第二章测试系统的基本特性动态特性
第2讲 测试系统及其基本特性(静态、动态1)
仪表的准确度等级和基本误差
例:某指针式电压表的精度为 2.5级,用它来测量电压时可能产 生的满度相对误差为2.5% 。
例:某指针式万用 表的面板如图所 示,问:用它来测 量直流、交流 (~)电压时,可 能产生的满度相对 误差分别为多少?
例:用指针式万用表 的10V量程测量一只 1.5V干电池的电压, 示值如图所示,问: 选择该量程合理吗?
(m/s)、物位、液位h(m) m/s)、
机械量 (第4、5、6、7、10章) 10章
• 直线位移x(m)、角位移α、速度、加速度a
( m/s2) 、转速n(r/min)、应变 ε (μm/m )、力矩 m/s2) r/min)、 T(Nm)、振动、噪声、质量(重量)m(kg、t) Nm)、 kg、
3、测量误差及分类
绝对误差:
Δ=Ax-A0
(1-1)
某采购员分别在三家商店购买100kg大 米、10kg苹果、1kg巧克力,发现均缺少约 0.5kg,但该采购员对卖巧克力的商店意见 最大,是何原因?
相对误差及精度等级
几个重要公式: γ A = Δx / A × 100%
γ x = Δx / x × 100%
测量范围
x
实际总是用定度曲线的拟合直线的斜率作为该装置的灵敏 度。
Δy S= Δx
灵敏度的单位取决于输入、输出量的单位 Ⅰ 当输入输出量纲不同时,灵敏度是有量纲的 量; Ⅱ 当输入输出量纲相同时,灵敏度是无量纲的 量。此时的灵敏度也称为“放大倍数”或“放大比”。
例 位移传感器,位移变化1mm时,输出电压变化为 300mV,求系统的灵敏度。
几何量(第10章) 10章
• 长度、厚度、角度、直径、间距、形状、粗糙度、硬
第二章 测试系统的基本特性-动态特性
练习
0
( t ) 0 . 5 cos 10 t 0 . 2 cos( 100 t 45 ) 求周期信号 x
通过传递函数为
1 H (s ) 0 .005 s 1
的装置后得到的稳态响应?
一阶系统在典型输入下的响应
• 脉冲响应
x(t) (t) 其拉氏变换:X(s) 1 1 t / 一阶系统的响应: y(t) e
2 2 4 2
a r c t a n ( ) a r c t a5 . 2 3 1 0 ) 9 1 9 5 0
4 o
练习
一温度传感器为一阶系统,其时 间常数τ=0.001s,求当测量频率 f=100Hz信号时的幅值误差和相位误差。
1
1 () 1
2
≤0.05
1 ( ) ≤ 2 1 0 . 1 0 8 0 . 9 5
0 .00052
1 1 1 1 1 1 1 0 . 9 8 6 8 1 . 3 2 % ( )1 ( 2 f )1 ( 2 5 0 5 . 2 3 1 0 )1
n
n 2
1 4
22 2 n n
1
2
2 n ( ) arctg 2 1 n
二阶系统的幅相频特性
1) 、ω/ω A(ω) 近似水平直线, φ(ω) =-180º 4)、当 ω=ω 时, A(ω)=1/(2ξ) , φ(ω) =-90º , 。 n>2 n, 幅值剧增,共振。
m m 1
频率响应函数是传递函数的特例。
Y ( j ) X ( j ) H ( j )
传递函数H(s)是在复数域中描述和考察系统的 特性;频率响应函数H(ω)是在频域中描述和 考察系统特性。
检测系统的基本特性
2.1 静态特性及性能指标
2.1.1 检测系统的静态特性 静态测量和静态特性 :
静态测量:测量过程中被测量保持恒定不变(即 dx/dt=0系统处于稳定状态)时的测量。
静态特性:在静态测量中,检测系统的输出-输入 特性。
y a0 a1 x a2 x a3 x an x
特性:
H ( s) H ( j ) K ( ) e j ( )
s j
2018/9/4
16
2.2.1 检测系统的传递函数 1.零阶系统 系统方程:
a0 y b0 x
H ( s) K 0 H ( j ) K 0
0
或 y K0 x
传递函数:
频率特性:
幅频特性:K () K 相频特性: ( ) 0
2018/9/4
12
理论方法是根据检测系统的数学模型,通过求解微分方程来 分析其输出量与输入量之间的关系。 常用实验的方法: 频率响应分析法――以正弦信号作为系统的输入; 瞬态响应分析法――以阶跃信号作为系统的输入。
2018/9/4
13
2.2.1 检测系统的传递函数
检测系统的理想动态特性要求:当输入量随时间变化 时,输出量能立即随之无失真的变化。但实际的传感器总
或
1
0 2
式中:
d 2 y 2 dy 2 y K0 x 0 dt dt
b0 ; a0
a0 ; a2
K0------系统的静态灵敏度,K 0 ω0------系统的固有角频率,0 ξ ------系统的阻尼比系数,
2018/9/4
a1 2 a0 a2
21
1
第二章测试系统的基本特性[1]
第二章测试系统的基本特性第一节概述测试的目的是为了准确了解被测物理量,而研究测试系统特性的目的则是为了能使系统尽可能准确真实地反映被测物理量,且为测试系统性能的评价提出一个标准。
1.测试系统能完成对某一物理量进行测取的装置,它即可以是一个单一环节组成的装置,如传感器,又可以是一个由多个功能环节组成的系统,如应变测量中的“传感器-应变仪-记录仪”。
2.对测试系统的基本要求工程测试的基本传输关系如图示,所要寻求的是输入x(t),输出y(t),系统传输性三者的关系,即1)由已知的系统的输入和输出量,求系统的传递特性。
2)由已知的输入量和系统的传递特性,推求系统的输出量。
3)由已知系统的传递特性和输出量,来推知系统的输入量。
为使上述三种问题能由已知方便的确定未知,为此提出,对于一个测试来说,应具有的基本特性是:单值的、确定的输入-输出关系,即对应于每一个输入量都应只有单一的输出量与之对应,能满足上述要求的系统一般是线性系统。
3.测试系统的特性的描述对测试系统特性的描述通常有静态特性、动态特性、负载特性、抗干扰特性。
4.线性系统简介二、线性系统及其主要性质当系统的输入x(t)和输出y(t)之间的关系可用常系数线性微分方程(2-1)来描述时,则称该系统为定常线性系统。
线性系统有如下性质(以x(t) y(t)表示系统的输入、输出关系):1)叠加性表明作用于线性系统的各个输人所产生的输出互不影响,这样当分析众多输人同时加在系统上所产生的总效果时,可以先分别分析单个输入(假定其他输入不存往)的效果,然后将这些效果叠加起来以表示总的效果。
2)比例特性若 x(t)→y(t)则3)微分性质 系统对输入导数的响应等于对原输入响应的导数,即4)积分性质 系统对输入积分的响应等于对原输入响应的积分,即5)频率保持性 若输入为某一频率的间谐信号,则系统的稳态输出必是、也只是同频率的间谐信号。
由于按线性系统的比例特性,对于某一已知频率ω有又根据线性系统的微分特性,有应用叠加原理,有现令输人为某一单一频率的简谐信号,记作t j e X t x ω0)(=,那么其二阶导数应为由此,得相应的输出也应为于是输出y(t)的唯一的可能解只能是线性系统的这些主要特性,特别是叠加性和频率保持性,在测试工作中具有重要的作用。
第二章 测试系统的基本特性动态特性
22
工程测试与信号处理
第2章 测试系统的基本特性
二阶系统的幅相频特性
1) 、ω/ω A(ω) 近似水平直线, φ(ω) =-180º 4)、当 ω=ω 时, A(ω)=1/(2ξ) , φ(ω) =-90º , 。 n>2 n, 幅值剧增,共振。
华中科技大学武昌分校自动化系
11
工程测试与信号处理
第2章 测试系统的基本特性
频率响应函数 H ( j )
1 1 j 2 2 H(( S )) j 1 1 ( ) 1 1 1 S 1 H ( j ) j 2 它的幅频、相频特性的为: j 1 1 ( ) 1 ( ) 2 1 A( )= H(j )
2
1
1 0.9868 1.32%
arctan( ) arctan(2f ) arctan(2 50 5.23 104 ) 9o1950
华中科技大学武昌分校自动化系
15
工程测试与信号处理
第2章 测试系统的基本特性
练习
一温度传感器为一阶系统,其时 间常数τ=0.001s,求当测量频率 f=100Hz信号时的幅值误差和相位误差。
华中科技大学武昌分校自动化系
2
工程测试与信号处理
第2章 测试系统的基本特性
系统串联 系统并联
H ( s ) H1 ( s ) H 2 ( s ) H ( s ) H1 ( s ) H 2 ( s )
H ( s) H ( s)
Y ( s)
X ( s)
X ( s)
H 2 ( s)
H1 (s)
| | ≤ 5% 0.05
2
第二章测量系统的动态特性——0316
Hs
Y s X s
bmsm bm1sm1 b1s b0 ansn an1sn1 a1s a0
分母中的s的幂次n代表系统微分方程的阶数。
优点:表示了传感器本身特性,与输入输出无关,可通
过实验求得。
系统
输 x(t) h(t) y(t) 输 入 X(s) H(s) Y(s) 出
2020/8/1
第一节 测量系统在瞬变参数测量中的动态特性
随着科学技术的发展,对非稳态参数及瞬变过程的 测试已日趋重要。如测量内燃机在燃烧过程中气缸内气 体压力、汽轮机压气机过渡工况时的气体流动等,都要 对一些迅速变化的物理量进行测定,因此,要求测试仪 器或系统应具有较高的动态响应特性。
动态特性表示测试系统的输入信号从一个稳定状态 突然变化到另一稳定状态时,其输出信号的跟踪能力。
2020/8/1
热能与动力测试技术 第二章 测量系统的动态特性
10
第一节 测量系统在瞬变参数测量中的动态特性 一、动态特性的数学描述
拉普拉斯变换的性质
线性组合定理 微分定理 积分定理
若F1(s) L[ f1 t ],F2 s L[ f2 t ]L 则[af1(t) bf2 t ] aF1(s) bF2 s
测量系统的动态特性通常用常系数线性常微分方程 来描述:
an
d n yt
dtn
an1
d n1 yt
dt n 1
a1
dyt
dt
a0
y t
bm
d
m xt
dtm
bm1
d m1xt
dt m 1
b1
dxt
dt
b0 xt
2020/8/1
特点:概念清晰,输入-输出关系明了,可区分 暂态响应和稳态响应,但求解方程困难。
测试系统特性(第2讲)
输出关系是一条理想的直线,斜率
为常数。
但是实际测试系统并非是理想定常线性系统,输入、输出曲线并不是理想的直线 ,式实际上变成
测试系统的静态特性就是在静态测量情况下描述实际测试装置与理想定常线性系 统的接近程度。下面用定量指标来研究实际测试系统的静态特性。
• 动态特性:当被测量随时间迅速变化时, 输出量与输入量之间的关系称为动态特 性,可以用微分方程表示。
3、系统特性的划分:
静态特性:当被测量不随时间变化或变化缓慢时,输出量
测 试
与输入量之间的关系称为静态特性,可以用代数方程 表示。
在式(1.1)描述的线性系统中,当系统的输入
(常数),即输
系
入信号的幅值不随时间变化或其随时间变化的周期远远大于测试
统
时间时,式(1.1)变成:
概
念
也就是说,理想线性系统其输出与输入之间是呈单调、线性比例的关系,即输入、
测试系统的动态特性是指输入量随时间变化时,其输 出随输入而变化的关系。一般地,在所考虑的测量范 围内,测试系统都可以认为是线性系统,因此就可以 用式(1.1)这一定常线性系统微分方程来描述测试系统 以及和输入x(t)、输出y(t)之间的关系,通过拉普拉斯 变换建立其相应的“传递函数”,该传递函数就能描 述测试装置的固有动态特性,通过傅里叶变换建立其 相应的“频率响应函数”,以此来描述测试系统的特 性。
• 传递函数
• 定义系统的传递函数H(s)为输出量和输入量的拉普拉斯变换之比,即
• • 式中s是复变量,即s =σ+jω。
• 传递函数是一种对系统特性的解析描述。它包含了瞬态、稳态时间响 应和频率响应的全部信息。传递函数有一下几个特点:
• (1)H(s)描述了系统本身的动态特性,而与输入量x(t)及系统的初
第二章 测量系统的动态特性
传递函数以测量装置本身的参数表示出输入与输出之间的 关系,所以它将包含- 着联系输入量与输出量所必须的单位。
1. 测量系统在瞬变参数测量中的动态特性
当测量系统包 含多个子系统:
H (s ) { H 1 (s ),H 2 (s )L H n (s )}
传递函数结构
(1)串联环节; (2)并联环节; (3)反馈联接。
-
1. 测量系统在瞬变参数测量中的动态特性
(1)串联环节
H(s)
X(s)
Z(s)
H1(s)
H2(s)
两个环节串联
H (s) Y (s) X (s)
Y(s)
Z (s)H 2(s)
X (s)
H 1(s)X (s)H 2(s) X (s)
H 1(s)H 2(s)
由n个环节组成的串联 系统,其传递函数为:
3.测量系统的动态特性如何表示?如何研究动 态特性的评价?
4.如何知道现有的测量系统的动态特性。
-
输入
广义控制系统
控制器
控制对象
输出
输出
测量系统 测量系统 测量系统
输出
有反馈的测量系统
测量系统
控制器
子测量系统
-
输入 输入
1. 测量系统在瞬变参数测量中的动态特性
静态测量、静态响应特性
静态测量:测量时,测试装置的输入、输出信号不随 时间而变化;
外界干扰 温 湿 压 冲 振 电磁 度 度 力 击 动 场场
输入 x
检测系统
输入 y = f(x)
摩 间 松 迟 蠕 变老 擦 隙 动 滞 变 形化
误差因素
-
1. 测量系统在瞬变参数测量中的动态特性
动态测量系统 — 例 零阶系统:电位计、电子示波器
第2部分_测量系统的静态与动态特性
系统误差
在相同的测量条件下,多次测量同一物理量,误差不变或按 一定规律变化着,这样的误差称为系统误差。按误差的变化 规律可分为恒值误差和变值误差。变值误差又分为线性误差、 周期性误差和复杂规律变化的误差。
参考直线的选用方案
①端点连线 将静态特性曲线上的对应于测量范围 上、下限的两点的连线作为工作直线;
Y(t)
端点连 线
0
X(t)
②端点平移线 平行于端点连线,且与实际静态特性 (常取平均特性为准)的最大正偏差和最大负偏差的 绝对值相等的直线;
Y(t)
X(t)
③最小二乘直线 直线方程的形式为 yˆ a bx
②确定仪器或测量系统的静态特性指标; ③消除系统误差,改善仪器或测量系统的正确度
测量系统的静态特性可以用一个多项式方程表示,即
y a0 a1x a2 x2
称为测量系统的静态数学模型
工作曲线:方程 y a0 a1x a2 x2 称之为工作曲线或
静态特性曲线。实际工作中,一般用标定过程中静态平均特 性曲线来描述。
第二部分 测试系统的静态与动 态特性
静态特性:被测量处于稳定状态或缓慢变化状态时,反映测试 系统的输出值和输入值之间关系的特性。
动态特性:反映测试系统对随时间变化的输入量的响应特性。
①测试系统的静态特性与误差分析 ②测试系统的主要静态性能指标及计算 ③测量系统的动态特性 ④测量系统的动态性能指标
2.1测试系统的静态特性与误差分析
一、误差的分类
按误差的表达形式可分为绝对误差和相对误差;按误差出现的 规律可分为系统误差、随机误差、粗大误差(过失误差);按 误差产生的原因可分为原理误差、构造误差和使用误差
测试系统的动态特性
Y S K b0
X
a0
– K:静态灵敏度
• 零阶系统的输出和输入同步变化,不产生任何的失真和延迟, 因此是一种理想的测试系统,如位移电位器、电子示波器等。
一阶系统 (First-order System)
• 一阶仪表
– 数学表述
a1
dy dt
a0
y
b0 x
– 传递函数
Y s K
可以证明,正弦函数的拉氏变换与单边正弦信号
的付里叶变换相等,即
sintestdt sinte jtdt
0
0
X (S) X (),(t 0)
Y (s) A()[Y1() Y2 (s)]
H (s)
Y (s) X (s)
A(
)
Y1
( )
X
Y2 (s)
(
s)
A(
)
Y1( )
X (s)
n
A( ) H ( j )
k
1
n
2
2
4
2
n
2
( )
ar
c
tan
2
1
n
n
2
1
二阶系统的特点:
1)当ω ωn时,
A«(ωωn)时→,0,A(即ω)系→统1;具当有ω低»通
特性。
2) ωn和ζ是影响系统动态特性的参 数振”。。在ω=ωn附近系统将出现“共
y(t) x(t) h(t)
Y (S) H (S)X (S)
Y ( ) H ( j ) X ( )
•利用拉普拉斯变换、傅立叶变换的卷积定理,可 以将卷积计算转化为复数域、频率域的乘法运算, 从而简化计算。
二、系统对脉冲输入的响应:
测试系统的基本特性new 2
可靠性:是与测试装置无故障工作时间长短有关 的一种描述。
第二章 测试装置的基本特性
2.3 测量装置的动态特性
无论复杂度如何,把测量装置作为一个系统 来看待。问题简化为处理输入量 x(t) 、系统传输 特性h(t)和输出y(t)三者之间的关系。
x(t)
输入量
卷积分
h(t)
系统特性
y(t)
输出
y(t)=x(t)*h(t)
2.2 测量装置的静态特性 如果测量时,测试装置的输入、输出 信号不随时间而变化,则称为静态测量。
第二章 测试装置的基本特性
静态特性指标有:
线性度
灵敏度
回程误差
分辨力 漂移
2.2 测量装置的静态特性
a) 线性度
标定曲线与拟合直线的偏离程度就是线性度。
线性度=B/A×100% y B
A
x
2.2 测量装置的静态特性
h(t)描述了系统在时域内的动态特性。
第二章 测试装置的基本特性
• 总结 系统特性描述: 时域 频域 复域 相互关系:
L-1 L
h (t ) H(ω) H(S) H(S)
S=jω
h( t)
FT
IFT
H(ω)
测试环节的串联和并联
H1(s)和H2(s)的环节串联而成的测试系统
传递函数:
H(s) =H1(s) H2(s)
第二章 测试装置的基本特性
一、传递函数
1.定义 在初始条件为 0时,输出信号与输 入信号的拉氏变换之比称为测试装置的 传递函数。用H(s)表示:
H(s)=
Y(s) X(s)
=
bmsm + bm-1sm` + … +b1s + b0 ansn + an-1sn-1 + … +a1s + a0
测试系统的动态特性
X
s 1
– K b0 静态灵敏度 a0
– a1 时间常数
a0
在工程实际中,一个忽略了质量的 单自由度振动系统,在施于A点的 外力f(t)作用下,其运动方程为
一阶系统的微分方程通式为:
dy( t ) y( t ) Kx( t )
dt
K b0 a0
a1
a0
一阶系统的传递函数为:sY( s ) Y( s ) KX( s )
• 描述系统动态特性更为广泛的函数是传递函数。
• 传递函数的定义:x(t)、y(t)及其各阶导数的初始值为零, 系统输出信号的拉普拉斯变换(拉氏变换)与输入信号的拉 氏变换之比,记为 H (s)
H(s) Y (s) X (s)
式中Y (s) 为输出信号的拉氏变换 Y (s) y(t)estdt 0 X (s) 为输入信号的拉氏变换 X (s) x(t)estdt 0 s j, 0, 复频率
环节的串联和并联
• 串联:
n
H(S) Hi(S)
i 1
• 并联:
n
H(S) Hi(S) i 1
2.3.5 常见测试系统
• 系统阶次由输出量最高微分阶次确定。最常见的测 试系统可概括为零阶系统、一阶系统、二阶系统。
• 零阶系统(Zero-order system)
– 数学表述
a0 y b0 x
Y2 (s) X (s)
A( )
Y1( ) X ( )
Y2 (s) X (s)
H ( j ) A( ) Y2 (s)
X (s)
稳态过程频响函 瞬态过程传递函
数
数
重要结论
• 频响函数的含义是一系统对输入与输出皆为正 弦信号传递关系的描述。它反映了系统稳态输 出与输入之间的关系,也称为正弦传递函数。
检测技术第二章测试系统特性
二 、线性系统的性质
●叠加性:x1(t),x2(t)引起的输出分别为 y1(t),y2(t)
如输入为 x1(t)x2(t)则输出为 y1(t)y2(t)
●比例特性(齐次性):如 x ( t ) 引起的输出为 y ( t ) ,
则 a x ( t ) 引起的输出为a y ( t ) 。
●微分特性: d x ( t ) 引起的输出为 d y ( t )
H (s) Y (s) X (s)
dnyt
dn1yt
an dtn an1 dtn1
a1dydtta0yt
dmxt
dm1xt
bm dtm bm1 dtm1
b1dxdttb0xt
输入量
x(t)
((b ba am m n nS S S Sm m n n a a b bm m n n 1 11 1S SS Sn nm m 1 11 1
静态测量时,测试装置表现出的响应特性称为静态响应特性。
1)基本功能特性
① 测量范围(工作范围)(Range):系统实现不失真测量时 的最大输入信号范围。是指测试装置能正常测量最小输入 量和最大输入量之间的范围。
示值范围:显示装置上最大与最小示值的范围。 标称范围:仪器操纵器件调到特定位置时所得的
示值范围。
动态测量—— 被测量本身随时间变化,而测量系统又能 准确地跟随被测量的变化而变化
例:弹簧秤的力学模型
二、测试系统的动态响应特性
无论复杂度如何,把测量装置作为一个系统 来看待。问题简化为处理输入量x(t)、系统传输 特性h(t)和输出y(t)三者之间的关系。
x(t)
h(t)
y(t)
输入量
系统特性
输出
则线性系统的频响函数为:
第3次课-第2章测试装置静态、动态特性
2.2 测试系统静态响应特性
2.3 测试系统动态响应特性
机械工程测试技术基础
2.1 概述
的加速度
第二章测试装置的基本特性
衡量乘坐舒适性的指标之一:坐椅处 加速度计
测试系统是执行测试任务的传感器、仪器和设备的总称。 当测试的目的、要求不同时,所用的测试装置差别很大。 简单的温度测试装置只需一个液柱式温度计,而较完整的动 液压振动台: 刚度测试系统,则仪器多且复杂。 模拟道路的颠簸
机械工程测试技术基础
第二章测试装置的基本特性
•传递函数与微分方程两者完全等价,可以相 互转化。 •考察传递函数所具有的基本特性,比考察微 分方程的基本特性要容易得多。这是因为传递 函数是一个代数有理分式函数,其特性容易识 别与研究。
机械工程测试技术基础
第二章测试装置的基本特性
传递函数有以下几个特点: 1)H(s)和输入x(t)的具体表达式无关。
机械工程测试技术基础
第二章测试装置的基本特性
(2) 频率响应特性 考虑到拉普拉斯变换中,s = σ + jω, 令σ=0,则有 s = jω,将其代入H(s),
得到
Y ( ) H ( ) X ( )
= P(ω)+ jQ(ω) = A(ω)ejφ(ω)
机械工程测试技术基础
第二章测试装置的基本特性
机械工程测试技术基础
第二章测试装置的基本特性
2.1.2 线性系统及其主要性质(补充内容)
若系统的输入x(t)和输出y(t)之间的关系可以用常系 数线性微分方程来描述
any(n)(t)+an-1y(n-1)(t)+…+a1y(1)(t)+a0y(t) = bmx(m)(t)+bm-1x(m-1)(t)+b1x(1)(t)+b0x(t)
第2章 测试装置的基本特性
• 4)如系统的初始状态均为零,则系统对输 入积分的响应等于对原输入响应的积分。
• 5)频率保持特性: • 若输入为某一频率的简谐(正弦或余弦)
x ( t ) = x 0 e jω t 信号 • 即
• 则系统的稳态输出必是、也只是同频率的简谐信 号; • 即输出唯一可能解只是
y ( t ) = Y0 e
• 3)对于实际的物理系统,输入x(t)和输出y(t)都具 有各自的量纲。 • 用传递函数描述系统传输、转换特性理应真实地 反映量纲的这种变换关系。 • 这关系正是通过系数an、an-1、…、a1、a0和 bm、bm-1、…、b1、b0来反映的。这些系数的 量纲将因具体物理系统和输入、输出的量纲而异。 •
第 二 章 测试装置的基本特性
第一节 概述 第二节 测量装置的静态特性 第三节 测量装置的动态特性 第四节 测量装置对任意输入的响应 第五节 实现不失真测量的条件 第六节 测量装置动态特性的测量 第七节 负载效应 第八节 测量装置的抗干扰
解决问题
1。被测信号、测试系统、输出信号的关系。 2。测试系统对信息的影响。 3。如何准确地、完整地获取被测信息? 4。如何得到装置的特性?
传递函数是在复数域中来描述系统的特性的,比在时域中用微分方程 来描述系统特性有许多优点。 许多工程系统的微分方程式及其传递函数却极难建立,而且传递函数 的物理概念也很难理解。
• 频率响应函数有物理概念明确,容易通过 实验来建立和利用它和传递函数的关系, 由它极易求出传递函数等优点。
• 因此,频率响应函数就成为实验研究系统 的重要工具。
• 3.测量装置的动态特性 • 测量装置的动态特性是当被测量即输入量 随时间快速变化时,测量输入与响应输出 之间动态关系的数学描述。 • 传递函数 • 频响函数 • 脉冲响应函数
2 测试系统的基本特性
0
X ( s)
st
式中
Y ( s ) y (t )e dt
X ( s ) x (t )e st dt
0
s j , 0,
复变数
s为拉氏变换算子: 和 皆为实变量
x
bm S m bm1S m1 b1S b0 an S n an1S n1 a1S a0
作Im()-Re()曲线并注出相应频率
频响函数的含义是一系统对输入与输出 皆为正弦信号传递关系的描述。它反映 了系统稳态输出与输入之间的关系,也 称为正弦传递函数。 传递函数是系统对输入是正弦信号,而 输出是正弦叠加瞬态信号传递关系的描 述。它反映了系统包括稳态和瞬态输出 与输入之间的关系。 权函数是在时域中通过瞬态响应过程来 描述系统的动态特性。
A
c) 权函数 (Weight function)
Y ( s) H ( s) X ( s)
h(t ) L1[ H (s)]
y(t ) h(t ) x(t )
若输入为单位脉冲δ(t)
y(t ) h(t ) (t ) h(t )
若输入为单位脉冲δ(t),因δ(t)的傅立叶变换为1, 因此装置输出y(t)的傅立叶必将是H(f),即Y(f)=H(f),或 y(t)=F-1[H(S)],并可以记为h(t),常称它为装置的脉冲响 应函数或权函数。
目的:在作动态参数检测时,要确定系 统的不失真工作频段是否符合要求。 方法:用标准信号输入,测出其输出 信号,从而求得需要的特性。 标准信号:正弦信号、脉冲信号和阶跃信 号。
令:K=1 灵敏度归一处 理
在工程实际中,一个忽略了质量的单自由度振动系 统,在施于A点的外力f(t)作用下,其运动方程为
工程测试- 测试装置动静态特性
X(S)
H(s)
Y(S)
广东工业大学 机电工程学院 2007年5月24日12时15分
1
2007-5-24
2.3 测试系统的动态特性
2.3.3 动态特性——频率特性
机
x(t)
=
A
sin(ωt
+
ϕ 1
)
H(s)
y(t
)
=
B
sin(ωt
+
ϕ 2
)
械
工
程 测 试 技
设
H (s)
=
1 0.1s +1
,
A
=
100,
程
测
试 技
6. 静态特性的其他描述
术 精度:是与评价测试装置产生的测量误差大小有关的指标。
灵敏阀:又称为死区,用来衡量测量起始点不灵敏的程度。
测量范围:是指测试装置能正常测量最小输入量和最大输入 量之间的范围。
稳定性:是指在一定工作条件下,当输入量不变时,输出量 随时间变化的程度。
可靠性:是与测试装置无故障工作时间长短有关的一种描述。
试 技
的输入与输出之间动态关系的数学描述。
术
(1) 微分方程
(2) 传递函数
(3) 频响函数
(4) 单位脉冲响应函数
广东工业大学 机电工程学院 2006年3月9日星期四 00:13
2.1 概述
4. 负载特性/负载效应
机
测量装置接触被测物体时,要从被测物体中吸
械 工
收能量或产生干扰,使被测量偏离原有的量值,从
2.3.3 动态特性——频率特性
4. 频率特性的图示方法
机 (1) 乃奎斯特图:极坐标图
械
第2章 检测系统的基本特性
图 2-1-4 迟滞特性
2.1.2.6
稳定性与漂移
稳定性是指在一定工作条件下,保持输入信号不变时,输出信号随时间或温度的变化 而出现缓慢变化的程度。 回忆自动控制原理稳定性概念(在外界扰动信号消失后,系统恢复原来平衡状态的能力)
时漂:在输入信号不变的情况下,检测系统的输出随时间变化的现象。 温漂:在输入信号不变的情况下,检测系统的输出随温度变化的现象。
温漂
零位温漂
灵敏度温漂
2.1 动态特性及性能指标(回顾自动控制原理的知识) 2.2.1 动态特性
2.2.1.1 定义: 动态测量 假如被测量本身随时间变化,而检测系统又能准确的跟随被测量的变化而变化,则 称为动态测量。 比如单位阶跃响应过程的测量。
动态测量与静态测量对检测系统的要求以及对测得数据的处理有着很大的差别。 检测系统的动态特性 检测系统对于随时间变化的输入量的响应特性(输出不是一个定值,是时间的函 数),称为检测系统的动态特性。
2.2.2.2 一阶系统 一阶系统的微分方程为 通用形式为 传递函数为 频率特性为 幅频特性为
a1 dy a0 y b0 x dt
dy y K0 x dt
K0 1 s
H ( s)
H ( j )
K0 1 j
K0
K ( )
1
图2-1-1 一阶系统幅频及相频特性曲线
本章目录 2.1 静态特性及性能指标 2.2 动态特性及性能指标
2.1 静态特性及性能指标
2.1.1 静态特性
2.1.1.1 定义:
静态测量 是指在测量过程中,被测量保持恒定不变时的测量。(如零件尺寸的测量) 当被测量为缓慢变化量,但在一次测量的时间段内变动的幅值在测量精度范围之内, 这时的测量也可当做静态测量来处理。 检测系统的静态特性 在静态测量中,检测系统的输入—输出特性称为静态特性,也称标度特性。 数学描述: dx 当输入信号x不随时间变化(即 dt 0 时,或随时间变化很缓慢时检测系统的特 性,此时该系统处于稳定状态,输出信号y与输入信号x之间的函数关系,一般 可用下列代数方程多项式来表示
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 测试系统的基本特性
2. 频率响应函数 (Frequency response function)
以 s j 代入H(s)得:
H
(
j)
Y( X(
j) j)
bm ( an (
j)m j)n
bm1( j)m1 b1( j) b0 an1( j)n1 a1( j) a0
频率响应函数是传递函数的特例。
工程测试与信号处理
第2章 测试系统的基本特性
测试系统的动态特性
动态特性:输入量随时间作快速变化时,测试系统
的输出随输入而变化的关系。
输入(重量)
输出(弹簧位移)
在对动态物理量弹簧进行测试时,测试系统的输
出变化x(t是) 否能真(线实性地比例反特映性)输入变化y(,t) 则取决于测 试系统的动态(a)响线应性弹特簧性的比。例特性
华中科技大学武昌分校自动化系
12
工程测试与信号处理
第2章 测试系统的基本特性
频率H响( j应函) 数 1 1 j H它( j的) 幅 j频1、j相1 频11特(1性1)的2(为j 1):2(
1 H((S))2
)2
1
S
1
它A的(幅)频=、H(相j频 )特性的为:1 A()= H(j) 1 1 ()2
华中科技大学武昌分校自动化系
15
工程测试与信号处理
第2章 测试系统的基本特性
例 用一个一阶系统作100Hz正弦信号测量。(1)如果
要求限制振幅误差在-5%以内,则时间常数 应取多
少?(2)若用具有该时间常数的同一系统作50Hz信号的 测试,此时的振幅误差和相角差各是多少?
A1 A0 1 A( )
华中科技大学武昌分校自动化系
24
工程测试与信号处理
第2章 测试系统的基本特性
ξ≈ 0.7, A(ω) 水平近似线性较长, φ(ω) 近似线性较长。
华中科技大学武昌分校自动化系
25
工程测试与信号处理
第2章 测试系统的基本特性
例:一动圈式记录仪为二阶系统,其固有频率 ωn=6280(rad/s),阻尼比ζ=0.7。求当测量频率 f=500Hz信号时的幅值误差和相位误差。
练习
求周期信号 x(t) 0.2 cos(100t 450 )
通过传递函数为 H (s) 1 0.005s 1
的装置后得到的稳态响应?
华中科技大学武昌分校自动化系
9
工程测试与信号处理
第2章 测试系统的基本特性
3. 脉冲响应函数 (Weight function)
Y(s) H(s) X (s)
A10
1 1 ≤ 0.05
( )2 1
| |≤5% 0.05 1 A() ≤0.05
( )2 ≤ 1 1 0.108
0.952
0.000523
1 1 1
1
1
1
1 0.9868 1.32%
( )2 1
(2f )2 1
(2 50 5.23104 )2 1
arctan( ) arctan(2f ) arctan(2505.23104) 9o1950
6
工程测试与信号处理
第2章 测试系统的基本特性
A()称为系统的幅频特性,为H()的模,是给
定频率点输出信号幅值与输入信号幅值之比,
反映测试系统对信号中频率为的信号分量在幅
值上的缩放程度。
一阶系统的幅频特性曲线
()-相频特性
一阶系统的相频特性曲线
华中科技大学武昌分校自动化系
7
工程测试与信号处理
第2章 测试系统的基本特性
练习
某测力传感器(二阶测试系统),其固有角
频率 n 2 1200(rad/ s) ,阻尼比 0.707 , 当测量信号
H(S) 描述了测试系统的传输特性,对任一具 体的输入x(t)都明确的给出了相应的输出y(t)。
H(S)是实际物理系统抽象为数学模型后的拉 普拉斯变换,因此,物理性质不同的系统或
元件,可以具有相同类型的传递函数H(S)。
分母中s的幂次n代表系统微分方程的阶数, 如当n=1或n=2时,分别称为一阶系统或二阶 系统。
A( f1) 0.537 A( f2 ) 0.157
( f1) 57.52o ( f2 ) 80.96o
y1(t) 0.537sin(t 57.52o ) y2 (t) 0.157sin(4t 80.96o )
华中科技大学武昌分校自动化系
8
工程测试与信号处理
第2章 测试系统的基本特性
华中科技大学武昌分校自动化系
3
工程测试与信号处理
第2章 测试系统的基本特性
系统串联 H (s) H1(s)H2(s)
系统并联 H(s) H1(s) H2(s)
H (s)
H (s)
X (s)
Y (s)
H 2 (s)
H1(s)
X (s)
Y (s)
H 2 (s)
华中科技大学武昌分校自动化系
4
工程测试与信号处理
H(j)一般为复数,写成实部和虚部的形式:
H(j) A()ej() Re() jIm()
其中:
A(w) H( jw)
2
Re(w)
Im(w) 2 Ay (w)
Ax (w)
(w)
H(
jw)
arctg( Im( w) ) Re( w)
y (w) x (w)
华中科技大学武昌分校自动化系
第2章 测试系统的基本特性
2. 二阶系统(Second-order system) L R
微分方程
dy2 (t) dy(t)
ur (t)
a2 dt 2 a1 dt a0 y(t) b0 x(t)
C u0 (t)
传递函数
H(S)
1
2 n
1 S 2 2 1
S
2
2n S
2 n
频率响应函数
2 n
Y ( j) X ( j)H ( j)
传递函数H(s)是在复数域中描述和考察系统的 特性;频率响应函数H(ω)是在频域中描述和 考察系统特性。
华中科技大学武昌分校自动化系
5
工程测试与信号处理
第2章 测试系统的基本特性
H
(
j)
Y( X(
j) j)
bm ( an (
j)m j)n
bm1( j)m1 b1( j) b0 an1( j)n1 a1( j) a0
华中科技大学武昌分校自动化系
16
工程测试与信号处理
第2章 测试系统的基本特性
练习 一温度传感器为一阶系统,其时
间常数τ=0.001s,求当测量频率
f=100Hz信号时的幅值误差和相位误差。
2 f 6.28100 628 1/s,
A() 1
1
0.849
1 ( )2 1 (628 0.001)2
解: 2 f 6.28500 3140 rad/s
A()
1
0.95
1
n
2
2
4
2
n
2
() arctan
2
n
2
43
1
n
幅值误差 相位误差
A() 1100% 0.95 1100% 5%
1
1
43
华中科技大学武昌分校自动化系
26
工程测试与信号处理
第2章 测试系统的基本特性
() arctan() 32.13
A() 1 100% 0.849 1 100% 15.1%
1
1
32.13
华中科技大学武昌分校自动化系
17
工程测试与信号处理
第2章 测试系统的基本特性
练习
求周期信号 x(t) 0.5cos10t 0.2 cos(100t 450 )
通过传递函数为 H (s) 1 0.005s 1
0 t 0 x(t) 1 t 0
其拉氏变换:
X (s) 1 s
一阶系统的响应: y(t) 1 et /
华中科技大学武昌分校自动化系
20
工程测试与信号处理
练习
第2章 测试系统的基本特性
对某一阶装置输入一阶跃信号,其 输出在2S内达到输入信号最大值的 20%,试求:
1 装置的时间常数
2 经过40S后,输出幅值达到多少?
的装置后得到的稳态响应?
华中科技大学武昌分校自动化系
18
工程测试与信号处理
第2章 测试系统的基本特性
一阶系统在典型输入下的响应
• 脉冲响应
x(t) (t)
其拉氏变换: X (s) 1
一阶系统的响应: y(t) 1 et /
华中科技大学武昌分校自动化系
19
工程测试与信号处理
• 阶跃响应
第2章 测试系统的基本特性
1 ( )2
华中科技大学武昌分校自动化系
14
工程测试与信号处理
第2章 测试系统的基本特性
一阶系统频率特性的特征
• 当ω<1/5τ时,A(ω)≈1(误差不超过2%); • 当ω》1/ τ时,系统相当于积分环节,幅
值衰减成线性,相位滞后接近90°;
• 当ω=1/τ时,A(ω)=0.707,相角滞后45°;
若x(t)=δ(t),则: X (S) L1[ (t)] 1
Y(S) H(S) 1 H(S)
进行拉氏逆变换: y(t) L1[H (S)] h(t)
称h(t)为测试装置的脉冲响应函数
系统特性在时域可以用h(t)来描述,在频域可以 用H(ω)来描述,在复数域可以用H(s)来描述。三 者的关系是一一对应的。
H () 2
n2n
2