无碳小车设计说明书
无碳小车 设计说明
作品设计说明书(一)我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试。
通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢。
方案设计阶段根据小车功能要求我们根据机器的构成(原动机构、传动机构、执行机构、控制部分、辅助部分)把小车分为车架、原动机构、传动机构、转向机构、行走机构五个模块,进行模块化设计。
分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合。
我们的方案为:车架采用三角底板式、原动机构采用了带轮轴、传动机构采用带轮、转向机构采用凸轮机构、行走机构采用双轮驱动。
技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB分别进行了能运动学分析和动力学分析,进而得出了小车的具体参数,和运动规律y以及确定凸轮的轮廓曲线;接着应用Solidworks软件进行了小车的实体建模和部分运动仿真。
在实体建模的基础上对每一个零件进行了详细的设计,综合考虑零件材料性能、加工工艺、成本等。
小车大多零件是件,可以购买,同时除部分要求加工精度高的部分需要特殊加工外,大多数都可以通过手工加工出来。
调试过程会通过微调等方式改变小车的参数进行试验,在试验的基础上验证小车的运动规律同时确定小车最优的参数。
关键字:无碳小车参数化设计软件辅助设计目录2一绪论41.1命题主题41.2小车功能设计要求41.3小车整体设计要求51.4小车的设计方法6二方案设计72.1车架82.2原动机构82.3传动机构82.4转向机构92.5行走机构10三技术设计103.1建立数学模型113.2参数确定143.3零部件设计153.4小车运动仿真分析18四小车制作调试及改进204.1小车制作流程204.2小车调试方法204.3小车改进方法20五评价分析215.1小车优缺点215.2小车改进方向21六 22一绪论1.1命题主题根据第四届全国大学生工程训练综合能力竞赛主题为“无碳小车越障竞赛”。
命题与高校工程训练教学内容相衔接,体现综合性工程能力。
无碳小车设计说明书
无碳小车设计说明书小组成员:指导教师:学校:一. 设计思路:1.根据设计要求,为达到无碳小车走8字形轨迹重叠的目的,无碳小车应具备重力势能的转换和周期性的转向的功能,即小车分为传动机构和导向机构两部分。
其中传动机构要求能量损耗少、传动比精确,故优先选用齿轮和皮带轮传动。
导向机构要求方向控制度高、摩擦损失小,选用凸轮直线滑块机构。
2.为减轻车身质量同时保证小车刚度要求,小车采用尼龙作为底板材料,上面安装轴承座以支撑输入轴、驱动轴、吊挂重物的立杆等,小车导向机构中的滑块也需固定在底板上。
4.通过计算并确定两齿轮的传动比i,并实现小车驱动轮每行走i个周长长度,转向机构运动实现一个周期,小车也行走一个完整的8字路线。
为了使小车适应不同间距桩,我们采用凸轮机构,控制小车走重叠的8字,使得小车的工作效率更高。
二. 工作原理:当重物下落时,细绳绕过立杆定滑轮带动驱动后轮上面的绕线轮,驱动中间齿轮转动驱动后轮前进,同时通过齿轮啮合传动带动凸轮旋转,带动转向前轮周期性左右转向,从而实现小车在前进过程中自动转向。
这样小车便能在重力势能驱动下沿着“8”形路线前进,并能自动绕过障碍物。
三、设计说明我们可以将小车行走路线简化为余弦曲线和两段圆弧来处理,通过小车的传动比以及驱动轮的大小我们可以计算出该余弦曲线的幅值,可计算出小车的出发点,我们将小车出发位置定在向左转弯的圆弧中点。
我们以绕8字的两个桩位置方向为X轴,在水平面内垂直于X轴为Y 轴方向,通过计算桩间距,障碍物距离,传动比,驱动轮周长可以得出确定曲线方程,通过数学知识我们可以得出小车在出发点的前轮偏向角度(即凸轮角度),偏向角度可以适当调节。
由此我们便可以得出小车出发时垂直摆桩方向的距离以及此时小车前轮的偏向角度,从而确定小车的理论出发位置。
四、设计总结对于大赛给定的命题,重力势能转换为机械能的能量转换原理是设计的重点之一,小车动力传动结构和摩擦传动装置的设计是最重要的部分。
无碳小车设计说明
无碳小车设计说明设计说明:无碳小车设计背景:现在的交通工具使用化石燃料作为能源,不仅对环境造成了严重的污染,还加剧了全球变暖的问题。
为了解决这个问题,设计了一种无碳小车,它使用清洁能源作为驱动力,减少对环境的污染。
设计目标:1.使用清洁能源作为驱动力,减少对环境的污染。
2.提供舒适的乘坐体验和良好的操控性能。
3.具备足够的续航里程和快速充电功能。
4.物理结构紧凑,方便停放和携带。
5.引入智能控制系统,提供高效的安全性和智能交互。
设计特点:1.清洁能源驱动:无碳小车使用电能作为驱动力,充电器可使用太阳能或者风能进行充电,以减少对传统能源的依赖。
2.舒适性和操控性能:小车配备高质量的悬挂系统和减震系统,确保乘坐舒适性。
此外,小车采用电动驱动系统,提供平稳加速和操控性能。
3.续航里程和快速充电功能:小车配备高效的电池系统,提供足够的续航里程,以满足日常通勤需求。
同时,可支持快速充电功能,短时间内充电至80%以上。
4.紧凑的物理结构:小车采用紧凑的物理结构设计,尺寸较小,方便停放和携带,适合城市环境使用。
5.智能控制系统:小车配备智能控制系统,包括导航系统、安全辅助系统和智能交互界面。
导航系统可以提供最佳路线规划和实时交通信息,安全辅助系统可提供驾驶员警示和自动刹车等功能,智能交互界面可以通过语音或手势控制实现乘坐舒适性和便利性。
实施方案:1.动力系统设计:小车采用纯电动驱动系统,电池系统采用高能量密度的锂离子电池,以提供足够的续航里程。
充电器可以使用太阳能充电板或风力充电机,充电时间约为4小时。
2.悬挂系统设计:小车配备高质量的悬挂系统,以提供舒适的乘坐体验。
采用独立悬挂设计,可根据路面情况自动调节减震幅度。
3.控制系统设计:小车配备智能控制系统,包括中央控制单元、传感器和执行器。
中央控制单元接收传感器数据,并将其转换为相应的控制信号,通过执行器实现对小车的控制。
该系统可以提供导航、安全辅助、车辆诊断等功能。
无碳小车设计说明书
无碳小车设计说明书目录一、本作品的创新与特色简介;二、设计方案拟定;三、动力与传动方案的设计、计算与分析;四、动作执行机构的设计、计算与分析;五、其它设计计算与说明,设计总结;一:本作品的创新与特色简介;①所有的动力来自载荷重物,所纯机械结构,无碳排放;②在转向方面,采用内凸轮连杆机构,使得转向的角度、时间更加精确,并辅助以有图的可调机构,是转向调节更加明确。
③在重物下落阶段,增加了一动滑轮,使得做功行程加长,并合理的利用了扭矩。
④绕桩曲线部分的轨迹无需精确的计算出,由上图的机构可在完成后对中间连杆进行调试,已达到目标要求。
二:设计方案拟定;小车的方案设计关键在于传动部分与转向部分。
①传动部分;传动部分的问题在于是用什么进行传动,齿轮、带轮、直接驱动等。
最后结合传动的效率、制作的难易程度,最终确定了采用二级齿轮进行传动,如有图所示。
此方案的优点在于,以中间轴为主动轴,以小于1的传动比带动后轮,再以大于1的传动比带动凸轮轴,这样就很好的解决了行驶路程与转向周期间的关系,并且将传动比控制在合理数值内。
另外,以一个动滑轮来增加做功行程,减小瞬时扭矩,使小车前进平缓。
缺点在于,采用了二级齿轮组,使得摩擦耗能增加,机械效率降低。
②转向部分;转向部分在于采用什么机构,最大的争议在于是采用内凸轮还是外凸轮。
最终确定是采用内凸轮连杆机构。
原因在于采用外凸轮的话需要在连杆的回程部分提供一个力——增加一个弹簧;如果这样的话,可能会因为的弹簧的弹性系数,及位置的放置问题上增加设计的难度。
而采用内凸轮的话就不存在这些问题,不过增加了整体的重量,但这可以通过将凸轮在合理的条件下将其镂空来解决。
为了使后期调整时有更大的可能性,因此在连杆部分采用了右图的结果,如此便可以使小车的转向更加的准确。
③材料方面;除了前后轮采用有机玻璃之外,其余的材料都采用铝材。
底板:厚3mm的铝板,300*160*3.后轮:直径160的有机玻璃,厚5mm。
《无碳小车设计说明》-公开课件
·在整个过程中,重力势能完 全转换为小车运动过程的损
耗。使小车行进的更远.
4.细节设计
· 车身 · 车轮 · 轴承 以减小小车重力和动过程
· 传输功率=转矩X角速度 ,通过一系列的齿 轮,带轮,转轴产生转速比,使作用在后 轮的转矩和阻尼转矩平衡,物块低速匀速 下落。
· 在后轮转轴上安放多个不同半径的带轮, 微调转矩,适应不同的环境下阻力的不同。
· 制作多套后轮,微调转矩。改变后轮时, 也要相应的改变转向传动轮的大小,同时 保持车身水平,适当调整前轮转轴的长度。 (现场可实现)
无碳小车设计说明
· 构架 · 转向部分 · 驱动部分 · 细节说明
1.构架部分
· 小车采用三轮结构(1个转向,2个驱动) · 重物落差0.5米物重1kg.
2.转向
· 转向机构与驱动轴相连
· 小车的转向轮周期性的摆动
· 计算传动机构,使小车行使200厘米时,转 向轮摆动一个周期。
· 确定连杆在转盘有位置,尽量减小转向轮 的摆动角度,从而使小车先驱的实际距离 变大。确定初始位置与摆轮角度的关系。
3.驱动
· 原理:绳拉力为动力。将物块下落的势能 尽可能多的转换为小车的动能,进而克服 阻力做功。物块在下落的过程中不可避免 的要与小车发生碰撞,碰撞过程必然要有 能量损失,所以要解决的问题:1下降过程 中,尽可能的降低下落的速度;2在将要下 降到小车时,改变转速比,使物块减速下 落,进一步减少碰撞损耗。
·
二、小车的起始和结束过程
· 梯形原动轮的设计实现小车的起 动和物块的从低速到减速下落。 减小因碰撞而损失的能量。
梯形原动轮
无碳小车设计说明书
北华航天工业学院第四届全国大学生工程训练综合能力竞赛无碳小车设计说明书参赛者:夏洪伟孙传远肖洋指导老师:韩伟娜第四届全国大学生工程训练综合能力竞赛无碳小车设计说明书参赛者:夏洪伟、孙传远、肖洋指导老师:韩伟娜目录第1章方案设计..................................................................................................... - 1 -1.1 车架................................................................................................................ - 3 -1.2 原动机构...................................................................................................... - 3 -1.3 传动机构...................................................................................................... - 4 -1.4 转向机构........................................................................................................ - 7 -1.5 行走机构........................................................................................................ - 9 -1.6 微调机构........................................................................................................ - 9 -第2章技术设计................................................................................................... - 11 -2.1运动学分析模型........................................................................................... - 11 -2.2参数确定....................................................................................................... - 13 -2.3零部件设计................................................................................................... - 13 -附录................................................................................................................... - 15 -第1章方案设计通过对小车的功能分析,“无碳小车越障竞赛”通常主要由车体、能量转换、传动和转向等部分组成。
无碳小车设计说明书
无碳小车设计说明书一、基本构思通过对小车的功能分析小车需要完成重力势能的转换、驱动自身行走、形成固定路线。
在小车行走时尽量较小摩擦,实现能量较大化的转换。
而且需要灵活绕过障碍物。
在选择方案时综合考虑功能、材料、加工、制造成本等各方面因素,同时尽量避免直接决策,减少决策时的主观因素,使得选择的方案能够综合最优。
二、驱动机构1.通过重物自由下落,将重力势能转化为动能,由重物下落带动绕线轮转动,从而实现能量的转换。
2.为了增加下车的稳定性,在设计重物支撑杆时采用了三根杆,这样在小车转弯的时候控制重物左右摆动的角度。
3.在设计绕线轮时综合考虑到,要让小车跑的稳定,能轻松启动,而且跑得更远,设计成一个半径较小的二阶的绕线轮。
4.为了增加美光和方便,将固定线直接套在轴上,这样减小工作量,而且更美观更便捷。
三、传动机构1.重物的下落通过绕线轮(黄色)带动主动轴转动,然后通过二级齿轮(红色)将动力传递到后轮从动轴,从而驱动后轮转动。
2.二级齿轮实现对能量的储存。
四、转向机构(绿)1.转向机构采用偏心轴+曲柄、连杆机构(蓝色)。
U型槽的圆周运动通过连杆转化为曲柄的前后摆动,从而实现小车前轮的摆动。
(具有简单、高效、摩擦力小、能量损耗小的特点)2.还有可以无极可调。
这实现了创新,也非常符合比赛规则。
五、车身及其后轮等其他机构1.将其中的一个后轮变为从动轮,保证了小车的正常运行,而且增加差速,让下车启动更加轻松容易,跑的的也更加稳定。
2.降低了底板的高度,增加了小车的稳定性3.支撑杆支座的设计,采用尼龙,使车身更轻,更加美光。
4.后轮选用亚克力板,在车轮三割去三个圆形快,减轻车身重量,强度达到要求,美观实用。
“S”型无碳小车设计说明书
“S”型无碳小车设计说明书目录一、绪论1.1 竞赛命题主题1.2 小车功能设计要求二、方案设计2.1 路径选择2.2 转向装置2.2.1 前轮转向装置设计2.2.2 后轮转向装置设计2.3 能量转换装置设计2.4 微调机构设计三、参数设计3.1 路径参数设计3.2 其他参数设计四、选材加工五、附录1.1 竞赛命题主题本届竞赛主题为“无碳小车越障竞赛”。
要求经过一定的前期准备后,在比赛现场完成一台本命题要求的可运行的机械装置,并进行现场竞争性运行考核。
每个参赛作品需要提交相关的设计方案。
竞赛命题为“以重力势能驱动的具有方向控制功能的自行小车”。
1.2 小车功能设计要求1、设计一种小车,驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转换而得到的。
该给定重力势能由竞赛时统一使用质量为1Kg 的标准砝码 (¢50×65mm,碳钢制作) 来获得,要求砝码的可下降高度为400±2mm。
标准砝码始终由小车承载,不允许从小车上掉落。
图1 为小车示意图。
图1:无碳小车示意图2、要求小车在行走过程中完成所有动作所需的能量均由此给定重力势能转换而得,不可以使用任何其他来源的能量。
3、要求小车具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物的竞赛场地。
4、要求小车为三轮结构。
具体设计、材料选用及加工制作均由参赛学生自主完成。
二、方案设计2.1 路径选择我们选择了“S”型方案,路径如图2 所示,图中所示“S”是后轮轴中点轨迹。
在设计计算中我们近似认为这是一条余弦曲线,通过分析道路要求给出曲线方程各项参数,从而得到后续理论设计的基础数据。
图2:小车路径轨迹示意图(后轮轴中点轨迹)2.2 转向装置2.2.1 前轮转向装置设计考虑到小车在行进过程中要实现自行转向,我们选择通过改变前轮摆角来控制整个小车的转向,有两种备选方案:1、凸轮+连杆+摇杆;2、曲柄连杆+摇杆。
第一种方案中,凸轮的设计加工难度较大且成本较高,一般而言实用性不强,想要实现对小车路径的精准控制不易,而相较之下方案二中曲柄机构更容易设计计算,路径特殊点所对应曲柄的位置更容易找到,还可以通过改变曲柄偏心距实现间距微调,而且加工成本较低,拆装稳定性好,原理简单易懂,可以帮助中学生或大学生快速理解机械传动和加工原理,因此我们选用方案二,如图3 所示。
无碳小车设计说明书
无碳小车设计说明书为响应“低碳生活”的号召,我们应该节能减排,以优化环境。
作为学生,我们更应践行。
我们通过学习和实践,以及运用机械制造的原理,物理学等等方面的知识,设计了s型的无碳小车。
我们对它进行了严密的构思与计算,并结合实际进行了材料与运动的分析。
设计思路1.根据能量守恒定律,物体下落的重力势能直接转化为小车前进的动力,此时能量损失少,所以小车前进的能量来源于重物下落过程中减少的重力势能。
2.根据小车功能设计的要求,即小车在前行时能够自动绕开赛场上的障碍物,小车运动的路线需有一定的周期性。
考虑到小车在转向时会受到摩擦等阻力的影响,让小车行走最远路程是设计要求的最优解。
3.需要进行结构的设计与成本的分析,同时也需考虑加工工艺的繁琐程度,力求产品的最优设计。
小车的原理分析及构架设计1.小车的质量要适中,以此来保证车的稳定性。
质量若太大,则会增加阻力。
2.应采取齿轮传动和连杆机构,同步带的精度不高,也可避免传动效率的低下。
3.传动的力与力矩要适中,保证加速度的适中。
4.相对运动的精度要保证,以减少摩擦,保证力量的充分利用。
5.S型的路线转弯半径要适中,保证其行程。
6.选择大小适中的轮子,轮子太大,稳步性降低。
7.采用轴承,螺纹连接,用三根圆柱支撑,以此挂系重物,转向时则采用连杆机构。
小车的转向机构转向轮及转向机构如图所示。
转向采用连杆机构传动,转向轮固定在支架上。
当齿轮转动时,带动连杆运动,根据惯性,使转动轮运动方向发生改变。
小车的驱动原理重物的牵引带动栓线轴的转动,以此带动齿轮的转动,通过齿轮的啮合带动驱动轴与齿轮的转动,使驱动轮转动,带动着小车的前进;同时也带动着摇杆的转动,使推杆左右动的同时,前后运动。
在推杆与摇杆之间,有套筒相连,保证其作圆周运动。
杆偏转,使转动轮偏转,根据驱动轮与转动轮的合运动,小车就可以走S型。
栓线处为梯形原动轮。
起始时,原动轮的转动半径较大,起动转矩大,有利起动。
其次,起动后,原动轮的半径变小,转速提高,转矩变小,和阻力平衡后作匀速运动。
机械设计大赛-无碳小车-设计说明书
目录前言第1章、绪论 (4)1.1 参赛主题 (4)1.2 功能分析 (4)1.3 设计方法 (4)第2章、轨迹和行走机构选型与计算 (6)2.1 轨迹和行走机构选型 (6)2.2 轨迹参数计算 (7)第3章、控制机构选型与计算 (10)3.1 控制机构选型 (10)3.2 放大机构的设计 (12)3.3 凸轮的设计 (13)第4章、传动机构选型与计算 (16)4.1 传动机构选型 (16)4.2 齿轮系的设计 (16)4.2 尺寸参数校核 (17)第5章、动力机构选型与计算 (19)5.1 绕绳轮安装位置分析 (19)5.2 力分析 (20)5.3 前轮转向阻力矩的计算 (23)5.4 弹簧劲度系数的计算 (23)5.5 尺寸参数的获取 (23)5.6 质量属性参数的确定 (26)5.7 参数的计算 (27)5.8 绕绳轮最大半径的确定 (29)第6章、微调机构简介 (30)第7章、误差分析及效率计算 (31)7.1 误差分析 (31)7.1.1 设计误差 (31)7.1.2 参数误差 (31)7.1.3 加工与装配误差 (31)7.2 传动效率的计算 (32)7.2.1 动力机构效率的计算 (32)7.2.2 传动机构效率的计算 (33)7.2.3 控制机构效率的计算 (34)第8章、仿真分析 (35)第9章、综合评价及改进方案 (37)9.1 综合评价 (37)9.2 改进方案 (39)第10章、参考文献 (40)第11章、附录 (40)11.1 机构运动简图及装配图 (40)11.2 小车三维装配图及爆炸图 (42)第1章、绪论1.1 参赛主题第三届全国大学生工程训练大赛的竞赛主题为“无碳小车越障竞赛”。
这次竞赛包含两个竞赛项目。
第一个项目与往届竞赛相同,为小车走“S”形线路绕杆。
竞赛项目二为小车走“8”字形线路绕杆。
通过商量,我们选择的竞赛项目为项目二。
1.2功能分析根据本次竞赛规定,竞赛项目二是小车在半张标准乒乓球台(长1525mm、宽1370mm)上,绕相距一定距离的两个障碍沿8字形轨迹绕行,绕行时不可以撞倒障碍物,不可以掉下球台。
无碳小车说明书
无碳小车设计说明书学院: 行知工学分院班级: 机械132班学生姓名:学号:指导老师:完成时间: 2015 年 6 月 15日1、绪论1、1小车得设计命题设计一种小车,驱动其行走及转向得能量就是根据能量转换原理,由给定重力势能转换来得。
给定重力势能为4焦耳(取g=10m/s2),设计时统一用质量为1Kg得重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许从小车上掉落。
如图1、1所示。
图1、1要求小车行走过程中完成所有动作所需得能量均由此重力势能转换获得,不可使用任何其她得能量来源。
要求小车具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物得竞赛场地。
要求小车为三轮结构,具体设计、材料选用及加工制作均由学生自主完成。
1、2小车得整体设计要求小车设计过程需要完成:机械设计、工艺方案设计、经济成本分析与工程管理方案设计。
命题中得工程管理项要求综合考虑材料、加工、制造成本等各方面因素,提出合理得工程计划。
设计能力项要求对参赛作品得设计具有创新性与规范性。
命题中得制造工艺能力项要求综合运用加工制造工艺得知识。
1、3小车得设计方法在小车得设计方法上,我们借鉴了参数化设计、优化设计、系统设计等现代设计发明理论方法。
采用CAXA、SolidWorks2012等辅助软件设计。
2、设计方案2、1尺寸设计由于小车实在平面上运行,转弯半径较小,所以定小车得宽度为150mm,长度为150mm,使其能拥有更佳得灵活性。
如图2、1所示。
图2、12、2最大转角因为小车长为150mm,当绕过最大偏移距离为500mm得圆弧时能得到最大转角,如图3、2所示,即可得最大转角位26、897°、如图2、2所示。
、、图2、2设曲柄长度为10,已知最大转角位26、897°,由图2、3所示可知可得最大偏移距离图2、3偏移距离L=10 /tan(26、897°)=19、71mm2、3后轮直径设计传动机构得功能就是把动力与运动传递到转弯机构与驱动轮上。
无碳小车设计说明书
S组无碳小车设计说明书目录1、小车的设计要求 (1)2、无碳小车结构方案的设计 (2)2.1整体方案分析 (2)2.2驱动机构 (3)2.3传动机构 (4)2.4转向机构以及轨迹分析与设计 (4)2.4.1小车运行轨迹理论参数分析 (4)2.4.2小车动态力分析 (5)2.4.3传动机构及行走机构参数确定 (7)2.4.4 转向机构参数的确定 (8)2.5微调机构 (9)2.6小车车体整体分析 (9)3、基于SolidWorks motion的仿真分析 (10)3.1 简化模型的建立 (10)3.2 运动副的添加 (10)3.2 仿真计算以及结果分析 (11)参考文献 (12)1、小车的设计要求图1-1 无碳小车示意图图1-2 无碳小车运行轨迹图如上图1-1小车示意图:根据能量守恒定律,给一定重力势能(用⌀mm5065错误!未找到引用源。
普通碳钢的重块,质量为1kg,铅垂下落差为400mm来获得),设计一种“以重力势能驱动具有方向控制功能的无碳小车”,该小车能够在行驶的过程中有规律避开水平的平面上每隔1米设置一个弹性圆棒障碍物(如上图2小车运行轨迹图)。
保证小车行走的过程重物随车平稳的行走而不掉落,要求小车行走的过程中所有的动能均由重物的重力势能获得,不得借用其他形式的能量。
小车底板结构设计采用三轮结构,即2个驱动轮,1个转向轮。
细节上的结构只能根据学校现有材料、机床以及加工工艺的难度进行设计。
2、无碳小车结构方案的设计2.1整体方案分析通过对毕业设计任务要求及目的的剖析,利用发散性思维方式,把实现小车功能的各种可能方案一一列出,为了方便设计,可以将能实现小车功能细分为:驱动机构、传动机构、转向机构、微调机构四个模块。
下图2-1为无碳小车设计的思维导图:图2-1 无碳小车结构方案设计思路在选择各个模块方案时,要从实际情况出发,充分考虑实际学校的机床设备,材料的获取,制造成本以及实际加工工艺的可行性等等。
无碳小车设计说明书
北华航天工业学院第四届全国大学生工程训练综合能力竞赛无碳小车设计说明书参赛者:夏洪伟孙传远肖洋指导老师:***第四届全国大学生工程训练综合能力竞赛无碳小车设计说明书参赛者:夏洪伟、孙传远、肖洋指导老师:***目录第1章方案设计..................................................................................................... - 1 -1.1 车架................................................................................................................ - 3 -1.2 原动机构...................................................................................................... - 3 -1.3 传动机构...................................................................................................... - 4 -1.4 转向机构........................................................................................................ - 7 -1.5 行走机构........................................................................................................ - 9 -1.6 微调机构........................................................................................................ - 9 -第2章技术设计................................................................................................... - 11 -2.1运动学分析模型........................................................................................... - 11 -2.2参数确定....................................................................................................... - 13 -2.3零部件设计................................................................................................... - 13 -附录................................................................................................................... - 15 -第1章方案设计通过对小车的功能分析,“无碳小车越障竞赛”通常主要由车体、能量转换、传动和转向等部分组成。
小车设计说明书 -
“无碳小车”设计说明书一、概要此次无碳小车的设计主要是利用重物下落的重力势能作为原动力,来驱动小车前进以及使小车能按规定绕开障碍物。
重物质量M=1kg,下落高度H=400mm,每个障碍物之间隔0.9米、1米、1.1米。
二、分析1、为使得小车能够行走,首要解决的就是小车驱动,要设计小车的驱动机构;2、为使得小车能够转弯,并能够绕开等距离的障碍物,所以要设计一个能够走S形路线的周期性的转向机构;3、由于只有一个动力源,所以还要设计一套小车的传动机构;4、为了使得小车能够顺利转弯,还要解决小车后轮的差速问题。
三、原理设计符号说明:驱动轮半径驱动轮A与转向轮横向偏距驱动轮B与转向轮横向偏距驱动轴(轴2)与转向轮中心距离曲柄轴(轴1)与转向轮中心距离曲柄的旋转半径摇杆长轴的绳轮半径2r1.传动机构传动机构的功能是把动力和运动传递到转向机构和驱动轮上。
要使小车行驶的更远及按设计的轨道精确地行驶,传动机构必需传递效率高、传动稳定、结构简单重量轻等。
1.不用其它额外的传动装置,直接由动力轴驱动轮子和转向机构,此种方式效率最高、结构最简单。
在不考虑其它条件时这是最优的方式。
2.带轮具有结构简单、传动平稳、价格低廉、缓冲吸震等特点但其效率及传动精度并不高。
不适合本小车设计。
3.齿轮具有效率高、结构紧凑、工作可靠、传动比稳定但价格较高。
因此在第一种方式不能够满足要求的情况下优先考虑使用齿轮传动。
2.转向机构转向机构是本小车设计的关键部分,直接决定着小车的功能。
转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性。
能够将旋转运动转化为满足要求的来回摆动,带动转向轮左右转动从而实现拐弯避障的功能。
能实现该功能的机构有:凸轮机构+摇杆、曲柄连杆+摇杆、曲柄摇杆、差速转弯等等。
凸轮:凸轮是具有一定曲线轮廓或凹槽的构件,它运动时,通过高副接触可以使从动件获得连续或不连续的任意预期往复运动。
无碳小车 设计说明
作品设计【2 】解释书摘要我们把小车的设计分为三个阶段:计划设计.技巧设计.制造调试.经由过程每一阶段的深刻剖析.层层把关,是我们的设计尽可能向最优设计挨近.计划设计阶段根据小车功效请求我们根据机械的组成(原念头构.传念头构.履行机构.掌握部分.帮助部分)把小车分为车架 .原念头构 .传念头构 .转向机构 .行走机构五个模块,进行模块化设计.分离针对每一个模块进行多计划设计,经由过程分解比较选择出最优的计划组合.我们的计划为:车架采用三角底板式.原念头构采用了带轮轴.传念头构采用带轮.转向机构采用凸轮机构.行走机构采用双轮驱动.技巧设计阶段我们先对计划树立数学模子进行理论剖析,借助MATLAB 分离进行了能活动学剖析和动力学剖析,进而得出了小车的具体参数,和活动纪律y以及肯定凸轮的轮廓曲线;接着应用Solidworks软件进行了小车的实体建模和部分活动仿真.在实体建模的基本上对每一个零件进行了具体的设计,分解斟酌零件材料机能.加工工艺.成本等.小车大多零件是标准件,可以购置,同时除部分请求加工精度高的部分须要特别加工外,大多半都可以经由过程手工加工出来.调试进程会经由过程微调等方法转变小车的参数进行实验,在实验的基本上验证小车的活动纪律同时肯定小车最优的参数.症结字:无碳小车参数化设计软件帮助设计目次摘要2一绪论41.1命题主题41.2小车功效设计请求41.3小车整体设计请求51.4小车的设计办法6二计划设计72.1车架82.2原念头构82.3传念头构82.4转向机构92.5行走机构10三技巧设计103.1树立数学模子113.2参数肯定143.3零部件设计153.4小车活动仿真剖析18四小车制造调试及改良204.1小车制造流程204.2小车调试办法204.3小车改良办法20五评价剖析215.1小车优缺陷215.2小车改良偏向21六参考文献22一绪论1.1命题主题根据第四届全国大学生工程练习分解才能比赛主题为“无碳小车越障比赛”.命题与高校工程练习教授教养内容相连接,表现分解性工程才能.命题内容表现“创新设计才能.制造工艺才能.现实操作才能和工程治理才能”四个方面的请求.1.2小车功效设计请求给定一重力势能,根据能量转换道理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装配.该自行小车在前行时可以或许主动避开赛道上设置的障碍物(距离规模在700-1300mm,放置一个直径20mm.长200mm的弹性障碍圆棒).以小车前行距离的远近.以及避开障碍的若干来分解评定成绩.给定重力势能为4焦耳(取g=10m/s2),比赛时同一用质量为1Kg的重块( 50×65 mm,通俗碳钢制造)铅垂降低来获得,落差400±2mm,重块落下后,须被小车承载并同小车一路活动,不许可失落落.请求小车前行进程中完成的所有动作所需的能量均由此能量转换获得,不可应用任何其他的能量情势.小车请求采用三轮构造(1个转向轮,2个驱动轮),具体结构造型以及材料选用均由参赛者自立设计完成.1.3小车整体设计请求小车设计进程中须要完成:构造计划设计.工艺计划设计.经济成本剖析和工程治理计划设计.命题中的工程治理才能项请求分解斟酌材料.加工.制造成本等各方面身分,提出合理的工程计划.设计才能项请求对参赛作品的设计具有创新性和规范性.命题中的制造工艺才能项以请求分解应用加工制造工艺常识的才能为主.1.4小车的设计办法小车的设计必定要做到目的明白,经由过程对命题的剖析我们得到了比较清楚坦荡的设计思绪.作品的设计须要有体系性规范性和创新性.设计进程中须要分解斟酌材料 .加工 .制造成本等给方面身分.2.2原念头构原念头构的感化是将重物的重力势能转化为小车的驱动动能.能实现这一功效的计划有多种,就效力和简练性来看绳轮最优.小车对原念头构还有其它的具体请求.1.驱动力适中,不至于小车拐弯时速渡过大倾翻,或重物晃悠厉害影响行走.2.到达终点前重物竖直偏向的速度要尽可能小,避免对小车过大的冲击.同时使重物的势能尽可能的转化到驱动小车进步的动能,假如重物竖直偏向的速度较大,重物本身还有较多势能未释放,能量应用率不高.3.机构简略,效力高,便于加工制造.2.3传念头构传念头构的功效是把动力和活动传递到转向机构和驱动轮上.要使小车行驶的更远及按设计的轨道精确地行驶,传念头构必需传递效力高.传动稳固.构造简略重量轻等.1.带轮具有构造简略.传动安稳.价钱低廉.缓冲吸震等特色但其效力不是很高.2.齿轮具有用力高.构造紧凑.工作靠得住.传动比稳固但价钱较高,不易加工制造.是以在第一种方法不可以或许知足请求的情形下可优先斟酌应用齿轮传动.2.4转向机构转向机构是本小车设计的症结部分,直接决议着小车的功效.转向机构也同样须要尽可能的削减摩擦耗能,构造简略,零部件已获得等根本前提,同时还须要有特别的活动特征.可以或许将扭转活动转化为知足请求的往返摆动,带动转向轮阁下迁移转变从而实现拐弯避障的功效.能实现该功效的机构有:凸轮摇杆.曲柄连杆等等.凸轮摇杆:长处:只需设计恰当的凸轮轮廓,便可使从动件得到随意率性的预期活动,并且构造简略.紧凑.设计便利;缺陷:凸轮轮廓加工比较艰苦.曲柄连杆:长处:活动副单位面积所受压力较小,且面接触便于润滑,故磨损减小;两构件之间的接触是靠本身的几何关闭来保持接触.缺陷:一般情形下只能近似实现给定的活动纪律或活动轨迹,且设计较为庞杂;当给定的活动请求较多或较庞杂时,须要的构件数和活动副数往往比较多,如许就使机构构造庞杂,工作效力降低,产生自锁的可能性增长.分解上面剖析我们选择凸轮摇杆作为小车转向机构的计划.2.5行走机构行走机构即为三个轮子,轮子又厚薄之分,大小之别,材料之不同须要分解斟酌.由摩擦理论知道摩擦力矩与正压力的关系为:δ⋅=N M对于雷同的材料δ为必定值.而滚动摩擦阻力 : R N R Mf δ⋅==所以轮子越大小车受到的阻力越小,是以可以或许走的更远.因为小车是沿着曲线进步的,后轮必定会产生差速.对于后轮可以采用双轮同步驱动,双轮差速驱动.双轮同步驱动必定有轮子会与地面打滑,使小车活动产生误差,但因为小车速度较小时,可以大大减小差速带来的影响.双轮差速驱动可以避免双轮同步驱动消失的问题,可以经由过程差速器或单向轴承来实现差速.但差速器的构造较为庞杂,且因为单向轴承消失侧隙,在主动轮从动轮切换进程中消失误差导致活动不精确.综上所述行走机构的轮子应有恰当可调的尺寸,经由加工和成本的分解斟酌我们选用双轮同步驱动.三技巧设计技巧设计阶段的目的是完成具体设计肯定个零部件的的尺寸.设计的同时分解斟酌材料加工成本等各身分.3.1树立数学模子经由过程对小车树立数学模子,可以实现小车的参数化设计和优化设计,进步设计的效力和得到较优的设计计划,充分施展盘算机在帮助设计中的感化.是以,我们采用了Matlab软件帮助设计.小车后轮直径盘算:function [D2] =fD2(LC,n)%D2 小车后轮直径%LC 小车行驶一个周期的旅程%n 小车行驶一个周期,后轮转的圈数.%(肯定n之后,也就肯定了后轮轴与凸轮轴的转速比为n:1)D2=LC/pi/n;End推杆伸长量盘算:function [Delta] = fDelta(theta,yT)%yT 导向杆长%Delta 凸轮的推杆伸长量(假定伸长为正,缩短为负)%theta 小车前轮转角(假定左转为正)Delta=yT*sin(theta);end小车路径上某点的曲率半径盘算:function [r] = fr(x0,r0,l)%fr 求小车路径上某点的曲率半径%r0 零点处曲线的纵坐标,r0-y/2>10,y为两后轮间距%l 两个障碍物间距,700~1300% fx01,fx02 分离为fx0的一阶导,二阶导fx01=r0*pi*sin(pi*x0/l)/l;fx02=r0*(pi^2)*cos(pi*x0/l)/(l^2);r=(1+(fx01^2))^(3/2)/fx02;end小车前轮转角盘算:function [theta] = ftheta(r,x )%theta 小车前轮转角(假定左转为正)%r 小车路径上某点的曲率半径%x 前轮轴与后轮轴间距theta=atan(x/r);end小车行驶一个周期的旅程盘算:function [ LC ] = fLC(r0,l)%应用第一类曲线积分,当被积函数为1时,即求曲线长度%r0 零点处曲线的纵坐标,r0-y/2>10,y为两后轮间距%l 两个障碍物间距,700~1300%LC小车行驶一个周期的旅程x0=sym('x0');%r0=sym('r0'); l=sym('l'); %使成果带有r0和l这两符号f=sqrt(1+r0^2*pi^2*(sin(pi/l*x0))^2/(l^2));LC=int(f,0,2*l);LC=double(LC); %将成果转化为数值.成果带有符号时不能应用end凸轮轮廓曲线画图:l=800; %两个障碍物间距,700~1300r0=150; %零点处曲线的纵坐标,r0-y/2>10,y为两后轮间距x=200; %前轮轴与后轮轴间距yT=30; %yT 导向杆长rj=10; %凸轮基圆半径x1=72; %凸轮轴(轴1)与前轮轴程度间距x2=72; %轴1与轴2间距x3=48; %轴2与轴3间距x0=0;r=fr(x0,r0,l);theta=ftheta(r,x);maxDelta=fDelta(theta,yT); %maxDelta 推杆最大伸长(或缩短)的量maxDeltaxT=x1-rj-maxDelta; %xT凸轮的推杆长度xT i=1;for alpha=0:0.0001:2*pix0=alpha*l/pi;r=fr(x0,r0,l);theta=ftheta(r,x);Delta=fDelta(theta,yT);TL=rj+maxDelta+Delta;n(i)=alpha;m(i)=TL;i=i+1;%hold on;%polar(alpha,TL); %描点法画出凸轮轮廓%plot(x0,Delta); %查看Delta(推杆伸长缩短量)随x0变化而变化的情形%plot(x0,theta); %查看theta(前轮转角)随x0变化而变化的情形%hold off;endpolar(n,m);%axis equal; %描点时,使横纵坐标单位间距相等3.2参数肯定单位:mm 前轮轴与后轮轴间距x=200导向杆长x=30凸轮基圆半径R=10凸轮轴(轴1)与前轮轴程度间距x=80轴1与轴2间距x=72轴2与轴3间距x=483.3零部件设计1.需加工的零件:a.驱动轴.传动轴b.车轮c.轴承座d.底板e.凸轮2.可购置的标准件:内圈Φ10的深沟球轴承.7个不同弹性模量弹簧.M8方形内六角螺栓3.部分加工零件二维图3.4小车活动仿真剖析为了进一步剖析本计划的可行性,我们应用了Solidworks进行了动态仿真.四小车制造调试及改良4.1小车制造流程4.2小车调试办法小车的调试是个很重要的进程,有了大量的理论根据支持,还必须用大量的实践去验证.小车的调试涉及到许多的内容,如车速的快慢,绕过障碍物,小车整体的调和性等.(1)小车的速度的调试:经由过程小车在指定的赛道上行走,测量经由过程指定点的时光,得到多组数据,从而得出小车行驶的速度,经由过程实验,发明小车后半程速度较快,整体调和机能不是太好,于是车小了绕绳驱动轴,减小过大的驱动力同时也增大了小车进步的距离.(2)小车避障的调试:固然本组小车各个机构相对来说较简略,但损耗能量稍多,同时避障也不是很好,可以经由过程转变摇杆与凸轮的接触实现微量调节.4.3小车改良办法1.构造优化:为了进步能量的应用效力,在不影响应用前提的情形下,可以削减不必要的部分.2.机构优化:为了进步能量的转换效力,在稍微增长成本的情形下,可以斟酌应用齿轮传动.五评价剖析5.1小车优缺陷长处:(1)小车机构简略,加工制造便利;(2)采用塑料材质,质量较轻,有利于行驶较远的距离.缺陷:小车精度请求高,使得加工零件成本高,因为差速的消失影响小车的绕弯以及能量的有用应用率.5.2改良偏向小车重要的缺陷是精度请求异常高和消失差速问题,信任改良小车的精度和差速问题,,小车便能达到很好的行走后果.。
无碳小车说明书
无碳小车设计说明书机制八班(100%)2014.7.71.工作原理给定1kg的重块在400mm的高度落下来,由重力势能转化成小车前进的动能,同时利用转向装置实现小车按8字形曲线(近似看作)绕桩前进,桩距500mm。
当重物下落时,其所带的绳子带动绕线轴转动,带动与绕线轴同轴的主动齿轮Z1与大带轮d1转动,Z1又带动前面的与前轮同轴的从动齿轮Z2转动,驱动小车前进。
大带轮通过带传动带动小带轮转动引起凸轮转动推动连杆使小车前轮发生偏转从而改变小车运行方向构成转向机构。
机构运动简图如下所示2.行程放大小车绕一个8字的近似路程S=2π*500=3142mm,绕20个8字S总=20S=62840,取64000初步设计小车车轮直径100mm小车绕一圈8字车轮转过圈数n轮=S/(πD)=10行程放大系数u=64000/400=160S总=n轮πD=n绕*i*πD=L*i*D/D绕i/D绕=8/5,取i=8,D绕=5mm小车驱动转矩M=1*10*2.5=25N/mm通过网络可以查知一般情况下滚动摩擦系数u<0.01,小车整体质量小于3KG,阻力转矩M阻=30*50*0.01=15<M所以正常状态下物块能驱动小车行进3.转向机构的设计如图所示为小车的绕行轨迹,其中加粗部分为主动轮的轨迹使用单轮驱动,小车运动时前轮偏转角为Θ如图所示,cosα=cos(兀/2_Θ)=sinΘ=0.4Θ=23.58使用凸轮机构,设实际轨迹为240°的大圆弧则S1=4兀/3×6×5=40兀左边为270°S2=6兀/4×4×5=30兀如图导杆机构令l2=5mm则计算可得l1=11.5mm令在凸轮大端推动推杆时小车的主动轮在大圆上运动,可设计如图所示凸轮Θ1=s1/s总×360°=144°Θ2=s2/s总×360°=108°传动比i2的计算由已知可知道凸轮绕一圈小车绕一个8字,车轮绕10圈n凸/n轮=1:10n凸/n绕=n凸/(n轮/8)=4:5无碳小车示意图。
无碳小车设计说明书-大学生工程训练综合能力竞赛
无碳小车设计说明书-大学生工程训练综合能力竞赛无碳小车设计说明书-大学生工程训练综合能力竞赛第三届省大学生工程训练综合能力竞赛(荣获S形组省赛一等奖) 无碳小车设计说明书一、概要3 二、分析3 三、原理设计4 1、驱动机构4 2、转向机构5 3、后轮差速5 四、参数设计6 1、轨迹设计6 2、转角设计6 3、带轮设计7 4、小车部分零件的设计8 (1)拨盘8 (2)转向轮销9 (3)转向轮槽零件图:11 (4)皮带轮12 (5)转向轴13 实体图:13 (6)转向连杆14 (7)拨槽15 (8)拨槽加工工艺分析16 (9)齿轮17 (10)底板19 (11)后驱动轴零件图:20 五、小车装配完成图片21 “无碳小车”设计说明书一、概要此次无碳小车的设计主要是利用重物下落的重力势能作为原动力,来驱动小车前进以及使小车能按规定绕开障碍物。
重物质量M=1kg,下落高度H=400mm,每个障碍物之间隔0.9米、1米、1.1米。
二、分析1、为使得小车能够行走,首要解决的就是小车驱动,要设计小车的驱动机构;2、为使得小车能够转弯,并能够绕开等距离的障碍物,所以要设计一个能够走S 形路线的周期性的转向机构;3、由于只有一个动力源,所以还要设计一套小车的传动机构;4、为了使得小车能够顺利转弯,还要解决小车后轮的差速问题。
三、原理设计1、驱动机构图1左侧部分为我们的驱动简图,考虑到小车的启动时需要较大的启动力矩,同时为使得重物的重力势能能够尽可能大地转化到有利小车行走的方面,与重物下落连线驱动圆锥滚筒设计成为如图所示,再考虑,为使得小车走的路程要长,所以,重物下落的行程要经过一对直齿圆柱齿轮放大。
所以,传动流程:重物→圆锥滚筒→大齿轮→小齿轮→后驱动轮2、转向机构图2为小车的前轮转向部分,为使得小车能够绕开定距离的障碍物,小车前轮转向要设计成具有周期性摆动的转向机构。
故,转向机构设计成正弦机构。
前轮的动力来源:重物→圆锥滚筒→带轮1→带轮2→转向拨盘→转向轮带轮带动拨盘转动,拨动转向轮上的转向槽前后摆动,这样即可以带动前轮的左右摆动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无碳小车设计说明书
为响应“低碳生活”的号召,我们应该节能减排,以优化环境。
作为学生,我们更应践行。
我们通过学习和实践,以及运用机械制造的原理,物理学等等方面的知识,设计了s型的无碳小车。
我们对它进行了严密的构思与计算,并结合实际进行了材料与运动的分析。
设计思路
1.根据能量守恒定律,物体下落的重力势能直接转化为小车前进的动力,此时能量损
失少,所以小车前进的能量来源于重物下落过程中减少的重力势能。
2.根据小车功能设计的要求,即小车在前行时能够自动绕开赛场上的障碍物,小车运
动的路线需有一定的周期性。
考虑到小车在转向时会受到摩擦等阻力的影响,让小
车行走最远路程是设计要求的最优解。
3.需要进行结构的设计与成本的分析,同时也需考虑加工工艺的繁琐程度,力求产品
的最优设计。
小车的原理分析及构架设计
1.小车的质量要适中,以此来保证车的稳定性。
质量若太大,则会增加阻力。
2.应采取齿轮传动和连杆机构,同步带的精度不高,也可避免传动效率的低下。
3.传动的力与力矩要适中,保证加速度的适中。
4.相对运动的精度要保证,以减少摩擦,保证力量的充分利用。
5.S型的路线转弯半径要适中,保证其行程。
6.选择大小适中的轮子,轮子太大,稳步性降低。
7.采用轴承,螺纹连接,用三根圆柱支撑,以此挂系重物,转向时则采用连杆机构。
小车的转向机构
转向轮及转向机构如图所示。
转向采用连杆机构传动,转向轮固定在支架上。
当齿轮转动时,带动连杆运动,根据惯性,使转动轮运动方向发生改变。
小车的驱动原理
重物的牵引带动栓线轴的转动,以此带动齿轮的转动,通过齿轮的啮合带动驱动轴与齿轮的转动,使驱动轮转动,带动着小车的前进;同时也带动着摇杆的转动,使推杆左右动的同时,前后运动。
在推杆与摇杆之间,有套筒相连,保证其作圆周运动。
杆偏转,使转动轮偏转,根据驱动轮与转动轮的合运动,小车就可以走S型。
栓线处为梯形原动轮。
起始时,原动轮的转动半径较大,起动转矩大,有利起动。
其次,起动后,原动轮的半径变小,转速提高,转矩变小,和阻力平衡后作匀速运动。
原动轮的半径变小,使总转速比提高。
小车缓慢减速,直到停止,物块停止下落,正好接触小车。
加工工艺的设计
1.小车底板部分挖空,减轻了整体的质量。
2.重物支撑架用三根圆柱杆支撑,有助于其稳定性。
3.后轮的大小适中,直径为182mm。
4.载物放置靠近轴处,稳定重心。
小车加工的尺寸
关于齿轮:
小齿轮A:M=1,Z=15,最大直径=15,尺宽b=6.5;
齿轮B: M=1,Z=45,最大直径=45,b=10;
B与A传动比i=1/3;
齿轮C:M=1,Z=60,最大直径=60,b=10;
C与A传动比i=1/4;
车轮厚度均为4mm,总高度H=515mm,总宽d=164mm.
小车计算的公式及推理
1.大轮半径为R,重物下降dh,转轴①半径为r1 ,转过角度dθ 1 ;同时转轴②半径
r2,转过角度dθ2,转轴③转过角度dθ3.
齿轮啮合组⑴的传动比为i1,齿轮啮合组⑵的传动比为i2 ;
公式:dh=r1dθ1 dθ2=dθ1/i1
dθ3=dθ 2 *i2=dθ1*i1*i2
2.关于转向:当转向杆与驱动轴角度为а,曲柄转过角度θ4,连杆长为L,曲柄半
径r4,摇杆长为c,转向轮中心到曲柄轴的长度为b;
公式:L2=c2(1-cosа)2+(b+csinа-r4cosθ4)2+r42sinθ4 2
θ3=θ4 ;
由上式得:а=f(θ3)
小车转弯的曲率半径为ρ=b/tanа+a1
3.小车行走ds过程中,小车整体转过的角度dβ, dβ=ds/ρ;
当小车转过角度为β时,有dx=-ds*sinβ,得小车从A点到B点的轨迹方程:
dy=ds*cosβ
x B=x A-(a1+a2)cosβ
y B=y A+(a1+a2)sinβ
4.综上所述:定义无碳小车各部件参数:
大轮半径R为91mm,转向轮半径r为25mm,连杆长L为183mm;
齿轮啮合组①的传动比i1为1/3,齿轮啮合组②的传动比i2为1/4;
转轴①转轴②转轴③的半径r1 r2 r3均为5mm
摇杆长为40mm;曲柄长为120mm;拴绳轴长为60mm
总述
在结合了机械原理和物理学的知识后,设计出的小车能走出S型的轨迹。
通过对无碳小
车结构特点的分析,我们进行了对齿轮参数和最大运动距离等等的计算。
小车理论上可以按照正常的曲线行走,但实际的结果必须从实践中得之,这也是理论设计的弊端。
通过这次学习,我们的创新能力得到了提高。
这次设计仍然存在很多的不足,这是下次需要注意的。