【新高考】高三数学一轮基础复习讲义:第十一章 11.1随机事件的概率-教师版

合集下载

2023版高考数学一轮总复习11-1随机事件古典概型与几何概型课件

2023版高考数学一轮总复习11-1随机事件古典概型与几何概型课件
域用A表示(A⊆Ω),则P(A)= A的几何度量.
Ω的几何度量
考法一 古典概型概率的求法 1.求解古典概型概率的步骤
2.基本事件个数的确定方法 1)列举法:此法适合于基本事件个数较少的古典概型. 2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成坐标 法.
3)画树状图法:画树状图法是进行列举的一种常用方法,适用于有顺序的 问题及较复杂问题中基本事件个数的探求. 4)运用排列组合知识计算.
A39 7
答案 D
创新 生活中的概率问题 1.概率问题常与生活实际或数学文化相结合,主要考查学生的逻辑推 理、数据分析、数学抽象等核心素养. 2.解决这类问题的关键:①认真审题,把握信息;②弄清提供的问题情境的 意义;③抽象转化成数学问题,应用熟悉的数学知识解决.
例1 (2021湖南湘潭一模,7)德国心理学家艾宾浩斯研究发现,遗忘在学习 之后立即开始,而且遗忘的进程并不是均匀的.最初遗忘速度很快,以后逐 渐减慢.他认为“保持和遗忘是时间的函数”.他用无意义音节(由若干音 节字母组成,能够读出,但无内容意义,即不是词的音节)作为记忆材料,用 节省法计算保持和遗忘的数量,并根据试验结果绘成描述遗忘进程的曲 线,即著名的艾宾浩斯遗忘曲线(如图所示).若一名学生背了100个英语单 词,一天后,该学生在这100个英语单词中随机听写2个英语单词,以频率代 替概率,不考虑其他因素,则该学生恰有1个单词不会的概率大约为 ( )
m=5+4+3+2+1=15,则取到的整数十位数字比个位数字大的概率P= m =15
n 25
=3.
5
答案 B
考法二 几何概型概率的求法
例2 (2021辽宁辽南协作体联考,9)1876年4月1日,加菲尔德在《新英格兰 教育日志》上发表了勾股定理的一种证明方法,即在如图的直角梯形 ABCD中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之 和等于直角梯形的面积”,可以简洁明了地推证出勾股定理.1881年加菲 尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、易 懂的证明,就把这一证明方法称为“总统证法”.如图,设∠ECB=60°,在梯 形ABCD中随机取一点,则此点取自等腰直角△CDE(阴影部分)中的概率 是() A.2(2- 3 ) B.2- 3 C. 3 -1 D.2( 3-1)

【新高考】高三数学一轮基础复习讲义:第十一章 11.1随机事件的概率-(学生版+教师版)

【新高考】高三数学一轮基础复习讲义:第十一章 11.1随机事件的概率-(学生版+教师版)

随机事件的概率进门测判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生频率与概率是相同的.()(2)随机事件和随机试验是一回事.()(3)在大量重复试验中,概率是频率的稳定值.()(4)两个事件的和事件是指两个事件都得发生.()(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.()(6)两互斥事件的概率和为1. ( )阶段训练题型一事件关系的判断例1(1)从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有()A.0组B.1组C.2组D.3组题型二随机事件的频率与概率例2某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度的平均保费的估计值.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?题型三互斥事件、对立事件的概率命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.(2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 2.事件的关系与运算定义符号表示包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B ) 相等关系若B ⊇A 且A ⊇BA =B 并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件 若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或A ∩B (或AB )阶段重难点梳理(积事件)积事件)若A∩B为不可能事件(A∩B=∅),那么称事件A互斥事件A∩B=∅与事件B互斥若A∩B为不可能事件,A∪B为必然事件,那P(A)+P(B)=1 对立事件么称事件A与事件B互为对立事件3.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.重点题型训练典例 某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%. (1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)1.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则b >a 的概率是( ) A.45 B.35 C.25 D.152.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A .必然事件B .随机事件C .不可能事件D .无法确定3.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为( ) A .0.5 B .0.3 C .0.6 D .0.94.袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________.1.甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56 B.25 C.16D.132.袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球. 在上述事件中,是对立事件的为( ) A .① B .② C .③ D .④3.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率作业布置为()A.0.7 B.0.65 C.0.35 D.0.54.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是()A.互斥但非对立事件B.对立事件C.相互独立事件D.以上都不对5.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为()A.0.8 B.0.5 C.0.7 D.0.36.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的卡片的频率是()A.0.53 B.0.5 C.0.47 D.0.377.在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件.8.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a 的取值范围是________________.9.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是________.10.一个口袋内装有大小相同的红球,白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________.11.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.12.国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如下表所示:求该射击队员射击一次:(1)射中9环或10环的概率;(2)命中不足8环的概率.*13.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.随机事件的概率进门测判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生频率与概率是相同的.(×)(2)随机事件和随机试验是一回事.(×)(3)在大量重复试验中,概率是频率的稳定值.(√)(4)两个事件的和事件是指两个事件都得发生.(×)(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.(√)(6)两互斥事件的概率和为1.(×)阶段训练题型一事件关系的判断例1(1)从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是( ) A .① B .②④ C .③ D .①③(2)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡答案 (1)C (2)A (3)A解析 (1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.(2)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1.设掷一枚硬币3次,事件A :“至少出现一次正面”,事件B :“3次出现正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件. (3)至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.思维升华(1)准确把握互斥事件与对立事件的概念①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.(2)判别互斥、对立事件的方法判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有()A.0组B.1组C.2组D.3组答案 B解析①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,①中的两个事件不是互斥事件.②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥.③中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄球,因此两个事件是同一事件.④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B.题型二随机事件的频率与概率例2 某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”,求P (A )的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度的平均保费的估计值.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55. (2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.思维升华(1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.(2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 题型三 互斥事件、对立事件的概率 命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A ,B ,C ,D ,则有P (A )=13,P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14,因此得到黑球、黄球、绿球的概率分别是14,16,14.方法二 设红球有n 个,则n 12=13,所以n =4,即红球有4个. 又得到黑球或黄球的概率是512,所以黑球和黄球共5个. 又总球数是12,所以绿球有12-4-5=3(个).又得到黄球或绿球的概率也是512,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个). 因此得到黑球、黄球、绿球的概率分别是 312=14,212=16,312=14. 命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C );(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11 000,P (B )=101 000=1100, P (C )=501 000=120.故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖,一等奖,二等奖. 设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C . ∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝⎛⎭⎫11 000+1100=9891 000. 故1张奖券不中特等奖且不中一等奖的概率为9891 000.思维升华 求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法: (1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)方法一记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.方法二记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.(2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 2.事件的关系与运算若A∩B为不可能事件,A∪B为必然事件,那对立事件P(A)+P(B)=1么称事件A与事件B互为对立事件3.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.重点题型训练典例某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)思想方法指导若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解.规范解答解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[7分](2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=15,P(A2)=10100=110.[10分]P(A)=1-P(A1)-P(A2)=1-15-110=710.[12分]故一位顾客一次购物的结算时间不超过2分钟的概率为710.[15分]1.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则b >a 的概率是( ) A.45 B.35 C.25 D.15 答案 D解析 基本事件的个数有5×3=15,其中满足b >a 的有3种,所以b >a 的概率为315=15.2.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A .必然事件 B .随机事件 C .不可能事件 D .无法确定答案 B解析 抛掷10次硬币正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件. 3.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为( ) A .0.5 B .0.3 C .0.6 D .0.9 答案 A解析 依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5.4.袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________. 答案 ②解析 ①是互斥不对立的事件,②是对立事件,③④不是互斥事件.1.甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56 B.25 C.16 D.13答案 A解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56.2.袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球. 在上述事件中,是对立事件的为( ) A .① B .② C .③ D .④ 答案 B解析 至少有1个白球和全是黑球不同时发生,且一定有一个发生. ∴②中两事件是对立事件.3.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.5作业布置答案 C解析∵“抽到的产品不是一等品”与事件A是对立事件,∴所求概率P=1-P(A)=0.35.4.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是()A.互斥但非对立事件B.对立事件C.相互独立事件D.以上都不对答案 A解析由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件,故选A.5.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为()A.0.8 B.0.5 C.0.7 D.0.3答案 C解析由互斥事件概率公式知重量大于40克的概率为1-0.3-0.5=0.2,又∵0.5+0.2=0.7,∴重量不小于30克的概率为0.7.6.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的卡片的频率是( ) A .0.53 B .0.5 C .0.47 D .0.37 答案 A解析 取到号码为奇数的卡片的次数为13+5+6+18+11=53,则所求的频率为53100=0.53.故选A.7.在200件产品中,有192件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件. 答案 ③ ② ①8.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________. 答案 (54,43]解析 由题意可知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<13a -3≤1,⇒⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43. 9.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是________. 答案 35解析个位数字共有5种情况,只有当个位数字取2,4,5时,得到的数才能被2或5整除,所以概率为3 5.10.一个口袋内装有大小相同的红球,白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________.答案0.2解析记事件A,B,C分别是摸出红球,白球和黑球,则A,B,C互为互斥事件且P(A+B)=0.58,P(A+C)=0.62,所以P(C)=1-P(A+B)=0.42,P(B)=1-P(A+C)=0.38,P(A)=1-P(C)-P(B)=1-0.38-0.42=0.2.11.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.。

高考文科数学第11章概率11.1 随机事件的概率

高考文科数学第11章概率11.1 随机事件的概率

【答案】 B
高考总复习·数学文科(RJ)
第十一章 概率
3.(2015·湖北)我国古代数学名著《数书九章》有“米
谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米
内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批
米内夹谷约为( )
A.134石
B.169石
C.338石
D.1 365石
【解析】 因为样品中米内夹谷的比为22584,所以这批米内夹
③是互斥事件且是对立事件. “至少有1名男生”,即“选出的2人不全是女生”,它与 “全是女生”不可能同时发生,且其并事件是必然事件,所 以两个事件互斥且对立.
高考总复习·数学文科(RJ)
第十一章 概率 题型二 随机事件的频率与概率 【例2】 (2015·北京)某超市随机选取1 000位顾客,记
录了他们购买甲、乙、丙、丁四种商品的情况,整理成如 下统计表,其中“√”表示购买,“×”表示未购买.
高考总复习·数学文科(RJ)
第十一章 概率
【解析】 ①错,不一定是 10 件次品;②错,73是频率而非概 率;③错,频率不等于概率,这是两个不同的概念.
【答案】 0
高考总复习·数学文科(RJ)
第十一章 概率
5.(教材改编)袋中装有9个白球,2个红球,从中任取3 个球,则①恰有1个红球和全是白球;②至少有1个红球和 全是白球;③至少有1个红球和至少有2个白球;④至少有 1个白球和至少有1个红球.在上述事件中,是对立事件的 为________.
高考总复习·数学文科(RJ)
第十一章 概率
(3)至多有一张移动卡包含“一张移动卡,一张联通卡”、 “两张全是联通卡”两个事件,它是“2张全是移动卡”的对 立事件,故选A.

高考数学一轮复习 11.1随机事件的概率课件 文 湘教版

高考数学一轮复习 11.1随机事件的概率课件 文 湘教版

3/24/2019
当且仅当事件A 若某事件发生______________ 交事 _________________ 发生且事件B发生 ,则称此 件 (积 事件为事件A与事件B的交事 事件) 件(或积事件)
______ A∩B (或____) AB
不可能 事件,那么 互斥 若A∩B为________ A∩B=∅ 事件 称事件A与事件B互斥 不可能 事件,A∪B 若A∩B为_______ 对立 必然事件 ,那么称事件A 为___________ 事件 与事件B互为对立事件
3/24/2019
A⊇B ,那么称事 相等 若B⊇A且______ _______ A=B 关系 件A与事件B相等 当且仅当 若某事件发生_________ 并事件 ______________________ 事件A发生或事件B发生 , A∪B (和事 则称此事件为事件A与事件 (或_____) A+B 件) B的并事件(或和事件)
3/24/2019
【思探究】 2.互斥事件与对立事件有什么区别与联 系? 提示:在一次试验中,两个互斥的事件有可能都不发 生,也可能有一个发生;而两个对立的事件则必有一
个发生,但不可能同时发生.所以,两个事件互斥,他
们未必对立;反之,两个事件对立,它们一定互斥.也 就是说,两个事件对立是这两个事件互斥的充分而不 必要条件.
3/24/2019
1.在下列六个事件中,随机事件的个数为( ) ①如果a,b都是实数,那么a+b=b+a; ②从分别标有号数 1,2,3,4,5,6,7,8,9,10 的 10 张号签中任取一张,得到 4 号 签; ③没有水分,种子发芽; ④某电话总机在60秒内接到至少10次呼叫; ⑤在101 kPa下,水的温度达到50 ℃时沸腾; ⑥同性电荷,相互排斥. A.2 B.3 C.4 D.5 【解析】 ①⑥是必然事件;③⑤是不可能事件;②④是随机事件. 【答案】 A

2013年高考数学一轮复习11.1随机事件的概率精品教学案(教师版)新人教版

2013年高考数学一轮复习11.1随机事件的概率精品教学案(教师版)新人教版

点,则该两点间的距离为
2 的概率是 ___________. 2
【答案】 2 5
【解析】若使两点间的距离为
2 ,则为对角线一半,选择点必含中心,概率为 2
C41 C52
4 10
2
.
5
3. (2012 年高考陕西卷文科 19) 假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解
他们的使用寿命,现从两种品牌的产品中分别随机抽取
因此,二者不是对立事件.
(2) 既是互斥事件,又是对立事件.
原因是:从 40 张扑克牌中,任意抽取 1 张.“抽出红色牌”与“抽出黑色牌”两个事件不可能同
时发生,但其中必有一个发生,所以它们既是互斥事件,又是对立事件.
(3) 不是互斥事件,也不是对立事件.
原因是: 从 40 张扑克牌中任意抽取 1 张.“抽出的牌点数为 5 的倍数”与“抽出的牌点数大于 9”
111
分别为 、 、 ,且各道工序互不影响,则加工出来的零件的次品率为
70 69 68
【答案】 3 70
【解析】加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得
___________ .
加工出来的零件的次品率
69 68 67 p1
3
.
70 69 68 70
3.( 2010 年高考安徽卷理科 15) 甲罐中有 5 个红球, 2 个白球和 3 个黑球,乙罐中有
2013 年高考数学一轮复习精品教学案 11.1 随机事件的概率(新课标人教 版,教师版)
【考纲解读】 【考点预测】 高考对此部分内容考查的热点与命题趋势为 : 1. 概率是历年来高考重点内容之一 , 在选择题、填空题与解答题中均有可能出现,一般以实际应用 题的形式考查,又经常与其它知识结合,在考查概率等基础知识的同时,考查转化思想和分类讨论 等思想,以及分析问题、解决问题的能力 . 2.2013 年的高考将会继续保持稳定 , 坚持以实际应用题的形式 考查概率,或在选择题、填空题中继 续搞创新 , 命题形式会更加灵活 . 【要点梳理】 1. 随机事件和确定事件

2020版高考数学一轮复习第十一章概率11.1随机事件的概率课件文

2020版高考数学一轮复习第十一章概率11.1随机事件的概率课件文

-3知识梳理
考点自诊
2.频率与概率 (1)频率的概念:在相同的条件S下重复n次试验,观察某一事件A是 否出现,称n次试验中事件A出现的次数nA为事件A出现的 频数 , nA 称事件A出现的比例 fn(A)= n 为事件A出现的 频率 . (2)随机事件概率的定义:在 相同 的条件下,大量重复进行同 一试验时,随机事件A发生的 频率 会在某个 常数 附近摆动, 即随机事件A发生的频率具有稳定性.这时这个 常数 叫做随机 事件A的概率,记作P(A),有0≤P(A)≤1. (3)概率与频率的关系:对于给定的随机事件A,由于事件A发生的 频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率 ______ fn(A) 来估计概率P(A).
11.1
随机事件的概率
-2知识梳理
考点自诊
1.事件的分类
确定 事件 随机 事件
在条件 S 下,一定会发生的事件,叫做相对于条件 必然事件 S 的必然事件 不可能事 在条件 S 下,一定不会发生的事件,叫做相对于条 件 件 S 的不可能事件 可能发生也可能不发生 在条件 S 下 的事件,叫做 相对于条件 S 的随机事件


-5知识梳理
考点自诊
定 互斥 事件 对立 事件
义 事件,则称事件 A 与
符号表示
A∩B=⌀
若 A∩B 为 不可能 事件 B 互斥
A∩B=⌀, 若 A∩B 为 不可能 事件,A∪B 为 必然事件, 且A∪B=Ω (Ω 为必然 则称事件 A 与事件 B 互为对立事件 事件)
-6知识梳理
考点自诊
4.互斥事件与对立事件的关系 对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件. 5.概率的几个基本性质 (1)概率的取值范围: 0≤P(A)≤1 . (2)必然事件的概率:P(A)= 1 . (3)不可能事件的概率:P(A)= 0 . (4)概率的加法公式:若事件A与事件B互斥,则P(A∪B)= P(A)+P.(B) (5)对立事件的概率:若事件A与事件B互为对立事件,则A∪B为必 然事件.P(A∪B)= 1 ,P(A)= 1-P(B) .

高考数学总复习 11.1随机事件的概率精品课件 文 新人教B版

高考数学总复习 11.1随机事件的概率精品课件 文 新人教B版

含有一个元素的子集.包含m个结果的事件A对应于I的含有m
个元素的子集A.于是事件A的概率为P(A)=
(2)必然事件的概率为1;不可能事件的概率为0.
(3)当试验结果出现较多情况时,若把试验结果一一列举 出来显然不现实,这时可借助排列、组合知识来描述,以便准
确、简捷地表述问题.
1.下列说法正确的是 A.某事件发生的频率为P(A)=1.1
2009湖北文10; 相互 独立事件同时发 生的概率,独立 重复试验. 2009北京卷文17 ; 2009湖南卷文17 ; 2009全国Ⅰ卷文 20.
2008湖北14

2008全国 Ⅱ19; 2008重庆18 ; 2008江西18 ; 2008四川18. 以考查相互独立 事件为主,以实际问题为 背景,考查独立重复试验 的概率问题.
1 A.32 3 C.32
1 B.64 3 D.64
[解析]
从中有放回的取2次,所有号码共有8×8=64种,
其中和不小于15的有3种,分别是(7,8),(8,7),(8,8),故所求概 率为P= .
[答案] D
3.(山东高考理7)在某地的奥运火炬传递活动中,有编号
为1,2,3,…,18的18名火炬手,若从中任选3人,则选出的火 炬手的编号能组成以3为公差的等差数列的概率为
一、本章知识网络结构
二、最新考纲解读
1.了解随机事件发生的不确定性和频率的稳定性,了解 概率的意义,了解频率与概率的区别.
2.了解互斥事件、对立事件的意义及其运算公式.
3.会用排列、组合的基本公式计算一些等可能事件的概 率.
4.会用互斥事件的概率加法公式计算一些事件的概率.
5.会用相互独立事件的概率乘法公式计算一些事件的概 率.

高考第一轮复习数学:11.1 随机事件的概率 高考数学第一轮复习教案集 新课标 人教版 高考数学第

高考第一轮复习数学:11.1  随机事件的概率 高考数学第一轮复习教案集 新课标 人教版 高考数学第
11.1 随机事件的概率
●知识梳理
1.随机事件:在一定条件下可能发生也可能不发生的事件.
2.必然事件:在一定条件下必然要发生的事件.
3.不可能事件:在一定条件下不可能发生的事件.
A的概率:在大量重复进行同一试验时,事件A发生的频率 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0.
解析:10位同学总参赛次序A .一班3位同学恰好排在一起,而二班的2位同学没有排在一起的方法数为先将一班3人捆在一起A ,与另外5人全排列A ,二班2位同学不排在一起,采用插空法A ,即A A A .
∴所求概率为 = .
答案:B
3.(2004年某某,9)将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是
答案:B
2.(2004年某某模拟题)甲、乙二人参加法律知识竞赛,共有12个不同的题目,其中选择题8个,判断题4个.甲、乙二人各依次抽一题,则甲抽到判断题,乙抽到选择题的概率是
A. B. C. D.
解析:甲、乙二人依次抽一题有C ·C 种方法,
而甲抽到判断题,乙抽到选择题的方法有C C 种.
∴P= = .
(2)当m=7时,(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6种,此时P= = 最大.
●思悟小结
求解等可能性事件A的概率一般遵循如下步骤:
(1)先确定一次试验是什么,此时一次试验的可能性结果有多少,即求出A.
(2)再确定所研究的事件A是什么,事件A包括结果有多少,即求出m.
●点击双基
1.(2004年全国Ⅰ,文11)从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机事件的概率进门测判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生频率与概率是相同的.(×)(2)随机事件和随机试验是一回事.(×)(3)在大量重复试验中,概率是频率的稳定值.(√)(4)两个事件的和事件是指两个事件都得发生.(×)(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.(√)(6)两互斥事件的概率和为1.(×)阶段训练题型一事件关系的判断例1(1)从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A .①B .②④C .③D .①③(2)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡答案 (1)C (2)A (3)A解析 (1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.(2)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1.设掷一枚硬币3次,事件A :“至少出现一次正面”,事件B :“3次出现正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件. (3)至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.思维升华 (1)准确把握互斥事件与对立事件的概念 ①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.(2)判别互斥、对立事件的方法判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有()A.0组B.1组C.2组D.3组答案 B解析①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,①中的两个事件不是互斥事件.②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥.③中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄球,因此两个事件是同一事件.④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B.题型二随机事件的频率与概率例2某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”,求P (A )的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度的平均保费的估计值.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55. (2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a.思维升华(1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.(2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 题型三 互斥事件、对立事件的概率 命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A ,B ,C ,D ,则有P (A )=13,P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14,因此得到黑球、黄球、绿球的概率分别是14,16,14.方法二 设红球有n 个,则n 12=13,所以n =4,即红球有4个. 又得到黑球或黄球的概率是512,所以黑球和黄球共5个. 又总球数是12,所以绿球有12-4-5=3(个).又得到黄球或绿球的概率也是512,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个). 因此得到黑球、黄球、绿球的概率分别是 312=14,212=16,312=14. 命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11 000,P (B )=101 000=1100, P (C )=501 000=120.故事件A ,B ,C 的概率分别为11 000,1100,120.(2)1张奖券中奖包含中特等奖,一等奖,二等奖. 设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C . ∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝⎛⎭⎫11 000+1100=9891 000. 故1张奖券不中特等奖且不中一等奖的概率为9891 000.思维升华 求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法: (1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率; (2)至少3人排队等候的概率.解 记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A 、B 、C 、D 、E 、F 彼此互斥.(1)记“至多2人排队等候”为事件G ,则G =A +B +C , 所以P (G )=P (A +B +C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)方法一 记“至少3人排队等候”为事件H , 则H =D +E +F ,所以P (H )=P (D +E +F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44. 方法二 记“至少3人排队等候”为事件H , 则其对立事件为事件G , 所以P (H )=1-P (G )=0.44.1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.阶段重难点梳理(2)对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).2.事件的关系与运算3.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.重点题型训练典例某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x 3025y 10结算时间1 1.52 2.5 3(分钟/人)已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)思想方法指导 若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解. 规范解答解 (1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[7分](2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.[10分] P (A )=1-P (A 1)-P (A 2)=1-15-110=710.[12分]故一位顾客一次购物的结算时间不超过2分钟的概率为710.[15分]1.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则b >a 的概率是( ) A.45 B.35 C.25 D.15 答案 D解析 基本事件的个数有5×3=15,其中满足b >a 的有3种,所以b >a 的概率为315=15.2.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A .必然事件 B .随机事件 C .不可能事件 D .无法确定答案 B解析 抛掷10次硬币正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件. 3.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为( ) A .0.5 B .0.3 C .0.6 D .0.9 答案 A解析 依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5.4.袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________. 答案 ②解析 ①是互斥不对立的事件,②是对立事件,③④不是互斥事件.1.甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )作业布置A.56B.25C.16D.13答案 A解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56.2.袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球. 在上述事件中,是对立事件的为( ) A .① B .② C .③ D .④ 答案 B解析 至少有1个白球和全是黑球不同时发生,且一定有一个发生. ∴②中两事件是对立事件.3.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.5 答案 C解析 ∵“抽到的产品不是一等品”与事件A 是对立事件, ∴所求概率P =1-P (A )=0.35.4.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( ) A .互斥但非对立事件B .对立事件C.相互独立事件D.以上都不对答案 A解析由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件,故选A.5.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为()A.0.8 B.0.5 C.0.7 D.0.3答案 C解析由互斥事件概率公式知重量大于40克的概率为1-0.3-0.5=0.2,又∵0.5+0.2=0.7,∴重量不小于30克的概率为0.7.6.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的卡片的频率是()A.0.53 B.0.5 C.0.47 D.0.37答案 A解析取到号码为奇数的卡片的次数为13+5+6+18+11=53,则所求的频率为53100=0.53.故选A. 7.在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件. 答案 ③ ② ①8.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________. 答案 (54,43]解析 由题意可知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<13a -3≤1,⇒⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43. 9.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是________. 答案 35解析 个位数字共有5种情况,只有当个位数字取2,4,5时,得到的数才能被2或5整除,所以概率为35. 10.一个口袋内装有大小相同的红球,白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________. 答案 0.2解析 记事件A ,B ,C 分别是摸出红球,白球和黑球,则A ,B ,C 互为互斥事件且P (A +B )=0.58,P (A +C )=0.62,所以P (C )=1-P (A +B )=0.42,P (B )=1-P (A +C )=0.38,P (A )=1-P (C )-P (B )=1-0.38-0.42=0.2.11.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.12.国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如下表所示:求该射击队员射击一次:(1)射中9环或10环的概率;(2)命中不足8环的概率.解记事件“射击一次,命中k环”为A k(k∈N,k≤10),则事件A k之间彼此互斥.(1)记“射击一次,射中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件的加法公式得P(A)=P(A9)+P(A10)=0.28+0.32=0.6.(2)设“射击一次,至少命中8环”的事件为B,则B表示事件“射击一次,命中不足8环”.又B=A8∪A9∪A10,由互斥事件概率的加法公式得P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.故P(B)=1-P(B)=1-0.78=0.22.因此,射击一次,命中不足8环的概率为0.22.*13.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.解方法一(利用互斥事件求概率)记事件A1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球}, 则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件的概率公式,得 (1)取出1球为红球或黑球的概率为 P (A 1∪A 2)=P (A 1)+P (A 2) =512+412=34. (2)取出1球为红球或黑球或白球的概率为 P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3) =512+412+212=1112. 方法二 (利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1∪A 2的对立事件为A 3∪A 4,所以取出1球为红球或黑球的概率为P (A 1∪A 2)=1-P (A 3∪A 4)=1-P (A 3)-P (A 4)=1-212-112=34. (2)因为A 1∪A 2∪A 3的对立事件为A 4, 所以P (A 1∪A 2∪A 3)=1-P (A 4)=1-112=1112.。

相关文档
最新文档