评价数据离散程度的指标

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

评价数据离散程度的指

文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

标准差

标准差(Standard Deviation),也称(mean square error),是各数据偏离的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

标准差(Standard Deviation),在统计中最常使用作为程度(statistical dispersion)上的。标准差定义为的,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:

为非负数值,与测量资料具有相同单位。一个总量的标准差或一个的标准差,及一个子集合样品数的标准差之间,有所差别。

标准计算公式

假设有一组数值X1,X2,X3,......Xn(皆为),其平均值为μ,公式如

图1.

图1

标准差也被称为,或者实验标准差,公式如图2。

图2

简单来说,标准差是一组数据分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。

例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是7,但第二个集合具有较小的标准差。

标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。

标准差应用于投资上,可作为量度回报稳定性的。标准差数值越大,代表回报远离过去值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。

例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.16分(此数据是在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。

如是总体,根号内N=n,如是,标准差公式根号内N=(n-1),因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。

公式意义

所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。

深蓝区域是距平均值小于一个标准差之内的数值范围。在中,此范围所占比率为全部数值之68%。根据正态分布,两个标准差之内(深蓝,蓝)的比率合起来为95%。根据正态分布,三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为99%。

正态分布

标准计算公式假设有一组数值(皆为),其平均值为:此组数值的标准差为:

样本标准差

在真实世界中,除非在某些特殊情况下,找到一个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。

从一大组数值当中取出一样本数值组合,常定义其样本标准差:

样本方差s是对总体σ的。s中分母为n- 1 是因为样本的为n-1 ,这是由于存在约束条件。

这里示范如何计算一组数的标准差。例如一群儿童年龄的数值为 { 5, 6, 8, 9 } :

第一步,计算平均值

第二步,计算标准差

σ=

σ=

σ=

σ=此为标准差

离散度

标准差是反应一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标。说起标准差首先得搞清楚它出现的目的。我们使用方法去检测它,但检测方法总是有的,所以检测值并不是其真实值。检测值与真实值之间的差距就是评价检测方法最有决定性的指标。但是真实值是多少,不得而知。因此怎样量化检测方法的准确性就成了难题。这也是临床工作质控的目的:保证每批实验结果的准确可靠。

虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。

一组数据怎样去评价和量化它的离散度呢人们使用了很多种方法:

1.极差

最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法在日常生活中最为常见,比如比赛中去掉最高最低分就是的具体应用。

2.离均差的平方和

由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平的程度。因此将数据与均值之差(我们叫它)加起来就能反映出一个准确的离散程度。和越大离散度也就越大。

但是由于偶然误差是成的,离均差有正有负,对于大样本离均差的代数和为零的。为了避免正负问题,在数学有上有两种方法:一种是取绝对值,也就是常说的离均差绝对值之和。而为了避免符号问题,数学上最常用的是另一种方法——平方,这样就都成了非负数。因此,离均差的平方和成了评价离散度一个指标。

3.方差(S2)

由于离均差的平方和与样本个数有关,只能反应相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将标准差求平均值,这就是我们所说的方差成了评价离散度的较好指标。

样本量越大越能反映真实的情况,而算数均值却完全忽略了这个问题,对此上早有考虑,在统计学中样本的均差多是除以自由度(n-1),它的意思是样本能的程度。当选到只剩一个时,它不可能再有自由了,所以是n-1。

4.标准差(SD)

由于是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。

相关文档
最新文档