析:选A 由题意,函数f (x )的定义域为[0,2],即x ∈[0,2],因为函数g (x )=f ⎝⎛⎭⎫12x +8-2x ,所以⎩⎪⎨⎪⎧0≤12x ≤2,8-2x ≥0,得0≤x ≤3,即函数g (x )的定义域为[0,3],故选A.2.函数f (x )=2+|x |-x2(-2<x ≤2)的值域为( )A.(2.4)B.[2,4)C.[2,4]D.(2,4]解析:选B 法一:因为f (x )=2+|x |-x2(-2<x ≤2),所以f (x )=⎩⎪⎨⎪⎧2-x ,-2<x ≤0,2,0<x ≤2. 函数f (x )的图象如图所示,由图象得,函数f (x )的值域为[2,4).法二:因为f (x )=2+|x |-x2(-2<x ≤2),当-2<x ≤0时,f (x )=2-x ,所以2≤f (x )<4;当0<x ≤2时,f (x )=2.综上,函数f (x )的值域为[2,4).3.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A.①② B.①③ C.②③D.①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.题型一 函数图象的识别[例2] (1)(2019·开封市定位考试)函数f (x )的大致图象如图所示,则函数f (x )的解析式可以是( )A.f (x )=x 2·sin|x |B.f (x )=⎝⎛⎭⎫x -1x ·cos 2x C.f (x )=()e x-e-xcos ⎝⎛⎭⎫π2xD.f (x )=x ln|x ||x |(2)(2019·福建五校第二次联考)函数f(x )=x 2+ln(e -x )ln(e +x )的图象大致为( )[解析] (1)由题中图象可知,在原点处没有图象,故函数的定义域为{}x |x ≠0,故排除选项A 、C ;又函数图象与x 轴只有两个交点,f (x )=⎝⎛⎭⎫x -1x cos 2x 中cos 2x =0有无数个根,。

2020高考数学二轮复习第2部分专题一三角函数与解三角形必考点文1

2020高考数学二轮复习第2部分专题一三角函数与解三角形必考点文1

(6)若求出2x -的范围,再求函数的最值,同样得分.1.已知函数f(x)=4cos ωx·sin(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间上的单调性.解:(1)f(x)=4cos ωxsin ⎝ ⎛⎭⎪⎫ωx+π4=2sin ωxcos ωx+2cos2ωx=(sin 2ωx+cos 2ωx)+ 2=2sin +.因为f(x)的最小正周期为π,且ω>0,所以=π,故ω=1.(2)由(1)知,f(x)=2sin +.若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当≤2x+≤,即≤x≤时,f(x)单调递减.综上可知,f(x)在上单调递增,在上单调递减.类型二 学会审题[例2] 已知函数f(x)=sin(ωx+φ)的图象关于直线x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f =,求cos 的值.审题路线图(1)条件:f x 图象上相邻两个最高点距离为π(2)条件:f ⎝ ⎛⎭⎪⎫α2=343.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,向量m =(2b,1),n =(2a -c ,cos C),且m∥n.(1)若b2=ac ,试判断△ABC 的形状;(2)求y =1-的值域.解:(1)由已知,m∥n,则2bcos C =2a -c ,由正弦定理,得2sin Bcos C =2sin(B +C)-sin C ,即2sin Bcos C =2sin Bcos C +2cos Bsin C -sin C , 在△ABC 中,sin C≠0,因而2cos B =1,则B =.又b2=ac ,b2=a2+c2-2accos B ,因而ac =a2+c2-2accos ,即(a -c)2=0,所以a =c ,△ABC 为等边三角形.(2)y =1-2cos 2A 1+tan A=1-2cos2A -sin2A1+sin A cos A=1-2cos A(cos A -sin A)=sin 2A -cos 2A=sin ,由已知条件B =知A∈.所以,2A -∈.因而所求函数的值域为(-1,].4.已知函数f(x)=2sinsin ,x∈R.(1)求函数f(x)的最小正周期;(2)在△ABC 中,若A =,c =2,且锐角C 满足f =,求△ABC 的面积S.解:(1)由题意得,。

【高三数学】二轮复习:专题二 第1讲 三角函数的图象与性质

【高三数学】二轮复习:专题二 第1讲 三角函数的图象与性质
sin(ωx+φ)=(
)

A.sin x + 3

B.sin 3 -2x

C.cos 2x + 6
D.cos
5
-2x
6
答案 BC

解析 由题中函数图象可知2 =
2π π
+
3 6
x=
2


π

= 2,则 T=π,所以 ω= =


=2,当
π

= 12时,y=-1,所以 2× 12+φ= 2 +2kπ(k∈Z),解得 φ=2kπ+ 3 (k∈Z),所
看图比较容易得出,困难的是求ω和φ,常用如下两种方法
(1)由ω= 2 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或
T
下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.
(2)代入图象中已知点的坐标,将一些已知点(最高点、最低点或“零点”)坐
标代入解析式,再结合图象解出ω和φ,若对A,ω的符号或对φ的范围有要求,
高考数学
专题二
第1讲 三角函数的图象与性质
1.“1”的变换
1=sin 2α+cos 2α=cos 2α(1+tan2α).
这是针对函数中的单个变量x
2.三角函数图象变换
而言的
三角函数y=sin ωx的图象向左或向右平移φ(φ>0)个单位长度,得到的图象
对应函数解析式是y=sin[ω(x+φ)]或y=sin[ω(x-φ)],而不是y=sin(ωx+φ)或
以函数的解析式为 y=sin 2 +

2020年高考数学(理)总复习:基本初等函数性质及应用(解析版)

2020年高考数学(理)总复习:基本初等函数性质及应用(解析版)

51∴log a b =2 或2.∵ a> b>1,∴ log a b<log a a =答案】 4; 22020 年高考数学(理)总复习:基本初等函数性质及应用题型一 求函数值 题型要点解析】 已知函数的解析式, 求函数值, 常用代入法, 代入时,一定要注意函数的对应法则与自 变量取值范围的对应关系,有时要借助函数性质与运算性质进行转化. -1 例 1.若函数 f (x )= a |2x -4|(a>0,且 a ≠1),满足 f (1)= 19,则 f (x )的单调递减区间是 ( )A . (-∞, 2]B . [2,+∞ )C .[ -2,+∞ )D . (-∞,- 2] 解析】 由 f (1)= 91,得 a 2= 19,解得 a = 31或 a =- 31(舍去 ),即 f (x )= 9 9 3 3 1 2 x 41 由于 y 3=|2x -4|在(-∞ ,2]上递减,在 [2,+∞)上递增,所以 f (x )在(-∞,2]上递增,在 [2,+∞) 上递减. 答案】 B 3x 2+ln 1+x 2+x , x ≥ 0, 例 2.已知函数 f (x )= 若 f (x -1)<f (2x +1),则 x 的取值范 3x 2+ln 1+x 2-x , x<0, 围为 若 x>0,则- x<0,f (-x )=3(-x )2+ln ( 1+ -x 2+x )=3x 2+ln ( 1+x 2+x ) =f (x ),同理可得, x<0 时, f ( - x ) = f (x ),且 x =0 时,f (0)=f (0),所以 f (x )是偶函数.因为当 解析】 x>0时,函数 f (x )单调递增,所以不等式 f (x -1)<f (2x +1)等价于 |x - 1|<|2x +1|,整理得 x (x + 2)>0 ,解得 x>0 或 x<-2. 答案】 (-∞,- 2)∪ (0,+∞ ) 例 3 .已知 5a>b>1,若 log a b + log b a =2, a b = b a ,则 a=,b =1∵logab +log b a = log a b + logab 2解析】题组训练一求函数值1.已知函数f(x)是定义在R 上的偶函数,且在区间[0,+∞ )单调递增.若实数 a 满足1 f(log2 a)+f (log2a)≤2f(1),则 a 的最小值是( )A.32B. 11C.I2D. 211【解析】log 2a=-log 2a,f (log 2 a)+f (log 2 a)≤2f(1),所以2f(log2 a)≤2f(1),所以|log211a|≤1,解得12≤a≤2,所以 a 的最小值是21,故选 C.【答案】C-12.若函数f(x)=a x-2-2a(a>0,a≠ 1)的图象恒过定点x0, ,则函数f(x)在[0,3]上的最3小值等于 ______ .【解析】令x-2=0得x=2,且f(2)=1-2a,所以函数f(x)的图象恒过定点(2,1-2a),1 1 -2因此x0=2,a=31,于是f(x)=13x-2-32,f(x)在R 上单调递减,故函数f(x)在[0,3]上的最小1 值为f(3) =-3.I 【答案】-13题型二比较函数值大小【题型要点解析】三招破解指数、对数、幂函数值的大小比较问题(1) 底数相同,指数不同的幂用指数函数的单调性进行比较;(2) 底数相同,真数不同的对数值用对数函数的单调性比较;(3) 底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图即 b>c>1;设 f(x)=x 3-3x ,则 f(3)=0,∴x =3 是 f(x)的零点, ∵f ′(x)=3x 2-3x · ln ,3∴f ′(3)=27 - 27ln 3<0,f ′(4)=48-81ln 3<0,∴函数 f(x)在(3,4)上是单调减函数, ∴ f( π)f<(3) =0, π3<3π,∴ a<b ;又∵ e π<πe <π3,∴ c<a ;综上 b>a>c.故选 D.答案】象比较大小.例 1 .已知 a =b =c =125,则 ( )A . a<b<cB . b<c<aC .c<b<aD . b<a<c解析】 因为 a =243,245, c =1 25253,显然有 b<a ,又 a22=43<53=c , 故 b<a<c.答案】例 2 .已知 a = π3,b = 3π,c = e π, 则 a 、 b 、 c 的大小关系为 ( A . a>b>c B .a>c>b C .b>c>aD . b>a>c解析】a = π3,b = 3π,c = e π,∴函数 y =x π是 R 上的增函数,且 3>e>1,∴ 3π>e π, ∴π3-3π<0,即题组训练二 比较函数值大小1.若 a>b>1,0<c<1,则 ( )A .a c <b cB .ab c <ba cC .alog b c<blog a cD . log a c<log b c解析】 对 A :由于 0<c<1, ∴函数 y =x c 在 R 上单调递增,则 a>b>1? a c >b c ,A 错误;对 B :由于- 1<c - 1<0,∴函数y =x c -1在(1,+∞ )上单调递减,又∴ a>b>1,∴a c -1<b c 1? ba c <ab c,B 错误;对 C :要比较aln c bln c ln c alogb c 和 blog a c ,只需比较 ln b和ln a,只需比较bln bln c和,只需bln b 和aln a;构造函数f(x)=xln x(x>1),则f′(x)=ln x+1>1>0 ,f( x)在(1,aln a11+∞ )上单调递增,因此f(a)>f(b)>0? aln a>bln b>0? aln a<bln b,又由0<c<1 得ln c<0,∴ ln c ln c ln c ln caln a>bln b? blog a c>alog b c,C 正确;对D:要比较log a c 和log b c,只需比较ln a和ln b,而函11数y=ln x在(1,+∞ )上单调递增,故a>b>1? ln a>ln b>0? ln a<ln b,又由0<c<1得ln c<0,∴l ln n c a>l l n n c b? log a c>log b c,D 错误.故选 C.【答案】C2.设函数f(x)=e x+2x-4,g(x)=ln x+2x2-5,若实数a,b分别是f(x),g(x)的零点,则( )A .g(a)<0<f(b) B.f(b)<0<g(a)C.0<g(a)<f(b) D.f(b)<g(a)<0【解析】依题意,f(0) =-3<0,f(1)=e-2>0,且函数f(x)是增函数,因此函数f(x)的零点在区间(0,1)内,即0<a<1.g(1)=-3<0,g(2)=ln 2+3>0,函数g(x)的零点在区间(1,2)内,即1<b<2,于是有f(b)>f(1)>0.又函数g(x)在(0,1)内是增函数,因此有g(a)<g(1)<0,g(a)<0<f(b),选 A.【答案】A题型三求参数的取值范围【题型要点解析】利用指、对数函数的图象与性质可以求解的两类热点问题及其注意点(1) 对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时、常利用数形结合思想求解.(2) 一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(3) 注意点:利用对数函数图象求解对数型函数性质及对数方程、不等式问题时切记图象的范围、形状一定要准确,否则数形结合时将误解.对于含参数的指数、指数问题,在应用单调性时,要注意对底数进行讨论.解决对数问题时,首先要考虑定义域,其次再利用性质求解.1<2.故选 C.答案】 C题组训练三 求参数的取值范围- x + 6, x ≤ 2, 例 1 .若函数 f(x)= 3+log a x ,x>2(a>0,且 a ≠1)的值域是 [4,+∞ ),则实数 a 的取值范围是 ______ .【解析】 当 x ≤2 时, f(x)=-x +6,f(x)在(-∞,2]上为减函数,∴ f(x)∈[4+∞).当x>2 时,若 a ∈ (0,1) ,则 f(x)=3+log a x 在(2,+ ∞ )上为减函数, f(x)∈(-∞,3+ log a 2),显1- 2a x + 3a ,x <1,例 1.已知 f(x)=ln x , x ≥ 1的值域为 R ,那么 a 的取值范围是 ( )A . (-∞,- 1]B.1,12C. 1,12D.0,12解析】 要使函数 f(x)的值域为 R ,需使1-2a >0,1a <2,ln 1≤ 1- 2a + 3a ,∴- 1 ≤ aa ≥-1,例2.设函数 f(x)= x +x1, x ≤ 0,2x,x>0,则满足f(x)+f x 1>1的 x 的取值范围是 2解析】 1由题意, 当 x> 21时,f (x)+ f111=2x +2x - >1 恒成立, 即 x> 满足题意;1当 0<x ≤12时,11 1 f(x)+f x=2x +x - + 1>1 恒成立,即 0<x ≤ 满足题意;当 x ≤0 时,222f(x)+ f x 12 1 1 1 1=x +1+x -2+1>1,解得 x>-4,即- 4<x ≤0.综上,x 的取值范围是 ,答案】1, 4答案】 C示不满足题意,∴ a>1,此时 f (x )在 (2,+∞)上为增函数, f (x )∈(3+log a 2,+∞ ),由题意可 知(3+log a 2,+ ∞)? [4 ,+ ∞ ),则 3+log a 2≥ 4,即 log a 2≥1,∴1<a ≤2.答案】 (1,2]21 x2- 2x +a ,x<2, 4x -3,x ≥12a ≥ - 1.分离参数得 a ≥-x 2+2x -1=- (x - 1)2,函数 y =-(x -1)2开口向下,且对称轴为 x11= 1,故在, 上单调递增,所以函数在 x = 处有最大值,最大值为-221即 a ≥- 1.4答案】专题训练】 、选择题1.定义在 R 上的函数 f (x )满足 f (-x )=- f (x ),f (x -2)=f (x +2),且 x ∈( - 1,0)时, f (x )1=2x + 5,则 f (log 220)等于 ( )A .14 C .- 1 D .- 5【解析】 由 f(x - 2)= f(x +2),得 f(x)=f(x +4),因为 4<log 220<5 ,所以 f(log 220)=f(log 2204 4 1-4)=- f(4-log 220)=-f(log 2 5)=- (2log 25+ 5)=- 1.例 2.设函数 f (x ) =的最小值为- 1,则实数 a 的取值范围是解析】1当 x ≥21时, 4x -3 为增函数,最小值为11f =- 1,故当 x< 时, x 2- 2x +22 21, =- 4,42.定义在R 上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0)(x1≠x2),都有<0,则下列结论正确的是( )A.f(0.32)<f(20.3)<f(log 25)B.f(log25)<f(20.3)<f(0.32)C.f(log25)<f(0.32)<f(20.3)D.f(0.32)<f(log 25)<f(20.3)【解析】∵对任意的x1,x2∈(-∞,0),f x1 - f x2 且x1≠ x2,都有<0 ,x1-x2∴f(x)在(-∞,0)上是减函数.又∵ f(x)是R 上的偶函数,∴f(x)在(0,+∞)上是增函数.∵ 0<0.32 <20.3<log 25,∴ f(0.32)<f(20.3)<f(log25).故选 A.【答案】A1 3.已知f(x)是奇函数,且f(2-x)=f(x),当x∈[2,3] 时,f(x)=log2(x-1),则f等于3()A .2-log23B .log23-log 27C.log 27-log 23 D.log23- 2【解析】因为f(x)是奇函数,且f(2-x)=f(x) ,所以f(x-2)=-f(x),所以f(x-4)=f(x),1 1 5所以 f 1= f 2 1=f53 3 3f x1 - f x23答案】 A又当 x ∈[2,3]时, f(x)= log 2(x - 1),1所以 f=log 23- 2,故选 D.3【答案】 D14.已知函数 y = f( x)是 R 上的偶函数,设 a =ln π, b =(ln π2 3), c = ln π,当对任意的 x 1,x 2∈(0,+∞ )时,都有 (x 1-x 2) ·f ([x 1)- f (x 2)]<0 ,则 ( )A .f(a)>f(b)>f(c)B .f(b)>f(a)>f(c)C .f(c)>f(b)>f(a)D . f(c)>f(a)>f(b)【解析】 由 (x 1-x 2)[f(x 1)-f(x 2)]<0 可知,f x 1 - f x 2-x <0,所以 y =f(x)在(0,+ ∞ )上单调递减.又因为函数 y = f(x)是 R 上的偶函 x 1 -2=2ln π,所以 |b|>|a|>|c|,因此 f(c)>f(a)>f(b),故选 D.【答案】 D5.已知函数 y = f( x)的图象关于 y 轴对称,且当 x ∈ ( -∞, 0)时,f(x)+xf ′(x)<0 成立, a = (20.2 ) ·f(20.2), b = (log π3) ·f(log π3), c = (log 39) ·f(log 39),则 a ,b ,c 的大小关系是 ( )A . b>a>cB . c>a>bC .c>b>aD . a>c>b【解析】 因为函数 y =f(x)关于 y 轴对称, 所以函数 y =xf(x)为奇函数. 因为 [xf(x)]′=f(x)+ xf ′ ( x),且当 x ∈(-∞,0)时, [xf(x)]′=f(x)+xf ′ (x)<0,则函数 y =xf(x)在(-∞,0)上单调递减;因为 y = xf (x)为奇函数,所以当 x ∈ (0,+ ∞ )时,函数 y = xf( x)单调递减.因为 1<20.2<2,0<log π3<1, log 39=2,所以 0<log π3<20.2<log 39,所以 b>a>c ,选 A.所以 f 7 = log 2 733 41 =log 23=2- log 23,x21数,所以y=f(x)在(-∞,0)上单调递增,由于a=ln =-ln π<-1,b=(ln π) 2,c=ln π π答案】A6.设a=0.23,b=log0.30.2,c=log30.2,则a,b,c 大小关系正确的是( )A .a>b>c B.b>a>cC.b>c>a D.c>b>a【解析】根据指数函数和对数函数的增减性知,因为0<a=0.23<0.20=1,b=log0.30.2>log0.30.3=1,c=log30.2<log 31=0,所以b>a>c,故选 B.【答案】Ba,a- b ≤2,+7.对任意实数a,b 定义运算“ Δ”:aΔb=设f(x)=3x 1Δ(1-x),若函b,a-b>2,数f(x)与函数g(x)=x2-6x 在区间(m,m+1)上均为减函数,则实数m 的取值范围是( )A .[-1,2] B.(0,3]C.[0,2] D.[1,3]-x+1,x>0 ,【解析】由题意得f(x) =x+1x+1,x≤0,3∴函数f(x)在(0,+∞)上单调递减,函数g(x)=(x-3)2-9 在(-∞,3]上单调递减,若m≥0,函数f(x)与g( x)在区间(m,m+1)上均为减函数,则得0≤m≤2,故选 C.m+1≤3,【答案】Cfx ,x>0,8.已知函数f(x) =a|log2 x|+1(a≠0),定义函数F(x)=给出下列命题:f -x ,x<0,①F(x)=|f(x)|;②函数F(x)是偶函数;③当a<0 时,若0<m<n<1,则有F(m)-F(n)<0 成立;④当a>0 时,函数y=F(x)-2有 4 个零点.其中正确命题的个数为( )A .0 B.1C.2 D. 3fx ,x>0 【解析】①∵函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=,∴ |f(x)|=f -x ,x<0 |a |log2x|+1|,∴ F(x)≠|f(x)|,①不对;f -x ,x<0②∵ F(-x)==F(x),∴函数F(x)是偶函数,故②正确;fx ,x>0③∵当a<0 时,若0<m<n<1,∴ |log2m|>|log2n|,∴ a|log2m|+1<a|log2n|+1,即F(m)<F( n) 成立,故F(m)-F(n)<0 成立,所以③正确;f x ,x>0,④∵ f(x)=a|log2x|+1(a≠0),定义函数F(x)=f -x ,x<0,∴x>0 时,(0,1)单调递减,(1,+∞)单调递增,∴x>0 时,F(x)的最小值为F(1)=1,故x>0 时,F(x)与y=-2有 2 个交点,∵函数F(x)是偶函数,∴ x<0 时, F (x)与y=-2有2个交点,故当a>0时,函数y=F(x)-2有4个零点,所以④正确.答案】D二、填空题1.已知奇函数f(x)在R 上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c 的大小关系为____ .【解析】依题意a=g(-log25.1)=( -log25.1) f·( -log 25.1)=log25.1f(log 25.1)=g(log 25.1).因为f(x)在R 上是增函数,可设0<x1< x2,则f(x1)<f(x2).从而x1f(x2)<x2f( x2),即g(x1)< g(x2).所以g(x)在(0,+∞ )上亦为增函数.又log25.1>0,20.8>0,3>0,且log25.1<log28=3,20.8<21<3,而20.8<21=log24<log25.1,所以3> log25.1 > 20.8> 0,所以c> a>b.答案】b<a<cx,x≤122.已知函数f(x)=若不等式f(x)≤5-mx 恒成立,则实数m 的取值ln x- 1 ,1<x≤ 2范围是_______【解析】设g(x)=5-mx,则函数g(x) 的图象是过点(0,5) 的直线.在同一坐标系内画出函数y=f(x)和g(x) =5-mx的图象,如图所示.∵不等式f(x)≤5-mx恒成立,∴函数y=f(x)图象不在函数g(x)=5-mx 的图象的上方.结合图象可得,① 当m<0时不成立;②当m=0时成立;③当m>0时,需满足当x=2时,55g(2)=5-2m≥0,解得0<m≤2.综上可得0≤m≤2.∴实数m 的取值范围是0,52 .xln 1+x +x2,x≥03.已知函数f(x)=2,若f(-a)+f(a)≤2f(1),则实数 a 的取值范-xln 1-x +x2,x<0围是( )A.(-∞,-1]∪[1 ,+∞ ) B.[-1,0]C.[0,1] D.[-1,1]xln 1+x +x2,x≥0解析】函数f(x)=2-xln 1-x +x2,x<0将x 换为-x,函数值不变,即有f(x)图象关于y 轴对称,即f(x)为偶函数,有f(-x)=xf(x),当x≥0 时,f(x)=xln(1+x)+x2的导数为f′(x)=ln (1 +x)+1+x+2x≥0,则f( x)在[0 ,++∞)递增,f(-a)+f(a)≤2f(1),即为2f(a)≤2f(1),可得f(|a|))≤f(1),可得|a|≤1,解得-1≤a≤1.答案】D3a - 1 x-4a ,x<1 ,4.已知函数f(x)=在R 上不是单调函数,则实数 a 的取值范log a x,x≥1围是_______ .【解析】当函数f(x)在R 上为减函数时,有3a-1<0 且0<a<1 且(3a-1) ·+14a≥log a1,11解得7≤a< 3,当函数f(x)在R 上为增函数时,有3a-1>0 且a>1 且(3a-1) ·+14a≤log a1,a73无解.11 ∴当函数 f(x)在 R 上为单调函数时,有 17≤a<13,∴当函数 f(x)在 R 上不是单调函数时,731 1 1 1有 a>0 且 a ≠1 且 a<7或 a ≥3即 0<a< 7或3≤ a<1 或 a>1.7 3 7 35.定义函数 y = f(x), x ∈I ,若存在常数 M ,对于任意 x 1∈ I ,存在唯一的 x 2∈ I ,使得 f x 1 + f x 2 f x1 +2f x2=M ,则称函数 f(x)在 I 上的“均值”为 M ,已知 数 f(x)=log 2x 在[1,22 016]上的“均值”为解析】 根据定义,函数 y = f(x), x ∈ I ,若存在常数21当 x 1∈[1,22 016]时,选定 x 2=2x1 ∈[1,22 016],可得 M =21log 2(x 1x 2)=1 008.x 12答案】 1 00811,∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,即 b 2b =bb 2.∴2b =b 2,∴b =2,a =4.f( x)= log 2x , x ∈ [1,2 2 016] ,则函M ,对于任意 x 1∈ I ,存在唯一f x 1 + f x 2的 x 2∈I ,使得 1 22=M ,则称函数 f(x)在 I 上的 “均值” 为 M ,令 x 1x 2=1·22 016=22 016, 22 016。

函数的图象与性质+课件-2025届高三数学二轮复习

函数的图象与性质+课件-2025届高三数学二轮复习
∴-2<x<0,∴-1<x+1<1,
则f(x)的定义域为(-1,1),
由-1<2x-1<1,得0<x<1,
∴f(2x-1)的定义域为(0,1).故选C.
- 2 -2, < 0,
(2)(2024·江西南昌二模)已知 f(x)= log ( + 1), ≥ 0, 则不等式f(x)<2的解
2
集是( B )
+
1
1
=3+3
2lo g 2 3
=
10
.故
3
(2)已知函数f(x)=x2+2x,g(x)=ex-a,若f(g(2))=3,则实数a=( A )
A.2
B.1
C.0
D.-1
解析 令g(2)=t,则t>0.令f(t)=3,则t2+2t-3=0,解得t=1或t=-3(舍去),
即g(2)=e2-a=1,解得a=2.故选A.
(方法二
复合函数法)因为函数y=2x在R上是增函数,要使复合函数
f(x)=2x(x-a)在(0,1)内单调递减,只需函数

单调递减,所以 ≥1,即
2
a≥2.故选 D.
2
h(x)=x(x-a)=(- 2 )
2
− 4 在(0,1)内
2.(2023·新高考Ⅱ,4)若
A.-1
2-1
f(x)=(x+a)ln2+1为偶函数,则

-1- 5
m= 2 (舍去).
所以实数 a 的取值范围为
5-1
,
2
+∞ .
考点三 函数的性质
考向1已知函数的单调性、奇偶性、最值求参数

2020高考二轮复习三角函数与解三角形

2020高考二轮复习三角函数与解三角形

第1讲 三角函数的图象与性质[全国卷3年考情分析]函数的单调性、奇偶性、周期性、对称性及最值,并常与三角恒等变换交汇命题.(2)高考对此部分内容主要以选择题、填空题的形式考查,难度为中等偏下,大多出现在第6~12或14~16题位置上.考点一 三角函数的定义、诱导公式及基本关系1.[三角函数的定义及应用](2019·昆明市诊断测试)在平面直角坐标系中,角α的始边与x 轴的正半轴重合,终边与单位圆交于点P ⎝⎛⎭⎫-35,45,则sin ⎝⎛⎭⎫α+π4=( ) A .210B .-210C .7210D .-72102.[同角三角函数的关系式及应用]若tan α=12,则sin 4α-cos 4α的值为( )A .-15B .-35C .15D .353.[诱导公式及应用]设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12 B .32 C .0 D .-121.[与数列交汇]设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个A .25B .50C .75D .1002.[与算法交汇]某一算法程序框图如图所示,则输出的S 的值为( )A.32B .-32C.3D .03.[借助数学文化考查]《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径等于4 m 的弧田,按照上述经验公式计算所得弧田面积约是( )A .6 m 2B .9 m 2C .12 m 2D .15 m 2考点二 三角函数的图象与解析式题型一 由“图”定“式”[例1] (1)(2019·成都市第二次诊断性检测)将函数f (x )的图象上所有点向右平移π4个单位长度,得到函数g (x )的图象.若函数g (x )=A sin(ωx+φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=sin ⎝⎛⎭⎫x +5π12B .f (x )=-cos ⎝⎛⎭⎫2x +π3 C .f (x )=cos ⎝⎛⎭⎫2x +π3 D .f (x )=sin ⎝⎛⎭⎫2x +7π12 (2)(2019·长沙市统一模拟考试)已知P⎝⎛⎭⎫12,2是函数f (x )=A sin(ωx +φ)(A >0,ω>0)图象的一个最高点,B ,C 是与P 相邻的两个最低点.若|BC |=6,则f (x )的图象的对称中心可A .(0,0)B .(1,0)C .(2,0)D .(3,0)题型二 三角函数的图象变换[例2] (1)(2019·福建五校第二次联考)为得到函数y =cos ⎝⎛⎭⎫2x +π3的图象,只需将函数y =sin 2x 的图象( )A .向右平移5π12个单位长度B .向左平移5π12个单位长度C .向右平移5π6个单位长度D .向左平移5π6个单位长度(2)(2019·开封模拟)将函数y =sin 2x -cos 2x 的图象向左平移m (m >0)个单位长度以后得到的图象与函数y =k sin x cos x (k >0)的图象重合,则k +m 的最小值是( )A .2+π4B .2+3π4C .2+5π12D .2+7π12考点三 三角函数的性质[例3] (1)(2019·武昌区调研考试)已知函数f (x )=3sin ωx -cos ωx (ω>0)的最小正周期为2π,则f (x )的单调递增区间是( )A.⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤2k π-π3,2k π+2π3(k ∈Z ) C.⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎡⎦⎤2k π-π6,2k π+5π6(k ∈Z )(2)(2019·全国卷Ⅰ)关于函数f (x )=sin|x |+|sin x |有下述四个结论: ①f (x )是偶函数;②f (x )在区间⎝⎛⎭⎫π2,π单调递增; ③f (x )在[-π,π]有4个零点;④f (x )的最大值为2.其中所有正确结论的编号是( ) A .①②④ B .②④ C .①④D .①③(3)(2019·江西省五校协作体试题)若函数f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)在区间(π,2π)内没有最值,则ω的取值范围是( )A.⎝⎛⎦⎤0,112∪⎣⎡⎦⎤14,23 B .⎝⎛⎦⎤0,16∪⎣⎡⎦⎤13,23 C.⎣⎡⎦⎤14,23 D .⎣⎡⎦⎤13,231.(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝⎛⎭⎫π4,π2单调递增的是( ) A .f (x )=|cos 2x | B .f (x )=|sin 2x | C .f (x )=cos|x | D .f (x )=sin|x |2.(2019·广东六校第一次联考)将函数f (x )=cos 2x 的图象向右平移π4个单位长度后得到函数g (x )的图象,则g (x )具有性质( )A .最大值为1,图象关于直线x =π2对称B .为奇函数,在⎝⎛⎭⎫0,π4上单调递增 C .为偶函数,在⎝⎛⎭⎫-3π8,π8上单调递增 D .周期为π,图象关于点⎝⎛⎭⎫3π8,0对称3.已知f (x )=sin(ωx +φ)(ω>0,|φ|<π)在区间[2,4]上单调,且f (2)=1,f (4)=-1,则ω=________,f (x )在区间⎣⎡⎭⎫12,3上的值域是________.考点四 三角函数图象与性质的综合应用[例4] (2019·浙江高考)设函数f (x )=sin x ,x ∈R . (1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值;(2)求函数y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π122+⎣⎡⎦⎤f ⎝⎛⎭⎫x +π42的值域.1.已知函数f (x )=sin 2x +3sin x cos x . (1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32,求m 的最小值.2.已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π6个单位长度,再向上平移1个单位长度,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.3. (2019·全国卷Ⅲ)设函数f (x )=sin ⎝⎛⎭⎫ωx +π5(ω>0),已知f (x )在[0,2π]有且仅有5个零点,下述四个结论:①f (x )在(0,2π)有且仅有3个极大值点; ②f (x )在(0,2π)有且仅有2个极小值点; ③f (x )在⎝⎛⎭⎫0,π10单调递增; ④ ω的取值范围是⎣⎡⎭⎫125,2910. 其中所有正确结论的编号是( ) A .①④ B .②③ C .①②③ D .①③④【课后专项练习】A 组一、选择题1.(2019·广东省七校联考)函数f (x )=tan ⎝⎛⎭⎫x 2-π6的单调递增区间是( )A.⎣⎡⎦⎤2k π-2π3,2k π+4π3,k ∈ZB.⎝⎛⎭⎫2k π-2π3,2k π+4π3,k ∈ZC.⎣⎡⎦⎤4k π-2π3,4k π+4π3,k ∈ZD.⎝⎛⎭⎫4k π-2π3,4k π+4π3,k ∈Z2.(2019·全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( )A .2B .32C .1D .123.(2019·江西七校第一次联考)函数y =sin ⎝⎛⎭⎫2x -π6的图象与函数y =cos ⎝⎛⎭⎫x -π3的图象( ) A .有相同的对称轴但无相同的对称中心 B .有相同的对称中心但无相同的对称轴 C .既有相同的对称轴也有相同的对称中心 D .既无相同的对称中心也无相同的对称轴4.(2019·蓉城名校第一次联考)若将函数g (x )图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位长度得到f (x )的图象,已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则( )A .g (x )=sin ⎝⎛⎭⎫4x +π3 B .g (x )=sin ⎝⎛⎭⎫4x +2π3 C .g (x )=sin 4xD .g (x )=cos x5.(2019·湖南省湘东六校联考)已知函数f (x )=|sin x |·|cos x |,则下列说法不正确的是( )A .f (x )的图象关于直线x =π2对称B .f (x )的最小正周期为π2C .(π,0)是f (x )图象的一个对称中心D .f (x )在区间⎣⎡⎦⎤π4,π2上单调递减6.(2019·昆明市质量检测)将函数y =sin ⎝⎛⎭⎫2x -π4的图象向左平移π4个单位长度,所得图象对应的函数在区间[-m ,m ]上单调递增,则m 的最大值为( )A.π8 B.π4 C.3π8 D.π2二、填空题7.(2019·广东揭阳检测改编)已知f (x )=sin ⎣⎡⎦⎤π3(x +1)-3cos ⎣⎡⎦⎤π3(x +1),则f (x )的最小正周期为________,f (1)+f (2)+…+f (2 019)=________.8.(2019·天津高考改编)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝⎛⎭⎫π4=2,则f ⎝⎛⎭⎫3π8=________.9.(2019·福州模拟)已知函数f (x )=sin 2x +2sin 2x -1在[0,m ]上单调递增,则m 的最大值是________.三、解答题10.设函数f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2,其中0<ω<3.已知f ⎝⎛⎭⎫π6=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤-π4,3π4上的最小值.11.已知m =⎝⎛⎭⎫sin ⎝⎛⎭⎫x -π6,1,n =(cos x,1). (1)若m ∥n ,求tan x 的值;(2)若函数f (x )=m ·n ,x ∈[0,π],求f (x )的单调递增区间.12.已知函数f (x )=cos x (23sin x +cos x )-sin 2x .(1)求函数f (x )的最小正周期;(2)若当x ∈⎣⎡⎦⎤0,π2时,不等式f (x )≥m 有解,求实数m 的取值范围.B 组1.已知向量m =(2sin ωx ,sin ωx ),n =(cos ωx ,-23sin ωx )(ω>0),函数f (x )=m ·n +3,直线x =x 1,x =x 2是函数y =f (x )的图象的任意两条对称轴,且|x 1-x 2|的最小值为π2.(1)求ω的值;(2)求函数f (x )的单调递增区间.2.已知函数f (x )=3sin 2ωx +cos 4ωx -sin 4ωx +1(0<ω<1),若点⎝⎛⎭⎫-π6,1是函数f (x )图象的一个对称中心.(1)求f (x )的解析式,并求距y 轴最近的一条对称轴的方程; (2)先列表,再作出函数f (x )在区间[-π,π]上的图象.3.函数f (x )=A sin ⎝⎛⎭⎫ωx -π6+1(A >0,ω>0)的最小值为-1,其图象相邻两个最高点之间的距离为π.(1)求函数f (x )的解析式;(2)设α∈⎝⎛⎭⎫0,π2,f ⎝⎛⎭⎫α2=2,求α的值.4.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0≤φ≤π2图象的相邻两对称轴之间的距离为π2,且在x =π8时取得最大值1. (1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤0,9π8时,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3,求x 1+x 2+x 3的取值范围.第2讲 三角恒等变换与解三角形[全国卷3年考情分析](2)若无解答题,一般在选择题或填空题各有一题,主要考查三角恒等变换、解三角形,难度一般,一般出现在第4~9或第13~15题位置上.(3)若以解答题命题形式出现,主要考查三角函数与解三角形的综合问题,一般出现在解答题第17题(或18题)位置上,难度中等.考点一 三角恒等变换1.[化简求值]2sin 47°- 3sin 17°cos 17°=( )A .-3B .-1C .3D .12.[条件求值](2019·全国卷Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α=( ) A.15 B .55C.33D .2553.[给值求角]已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12 B .π3 C.π4D .π64.[与三角函数结合](2019·全国卷Ⅰ)函数f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x 的最小值为________.1.[与复数交汇](2019·洛阳尖子生第二次联考)若复数z =⎝⎛⎭⎫cos θ-45+⎝⎛⎭⎫sin θ-35i 是纯虚数(i 为虚数单位),则tan ⎝⎛⎭⎫θ-π4的值为( ) A .-7 B .-17C .7D .-7或-172.[与不等式交汇]已知tan 2α=34,α∈⎝⎛⎭⎫-π2,π2,函数f (x )=sin(x +α)-sin(x -α)-2sin α,且对任意的实数x ,不等式f (x )≥0恒成立,则sin ⎝⎛⎭⎫α-π4的值为( ) A .-255B .-55C .-235D .-353.[与向量交汇]设向量a =(cos α,-1),b =(2,sin α),若a ⊥b ,则tan ⎝⎛⎭⎫α-π4=________.考点二 利用正、余弦定理解三角形 题型一 利用正、余弦定理进行边、角计算[例1] (2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A-sin B sin C . (1)求A ;(2)若2a +b =2c ,求sin C .题型二 利用正、余弦定理进行面积计算[例2] (2019·全国卷Ⅲ)△ABC 的内角A ,B ,C 对边分别为a ,b ,c ,已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.题型三 正、余弦定理的实际应用[例3] 如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.1.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .32.(2019·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sinB =4a sinC .(1)求cos B 的值; (2)求sin ⎝⎛⎭⎫2B +π6的值.3.(2019·广东六校第一次联考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b 2+c 2-a 2=ac cos C +c 2cos A .(1)求A ;(2)若△ABC 的面积S △ABC =2534,且a =5,求sin B +sin C .考点三 解三角形的综合问题题型一 与平面几何的综合问题[例4] (2019·洛阳尖子生第二次联考)如图,在平面四边形ABCD 中,∠ABC 为锐角,AD ⊥BD ,AC 平分∠BAD ,BC =23,BD =3+6,△BCD 的面积S =3(2+3)2.(1)求CD ; (2)求∠ABC .题型二 与三角函数的交汇问题[例5] 如图,在△ABC 中,三个内角B ,A ,C 成等差数列,且AC =10,BC =15.(1)求△ABC 的面积;(2)已知平面直角坐标系xOy 中点D (10,0),若函数f (x )=M sin(ωx +φ)⎝⎛⎭⎫M >0,ω>0,|φ|<π2的图象经过A ,C ,D 三点,且A ,D 为f (x )的图象与x 轴相邻的两个交点,求f (x )的解析式.1.(2019·福州模拟)如图,在△ABC 中,M 是边BC 的中点,cos ∠BAM =5714,cos ∠AMC=-277.(1)求B ;(2)若AM =21,求△AMC 的面积.2.已知函数f (x )=cos 2x +3sin(π-x )cos(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.3.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测.如图所示,A ,B ,C 三地位于同一水平面上,这种仪器在C 地进行弹射实验,观测点A ,B 两地相距100 m ,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217s ,在A 地测得该仪器至最高点H 处的仰角为30°.(1)求A ,C 两地间的距离;(2)求这种仪器的垂直弹射高度HC .(已知声音的传播速度为340 m/s)【课后通关练习】A 组一、选择题1.(2019·全国卷Ⅰ)tan 255°=( ) A .-23 B .-2+3 C .2-3 D .2+32.(2019·重庆市学业质量调研)已知15sin θ=cos(2π-θ),则tan 2θ=( ) A .-157 B .157 C .-158D .1583.(2019·湖北省5月冲刺)已知α为锐角,β为第二象限角,且cos(α-β)=12,sin(α+β)=12,则sin(3α-β)=( )A .-12B .12C .-32D .324.(2019·湖南省湘东六校联考)若△ABC 的三个内角满足6sin A =4sin B =3sin C ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能5.(2019·长春市质量监测(一))在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b =a cos C +12c ,则角A 等于( )A .60°B .120°C .45°D .135°6.已知台风中心位于城市A 东偏北α(α为锐角)的150千米处,以v 千米/时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)的200千米处,若cos α=34cos β,则v =( )A .60B .80C .100D .125二、填空题7.(2019·浙江高考)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =________,cos ∠ABD =________.8.(2019·开封市定位考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为________.9.(2019·安徽五校联盟第二次质检)如图,在平面四边形ABCD 中,AD =2,sin ∠CAD =2114,3AC sin ∠BAC +BC cos B =2BC ,且B +D =π,则△ABC 的面积的最大值为________.三、解答题10.(2019·北京高考)在△ABC 中,a =3,b -c =2,cos B =-12.(1)求b ,c 的值; (2)求sin(B -C )的值.11.(2019·长沙模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B .(1)求B ;(2)若b =27,tan C =32,求△ABC 的面积.12.(2019·武汉部分学校调研)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,sin 2B =sin 2A +sin 2C -3sin A sin C .(1)求B ;(2)求sin A +cos C 的取值范围.B 组1.(2019·重庆市七校联合考试)如图,在平面四边形ABCD 中,E 为AB 边上一点,连接CE ,DE .CB =2,BE =1,∠B =∠CED =2π3.(1)求sin ∠AED 的值; (2)若AB ∥CD ,求CD 的长.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin A sin B =cos 2C2,(c -3b )sin C=(a +b )(sin A -sin B ).(1)求A和B;(2)若△ABC的面积为3,求BC边上的中线AM的长.3.(2019·昆明质量检测)△ABC的内角A,B,C所对的边分别为a,b,c,已知2(c-a cos B)=3b.(1)求A;(2)若a=2,求△ABC面积的取值范围.4.(2019·福州市质量检测)△ABC的内角A,B,C的对边分别为a,b,c.若角A,B,C成等差数列,且b=3 2.(1)求△ABC的外接圆直径;(2)求a+c的取值范围.。

2020浙江高考数学二轮讲义:专题一第2讲函数图象与性质Word版含解析

2020浙江高考数学二轮讲义:专题一第2讲函数图象与性质Word版含解析

第 2 讲函数图象与性质函数及其表示[ 核心提炼 ]1.函数的三因素定义域、值域和对应关系是确立函数的三因素,是一个整体,研究函数问题务必按照“定义域优先”的原则.2.分段函数若函数在其定义域内,对于自变量的不一样取值区间,有着不一样的对应关系,这样的函数往常叫做分段函数.分段函数固然由几部分构成,但它表示的是一个函数.[ 典型例题 ]x, 0<x<1,若 f(a)= f(a+ 1),则 f 1= ( )(1) 设 f(x) =2( x-1), x≥ 1, aA . 2 B. 4 C. 6 D . 8m+x2, |x|≥ 1,的图象过点 (1, 1),函数 g( x)是二次函数,若函数 f(g(x))(2)设函数 f(x) =x, |x|<1的值域是 [0,+∞ ),则函数 g(x)的值域是 ( )A . (-∞,- 1]∪ [1,+∞ ) B. (-∞,- 1]∪ [0 ,+∞ )C. [0,+∞ ) D. [1,+∞ )【分析】(1)当 0<a<1 时, a+ 1>1 ,f(a)=a, f(a+ 1)= 2(a+ 1- 1)= 2a,因为 f(a)= f(a+ 1),所以a=2a,1解得 a=4或 a= 0(舍去 ).1所以 f a= f(4) = 2× (4- 1)= 6.当 a>1 时, a+ 1>2,所以 f(a)= 2(a- 1), f(a+ 1)=2(a+1- 1)= 2a,所以 2(a- 1)= 2a,无解.当 a= 1 时, a+ 1= 2, f(1)= 0,f(2) = 2,不切合题意.1综上, f a= 6.应选 C.m+ x2, |x|≥ 1,(2)因为函数f(x)=的图象过点(1,1),所以m+ 1= 1,x, |x|<1x2, |x|≥ 1,解得m= 0,所以f(x)=画出函数y= f(x)的图象(以下图),x, |x|<1.A,B ,易知,当g(x)的值域是[0,+∞ )时, f(g(x)) 因为函数g(x)是二次函数,值域不会是选项的值域是 [0,+∞ ).应选 C.【答案】(1)C(2)C(1)在求分段函数的函数值时,必定要注意自变量的值属于哪个区间,再代入相应的分析式求解.当自变量的值不确准时,要分类议论.(2)对于分段函数,已知函数值或函数值范围求自变量的值或范围时,应依据每一段的解析式分别求解,但要注意查验所求自变量的值或范围能否切合相应段的自变量的取值范围.[ 对点训练 ]ln (x+ 1)的定义域是 ( )1.函数 f(x)=x- 2A.(- 1,+∞ )B. [- 1,+∞ )C. [- 1, 2)∪ (2,+∞ )D. (- 1,2)∪(2,+∞ )ln( x+ 1)x+ 1>0,x>- 1,分析:选 D.要使 f(x)=存心义,需使即x- 2 x- 2≠0,x≠2,所以函数f(x) 的定义域为 (- 1, 2)∪ (2,+∞).应选 D.2.(2019 ·波市九校期末联考宁)已知以下各式:①f(|x|+ 1)= x2+ 1;1②f(x2+1)=x;③f(x2- 2x)= |x|;④f(|x|)= 3x+ 3-x.此中存在函数f(x)对随意的 x∈ R 都建立的是 ( )A .①④B.③④C.①②D.①③分析: 选 A. ① f(|x|+ 1)= x 2+1,由 t = |x|+ 1(t ≥ 1),可得 |x|= t - 1,则 f(t)= (t - 1)2+ 1,即有 f(x)= (x - 1)2+ 1 对 x ∈ R 均建立;111- 1, ②f()= x ,令 t =x 2 (0< t ≤1), x = ±t x 2+ 1+1对 0< t ≤ 1, y = f(t)不可以构成函数,故不建立;③f(x 2- 2x)= |x|,令 t = x 2- 2x ,若 t <- 1时,x ∈ ?;t ≥ - 1,可得 x = 1 ± 1+ t(t ≥ - 1),y = f(t) 不可以构成函数; ④ f(|x|)=3x+ 3-x ,当 x ≥0时,f(x)= 3x + 3-x;当 x < 0 时,f(- x)= 3x + 3-x;将 x 换为- x 可得 f(x)= 3x + 3-x;故恒建立. 综上可得 ①④ 切合条件.函数的图象及应用[ 核心提炼 ]图象变换法常用的有平移变换、伸缩变换和对称变换.特别注意y =f(x)与 y = f(- x), y =- f( x), y =- f(- x), y = f(|x|), y = |f(x)|及 y = af(x)+ b 的互相关系.考向 1 函数图象的变换与辨别[ 典型例题 ](1) 函数 y = sin x 2 的图象是 ()1(2)(2019 宁·波九校模拟 )已知函数 f(x)=,则 y = f(x)的图象大概为 ()x - ln x - 1【分析 】 (1)因为函数 y =sin x 2 是一个偶函数,选项A 、C 的图象都对于原点对称,所π选项 B 与选项 D 的图象都对于y 轴对称,在选项 B 中,当 x = ± 时,函数 y = sin x 2<1, 2ππ π明显不正确,当 x=±2时, y= sin x2=1,而2< 2,应选 D.1 1 1(2)因为 f(e)=e-2 > 0,清除 D. 因为 f(e) = e>0,清除 B. 因为 f(e2)=e2-3 < f(e),故函数在(1,+∞ )为减函数,清除 C,所以选 A.【答案】 (1)D (2)A考向 2 函数图象的应用[ 典型例题 ]已知 f(x)= 2x- 1,g(x)= 1- x2,规定:当 |f(x)|≥ g(x)时, h( x)= |f(x)|;当 |f(x)|<g(x) 时,h(x) =- g(x),则 h(x)( )A .有最小值- 1,最大值 1B.有最大值 1,无最小值C.有最小值- 1,无最大值D.有最大值- 1,无最小值【分析】由题意得,利用平移变换的知识画出函数|f(x)|,g(x)的图象如图,而 h(x)=|f( x) |, |f( x) |≥ g( x),-g( x), |f( x) |<g(x),故 h(x)有最小值- 1,无最大值.【答案】 C(2)函数图象的应用①判断函数的性质.②判断方程根的个数及不等式的解.[ 对点训练 ]1.(2019 绍·兴一中模拟 )函数 y =x 3的图象大概是 ()3x 4-1分析: 选 A. 因为 y =x 3,所以函数 y =x 3是奇函数,图象对于原点对称,故排3 434x - 1x - 1除 C ;当 x <- 1 时,恒有 y < 0,故清除 D ;- 1< x < 0 时, y > 0,故可清除 B ;应选 A.2.(2019 鄞·州高级中学月考 )已知函数 f(x)= e|x -1|,x>0,若对于 f(x)的方程 [f(x)] 2- x 2- 2x + 1, x ≤ 0- 3f(x)+ a = 0(a ∈ R)有 8 个不等的实数根,则a 的取值范围是 ()11 A. 0,4 B. 3,3C . (1, 2)D. 2,94分析: 选 D.作出函数 f( x)= e|x-1|,x>0的图象,以下图:- x 2- 2x + 1,x ≤ 0对于 f(x)的方程 [f(x)] 2- 3f(x) +a = 0 有 8 个不等的实数根,故= 9- 4a>0 , a< 94,由函数f(x)图象可知 f(x)∈ (1,2) ,令 t = f(x),则方程 [f(x)] 2-3f(x)+ a =0 可化为 a =- t 2+ 3t , t ∈ (1, 2).a=- t2+ 3t 表示张口向下,对称轴为直线3t=的抛物线,23 2 3 9可知 a 的最大值为- 2 + 3×2=4,9 9a 的最小值为 2,故 a∈2,4 .综上可知a∈ 2,4 .应选 D.函数的性质及应用[ 核心提炼 ]1.函数的单一性单一性是函数的一个局部性质,一个函数在不一样的区间上能够有不一样的单一性.判断函数单一性常用定义法、图象法及导数法.2.函数的奇偶性函数的奇偶性是函数在定义域上的整体性质.偶函数的图象对于y 轴对称,在对于坐标原点对称的定义区间上拥有相反的单一性;奇函数的图象对于坐标原点对称,在对于坐标原点对称的定义区间上拥有同样的单一性.判断函数奇偶性的常用方法有定义法、图象法及性质法.[ 典型例题 ](1)(2019 浙·江吴越结盟)已知函数f(x)是 R 上的奇函数,当 x> 0 时为减函数,且 f(2) = 0,则会合 { x|f(x- 2)> 0} = ()A . { x|0< x< 2 或 x> 4}B. { x|x< 0 或 x> 4}C. { x|0< x< 2 或 x> 2}D. { x|x< 0 或 2< x< 4}(x+1)2+ sinx(2)设函数 f(x)=的最大值为 M,最小值为 m,则 M+ m= ________.x2+ 1【分析】(1)因为奇函数知足f(2)= 0,所以 f(- 2)=- f(2)= 0.对于 { x|f(x- 2)> 0} ,当 x- 2> 0 时, f(x-2)> 0= f(2),因为当 x∈ (0,+∞ )时, f(x)为减函数,所以0< x-2< 2,所以 2< x< 4;当 x- 2< 0 时,不等式可化为f(x- 2)>0 = f(- 2),因为当 x∈ (0,+∞ )时, f(x)为减函数,所以函数f(x) 在(-∞, 0)上单一递减,所以 x - 2<- 2,所以 x < 0.综上可得,不等式的解集为{ x|x < 0 或 2<x < 4} ,应选 D.2x + sin x2x +sin x (2)f(x)= 1+ ,令 g(x)= x 2 ,则 g(x)为奇函数,对于一个奇函数,其最大值x 2 +1+ 1与最小值之和为 0,即 g(x)max + g(x)min = 0,而 f(x)max = 1+ g(x)max ,f(x)min = 1+ g(x) min ,所以 f(x)max+ f( x)min = M + m = 2.【答案 】 (1)D (2)2(1)四招破解函数的单一性①对于选择、填空题,若能画出图象,一般用数形联合法;②对于由基本初等函数经过加、减运算或复合而成的函数,常转变为基本初等函数的单调性问题来解决;③对于分析式为分式、指数函数式、对数式等较复杂的函数常用导数法;④对于抽象函数一般用定义法.(2)判断函数奇偶性的三个技巧①奇函数的图象对于原点对称,偶函数的图象对于y 轴对称.②确立函数的奇偶性,务必先判断函数的定义域能否对于原点对称.③对于偶函数而言,有f(- x)= f(x)= f(|x|).[ 对点训练 ]1.(2019 ·波诺丁汉大学附中高三调研宁 )已知函数 f( x)是定义在 R 上的偶函数,且在区间[0,+∞ )单一递减,若实数 a 知足 f(log 3a)+ f(log 1a) ≥2f(1),则 a 的取值范围是 ()31A . (0, 3]B . (0, 3]1 C . [3, 3]D . [1, 3]分析: 选 C.因为函数f(x)是定义在 R 上的偶函数,则 f(- x)= f(x),即有 f( x)=f(|x|),由实数 a 知足 f(log 3a)+ f(log 1a)≥ 2f(1) ,3则有 f(log 3a)+ f(- log 3a)≥ 2f(1),即 2f(log 3a)≥ 2f(1)即 f(log 3a) ≥f(1) ,即有 f(|log3a|)≥ f(1) ,因为 f(x)在区间 [0,+∞ )上单一递减,则|log 3a|≤ 1,即有- 1≤log 3a≤1,解得13≤ a≤ 3.2.(2019 ·兴、绍诸暨高考二模 )已知 f( x)是定义在R 上的单一递加函数,则以下四个命题:①若 f(x0)> x0,则 f[f(x0)] > x0;②若 f[f(x0)] >x0,则 f(x0)> x0;③若 f(x)是奇函数,则f[f(x)] 也是奇函数;④若f(x)是奇函数,则f(x1)+ f(x2)=0? x1+ x2= 0,此中正确的有 ()A.4 个B.3 个C.2 个D.1 个分析:选 A. 对于①,因为 f(x)是定义在R 上的单一递加函数,若f(x0)>x0,则f[f(x0)]>f(x0)>x0,故①正确;对于②,当 f[f(x0)] > x0时,若 f( x0)≤ x0,由 f(x)是定义在 R 上的单一递加函数得f[f(x0)] ≤ f(x0)≤ x0与已知矛盾,故②正确;对于③,若 f(x)是奇函数,则 f[f(- x)] = f[- f(x)]=- f[f(x)] ,所以 f[f(x)] 也是奇函数,故③正确;对于④,当 f(x)是奇函数,且是定义在R 上的单一递加函数时,若f(x )+ f(x )= 0,则 f(x )=- f(x )? x =- x ? x +x =0;若 x +x = 0? x11 2 1 2 1 2 1 2 1 2=- x ? f(x )= f(- x )=- f(x )? f(x )+ f(x )= 0,故④正确;应选 A.2 1 2 2 1 2专题加强训练1.(2019 金·华十校调研)已知奇函数f(x)当 x> 0 时, f(x)= x(1- x),则当 x< 0 时, f(x) 的表达式是()A . f( x)=- x(1+ x) C. f( x)= x(1+ x) B. f(x)=- x(1-x) D. f(x)= x(x- 1)分析:选 C.设 x< 0,则- x> 0,又当 x> 0 时, f(x)= x(1- x),故 f(- x)=- x(1+ x),又函数为奇函数,故f(- x)=- f(x)=- x(x+ 1),即 f(x)= x(x+ 1),应选 C.2.已知 f(x)=x+1- 1, f(a)= 2,则 f(- a)= ( ) xA.- 4 B.- 2C.- 1 D.- 31 1 1分析:选 A. 因为 f(x)=x+- 1,所以 f( a)= a+- 1= 2,所以 a+= 3,所以 f(- a)=- ax a a1 1-a- 1=- a+a- 1=- 3- 1=- 4,应选 A.3.以下函数中,既是偶函数又在区间(0,+∞ )上单一递加的是()1A . y = xB . y = |x|- 11 |x|C . y = lg xD . y = 2分析: 选 B.A 中函数 y =1A 错误;B 中函数满x 不是偶函数且在 (0,+ ∞ )上单一递减,故足题意,故 B 正确; C 中函数不是偶函数,故 C 错误; D 中函数不知足在 (0,+ ∞ )上单一递增,应选 B.2× 4x -a4.已知函数 f(x)= 2x 的图象对于原点对称, g(x) =ln(e x+ 1)- bx 是偶函数,则 log a b= ()A . 1B .- 1 1 1C .- 2D.4分析: 选 B.由题意得 f(0) = 0,所以 a = 2.1因为 g(1) = g(- 1),所以 ln(e + 1)- b = ln e + 1 + b ,1 1 所以 b = 2,所以 log a b = log 22=- 1.5.(2019 台·州市高考模拟 )函数 f(x)= x 2+ a(a ∈ R )的图象不行能是 ()|x|分析: 选 A. 直接利用清除法: ① 当 a = 0 时,选项 B 建立;1 D ;②当 a = 1 时, f(x)= x 2+ ,函数的图象近似|x|③当 a =- 1 时, f(x)= x 2-1,函数的图象近似 C.应选 A.|x|2x在区间 [3,4] 上的最大值和最小值分别为M ,6.(2019 ·湖北八校联考 (一 ))设函数 f(x)= x - 2m 2=()m ,则 M23 A. 3 B.8 38C.2D.3分析: 选 D. 易知 f(x)=2x= 2+ 4,所以 f(x)在区间 [3, 4]上单一递减,所以 M = f(3)x - 2 x - 244m 216 8= 2+ 3- 2= 6,m = f(4)= 2+ 4-2= 4,所以 M = 6 = 3.7.(2018·考全国卷高 Ⅲ )以下函数中,其图象与函数y = ln x 的图象对于直线x = 1 对称的是 ()A . y = ln(1 - x)C . y = ln(1+ x)分析: 选 B. 法一: 设所求函数图象上任一点的坐标为B . y = ln(2 - x)D . y = ln(2 + x)(x , y),则其对于直线x = 1的对称点的坐标为 (2- x ,y),由对称性知点 (2-x ,y)在函数 f(x)= ln x 的图象上, 所以 y = ln(2 - x).故选 B.法二: 由题意知,对称轴上的点 (1,0)既在函数 y = ln x 的图象上也在所求函数的图象上,代当选项中的函数表达式逐个查验,清除 A ,C , D ,选 B.8.(2019 ·江台州市书生中学高三月考浙 )设奇函数 f(x)在 (0,+∞ ) 上为单一递减函数,且f(2) = 0,则不等式 3f (- x )- 2f ( x )≤ 0 的解集为 ( )5xA . (-∞,- 2]∪ (0, 2]B . [-2, 0)∪ [2,+∞ )C . (-∞,- 2]∪ [2,+∞ )D . [- 2, 0)∪ (0, 2]3f (- x )- 2f ( x )f ( x )≥ 0.又因 f(x)在 (0, 分析:选 D. 因为函数 f(x)是奇函数,所以≤ 0?5xx+ ∞ )上为单一递减函数,且 f(2)= 0,所以得,函数 f(x)在 ( -∞ , 0)上单一递减且 f(- 2)=0.所以, x ∈(-∞ ,- 2)∪(0, 2)时, f(x)>0 ; x ∈ (- 2, 0)∪ (2,+ ∞ )时 f(x)<0,应选 D.19.(2019 温·州市十校联考 )已知函数 f( x)是定义在 R 上的奇函数,当 x ≥ 0 时, f(x)= 2(|x - a 2|+ |x - 2a 2|- 3a 2).若任取 ? x ∈ R , f(x - 1)≤ f(x),则实数 a 的取值范围为 ()A. - 1, 1B. - 6, 66 6 6 6 C. - 1,1D.-3,33 3331 2|- 3a2) ,所以当 0≤ x≤ a2 1 (a2分析:选 B. 因为当 x≥ 0 时,f(x) = (|x- a2|+ |x- 2a 时,f(x)=2 2 -x+ 2a2- x- 3a2) =- x;当 a2< x< 2a2时, f(x)=1(x- a2+ 2a2-x- 3a2)=- a2;2当 x≥ 2a2时, f(x)=12(x- a2+ x- 2a2- 3a2)= x- 3a2.综上,函数f(x) =1(|x - a2| + |x - 2a2 | - 3a2) 在 x≥ 0 时的解析式等价于 f(x) =2-x, 0≤ x≤a2,-a2, a2< x< 2a2,x- 3a2, x≥ 2a2.所以,依据奇函数的图象对于原点对称作出函数f(x)在 R 上的大概图象以下,2 2 6≤a≤6 察看图象可知,要使 ? x∈ R,f(x- 1)≤ f(x),则需知足 2a - (- 4a )≤ 1,解得- 6 6.10.定义域为R 的函数 f( x)知足 f(x+ 2)=3f(x),当 x∈[0 ,2]时,f(x)= x2- 2x,若 x∈[ - 4,- 2]时, f(x)≥13- t18 t恒建立,则实数t 的取值范围是( )A . (-∞,- 1]∪ (0, 3] B. (-∞,-3]∪ (0,3] C. [- 1, 0)∪ [3,+∞) D. [-3, 0)∪ [3,+∞) 分析:选 C.因为 x∈ [ -4,- 2],所以 x+ 4∈[0 ,2],因为 x∈ [0, 2]时, f(x)= x2- 2x,所以 f(x+ 4) =(x+4)2-2(x+4)= x2+ 6x+ 8.函数 f(x)知足 f(x+ 2)= 3f(x),所以 f(x+ 4)= 3f(x+ 2)= 9f(x).1故 f(x)= (x2+ 6x+ 8),9因为1 3x∈ [ - 4,- 2]时, f(x)≥ 18 t -t 恒建立,所以-11 39=f(x)min≥ 18 t - t ,解得t≥ 3 或- 1≤ t< 0.(1)x- 2, x≤- 1,11. (2019 宁·波镇海中学高三一模)已知函数f(x)= 2 则 f(f(-( x- 2)( |x|- 1), x>- 1.2)) =________,若 f(x)≥2,则 x 的取值范围为 ____________ .分析:由分段函数的表达式得f(- 2)= (1)-2- 2= 4- 2= 2,f(2)= 0,故 f(f(- 2)) = 0. 2若 x≤ - 1,由 f(x)≥ 2 得 (1)x- 2≥ 2 得 (1)x≥ 4,则 2-x≥ 4,22得- x≥ 2,则 x≤ - 2,此时 x≤ - 2.若 x>- 1,由 f(x)≥ 2 得 (x-2)(|x|- 1)≥ 2,即 x|x|- x- 2|x|≥ 0,若 x≥ 0 得 x2- 3x≥ 0,则 x≥3 或 x≤ 0,此时 x≥ 3 或 x= 0,若x< 0,得- x2+x≥ 0,得 x2-x≤ 0,得 0≤ x≤ 1,此时无解,综上 x≥ 3 或 x= 0.答案: 0 x≥3 或 x= 0x+2- 3,x≥ 1,则 f(f(- 3))= ________,f(x)的最小值是 ________.12.已知函数 f( x)=xlg ( x2+ 1), x<1,分析:因为 f(- 3)= lg[( - 3)2+ 1]= lg 10 = 1,所以 f(f(- 3)) =f(1)= 1+ 2- 3= 0.2-3≥2 22-3,当且仅当2 2时等号建立,当 x≥ 1 时, x+x·- 3= 2 x=,即 x=x x x此时 f(x)min=2 2-3<0 ;当 x<1 时, lg(x2+1)≥ lg(0 2+ 1)= 0,此时f( x)min= 0.所以 f(x)的最小值为 2 2- 3.答案: 0 2 2-313. (2019 浙·江新高考冲刺卷)已知函数 f(x)= ln(e 2x+1)- mx 为偶函数,此中 e 为自然对数的底数,则m= ________,若 a2+ ab+ 4b2≤m,则 ab 的取值范围是 ________.分析:由题意, f( -x) =ln(e -2x+ 1)+ mx= ln(e 2x+ 1)- mx,所以 2mx= ln(e 2x+1)- ln(e -2x+ 1)= 2x,所以 m= 1,因为 a2+ ab+ 4b2≤m,所以 4|ab|+ ab≤ 1,所以-1≤ ab≤1,3 51 1故答案为 1,[-3, 5].11答案:1[- , ]14.定义新运算“⊕”:当a ≥b 时, a ⊕ b = a ;当 a<b 时, a ⊕ b =b 2.设函数 f(x)= (1⊕ x)x- (2⊕ x), x ∈ [- 2,2],则函数 f(x)的值域为 ________.x - 2, x ∈ [-2, 1],分析: 由题意知 f(x)=x 3 - 2, x ∈( 1,2],当 x ∈ [ - 2,1] 时, f(x)∈ [- 4,- 1];当 x ∈ (1, 2]时, f(x)∈( -1, 6].故当 x ∈ [- 2, 2]时, f(x) ∈[ -4, 6].答案: [-4,6]- x 2, 0<x ≤ 4,15.已知函数 h(x)(x ≠ 0)为偶函数,且当x>0 时, h(x)=4若 h(t)>h(2),则4- 2x , x>4,实数 t 的取值范围为 ________.x 2- 4 ,0<x ≤ 4,分析: 因为 x>0 时, h(x)=4- 2x , x>4.易知函数 h(x)在 (0,+ ∞)上单一递减,因为函数 h(x)(x ≠ 0)为偶函数,且 h(t)>h(2),所以 h(|t|)>h(2),所以 0<|t|<2,t ≠0, t ≠0,所以 即 解得- 2< t<0 或 0<t<2.|t|<2, - 2<t<2,综上,所务实数 t 的取值范围为 (- 2,0) ∪(0, 2).答案: (- 2, 0)∪ (0,2)16.若对随意的 x ≥ 2,都有 (x + a)|x + a|+ (ax)|x|≤ 0,则 a 的最大值为 ________.分析: 对随意的 x ≥ 2,都有 (x + a)|x + a|+ (ax)|x|≤ 0,即 x ≥ 2 时, (x +a)|x +a|+ (ax)x ≤0恒建立 .①若 x + a ≥ 0,即 a ≥ -2 时,则有 (x + a)2 +ax 2≤ 0,所以 ( a + 1)x 2+2ax + a 2≤ 0.a + 1< 022或 -2a < 2 ,令 f(x)= (a + 1)x + 2ax + a ,则有 a +1= 0 2( a +1)f ( 2)= 4( a +1)+ 4a + a 2≤ 0求得 a =- 1 或- 4- 2 3≤a <- 1,综合可得- 2≤ a ≤ - 1;②若 x + a < 0,即 a <- 2 时,则有- (x + a)2+ ax 2≤ 0,该不等式恒建立,即此时 a 的范围为 a <- 2;③若 x + a = 0,即 a =- x ≤ - 2 时,则由题意可得 ax 2≤0,知足条件 .综合 ①②③ 可得, a ≤- 2 或- 2≤ a ≤ -1,故 a 的最大值为- 1. 答案: -117. (2019 台·州模拟 )定义 min{ x ,y} = x ( x<y ),则不等式 min{ x + 4,4} ≥ 8min{ x , 1 }y ( x ≥ y )x x 的解集是 ________.44 分析: ① 当 x>0 时,由基本不等式可知x + x ≥ 2x + x =4,4min{ x + x , 4} =4,则不等式转变成:11min{ x , x } ≤ 2,即:1解得: x ≤ 2或 x ≥ 2.1 1x ≤ 2x ≥2 或,1x ≥ 12 1x ≤ 12②当 x<0 时,14 8 ,(ⅰ )当- 1<x<0 时, <x ,原不等式化为x + ≥ xx x即 x -4x ≥ 0,解得- 2≤x<0,所以- 1<x<0;(ⅱ )当 x ≤- 1 时, 1≥ x ,原不等式化为 x + 4≥ 8x ,x x 即 7x - 4≤ 0,解得: x ≤-4,即 x ≤ - 1, x7所以 x<0 对于原不等式全建立.(- ∞, 0)∪ (0,1综上不等式的解集为 2]∪ [2,+ ∞ ). 答案: (-∞, 0)∪ 1(0, ]∪ [2,+∞ )218.(2019 台·州市教课质量调研 )已知函数 f( x)= x 2+ bx + c 的图象过点 (- 1,3),且对于直 线 x = 1 对称.(1)求 f(x)的分析式;(2)若 m < 3,求函数 f(x) 在区间 [m ,3]上的值域.解: (1) 因为函数 f(x)= x 2+ bx + c 的图象过点 (- 1, 3),且对于直线 x =1 对称,f (- 1)= 1- b + c = 3 所以b ,-2= 1解得 b =- 2, c = 0,所以 f(x)= x 2- 2x.(2)当 1≤ m < 3 时, f(x)min = f(m)= m 2- 2m ,f(x) max = f(3) = 9- 6=3, 所以 f(x)的值域为 [m 2- 2m , 3];当- 1≤ m < 1 时, f(x)min = f(1) = 1- 2=- 1,f(x) max = f(- 1)= 1+2= 3, 所以 f(x)的值域为 [- 1, 3].当 m <- 1 时, f(x)min =f(1)= 1- 2=- 1,f(x) max = f(m)=m 2- 2m ,所以 f(x)的值域为 [- 1, m 2- 2m] .x 2- 2ax + a 2 + 1, x ≤ 0,19. (2019 浙·江新高考结盟第三次联考 ) 已知函数 f(x)=2- a ,x > 0.x 2+x(1)若对于随意的 x ∈ R ,都有 f( x)≥ f(0)建立,务实数 a 的取值范围;(2)记函数 f(x)的最小值为 M(a),解对于实数 a 的不等式 M(a - 2)<M(a).解: (1) 当 x ≤ 0 时, f(x)= (x - a)2+ 1,因为 f(x)≥ f(0) ,所以 f(x)在( -∞ , 0]上单一递减,所以 a≥ 0,2当 x> 0 时, f′(x)= 2x-x2,2令 2x-x2= 0 得 x= 1,所以当 0< x<1 时, f′(x)<0,当 x> 1 时, f′(x)> 0,所以 f(x)在 (0, 1)上单一递减,在 (1,+∞ )上单一递加,所以 f min(x)= f(1) =3- a,因为 f(x)≥ f(0) =a2+ 1,所以 3- a≥a2+1,解得- 2≤ a≤ 1.又 a≥ 0,所以 a 的取值范围是[0, 1].(2)由 (1)可知当 a≥ 0 时, f(x)在 (-∞, 0]上的最小值为当 a< 0 时, f(x)在 (-∞,0] 上的最小值为 f(a)= 1,f(0) = a2+1,f(x)在 (0,+∞ )上的最小值为f(1)= 3- a,解不等式组a2+ 1≤ 3- a得0≤ a≤1,a≥ 0解不等式组1≤ 3- a得a< 0,a< 0a2+ 1,0≤ a≤ 1所以 M(a)=1,a< 0.3- a, a≥ 1所以 M(a)在(-∞, 0)上为常数函数,在(0, 1)上是增函数,在(1,+∞ )上是减函数,作出 M(a)的函数图象以下图:令 3- a= 1 得 a= 2,因为 M(a- 2)< M(a),所以 0< a<2.。

2020年高考数学(文)二轮专项复习专题02 函数

2020年高考数学(文)二轮专项复习专题02 函数

(2) y
1
;
x 2 2x 3
(3) y lg(3 x) (x 1)0; x
(4)
y
1 |2x
x |
2
2;
解:(1)由|x-1|-1≥0,得|x-1|≥1,所以 x-1≥1 或 x-1≤-1,所以 x≥2 或 x≤0.
所以,所求函数的定义域为{x|x≥2 或 x≤0}.
(2)由 x2+2x-3>0 得,x>1 或 x<-3.
所用到的待定系数法;也有象(4)所用到的解析法.
值得注意的是(4)中所用的解析法.在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法.同时
也表明函数和它的图象与曲线和它的方程之间有必然的联系. 例 8 已知二次函数 f(x)的对称轴为 x=1,且图象在 y 轴上的截距为-3,被 x 轴截得的线段长为 4,求 f(x)的
4.理解定义域在三要素的地位,并会求定义域. 【例题分析】
例 1 设集合 A 和 B 都是自然数集合 N.映射 f:A→B 把集合 A 中的元素 x 映射到集合 B 中的元素 2x+x,则 在映射 f 作用下,2 的象是______;20 的原象是______.
【分析】由已知,在映射 f 作用下 x 的象为 2x+x. 所以,2 的象是 22+2=6; 设象 20 的原象为 x,则 x 的象为 20,即 2x+x=20. 由于 x∈N,2x+x 随着 x 的增大而增大,又可以发现 24+4=20,所以 20 的原象是 4.
例 6 如图,用长为 l 的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为 2x,求此框架围成的
面积 y 与 x 的函数关系式,并指出定义域.
解:根据题意,AB=2x.
πx ,AD l 2x πx 2

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

第5讲 基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-a b ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下. (3)当a >0时,]2,(a b --∞是减区间,),2[+∞-ab是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间. (4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x(a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b=N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法.【知识要点】作函数图象最基本的方法是列表描点作图法.常用的函数图象变换有:1.平移变换y=f(x+a):将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位可得.y=f(x)+a:将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位可得.2.对称变换y=-f(x):作y=f(x)关于x轴的对称图形可得.y=f(-x):作y=f(x)关于y轴的对称图形可得.3.翻折变换y=|f(x)|:将y=f(x)的图象在x轴下方的部分沿x轴翻折到x轴的上方,其他部分不变即得.y=f(|x|):此偶函数的图象关于y轴对称,且当x≥0时图象与y=f(x)的图象重合.【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y=f(x)的图象,经过适当的图象变换得到预期函数的图象.3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】1.=()A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的. 【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有: (1)通过作出函数图象变成第1类问题; (2)通过换元法转化成第1类问题; (3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习); (5)转化成几何问题来求解,如线性规划问题等. 【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y =f (x )在实数a 处的值等于零,即f (a )=0,则a 叫做这个函数的零点. 函数零点的几何意义:如果a 是函数y =f (x )的零点,则点(a ,0)一定在这个函数的函数图象上,即这个函数与x 轴的交点为(a ,0). 2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步.【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解.考点二函数的零点核心提炼判断函数零点个数的方法:(1)利用零点存在性定理判断法.(2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题. 2.已知函数f (x )=﹣log 2x ,在下列区间中,函数f (x )有零点的是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用. 【答案】B【分析】首先判断函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续; f (1)=1﹣0=1>0,f (2)=﹣1=﹣<0; 故函数f (x )有零点的区间是(1,2); 故选:B .【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x -'=-=,在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e =-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误, 对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<, f (2)222log 210=-+=>,所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:A .1.55B .1.62C .1.71D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1)B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a的取值范围.【解答】解:原问题等价于函数y a与函数()f x至少有两个交点,绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|x a -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+ 210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题.。

高考数学二轮复习专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)(文)(解析版)

高考数学二轮复习专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)(文)(解析版)

专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)一、函数的单调性(一)函数的单调性和单调区间定义:1、增函数与减函数的定义:设函数)(x f y =的定义域为A ,区间A M ⊆,如果取区间M 中的任意两个值1x 、2x ,改变量012>-=∆x x x ,则当0)()(12>-=∆x f x f y 时,就称函数)(x f y =在区间M 上是增函数;当0)()(12<-=∆x f x f y 时,就称函数)(x f y =在区间M 上是减函数。

2、函数的单调性与单调区间:如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间)。

此时也说函数是这一区间上的单调函数。

在单调区间上,增函数的图像是上升的,减函数的图像是下降的。

例1-1.下列给定函数中,在区间)10(,上单调递减的函数是( )。

A 、x x f =)(B 、)1(log )(21+=x x g C 、|1|)(+=x x h D 、12)(+=x x w【答案】B【解析】x x f =)(在)0[∞+,上是增函数,)1(log )(21+=x x g 在)1(∞+-,上是减函数,|1|)(+=x x h 在]1(--∞,上是减函数,在)1[∞+-,上是增函数,12)(+=x x w 在R 上是增函数,则)(x g 在区间)10(,上单调递减的函数,选B 。

(二)对函数单调性定义的理解1、函数的单调性是局部性质:从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,即单调区间是定义域的子集,是函数的局部特征。

函数的单调性只在定义域内讨论,可以是整个定义域,也可以是定义域的某个子区间;如果一个函数在某个区间上是单调的,那么在这个区间的子区间上也是单调的。

但在某个区间上单调,在整个定义域上不一定单调。

如函数2x y =的定义域为R ,当)0[∞+∈,x 时是增函数,当]0(,-∞∈x 时是减函数。

2020年高考江苏版高考数学 2.2 函数的基本性质

2020年高考江苏版高考数学  2.2 函数的基本性质

个最小的正数就叫做f(x)的最小正周期. 2.由周期函数的定义得: (1)若函数f(x)满足f(x+a)=f(x-a)(a≠0),则f(x)为周期函数,T=2|a|; (2)若函数f(x)满足f(x+a)=f(a-x)(a≠0)且f(x)为奇函数,则f(x)为周期函数,
T=4|a|; (3)若函数f(x)满足f(x+a)=-f(x)(a≠0),则f(x)为周期函数,T=2|a|;
x x
又f(x)为奇函数,所以f(x)=-f(-x)=-x2+ 1 (x<0),
x
所以f(-1)=-2.
解法二:当x>0时, f(x)=x2+ 1 ,
x
所以f(1)=12+ 1 =2.
1
因为f(x)为奇函数,所以f(-1)=-f(1)=-2.
答案 -2
例3 (2017山东,14,5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).
考向突破 考向一 由奇偶性求参数的值
例1 (2019届江苏徐州三中检测)若f(x)= 2x11+a是奇函数,则a=
.
解析 因为f(x)为奇函数,所以f(-x)=-f(x),即 2x11+a= 2x11 -a,化简得2a= 1,解得a= 1 .
2
答案 1
2
考向二 由奇偶性(周期性)求函数值
又∵f(x)是偶函数且在[0,+∞)上单调递减,
∴f(|x-1|)>f(2).
∴|x-1|<2,∴-2<x-1<2.∴-1<x<3. 答案 (1)(8,9] (2)(-1,3)
方法二 利用单调性求最值的策略
先确定函数的单调性,然后根据单调性求解最值.若函数f(x)在闭区,b]上的最大值为f(b),最小值为f(a).若函数f(x)在

2020浙江高考数学二轮讲义:专题二第1讲 三角函数的图象与性质 Word版含解析

2020浙江高考数学二轮讲义:专题二第1讲 三角函数的图象与性质 Word版含解析

第1讲 三角函数的图象与性质三角函数的定义、诱导公式及基本关系[核心提炼]1.三角函数:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cosα=x ,tan α=yx .各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦.2.同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.3.诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.[典型例题](1)(2019·湖州市高三期末)点P 从点A (1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达点Q ,则点Q 的坐标是( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫32,12C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,12 (2)(2019·长春一模)已知α为锐角,且2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)=1,则sin β的值为________.(3)(2018·高考浙江卷)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45. ①求sin ()α+π的值;②若角β满足sin(α+β)=513,求cos β的值.【解】 (1)选A.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,所以∠QOx=2π3,所以Q ⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3,即Q 点的坐标为⎝⎛⎭⎫-12,32.故选A.(2)2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0化简为-2tan α+3sin β+5=0,tan(π+α)+6sin(π+β)=1化简为tan α-6sin β=1,因而sin β=13.故填13.(3)①由角α的终边过点P ⎝⎛⎭⎫-35,-45得sin α=-45, 所以sin(α+π)=-sin α=45.②由角α的终边过点P ⎝⎛⎭⎫-35,-45得cos α=-35, 由sin(α+β)=513得cos(α+β)=±1213.由β=(α+β)-α得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.应用三角函数的概念和诱导公式的注意事项(1)当角的终边所在的位置不是唯一确定的时候要注意分情况解决,机械地使用三角函数的定义就会出现错误.(2)应用诱导公式与同角关系开方运算时,一定注意三角函数的符号;利用同角三角函数的关系化简要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.[对点训练]1.已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos ⎝⎛⎭⎫π2+αsin (-π-α)cos⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α的值为________.解析:原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,所以原式=-34.答案:-342.已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=________.解析:法一:因为sin ⎝ ⎛⎭⎪⎫θ+π4=35,所以cos ⎝ ⎛⎭⎪⎫θ-π4=sin ⎣⎢⎡π2+⎦⎥⎤⎝ ⎛⎭⎪⎫θ-π4=sin ⎝⎛⎭⎪⎫θ+π4=35,因为θ为第四象限角,所以-π2+2k π<θ<2k π,k ∈Z ,所以-3π4+2k π<θ-π4<2k π-π4,k ∈Z ,所以sin ⎝ ⎛⎭⎪⎫θ-π4=-1-⎝⎛⎭⎫352=-45, 所以tan ⎝ ⎛⎭⎪⎫θ-π4=sin ⎝⎛⎭⎪⎫θ-π4cos ⎝⎛⎭⎪⎫θ-π4=-43.法二:因为θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,所以θ+π4为第一象限角,所以cos ⎝⎛⎭⎪⎫θ+π4=45,所以tan ⎝ ⎛⎭⎪⎫θ-π4=sin ⎝⎛⎭⎪⎫θ-π4cos ⎝ ⎛⎭⎪⎫θ-π4=-cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫θ-π4sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫θ-π4=-cos ⎝ ⎛⎭⎪⎫θ+π4sin ⎝ ⎛⎭⎪⎫θ+π4=-43. 答案:-43三角函数的图象及应用[核心提炼]函数y =A sin(ωx +φ)的图象 (1)“五点法”作图设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图象变换y =sin x ――――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)―――――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin(ωx +φ)――――――――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). [典型例题](1)函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝⎛⎭⎫2x -π6B .y =2sin ⎝⎛⎭⎫2x -π3C .y =2sin ⎝⎛⎭⎫x +π6D .y =2sin ⎝⎛⎭⎫x +π3(2)(2019·温州瑞安七中高考模拟)函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能的值为( )A.3π4B.π4 C .0 D .-π4(3)(2019·浙江五校联考数学模拟)设函数f (x )=⎩⎪⎨⎪⎧2sin x ,x ∈[0,π]|cos x |,x ∈(π,2π],若函数g (x )=f (x )-m 在[0,2π]内恰有4个不同的零点,则实数m 的取值范围是( )A .(0,1)B .[1,2]C .(0,1]D .(1,2)【解析】 (1)由题图易知A =2,因为周期T 满足T 2=π3-⎝ ⎛⎭⎪⎫-π6,所以T =π,ω=2πT =2.由x =π3时,y =2可知2×π3+φ=π2+2k π(k ∈Z ),所以φ=-π6+2k π(k ∈Z ),结合选项可知函数解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6.(2)令y =f (x )=sin(2x +φ),则f ⎝ ⎛⎭⎪⎫x +π8=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎫2x +π4+φ,因为f ⎝ ⎛⎭⎪⎫x +π8为偶函数,所以π4+φ=k π+π2,所以φ=k π+π4,k ∈Z ,所以当k =0时,φ=π4.故φ的一个可能的值为π4.故选B.(3)画出函数f (x )在[0,2π]的图象,如图所示:若函数g (x )=f (x )-m 在[0,2π]内恰有4个不同的零点, 即y =f (x )和y =m 在[0,2π]内恰有4个不同的交点, 结合图象,知0<m <1. 【答案】 (1)A (2)B (3)A解决三角函数图象问题的方法及注意事项(1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2)在图象变换过程中务必分清是先相位变换,还是先周期变换,变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.[对点训练]1.(2019·兰州市诊断考试)函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,若x 1,x 2∈⎝⎛⎭⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.12B.22C.32D .1解析:选C.由图知,T 2=π2,即T =π,则ω=2,所以f (x )=sin(2x +φ),因为点⎝ ⎛⎭⎪⎫π3,0在函数f (x )的图象上,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=0,即2π3+φ=k π,k ∈Z ,又|φ|<π2,所以φ=π3, 所以f (x )=sin ⎝⎛⎭⎪⎫2x +π3,因为x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),所以x 1+x 22=π12,所以x 1+x 2=π6,所以f (x 1+x 2)=sin ⎝ ⎛⎭⎪⎫2×π6+π3=32.2.已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2解析:选D.易知C 1:y =cos x =sin ⎝ ⎛⎭⎪⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎪⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π2=sin ⎝ ⎛⎭⎪⎫2x +2π3的图象,即曲线C 2,故选D.三角函数的性质 [核心提炼]1.三角函数的单调区间y =sin x 的单调递增区间是⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ),单调递减区间是⎣⎡⎦⎤2k π+π2,2k π+3π2(k ∈Z );y =cos x 的单调递增区间是[2k π-π,2k π](k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z );y =tan x 的递增区间是⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z ).2.y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数; 当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. y =A tan(ωx +φ),当φ=k π2(k ∈Z )时为奇函数.[典型例题]已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ). (1)求f ⎝⎛⎭⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间.【解】 (1)由sin 2π3=32,cos 2π3=-12,f ⎝ ⎛⎭⎪⎫2π3=⎝⎛⎭⎫322-⎝⎛⎭⎫-122-23×32×⎝⎛⎭⎫-12,得f ⎝⎛⎭⎪⎫2π3=2. (2)由cos 2x =cos 2x -sin 2x 与sin 2x =2sin x ·cos x 得 f (x )=-cos 2x -3sin 2x =-2sin ⎝ ⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期是π. 由正弦函数的性质得π2+2k π≤2x +π6≤3π2+2k π,k ∈Z , 解得π6+k π≤x ≤2π3+k π,k ∈Z ,所以,f (x )的单调递增区间是 ⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).三角函数的单调性、周期性及最值的求法(1)三角函数单调性的求法求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A 、ω、φ为常数,A ≠0,ω>0)的单调区间的一般思路是令ωx +φ=z ,则y =A sin z (或y =A cos z ),然后由复合函数的单调性求解.(2)三角函数周期性的求法函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.(3)三角函数最值(或值域)的求法在求最值(或值域)时,一般要先确定函数的定义域,然后结合三角函数性质可得函数f (x )的最值.[对点训练]1.(2019·杭州市高三期末检测)设A ,B 是函数f (x )=sin|ωx |与y =-1的图象的相邻两个交点,若|AB |min =2π,则正实数ω=( )A.12B .1 C.32D .2解析:选B.函数f (x )=sin|ωx |=⎩⎪⎨⎪⎧sin ωx ,x ≥0-sin ωx ,x <0,ω为正数,所以f (x )的最小值是-1,如图所示:设A ,B 是函数f (x )=sin|ωx |与y =-1的图象的相邻两个交点, 且|AB |min =T =2πω=2π,解得ω=1.故选B.2.(2019·台州调研)设函数f (x )=cos ⎝⎛⎭⎫ωx -π6(ω>0).若f (x )≤f ⎝⎛⎭⎫π4对任意的实数x 都成立,则ω的最小值为________.解析:由于对任意的实数x 都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),所以ω=8k +23(k ∈Z ),又ω>0,所以ωmin =23.答案:233.(2019·高考浙江卷)设函数f (x )=sin x ,x ∈R .(1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值; (2)求函数y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π122+⎣⎡⎦⎤f ⎝⎛⎭⎫x +π42的值域.解:(1)因为f (x +θ)=sin(x +θ)是偶函数,所以对任意实数x 都有 sin(x +θ)=sin(-x +θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ, 故2sin x cos θ=0, 所以cos θ=0.又θ∈[0,2π),因此θ=π2或3π2.(2)y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42=sin 2⎝ ⎛⎭⎪⎫x +π12+sin 2⎝ ⎛⎭⎪⎫x +π4=1-cos ⎝ ⎛⎭⎪⎫2x +π62+1-cos ⎝⎛⎭⎪⎫2x +π22=1-12⎝⎛⎭⎫32cos 2x -32sin 2x=1-32cos ⎝⎛⎭⎪⎫2x +π3. 因此,函数的值域是⎣⎡⎦⎤1-32,1+32.三角函数与其他知识的交汇[核心提炼]三角函数的图象与性质是高考考查的重点,近年来,三角函数与其他知识交汇命题成为高考的热点,由原来三角函数与平面向量的交汇渗透到三角函数与函数的零点、数列、不等式、复数、方程等知识的交汇.[典型例题](1)(2019·台州市高考一模)已知θ∈[0,π),若对任意的x ∈[-1,0],不等式x 2cosθ+(x +1)2sin θ+x 2+x >0恒成立,则实数θ的取值范围是( )A.⎝⎛⎭⎫π12,5π12B.⎝⎛⎭⎫π6,π4C.⎝⎛⎭⎫π4,3π4D.⎝⎛⎭⎫π6,5π6(2)(2019·浙江“七彩阳光”联盟高三联考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的图象过点⎝⎛⎭⎫0,32,若f (x )≤f ⎝⎛⎭⎫π6对x ∈R 恒成立,则ω的值为________;当ω最小时,函数g (x )=f ⎝⎛⎭⎫x -π3-22在区间[0,22]的零点个数为________.【解析】 (1)设f (x )=x 2cos θ+(x +1)2sin θ+x 2+x =(1+sin θ+cos θ)x 2+(2sin θ+1)x +sin θ,因为θ∈[0,π),所以1+cos θ+sin θ≠0,且其对称轴为x=-2sin θ+12(1+sin θ+cos θ).因为f(x)在[-1,0]的最小值为f(0)或f(1)或f⎝⎛⎭⎪⎫-2sin θ+12(1+sin θ+cos θ),所以⎩⎪⎨⎪⎧f(-1)>0f(0)>0f⎝⎛⎭⎪⎫-2sin θ+12(1+sin θ+cos θ)>0,即⎩⎪⎨⎪⎧cos θ>0sin θ>0sin 2θ>12,所以⎩⎪⎨⎪⎧0<θ<π20<θ<ππ12<θ<5π12.所以π12<θ<5π12.(2)由题意得φ=π3,且当x=π6时,函数f(x)取到最大值,故π6ω+π3=π2+2kπ,k∈Z,解得ω=1+12k,k∈N,又因为ω>0,所以ω的最小值为1,因此,g(x)=f⎝⎛⎭⎪⎫x-π3-22=sin x-22的零点个数是8个.【答案】(1)A(2)1+12k(k∈N)8解决三角函数与其他知识的交汇问题,可利用数形结合思想.利用“数形结合”思想还可以解决以下问题:(1)讨论含有参数的方程的解的个数问题.(2)求三角函数解析式中含有参数的最值问题.(3)求一些特殊函数的周期.(4)利用三角函数图象对实际问题作出分析等.[对点训练]1.(2019·湖州市高三期末考试)若α,β∈⎣⎡⎦⎤-π2,π2,且αsinα-βsin β>0,则必有()A.α2<β2B.α2>β2C .α<βD .α>β解析:选B.α,β∈⎣⎢⎡⎦⎥⎤-π2,π2,且αsin α-βsin β>0,即αsin α>βsin β,再根据y =x sinx 为偶函数,且在⎣⎢⎡⎦⎥⎤0,π2上单调递增,可得|α|>|β|,即α2>β2,故选B.2.(2019·合肥市第二次教学质量检测)已知关于x 的方程(t +1)cos x -t sin x =t +2在(0,π)上有实根,则实数t 的最大值是________.解析:由题意可得,-1t =1-cos x +sin x 2-cos x =1-1-sin x 2-cos x ,令P (cos x ,sin x ),A (2,1),则k P A =1-sin x2-cos x ,因为x ∈(0,π),所以-1<cos x <1,0<sin x ≤1,令a =cos x ,b =sin x ,则点P 是上半圆a 2+b 2=1(0<b ≤1)上任意一点,如图,可知,0≤kP A <1,所以0<1-1-sin x2-cos x≤1,即0<-1t≤1,故t ≤-1,实数t 的最大值是-1.答案:-1专题强化训练1.(2019·嵊州模拟)已知sin (π+α)=-12,则cos ⎝⎛⎭⎫α-3π2的值为( )A.12 B .-12 C.32 D .-32 解析:选B .因为sin(π+α)=-12=-sin α,所以cos ⎝⎛⎭⎪⎫α-3π2=-sin α=-12.2.(2019·湖州市高三期末考试)为了得到函数y =sin ⎝⎛⎭⎫2x +π3的图象,只需将y =cos 2x 的图象上每一点( )A .向右平移π6个单位长度B .向右平移π12个单位长度C .向左平移π6个单位长度D .向左平移π12个单位长度解析:选B.因为y =cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π2=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4,所以y =sin ⎝ ⎛⎭⎪⎫2x +π3=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π12,所以为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将y =cos 2x 的图象上每一点向右平移π12个单位长度即可.故选B.3.已知tan ⎝⎛⎭⎫α+π4=3,则sin 2α的值为( )A .-45 B.45 C .-35D.35解析:选B.因为tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=3,所以tan α=12.所以sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=114+1=45.4.(2019·金华模拟)函数f (x )=A sin(ωx +φ)(A >0,ω>0,⎭⎫|φ|<π2的部分图象如图所示,则f ⎝⎛⎭⎫11π24的值为( )A .-62 B .-32 C .-22D .-1解析:选D.由图象可得A =2,最小正周期T =4×⎝⎛⎭⎪⎫7π12-π3=π,则ω=2πT =2.又f ⎝ ⎛⎭⎪⎫7π12=2sin ⎝⎛⎭⎪⎫7π6+φ=-2,得φ=π3,则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,f ⎝ ⎛⎭⎪⎫11π24=2sin ⎝ ⎛⎭⎪⎫11π12+π3=2sin 5π4=-1,故选D.5.(2019·宁波市高考模拟)已知函数f (x )=sin x cos 2x ,则下列关于函数f (x )的结论中,错误的是( )A .最大值为1B .图象关于直线x =-π2对称C .既是奇函数又是周期函数D .图象关于点⎝⎛⎭⎫3π4,0中心对称解析:选D.因为函数f (x )=sin x cos 2x ,当x =3π2时,f (x )取得最大值为1,故A 正确;当x =-π2时,函数f (x )=1,为函数的最大值,故图象关于直线x =-π2对称;故B 正确;函数f (x )满足f (-x )=sin(-x )·cos(-2x )=-sin x cos 2x =-f (x ),故函数f (x )为奇函数,再根据f (x +2π)=sin(x +2π)cos[-2(x +2π)]=sin x cos 2x ,故f (x )的周期为2π,故C 正确;由于f ⎝⎛⎭⎪⎫3π2-x +f (x )=-cos x ·cos(3π-2x )+sin x cos 2x =cos x cos 2x +sin x cos 2x =cos 2x (sin x +cos x )=0不一定成立,故f (x )图象不一定关于点⎝⎛⎭⎪⎫3π4,0中心对称,故D 不正确,故选D.6.已知函数f (x )=2sin ⎝⎛⎭⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调递增区间为( )A.⎝⎛⎦⎤-12,34 B.⎣⎡⎭⎫-12,34 C.⎣⎡⎦⎤-12,34 D.⎣⎡⎦⎤-14,34 解析:选D.由T =2π2ω=πω,又f (x )的最大值为2,所以πω=2,即ω=π2,所以f (x )=2sin ⎝ ⎛⎭⎪⎫πx -π4.当2k π-π2≤πx -π4≤2k π+π2,即2k -14≤x ≤2k +34,k ∈Z 时函数f (x )单调递增,则f (x )在[-1,1]上的单调递增区间为⎣⎡⎦⎤-14,34. 7.(2019·温州调研)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)在区间⎣⎡⎦⎤-π4,2π3上单调递增,则ω的取值范围为( )A.⎝⎛⎦⎤0,83 B.⎝⎛⎦⎤0,12 C.⎣⎡⎦⎤12,83D.⎣⎡⎦⎤38,2解析:选B.因为x ∈⎣⎢⎡⎦⎥⎤-π4,2π3,所以ωx +π6∈⎣⎢⎡-π4ω+π6,⎦⎥⎤2π3ω+π6,因为函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在区间⎣⎢⎡⎦⎥⎤-π4,2π3上单调递增,所以⎩⎪⎨⎪⎧-π4ω+π6≥2k π-π2,k ∈Z ,2π3ω+π6≤2k π+π2,k ∈Z .又ω>0,所以0<ω≤12,选B.8.(2019·宁波市高三调研)已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是( )A .[-1,1] B.⎣⎡⎦⎤-22,1 C.⎣⎡⎦⎤-1,22 D.⎣⎡⎦⎤-1,-22 解析:选C.f (x )=⎩⎪⎨⎪⎧cos x ,sin x ≥cos x ,sin x ,sin x <cos x ,作出[0,2π]区间内f (x )的图象,如图所示, 由f (x )的图象,可得f (x )的值域为⎣⎡⎦⎤-1,22.9.(2019·宁波市高考模拟)已知函数f (x )=a sin 2x +(a +1)cos 2x ,a ∈R ,则函数f (x )的最小正周期为______,振幅的最小值为________.解析:函数f (x )=a sin 2x +(a +1)cos 2x ,a ∈R , 化简可得:f (x )=a 2+(a +1)2sin(2x +θ)=2⎝⎛⎭⎫a +122+12·sin(2x +θ),其tan θ=1+a a. 函数f (x )的最小正周期T =2π2=π.振幅为2⎝⎛⎭⎫a +122+12, 当a =-12时,可得振幅的最小值22.答案:π2210.已知-π2<α<0,sin α+cos α=15,则sin α-cos α=________.解析:sin α+cos α=15,平方可得sin 2α+2sin α·cos α+cos 2α=125,即2sin α·cos α=-2425,因为(sin α-cos α)2=1-2sin α·cos α=4925,又-π2<α<0,所以sin α<0,cos α>0,所以sin α-cos α<0,所以sin α-cos α=-75.答案:-7511.已知f (x )=sin 2x -3cos 2x ,若对任意实数x ∈⎝⎛⎦⎤0,π4,都有|f (x )|<m ,则实数m 的取值范围是________.解析:因为f (x )=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎝ ⎛⎦⎥⎤0,π4,所以⎝ ⎛⎭⎪⎫2x -π3∈⎝ ⎛⎦⎥⎤-π3,π6,所以2sin ⎝ ⎛⎭⎪⎫2x -π3∈(-3,1],所以|f (x )|=⎪⎪⎪⎪⎪⎪2sin ⎝⎛⎭⎪⎫2x -π3<3,所以m ≥ 3.答案:[3,+∞)12.函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________. 解析:因为f (x )=sin 2x +sin x cos x +1=1-cos 2x 2+12sin 2x +1=12sin 2x -12cos 2x +32=22sin(2x -π4)+32,所以函数f (x )的最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π,k ∈Z ,解之可得函数f (x )的单调递减区间为⎣⎡⎦⎤k π+38π,k π+78π(k ∈Z ).答案:π ⎣⎡⎦⎤k π+38π,k π+78π(k ∈Z ) 13.(2019·太原市模拟试题)已知函数f (x )=sin ωx -3cos ωx (ω>0),若方程f (x )=-1在(0,π)上有且只有四个实数根,则实数ω的取值范围为________.解析:因为f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π3,方程2sin ⎝ ⎛⎭⎪⎫ωx -π3=-1在(0,π)上有且只有四个实数根,即sin ⎝ ⎛⎭⎪⎫ωx -π3=-12在(0,π)上有且只有四个实数根.设t =ωx -π3,因为0<x <π,所以-π3<t <ωπ-π3,所以19π6<ωπ-π3≤23π6,解得72<ω≤256.答案:⎝⎛⎦⎤72,25614.(2019·温州市高考数学模拟)设奇函数f (x )=⎩⎨⎧a cos x -3sin x +c ,x ≥0cos x +b sin x -c ,x <0,则a +c 的值为________,不等式f (x )>f (-x )在x ∈[-π,π]上的解集为________.解析:因为f (x )是奇函数, 所以f (0)=0,即f (0)=a cos 0-3sin 0+c =a +c =0, 即a +c =0,则f (x )=⎩⎪⎨⎪⎧a cos x -3sin x -a ,x ≥0cos x +b sin x +a ,x <0,若x <0,则-x >0, 则f (-x )=a cos x +3sin x -a =-cos x -b sin x -a , 则a =-1,b =-3,c =1.则f (x )=⎩⎪⎨⎪⎧-cos x -3sin x +1,x ≥0cos x -3sin x -1,x <0,若0≤x ≤π,则由f (x )>f (-x )得-cos x -3sin x +1>cos x +3sin x -1,即cos x +3sin x <1,即cos ⎝ ⎛⎭⎪⎫x -π3<12,因为0≤x ≤π,所以-π3≤x -π3≤2π3,则π3<x -π3≤2π3,即2π3<x ≤π. 若-π≤x <0,则由f (x )>f (-x )得cos x -3sin x -1> -cos x +3sin x +1,即cos x -3sin x >1,即cos ⎝ ⎛⎭⎪⎫x +π3>12,因为-π≤x <0,所以-2π3≤x +π3<π3,则-π3<x +π3<π3,即-2π3<x <0,综上不等式的解集为⎝ ⎛⎭⎪⎫-2π3,0∪⎝ ⎛⎦⎥⎤2π3,π.答案:0 ⎝⎛⎭⎫-2π3,0∪⎝⎛⎦⎤2π3,π15.(2019·台州市高三期末评估)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2的最小正周期为π,且x =π12为f (x )图象的一条对称轴.(1)求ω和φ的值;(2)设函数g (x )=f (x )+f ⎝⎛⎭⎫x -π6,求g (x )的单调递减区间.解:(1)因为f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2的最小正周期为π,由T =2πω=π,所以ω=2,由2x +φ=k π+π2,k ∈Z ,所以f (x )的图象的对称轴为x =k π2+π4-φ2,k ∈Z .由π12=k π2+π4-φ2,得φ=k π+π3.又|φ|≤π2,则φ=π3. (2)函数g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x -π6=sin ⎝ ⎛⎭⎪⎫2x +π3+sin 2x =12sin 2x +32cos 2x +sin 2x =3sin ⎝⎛⎭⎪⎫2x +π6. 所以g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z .16.(2019·宁波诺丁汉大学附中高三期中)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(x ∈R ,ω>0)的图象如图,P 是图象的最高点,Q 是图象的最低点,且|PQ |=13.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移1个单位后得到函数y =g (x )的图象,当x ∈[0,2]时,求函数h (x )=f (x )·g (x )的最大值.解:(1)过P 作x 轴的垂线PM ,过Q 作y 轴的垂线QM ,则由已知得|PM |=2,|PQ |=13,由勾股定理得|QM |=3,所以T =6,又T =2πω,所以ω=π3,所以函数y =f (x )的解析式为f (x )=sin ⎝ ⎛⎭⎪⎫π3x +π3.(2)将函数y =f (x )图象向右平移1个单位后得到函数y =g (x )的图象, 所以g (x )=sin π3x .函数h (x )=f (x )·g (x )=sin ⎝ ⎛⎭⎪⎫π3x +π3sin π3x=12sin 2π3x +32sin π3x cos π3x=14⎝ ⎛⎭⎪⎫1-cos 2π3x +34sin 2π3x =12sin ⎝ ⎛⎭⎪⎫2π3x -π6+14. 当x ∈[0,2]时,2π3x -π6∈⎣⎢⎡⎦⎥⎤-π6,7π6,所以当2π3x -π6=π2,即x =1时,h (x )max =34.17.(2019·“绿色联盟”模拟)已知函数f (x )=sin x ·(cos x +3sin x ). (1)求f (x )的最小正周期;(2)若关于x 的方程f (x )=t 在区间⎣⎡⎦⎤0,π2内有两个不相等的实数解,求实数t 的取值范围.解:(1)f (x )=12sin 2x -32cos 2x +32=sin ⎝ ⎛⎭⎪⎫2x -π3+32,故函数f (x )的最小正周期为T =2π2=π.(2)关于x 的方程f (x )=t 在区间⎣⎢⎡⎦⎥⎤0,π2内有两个不相等的实数解,等价于y =f (x )与y =t 的图象在区间⎣⎢⎡⎦⎥⎤0,π2内有两个不同的交点.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3.因为y =sin x 在⎣⎢⎡⎦⎥⎤-π3,π2上是增函数,在⎣⎢⎡⎦⎥⎤π2,2π3上是减函数,所以f (x )在⎣⎢⎡⎦⎥⎤0,5π12上是增函数,在⎣⎢⎡⎦⎥⎤5π12,π2上是减函数.又因为f (0)=0,f ⎝⎛⎭⎪⎫5π12=1+32, f ⎝ ⎛⎭⎪⎫π2=3, 所以3≤t <1+32,故实数t 的取值范围为⎣⎡⎭⎫3,1+32. 18.已知定义在区间⎣⎡⎦⎤-π,3π2上的函数y =f (x )的图象关于直线x =π4对称,当x ≥π4时,f (x )=-sin x .(1)作出y =f (x )的图象;(2)求y =f (x )的解析式;(3)若关于x 的方程f (x )=a 有解,将方程中的a 取一确定的值所得的所有解的和记为M a ,求M a 的所有可能的值及相应的a 的取值范围.解:(1)y =f (x )的图象如图所示.(2)任取x ∈⎣⎢⎡⎦⎥⎤-π,π4, 则π2-x ∈⎣⎢⎡⎦⎥⎤π4,3π2, 因为函数y =f (x )的图象关于直线x =π4对称, 则f (x )=f ⎝ ⎛⎭⎪⎫π2-x ,又当x ≥π4时,f (x )=-sin x , 则f (x )=f ⎝ ⎛⎭⎪⎫π2-x =-sin ⎝ ⎛⎭⎪⎫π2-x =-cos x , 即f (x )=⎩⎪⎨⎪⎧-cos x ,x ∈⎣⎢⎡⎭⎪⎫-π,π4,-sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,3π2. (3)当a =-1时,f (x )=a 的两根为0,π2,则M a =π2;当a ∈⎝⎛⎭⎫-1,-22时,f (x )=a 的四根满足x 1<x 2<π4<x 3<x 4,由对称性得x 1+x 2=0,x 3+x 4=π,则M a =π;当a =-22时, f (x )=a 的三根满足x 1<x 2=π4<x 3,由对称性得x 3+x 1=π2,则M a =3π4;当a ∈⎝⎛⎦⎤-22,1时,f (x )=a 的两根为x 1,x 2,由对称性得M a =π2.综上,当a ∈⎝⎛⎭⎫-1,-22时,M a =π; 当a =-22时,M a =3π4; 当a ∈⎝⎛⎦⎤-22,1∪{-1}时,M a =π2.。

2020高考数学最新二轮复习函数性质

2020高考数学最新二轮复习函数性质

函数的概念第一节函数及其表示一、基础知识1.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值X围 A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、值域和对应关系.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一函数的定义域[典例](1)(2019 长·春质检)函数y=ln1-x+1的定义域是()x+1 xA.[-1,0)∪(0,1)B.[-1,0)∪(0,1]C.(-1,0)∪(0,1]D.(-1,0)∪(0,1)(2)已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为()A.(-1,1) B.-1,-1C.(-1,0)D. 1,12 2[题组训练]1.(2018XX)函数f(x)log2x 1的定义域为.2.若函数y=f(x)的定义域是[1,2019],则函数g(x)=fx+1的定义域是_______________.x-11考点二求函数的解析式[典例] (1)已知函数f x 1 x 2 x3(2)已知函数f(x)满足f(-x)+2f(x)=2x,求f(x).考点二分段函数考法(一) 求函数值1 log2(2x),x1[典例(]2015新课标Ⅱ)设函数f(x) ,则f(2)f(log212)2x1,x≥1A.3B.6 C.9 D.12考法(二) 求参数或自变量的值(或X围)[典例] 设函数f(x)=2-x,x≤0,则满足f(x+1)<f(2x)的x的取值X围是() 1,x>0,A.(-∞,-1] B.(0,+∞) C.(-1,0) D.(-∞,0) [题组训练]x+1,x≤0, 11.(2017全·国卷Ⅲ)设函数f(x)=2x,x>0,则满足f(x)+f x-2>1的x的取值X围___.1x2.设函数f(x)=2-7,x<0,若f(a)<1,则实数a的取值X围是____________.x,x≥0,2第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数 y=f(x)在这一区间具有(严格的) 单调性,区间 D叫做函数y=f(x)的单调区间.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论二、常用结论在公共定义域内:(1 )函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2 )函数f(x)单调递减,g(x)单调递减,则f(x)+g(x)是减函数;(3 )函数f(x)单调递增,g(x)单调递减,则f(x)-g(x)是增函数;(4 )函数f(x)单调递减,g(x)单调递增,则f(x)-g(x)是减函数;(5 )若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反;1(6 )函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=fx的单调性相反;(7 )复合函数y=f[g(x)]的单调性与y=f(u)和u=g(x)的单调性有关.简记:“同增异减”.3考点一单调区间1.(2014XX )函数f(x)=log 1(x 2-4)的单调递增区间是_______22.函数fxlg x 23x 2的单调增区间是_________考点二、函数单调性的应用 考法(一)比较函数值的大小[典例]偶函数f(x)定义域为 R ,当x ∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是 ()A .f(π)>f(-3)>f(-2)B .f(π)>f(-2)>f(-3)C .f(π)<f(-3)<f(-2)D .f(π)<f(-2)<f(-3)考法(二)解函数不等式[典例] 2x,x<2,若f(a +1)≥f(2a -1),则实数a 的取值X 围是()设函数f(x)= x 2,x ≥2.A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)考法(三) 利用单调性求参数的X围 (或值)ax 2-x -1,x ≤1,是R 上的单调函数,则实数 a 的取值X围[典例]已知函数f(x)=4logax -1,x>1是()1 11 1 1 1 A.4,2 B.4, 2C.0,2D.2,1[课时跟踪检测]1 的x 的取值X 围是1.函数f(x)是定义在区间[0,+∞)的单调增函数,满足 f(2x -1)<f 3 1 2 1 2 1 2 1 2 A.3, 3B.3, 3C.2, 3D.2, 32.已知函数 f(x)=lnx +x ,若f(a 2-a)>f(a +3),则正数a 的取值X 围是________.4第三节函数的奇偶性与周期性一、基础知识1.函数的奇偶性偶函数奇函数如果对于函数f(x)的定义域内任意一个 x定义都有f(-x)=f(x),那么函都有f(-x)=-f(x)?,那么函数数f(x)是偶函数f(x)是奇函数图象特征关于y轴对称关于原点对称函数的定义域关于原点对称是函数具有奇偶性的前提条件.2.函数的周期性(1)周期函数对于函数 f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,这个最小正数就叫做f(x)的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f(x)是奇函数且在x=0处有定义,则一定有f(0)=0;如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论对f(x)定义域内任一自变量x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=f1x,则T=2a(a>0).1(3)若f(x+a)=-,则T=2a(a>0).3.函数图象的对称性5(1) 若函数y =f(x +a)是偶函数,即f(a -x)=f(a +x),函数y =f(x)的图象关于直线 x =a 对称. (2) 若对于R 上的任意x 都有f(2a -x)=f(x)或f(-x)=f(2a +x),则y =f(x)的图象关于直线x=a 对称.(3) 若函数y =f(x +b)是奇函数,即f(-x +b)+f(x +b)=0,函数y =f(x)关于点(b,0)中心对称.考点一函数奇偶性的判断1.(2015 XX)下列函数为奇函数的是A .yxB .ysinxC .ycosxD .ye xe x2.(2015 XX)下列函数中,既不是奇函数,也不是偶函数的是A .y1x 2B .yx 1C .y2x1D .yxe xx2x3.(2014新课标1)设函数f(x),g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是 A .f(x)g(x)是偶函数 B .f(x)|g(x)|是奇函数 C .|f(x)|g(x)是奇函数 D .|f(x)g(x)|是奇函数 4.(2014XX)下列函数为偶函数的是A .f(x)x1B .f(x)x 3xC .f(x)2x2xD .f(x)2x2x考点二函数奇偶性的应用 [典例](1)(2019福·建XX 模拟 )函数y =f(x)是R 上的奇函数,当x<0时,f(x)=2x,则当x>0时,f(x)=()A .-2xB .2 - x -x D .2xC .-2e xae x(2)设函数f(x) 2是奇函数,则实数a 的值为______.x(3)(2019全国Ⅱ理14)已知f(x)是奇函数,且当x0时,f(x)e ax.若f(ln2) 8,则a __________.[题组训练].设函数x sinx的最大值为 M ,最小值为m ,则 Mm 1 f(x)=x 2.(2018合·肥八中模拟)若函数f(x)=xln(x+a +x 2)为偶函数,则a =________.63.(2014XX)已知f(x),g(x)分别是R上的偶函数和奇函数f(x) f(x)=x3x21,则f(1)g(1)=A.-3B.-1C.1D.3考点三、由函数的单调性与奇偶性,求解不等式1.已知偶函数f(x)在区间[0, )单调增加,则满足f(2x 1)1f()的x的取值X围是(A.(1,2)[1,2] (1,2) 3[1,2]B. C. D.3 3 3 3 2 3 2 32.已知奇函数f(x)在区间2,2 上单调递减,则不等式f(x2) f(2x)0的解集是(A.[-1,0) B.(-2,0) C .2, 1 D ., 2U0, 3.(2013XX)已知函数f(x)是定义在R上的偶函数,且在区间[0, )单调递增.若实数a满足f(log2a) f(log1 a) 2f(1),则a的取值X围是2A.[1,2] B.0,1C.1,2 D.(0,2]2 24.(2017新课标Ⅰ)函数f(x)在( , )单调递减,且为奇函数.若f(1) 1,则满足1≤f(x 2)≤1 的x的取值X围是A.[-2,2]B.[-1,1]C.[0,4] D.[1,3]考点四、由函数的奇偶、周期性求值[典例](1)(2018 开·封期末)已知定义在R上的函数f(x)满足f(x)=-f(x+2),当x∈(0,2]时,f(x)=2x+log2x,则f(2 019)=( )1C.2D.-2A.5 B.2(2)定义在R上的函数满足, ,且时, 则________.考点五、具体函数的对称中心或对称轴问题71.若函数f(x) 1 x的图像的对称中心为(1,1),则实数m的值为( )1 mxA.1B. 1C. 2D. 22.函数y 5x32sin3xtanx6的图象的对称中心是()A.(0,0)B. (6,0)C. ( 6,0)D.(0, 6)3.函数f(x)=9x+1) 3x的图象(A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称4.(2016 全国II)已知函数fx xR 满足f x 2f x ,若函数x 1y 与xmy f x 图像的交点为x1,y1,x2,y2,⋯,x m,y m,则x i y i i1A.0 B.m C.2m D.4m 对称5.函数y x-2的图象关于________对称x+2考点六函数性质的综合问题1.函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是( )5 77 5C.f 7 5 5 7A.f(1)<f2<f2B.f2<f(1)<f 22<f 2<f(1)D.f2<f(1)<f 2 2.(2018全国卷Ⅱ)已知f(x)是定义域为( , )的奇函数,f(1x) f(1 x).若f(1) 2,则f(1)f(2) f(3) ⋯f(50)A.50 B.0C.2 D.50 奇偶+对称=周期3、若定义在R上的奇函数f(x)满足f(x 4) f(x),且在区间[0,2] 上是增函数,则有() 奇偶+周期+单调A. f(25) f(80) f(11)B. f(11) f(80) f( 25)C. f( 25) f(11) f(80)D. f(80) f(11) f( 25)8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的概念第一节 函数及其表示一、基础知识1.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域和对应关系. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数. 关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. (3)各段函数的定义域不可以相交. 考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D.⎝⎛⎭⎫12,1[题组训练]1.(2018江苏)函数()f x =的定义域为 .2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是_______________.考点二 求函数的解析式[典例] (1)已知函数()321+-=-x x x f(2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ).考点二 分段函数考法(一) 求函数值[典例](2015新课标Ⅱ)设函数211log (2),1()2,1x x x f x x -+-<⎧=⎨⎩≥,则2(2)(log 12)f f -+= A .3 B .6 C .9 D .12考法(二) 求参数或自变量的值(或范围)[典例] 设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[题组训练]1.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围___. 2.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f(x)单调递减,g(x)单调递减,则f(x)+g(x)是减函数;(3)函数f(x)单调递增,g(x)单调递减,则f(x)-g(x)是增函数;(4)函数f(x)单调递减,g(x)单调递增,则f(x)-g(x)是减函数;(5)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反;(6)函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=1f(x)的单调性相反;(7)复合函数y=f[g(x)]的单调性与y=f(u)和u=g(x)的单调性有关.简记:“同增异减”.考点一 单调区间 1.(2014天津)函数212()log (4)f x x 的单调递增区间是_______2.函数()232+-=x x lgx f 的单调增区间是_________考点二、函数单调性的应用 考法(一) 比较函数值的大小[典例] 偶函数f (x )定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)考法(三) 利用单调性求参数的范围(或值)[典例] 已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12B.⎣⎡⎦⎤14,12C.⎝⎛⎦⎤0,12D.⎣⎡⎭⎫12,1 [课时跟踪检测]1.函数f (x )是定义在区间[0,+∞)的单调增函数,满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,232.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________.第三节函数的奇偶性与周期性一、基础知识1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.2.函数的周期性(1)周期函数对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,这个最小正数就叫做f(x)的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f(x)是奇函数且在x=0处有定义,则一定有f(0)=0;如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论对f(x)定义域内任一自变量x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),函数y =f (x )的图象关于直线x =a 对称. (2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,函数y =f (x )关于点(b,0)中心对称. 考点一 函数奇偶性的判断 1.(2015福建)下列函数为奇函数的是A.y =B .sin y x =C .cos y x =D .x x y e e -=-2.(2015广东)下列函数中,既不是奇函数,也不是偶函数的是A.y = B .1y x x =+C .122xx y =+ D .x y x e =+ 3.(2014新课标1)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .()f x |()g x |是奇函数C .|()f x |()g x 是奇函数D .|()f x ()g x |是奇函数 4.(2014重庆)下列函数为偶函数的是A .()1f x x =-B .3()f x x x =+C .()22x x f x -=-D .()22x xf x -=+ 考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( ) A .-2x B .2-xC .-2-x D .2x(2)设函数2()x xe aef x x-+=是奇函数,则实数a 的值为______. (3) (2019全国Ⅱ理14)已知是奇函数,且当时,.若,则__________. [题组训练]1.设函数f(x)=()sin x xx 22+1++1的最大值为M ,最小值为m ,则M m += 2.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.()f x 0x <()e axf x =-(ln 2)8f =a =3.(2014湖南)已知分别是R 上的偶函数和奇函数()()f x f x -=321x x ++,=A .-3B .-1C .1D .3 考点三、由函数的单调性与奇偶性,求解不等式1.已知偶函数在区间[0,)+∞单调增加,则满足1(21)()3f x f -<的x 的取值范围是(A.12(,)33B.12[,]33C.12(,)23D.12[,]232.已知奇函数在区间[]2,2-上单调递减,则不等式2()(2)0f x f x +>的解集是(A .1,0 B .2,0 C .(]2,1-- D .()(),20,-∞-+∞3.(2013天津)已知函数是定义在R 上的偶函数, 且在区间单调递增.若实数a 满足, 则a 的取值范围是A .B .C .D .4.(2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .[−2,2]B .[−1,1]C .[0,4]D .[1,3] 考点四、由函数的奇偶、周期性求值[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)定义在R 上的函数满足,,且时,则________.考点五、具体函数的对称中心或对称轴问题(),()f x g x (1)(1)f g +则()f x ()f x ()f x [0,)+∞212(log )(log )2(1)f a f f a ≤+[1,2]10,2⎛⎤ ⎥⎝⎦1,22⎡⎤⎢⎥⎣⎦(0,2]1.若函数1()1xf x mx-=+的图像的对称中心为(1,1)--,则实数m 的值为( )A. 1B. 1-C. 2D.2-2.函数352sin 3tan 6y x x x =-+-的图象的对称中心是( )A.(0,0)B. (6,0)C. (6,0)-D. (0,6)-3.函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称 4.(2016全国II) 已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,…,()m m x y ,,则()1miii x y =+=∑A .0B .mC .2mD .4m 对称5.函数22x yx =-+的图象关于________对称 考点六 函数性质的综合问题1.函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72B .f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52C .f ⎝⎛⎭⎫72<f ⎝⎛⎭⎫52<f (1)D .f ⎝⎛⎭⎫52<f (1)<f ⎝⎛⎭⎫722.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)(50)++++=…f f f fA .50-B .0C .2D .50 奇偶+对称=周期3、若定义在R 上的奇函数满足,且在区间[0,2]上是增函数,则有( ) 奇偶+周期+单调A. B.C. D.)(x f (4)()f x f x -=-(25)(80)(11)f f f -<<(11)(80)(25)f f f <<-(25)(11)(80)f f f -<<(80)(11)(25)f f f <<-。

相关文档
最新文档