脱硫吸收塔除雾器的性能特性参数分析
脱硫除雾器
17
(2)除雾器临界烟气流速 在一定烟气流速范围内,除雾器对液滴分离的能力随 烟气流速增加而提高,但是当烟气流速超过一定数值后除 雾能力反而会下降,这一临界烟气流速称为除雾器的临界 烟气流速。 临界点的出现,主要是因为产生了雾沫的二次夹带所 造成的,即分离下来的雾沫,再次融入烟气中,被烟气带 走,其原因是: ①撞在叶片上的液滴由于自身动量过大 而破裂、飞溅;②气流冲刷叶片表面上的液膜,将其卷起、 带走。 为了达到一定的除雾效果,烟气流速非常重要,气流 最高速度不能超过临界速度,最低速度要保证能达到所要 求的最低除雾效率。
28
1.2可能导致结垢的原因
1.2.1设计方面 • 除雾器冲洗水压力不足:除雾器冲洗水压力是指冲洗时入 口母管处的压力, 一般要求大于0. 2Mpa。脱硫系统冲洗 水压力偏小,会使得冲洗效果得不到保证。 • 脱硫系统水平衡有问题:特别是机组低负荷运行时表现得 比较突出。很多设计将设备和轴承冷却、润滑、密封水全 部进入系统, 造成吸收塔高液位影响系统水平衡时, 运行 人员只得停止除雾器冲洗, 以防止吸收塔溢流; • 冲洗压力和流量控制及监测方式不正确:有些系统在除雾 器冲洗门前未设置冲洗水的流量和压力测点, 不能及时监 视和发现阀门内漏及冲洗水压力低, 难以保证冲洗效果。 除雾器差压不准,形同虚设, 起不到监视和报警作用。
23
五、除雾器的常见问题
• 1——除雾器的结垢、堵塞、坍塌
• 2——除雾器的热变形坍塌
24
1、除雾器的结垢堵塞坍塌
严重结垢, 会引起局部堵塞或整体塌陷, 有的 甚至将除雾器底部冲洗水管和支撑梁压断。 此问题主要出现在一级除雾器, 即下部的初级 除雾器, 使得除雾器局部滑动移位,甚至局部脱落。
25
12
玻璃钢脱硫塔技术参数
玻璃钢脱硫塔技术参数
玻璃钢脱硫塔是一种广泛应用的环保设备,用于去除工业烟气中的硫化物。
其独特的玻璃钢材质和高效的设计使其在脱硫领域具有显著的优势。
以下是关于玻璃钢脱硫塔的技术参数的详细说明。
一、材质与结构
主体材料:玻璃钢
结构:多层复合结构,包括吸收层、喷淋层、除雾层等。
二、性能参数
脱硫效率:≥95%
适用烟气量:100,000-3,000,000 Nm³/h
入口烟气温度:≤180℃
出口烟气温度:≤50℃(正常工况)
压力损失:≤2000Pa
三、主要组件技术参数
喷淋层
设计喷嘴数量:根据实际需要定制
喷嘴流量:根据实际需要定制
喷嘴材质:耐腐蚀材料
吸收层
吸收剂:碱性溶液(如氢氧化钠)
溶液循环量:根据实际需要定制
除雾层
除雾器类型:纤维型或折流型
处理气量:根据实际需要定制
排渣系统
排渣方式:定期排渣或连续排渣
渣处理:回收或废弃
控制系统
控制方式:自动化控制或手动控制
传感器类型与数量:根据实际需要定制
四、操作与维护
操作压力:常压操作
维护周期:根据实际使用情况确定,一般为每年一次。
五、其他参数
外形尺寸:根据实际需要定制
重量:根据实际需要定制
电源与功率:根据实际需要定制
玻璃钢脱硫塔以其优良的性能和耐久性,广泛应用于电力、化工、冶金等行业的烟气处理。
其技术参数的合理选择和配置,是确保脱硫效果和设备稳定运行的关键。
伞罩型除尘脱硫塔内除雾器性能研究
.
Ab t a t De s e s o e o h e q i me t i h tf e g s d s 1 h r a i n ( FGD)s s e sr c : mit r i n ft e k y e u p n n t e we l a e u p u i t u z o W y t m. Is p r t e — f r n e i o r a m p ra c O t r l b e o e a i n o F o ma c s fg e ti o t n et h e i l p r to fW GD y tm .I h swo k,t e RNG u b l n e mo e a s se nti r h t r ue c d l a d Dic e e P a e M o e DP ) we e u e o smu a e t e 3 D wo p a e f w n t e n w F n s r t h s d 1( M r s d t i lt h - t — h s l o i h e W GD t mb el wi u r l h a p a e y u i g Fl e t . a k g n I P l o i m a c l t n m eh d lt sb sn u n 6 2 p c a ea d S M IE ag rt h c lu a i t o .Ve o i il ,p e s r il n i— o l ct f d y e r s un Li a h n W a g Fe , a hj e ( le eo v r n na ce c n g n e — a tn Ze gGu n mi g, Sh n o g, n i Y h S ii . Colg f En io me t lS in ea d En i er
鼓泡脱硫塔除雾器除雾特性数值研究及实验验证
表 1 气相流场Байду номын сангаас本方程 Tab. 1 Basic equations of gas flow field
方程
ϕ Γϕ
S
连续性方程 1 0
0
动量方程 u j
μ
−∂p/∂x j + ∂/∂x j (μ∂u j /xi ) − ∂/∂x j (ρui′ui′)
由式(1)可见,由于雷诺应力项 ρui′ui′ 的存在, 该方程组是不闭合的。为了使描述湍流流动的方程
ε方程
ε μ + μi/σε
1/2Cε1 pijε /k − Cε 2ρε 2/k
1.2.3 离散相的计算
对于离散相(液滴相)运用拉格朗日方法对各个
颗粒方程进行积分求解,计算出颗粒的运动轨迹[8]。
直角坐标下的颗粒受力微分方程为
dup dt
= FD (u − up ) +
gx (ρp − ρ) ρp
η = Nt
(3)
Ne +Nt
式中:Nt 为被捕获的液滴颗粒数;Ne 为逃逸的液滴
颗粒数。
1.3 计算区域及边界条件
1.3.1 计算区域
冷态实验台上的除雾器性能实验验证了数值分析的结果。为 除雾器的设计和优化提供参考。
关键词:除雾器;除雾效率;两相流动;液滴粒径;数值模 拟;实验研究
0 引言
2005 年 4 月国华电力台山发电公司首台国产 600 MW 脱硫系统 2 号鼓泡脱硫塔(jet bubble reactor, JBR)投入运行,随着连续运行时间的增长,气气换 热器(gas gas heater,GGH)堵塞问题逐渐凸现,GGH 压差不断升高,最高可达 1 500 Pa 以上,严重时导 致增压风机失速、喘振,不得不开启旁路运行,影 响机组运行的安全性、经济性和环保效益。通过对 其结垢形成机制的研究和鼓泡脱硫塔反应控制特 性的实验室研究,确定除雾器后净烟气中小液滴含 量过高是造成 GGH 堵塞的主要原因,提高除雾器 的除雾效率是解决 GGH 堵塞问题的关键。
除雾器设计所需的数据参数:
除雾器设计所需的数据参数:烟气量吸收塔直径烟气入口温度粉尘含量杂质成分及含量锅炉常规工作状态烟囱高度脱硫工艺支撑梁数量支撑梁间距人孔大小除雾器优化设计后所得到的相关参数:除雾器组装直径一级除雾器板片间距一级除雾器板片结构形式一级除雾器组件尺寸二级除雾器板片间距二级除雾器板片结构形式二级除雾器组件尺寸除雾器的设计直接影响到脱硫系统的脱硫效率。
除雾器的结构我们所说的除雾器主要指火电厂脱硫吸收塔中的除雾器除雾器包括除雾器本体,除雾器冲洗系统两大部分。
除雾器本体一般分为2层(即上下层结构),下层一般表述为一级除雾器,上层一般表述为二级除雾器。
一级除雾器板片之间的间距要比二级除雾器板片之间的间距大。
采用这种结构布局主要有2个原因,其一是利用一级除雾器除去粗颗粒,二级除雾器除去细颗粒;其二是因为一级除雾器获得的冲洗水是二级除雾器的4倍,而一级除雾器的除雾量也是二级的2~4倍。
假如一级除雾器的间距与二级除雾器的间距一样或者更小,那么就会出现2个问题:1.一级除雾器及其容易堵塞,经常导致脱硫系统无法运行;2.二级除雾器的存在将没有意义,起不到除雾效果。
除雾器冲洗系统一般选用4层,很多脱硫总包商为了节约成本采用3层,是极不可取的做法,因为除雾器冲洗水系统单层的成本仅仅占据脱硫系统总价的千分之一到千分之五,而它所起到的作用可能要站到整个脱硫系正常运行的20%~30%,多加一层除雾器是四两拨千斤的做法。
除雾器常用的板片结构形式可以有如下四种流线型2通道带钩板片流线型2通道不带钩板片折线型2通道板片折线型3通道板片除雾器的作用除雾器,就是除去水雾的设备。
除雾器的作用就是把气体中的水雾,水滴含量降至最低。
除雾器的种类也有很多,综合节能与环保等诸多因素考虑,折流板除雾器是最佳选择。
基于除雾器的功能和作用,它有很多拓展用途,例如除尘,除臭,物理方法去除各种离子等。
除雾器在烟气脱硫系统中的作用主要有以下几个方面:除去烟尘;除去水雾;除去浆液雾滴;除去弱酸离子;除雾器的有无,直接决定了脱硫效率,因为无论是水雾还是硫酸根离子,均含有硫元素,没有除雾器的收集,它们将直接排放到我们赖以生存的环境中,就会使脱硫系统大打折扣。
火电厂脱硫除雾器系统培训
脱硫吸收塔除雾器系统培训时间:2017.02脱硫吸收塔除雾器系统培训一、脱硫除雾器的作用二、除雾器的基本工作原理三、除雾器的组成四、除雾器的主要参数五、除雾器冲洗操作六、除雾器的常见问题七、我厂除雾器介绍一、脱硫除雾器的作用雾的来源:湿法脱硫(现在电厂的主流脱硫方式),吸收塔在运行过程中,易产生粒径为10-60微米的雾。
雾的成分:水分,它还溶有硫酸、硫酸盐、SO2等。
的危害:如不妥善解,任何入烟的“”,携雾的危害:如不妥善解决,任何进入烟囱的“雾”,会携带排放到大气中,同时也造成热交换器及烟道的玷污和SO2严重腐蚀。
因此,湿法脱硫工艺上对吸收设备提出除雾的要求,被净化的气体在离开吸收塔之前要除雾。
石灰石-石膏湿法脱硫系统吸收塔内部结构湿法脱硫系统工艺原理在制浆池内加入石灰石粉和水,配成石灰石浆液,用泵送入吸收塔浆液段,再由循环泵送至低压喷嘴喷淋烟气,以此循环。
除尘后的烟气从塔底进入吸收塔,在吸收塔内部烟气与喷淋浆液进行逆向接触,从而脱除SO2。
石灰浆液在吸收SO2后成为含有亚硫酸钙和亚硫酸氢钙的混合液,塔内鼓入空气进行氧化,生成的石膏浆液排出,后经过滤得到固体石膏,上层清夜返回制浆池中。
二、除雾器的基本工作原理除雾器是依靠烟气中液滴的惯性作用和重力作用为工作原理。
当带有液滴的烟气以一定的速度通过除雾器通道时,由于烟道本身弯曲的特殊结构,迫使烟气在运动过程中连续地改变方向,使烟气流在惯性力和离心力的作用下实现气液分离,部分液滴被甩到除雾器叶片时被收集,当液滴在除雾器叶片上越聚越多,汇集到一定程度时,在自身重力的作用下向下运动回到洗涤池。
而残留在除雾器叶片上的固体物质经过冲洗也被回收到洗涤池里。
脱硫除雾器工作原理图脱硫除雾器结构图三、除雾器的组成脱硫系统中的除雾器通常由2 部分组成, 即除雾器本体及冲洗系统。
1、除雾器本体•除雾器本体由除雾器叶片、卡具、夹具、支架等按一定的结构形式组装而成。
其作用是捕集烟气中的液滴及少量的粉尘, 减少烟气带水, 降低出口烟气污染物的含量。
喷淋脱硫塔内除雾器运行特性
喷淋脱硫塔内除雾器运行特性除雾器的除雾效果对脱硫系统的稳定运行、烟道腐蚀及烟气排放有重要影响,研究不同空塔流速及组合条件下除雾器的除雾性能很有必要。
为此,建立了接近实际工程的喷淋脱硫塔实验台,研究了空塔流速、喷淋层与除雾器距离、不同雾化喷嘴等对除雾器出口液滴含量、粒径分布的影响,以及管式除雾器性能。
研究结果表明:空塔流速对一级除雾器出口液滴含量的影响较大,对二级除雾器出口液滴含量有一定影响;除雾器出口液滴粒径随空塔流速提高而减小;喷嘴雾化粒径变小后,一级除雾器出口液滴含量明显增加;喷淋层与除雾器间距对一级除雾器出口液滴含量有较大影响;管式除雾器对除雾器出口液滴含量影响不大。
关键词:烟气脱硫;喷淋塔;除雾器;氧化镁撞击法;液滴粒径国家对燃煤电厂二氧化硫等污染物排放要求日益严格,这对燃煤电厂的脱硫装置设计提出了更高的要求。
石灰石-石膏湿法烟气脱硫技术(WFGD)是目前国内外广泛采用的烟气脱硫技术,该技术又分为喷淋塔、液柱塔、鼓泡塔等不同型式,目前采用最多的是喷淋塔型式[1-4]。
当烟气通过脱硫塔喷淋洗涤脱除二氧化硫时,会携带出大量以硫酸盐、亚硫酸盐、碳酸盐及灰分为主的酸性液滴。
若不去除这些液滴,不但会造成下游烟道及设备的堵塞、腐蚀以及烟囱雨等问题,还会使烟气粉尘排放增加[5-8]。
除雾器是脱硫塔内去除液滴的重要设备,其运行特性引起广泛关注。
文献[9-13]通过改变流速、除雾器叶片间距、除雾器板型等因素对除雾器性能进行研究,但这些研究基于的实验台均与实际工程脱硫塔差异较大,需要对接近实际工程的脱硫塔内除雾器性能进行深入研究。
本文搭建了冷态喷淋脱硫塔实验台,内设喷淋层及屋脊式除雾器,模拟实际脱硫塔内除雾器入口条件,使得实验台除雾器入口液滴及流场分布与实际脱硫塔内相似。
在该实验台上开展了一系列研究:(1)空塔流速对除雾器出口液滴含量的影响;(2)空塔流速对除雾器出口粒径分布的影响;(3)喷淋层与除雾器距离对一级除雾器出口液滴含量的影响;(4)喷淋层喷嘴雾化粒径分布对除雾器液滴排放的影响;(5)管式除雾器的除雾效果。
伞罩型除尘脱硫塔内除雾器性能研究_王大勇
CD
=a1
+a2 Re
+a3 Re
(9)
对于球形颗粒 , 在一定 Re 范围内 , 式(9)的 a1 、
王大勇 李彩亭 # 曾光明 李珊红 王 飞 闫师杰
(湖南大学环境科学与工程 学院 , 湖南 长沙 410082)
摘要 除雾器是湿法烟气脱硫(WFG D)系统内重要的设备之一 , 其性能对 W FG D 系统运行的可靠性有重要 影响。 利用 Fluent 6.2软件对新型伞罩型除尘脱硫塔内的三维两相流场进行数值模拟, 气相采用 RN G 湍流模型 , 液相采用离散相模型 , 选择 S IM PLE 算法 进行计算 , 分析塔内的折板除雾器和旋流板除雾器的速度场、压力场和液滴的分布情况 。 结果表明 , 烟气经过折板除雾器 , 产生了明显 的压降 , 且在拐角区域湍流耗散强烈 , 是实现气液分离的关键区域 ;烟气经过旋流板除雾器 , 速度和压强分布具有良好的对称性 , 液滴被 气流旋转抛向壁面实现气液分离 。 模拟结果对新型的 WFG D 除雾器的设计和运行具有一定的理论指导意义。 关键词 伞罩型 除尘脱硫塔 除雾器 数值模拟
F D =1ρ8pμdC2pD2R4 e
(7)
式中 :FD 为总曳力产生项 , N · s/(kg · m);dp 为颗
粒直径 , m ;Re 为相对雷诺数(颗粒雷诺数);CD 为曳
力系数 。
Re 的表达式为 :
Re =ρdp
up -u μ
CD 的表达式为 :
(8)
王大勇等 伞罩型除尘脱硫塔内除 雾器性能研究
1 物理模型
研究了两种不同类型的除雾器 :折板除雾器和 旋流板除雾器 , 其示意图见图 2 。 折板除雾器折角 为 90°, 板间 距为 25 mm 。 旋流板除雾器 叶片数为 12 片 , 叶片仰角为 25°, 没有考虑溢流槽的存在 。
#2吸收塔除雾器差压大分析【运行台账】
脱硫系统#2吸收塔除雾器差压大原因分析目前脱硫系统#2吸收塔差压值已达510Pa左右,除雾器差压设计高Ⅰ值为400Pa,高Ⅱ值为450Pa。
一、造成除雾器差压高有以下几点:
1、除雾器冲洗水压力不足造成冲洗效果差。
2、吸收塔内部液气比过高,净烟气携带水滴量过高。
3、除雾器冲洗水个别喷嘴故障从而导致该喷嘴所在管道全部喷嘴
冲洗效果差。
4、冲洗周期过长导致除雾器差压过高。
5、除雾器差压取样管道堵塞造成测量误差。
二、除雾器差压过高有以下几点影响:
1、除雾器除雾元件表面结满石膏,容易造成除雾元件受力过重坍塌、损坏。
2、造成增压风机功耗过大。
3、除雾器差压过大时,导致除雾器除雾效果剧减,进入GGH的净烟气中所带水滴量增大,造成GGH差压增大、换热元件堵塞。
三、针对除雾器差压过大运行操作有以下几点措施:
1、吸收塔液位低补水时,首先采用除雾器冲洗。
1
2、根据机组负荷合理调整增压风机动叶开度,防止烟气流速过高从而影响除雾器除雾效果。
3、除雾器冲洗时采用手动冲洗,严禁采用自动冲洗方式,手动冲洗时每个冲洗水门冲洗一分钟,严禁同时打开两个冲洗水门同时进行冲洗。
附:#2吸收塔除雾器差压及增压风机动叶开度一个月及一个星期的历史曲线
1。
烟气脱硫吸收塔系统参数表
碳化硅/碳化硅
-吸入侧阀门材质
6%钼合金/橡胶
-排出侧阀门材质
6%钼合金/橡胶
(5)吸收塔石膏浆液排出泵
-制造厂
-数量
台
4
-型式
离心式
-外壳材质
双相合金
-叶轮材质
双相合金
-防磨损材质
双相合金
-轴功率
kW
35.5
-吸入侧滤网
有/无
无
-吸入侧压力
bar(绝对)
额定值 0.356 (3m)
-扬程
m
17.6
-吸收塔吸收区高度
m
6
-浆池高度
m
5.6
-浆池液位正常/最高/最低
m
额定值 4.1/最大值 5.6
/最小值 3.6
-浆池容积
m3
997
-吸收塔总高度
m
24.5
-材质
·吸收塔壳体/内衬
碳钢/鳞片内衬
·入口烟道材质/厚度
碳钢+鳞片内衬/
碳钢:6 +鳞片内衬:2
·喷淋层/喷嘴
玻璃钢/碳化硅
·搅拌器轴/叶轮
mm
50
·保温材质
石棉
·外包层材质
镀锌铁皮
-吸收塔烟气阻力
mbar
9.6
吸收塔入口烟道冲洗系统
-喷嘴数量
11
-喷嘴压力
bar
2
-喷嘴材料
哈氏合金钢或等同
-喷嘴流量
l/min
55
-冲洗方式(连续/断续)
断续
-冲洗水消耗
m3/h
4.5
(2)除雾器
-制造厂
-级数
2
-材质
喷淋脱硫塔内除雾器性能数值模拟
喷淋脱硫塔内除雾器性能数值模拟利用计算流体力学(CFD)方法,对不同叶片形式除雾器内的流场开展数值模拟,获得烟气流速、叶片间距、液滴直径等参数对除雾效率及压力损失的影响规律。
结果说明:除雾效率随烟气流速和液滴直径的增大而增大,随除雾器叶片间距的增大而降低;弧形板除雾器对液滴的脱除效率最低,但压力损失最小,其次是折形板除雾器,弧形板带单钩和双钩除雾器对液滴的脱除效率较高,但压力损失也较高;弧形板大间距板型,适合作为塔内一级除雾器,用来控制二级除雾器入口液滴质量浓度;弧形板带钩小间距板型,适合作为塔内二级除雾器,用来控制整个吸收塔液滴排放总量。
在电力工业应用最广泛的湿法烟气脱硫系统(FGD)中,经过喷淋层的烟气会携带出大量以硫酸盐、亚硫酸盐、碳酸盐及灰分为主的酸性液滴,这些液滴若不去除,不但会造成下游烟道及设备的堵塞、腐蚀以及烟囱雨等问题,同时也会造成烟气粉尘排放的增加。
除雾器是吸收塔内去除液滴的设备,随着国家对环保要求的提高,除雾器的运行特性也引起广泛关注。
除雾效率和压降是评估除雾器性能的重要参数,直接影响湿法脱硫系统的稳定运行。
许多研究者通过实验等方法对除雾器的除雾性能开展了研究。
但除雾器内流动状态十分复杂,影响其性能的因素较多,通过实验研究除雾器性能,成本高,开发周期长,很难设计出更高性能除雾器。
随着计算流体力学(CFD)的快速发展,利用数值模拟研究除雾器性能的方法备受关注,该方法可以克服实验研究的局限,模拟多种因素对除雾器性能的影响。
Verlaan等采用标准k-ε模型(STDk-ε)预测不同类型波纹板除雾器除雾效率。
Gil-landt等采用STD和低雷诺数k-ε湍流模型对折形板除雾器开展了研究,并与实验结果比照得出低雷诺数k-ε湍流模型更接近实验结果的结论。
James等对带有排液槽的除雾器开展了数值模拟研究。
国内一些研究者采用k-ε湍流模型,液相采用离散相模型,对折形板和弧形板除雾器内气液两相流动开展数值模拟。
脱硫吸收塔除雾器的性能特性参数分析(精)
脱硫吸收塔除雾器的性能特性参数分析
• 3除雾器的主要设计参数 (1)烟气流速 通过除雾器断面的烟气流速过高或过低都不利于除雾 器的正常运行,烟气流速过高易造成烟气二次带水, 从而降低除。 雾效率,同时流速高系统阻力大,能耗高 。通过除雾器断面的流速过低,不利于气液分离,同 样不利于提高除雾效率。此外设计的流速低,吸收塔 断面尺寸就会加大,投资也随之增加。设计烟气流速 应接近于临界流速。根据不同除雾器叶片结构及布置 形式,设计流速一般选定在3.5~5.5m/s之间。
脱硫吸收塔除雾器的性能特性参数分析
• (3)除雾器的级数 级数的增加,除雾效率增大,而压力损失也随 之增大。除雾器的设计要以提高除雾效率和降 低阻力损。失为宗旨。因此,单纯地追求除雾效 率而增加级数,却忽视了气流阻力损失的增加 ,其结果将使能量的损耗显著增加。现在的 WFG雾器的性能特性参数分析
• 通常,除雾器多设在吸收塔的顶部。若吸收塔 出口不设置除雾器,这不仅造成SO2的二次污 染,同时对烟囱的腐蚀也相当严重。所以在脱 硫塔顶部净化后烟气的出口应设有除雾器,通 常为二级除雾器,安装在塔的圆筒顶部或塔出 口的弯道后的平直烟道上。后者允许烟气流速 高于前者。对于除雾器应设置冲洗水,间歇冲 洗除雾器。净化除雾后烟气中残余的水分一般 不得超过100mg/m3,更不允许超过200mg/m3 ,否则含沾污和腐蚀GGH、烟道和风机。
脱硫吸收塔除雾器的性能特性参数分析
• 湿法吸收塔在运行过程中,易产生粒径 为10~60um的“雾”。“雾”不仅含有水 分,它还溶有硫酸、硫酸盐、SO2等,如 不妥善解决,任何进入烟囱的“雾”, 实际就是把SO2排放到大气中,同时也造 成风机的严重腐蚀。因此,工艺上对吸 收设备提出除雾的要求。被净化的气体 在离开吸收塔之前要进行除雾。
脱硫吸收塔除雾器标准化工艺及优点介绍
脱硫吸收塔除雾器标准化工艺及优点介绍第一篇:脱硫吸收塔除雾器标准化工艺及优点介绍脱硫吸收塔除雾器标准化工艺及优点介绍湿法脱硫设备系统是我公司根据用户实际情况专业设计的标准化脱硫设备工艺,从而对气体进行系统的脱硫设备、再生、熔硫。
脱硫设备采用物理、化学相结合,脱硫处理技术塔具有设备可长期运行、连续脱硫设备、无二次污染而且有副产品硫磺、处理气量大、脱硫设备精度高等优点,整个脱硫设备、再生、熔硫、处理工艺还有高效简单、管理方便、运行费用低等优点。
湿法脱硫设备原理湿法脱硫设备可以归纳分为物理吸收法、化学吸收法和氧化法三种。
物理和化学方法在硫化氢再处理问题,氧化法是以碱性溶液为吸收剂,并加入载氧体为催化剂,吸收H2S,并将其氧化成单质硫,湿法氧化法是把脱硫设备剂溶解在水中,液体进入设备,与气体混合,气体中的硫化氢(H2S),与液体产生氧化反应,生成单质硫吸收硫化氢的液体有氢氧化钠、氢氧化钙、硫酸钠、硫酸亚铁等。
目前,成熟的氧化脱硫设备法即采用889脱硫设备剂进行脱硫设备,在正常工艺条件下,脱硫设备效率可达99.6%以上。
分为高塔再生和再生槽再生两种配套设备,两种设备各具特点。
我公司可根据用户实际情况,进行设计制造,确保达到用户实际效果需求。
因工艺较复杂,材质要求较高,需要的辅助设备较多,所以设备造价较高,但有副产品,没二次污染等特点。
湿法脱硫设备特点(1)备可长期不停的运行,连续进行脱硫设备酸。
(2)用PH值来保持脱硫设备效率,运行费用低。
(3)工艺复杂需要专人值守。
(4)设备需保养。
(5)适用于气量大、硫含量高、脱硫设备精度高的气体。
第二篇:湿法烟气脱硫除雾器设计选型和维护湿法烟气脱硫除雾器设计选型和维护来源:电力环境保护更新时间:09-12-30 14:34 作者: 王小平摘要:分析了除雾器叶片的设计要求,比较了平板型和屋脊型除雾器的特点。
从运行、维护的角度出发,建议建立除雾器检测和冲洗制度,以确保除雾器的安全、正常运行。
除雾器总简介
脱硫净化除雾器随着人们对环保意识的不断增加,和全球气候变得越来越恶劣;在工业排放方面要求越来越紧,特别是向大气排放的锅炉烟囱和化工洗涤塔:它们所排放的气体虽然前期经过脱硫碱化综合处理,但后期所排放的气体中含有一定的水份和有害物质。
那么这就要求除雾器去除这水份和有害物质。
除雾器在净化空气中就显得很重要了。
除雾器的应用范围在许多流体和粉碎洗涤回收工业运行中,由于气体高速流动而使液体克服重力与气体混合形成了雾,他们悬浮气体或蒸汽中。
在绝大部分场合,这些夹带物必须被清除,以净化气体,降低环境污染和设备腐蚀。
在许多工业应用领域,安装除雾器是解决气体有夹带效方案。
除雾器被广泛应用一下领域:石油矿产火力发电冶金化工酿造洗涤除雾器工作原理除雾器是脱硫净化系统中的关键设备,其性能使用直接影响到湿法洗涤烟气脱硫净化系统能否连续可靠运行。
除雾器故障不仅会造成脱硫系统的停运,设备损坏(换热器·引风机·烟道等)。
甚至可能导致整个机组(系统) 停机。
因此,科学合理地设计、使用除雾器对保证湿法洗涤烟气脱硫系统的正常运行有着非常重要的意义。
1、除雾器的基本原理当带有液滴的烟气进入除雾器通道时,由于流线的偏折,和气流携带惯性力的作用下实现气液分离,部分液滴撞击在除雾器叶片时被捕集,液滴在除雾器叶片上再不断汇集,到一定程度在自身的重力下回到洗涤池。
而残留在除雾器叶片上固体物质在冲洗水作用下也被回收到洗涤池里。
如此循环工作除雾器既能起到除雾净化的作用又不会因自身积垢造成阻塞,影响系统正常工作。
(如图1 所示) 。
图1 除雾器工作原理脱硫除雾器的主要性能、特性及设计参数一:主要性能参数1:除雾性能可用除雾效率来表示。
除雾效率指除雾器在单位时间内捕集到的液滴质量与进入除雾器液滴质量的比值。
除雾效率是考核除雾器性能的关键指标。
影响除雾效率的因素很多,主要包括:烟气流速、通过除雾器断面气流的均匀程度、叶片结构、叶片的间距及除雾器的布置形式等有关。
玻璃钢除雾器的主要性能、特性及设计参数
玻璃钢除雾器的主要性能、特性及设计参数一:主要性能参数1、除雾性能可用除雾效率来表示。
除雾效率指除雾器在单位时间内捕集到的液滴质量与进入除雾器液滴质量的比值。
一般要求,通过除雾器的雾滴含量一个冲洗周期内的平均值小于 75mg/Nm3。
该处的雾滴粒径大于 15um的雾滴,烟气为标准干烟气。
2、压力降压力降是指烟气通过除雾器通道所产生的压力损失,系统压力越大,产生的能耗比就越高。
湿法脱硫系统除雾器的压力降一般要求在 120-200pa 之间(两级除雾器)二:除雾器的特性参数1:除雾器的临界分离粒径波形板除雾器利用液滴的惯性力进行分离的,在一定的气流流速下,粒径大的液滴惯性力大易于分离,当液滴粒径小于一定程度时,除雾器对液滴就失去分离捕捉能力。
2:除雾器临界烟气流速在一定烟速范围内,除雾器对液滴分离随烟气流速增大而提高,但当烟气流速超过一定流速后除雾能力下降,这一临界烟气流速称为除雾器临界烟气流速。
临界点的出现,是由于产生了雾沫的二次夹带所致,即分离下来的雾沫,再次被烟气带走,其原因大致是:①撞在叶片上的液滴由于自身动量过大而破裂、飞溅;②气流冲刷叶片表面上的液膜,将其卷起、带走。
因此;为达到一定除雾效果,必须控制烟气流速在一合适范围内。
气流最高速度不能超过临界气速;最低速度要保证能达到所要求的最低除雾效率。
三:除雾器的主要设计参数1:烟气流速通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行,烟气流速过高易造成烟气二次带水,从而降低除雾效果,同时流速过高造成系统阻力大,能耗高。
通过除雾器断面的烟气流速过低,不利于气液分离,同样不利于除雾效果。
此外设计的流失低,吸收塔断面尺寸加大,投资也随之增加。
设计烟气流速应接近临界流速。
根据不同除雾器叶片结构及布置形式,设计流速一般选定在 3.5-5.5m/s 之间。
烟道式可在 3.5-7.0m/s 之间2:除雾器叶片间距叶片间距的大小,对除雾器的除雾效率有很大影响。
脱硫除雾器标准要求
7-27-10-脱硫除雾器标准要求脱硫除雾器是用于减少燃烧过程中产生的硫氧化物(SOx)和氮氧化物(NOx)等污染物排放的设备。
标准和要求通常由监管机构、国际组织和行业标准组织制定,并根据不同地区和国家的环境法规而有所不同。
以下是一些脱硫除雾器的标准要求的常见方面:
1. 排放限值:脱硫除雾器的主要目标是减少硫氧化物(SOx)和氮氧化物(NOx)的排放。
标准通常规定了最大排放浓度限值,以确保环境质量和健康安全。
2. 性能要求:标准可能包括关于脱硫除雾器性能的要求,如硫氧化物和氮氧化物去除效率、操作稳定性、排放监测和数据报告等。
3. 材料和设计要求:脱硫除雾器的材料和设计应满足特定的标准,以确保其耐久性、可维护性和操作安全性。
4. 操作和维护要求:标准通常包括关于脱硫除雾器的操作和维护的指南和要求,以确保其有效运行和排放控制。
5. 监测和记录:操作者通常需要进行排放监测,并记录排放数据,以便符合法规和标准的要求。
这包括定期进行排放浓度测量和维护记录。
6. 培训要求:标准可能要求操作者和维护人员接受相关培训,以确保他们能够正确操作和维护脱硫除雾器。
7. 环境管理系统:一些标准鼓励或要求工厂或设施实施环境管理系统,以确保他们的排放符合法规和标准。
这些标准和要求可能因地区、行业和特定应用而有所不同。
因此,在设计、安装和操作脱硫除雾器时,必须遵守适用的环境法规和标准,以确保排放的合规性和环境的保护。
最好的实践是与当地的环境管理部门和专业工程师合作,以确保满足所有适用的标准和要求。
脱硫I级吸收塔除雾器差压高原因分析及应对措施
脱硫I级吸收塔除雾器差压高原因分析及应对措施摘要:本文对脱硫超低改造后I级吸收塔除雾器差压高的原因进行了分析,针对原因分别从机组停运后及正常运行过程中制定应对措施,保证除雾器差压在正常范围内,保证脱硫系统安全稳定运行。
关键词:除雾器;吸收塔;冲洗前言为了适应煤质变化及新的环保标准的要求,大唐彬长发电有限责任公司对#1机组脱硫系统进行超净排放改造,改造后脱硫部分仍采用原石灰石-石膏湿法脱硫工艺,增加一台二级吸收塔,与现有的吸收塔(一级塔)串联运行,改造后为一炉双塔串联运行。
一级吸收塔原有两级除雾器,改造后考虑到联络烟道积浆问题,保留下部一级除雾器,但在近期运行过程中一级除雾器差压升高较快,居高不下,为机组安全稳定运行带来影响。
1吸收塔除雾器概述除雾器(demister/mist eliminator)主要是由波形叶片、板片、卡条等固定装置组成,在湿法脱硫,吸收塔在运行过程中,易产生粒径为10--60微米的"雾","雾" 不仅含有水分,它还溶有硫酸、硫酸盐、二氧化硫等,同时也造成风机、热交换器及烟道的玷污和严重腐蚀,因此,湿法脱硫工艺上对吸收设备提出除雾的要求,被净化的气体在离开吸收塔之前要除雾。
除雾器用于分离塔中气体夹带的液滴,以保证有传质效率,降低有价值的物料损失和改善塔后压缩机的操作,一般多在塔顶设置除雾器。
可有效去除3--5um的雾滴,塔盘间若设置除雾器,不仅可保证塔盘的传质效率,还可以减小板间距。
2吸收塔除雾器差压高原因分析2.1 冲洗工作未按规定执行,导致差压缓慢上升。
对于吸收塔浆液PH、密度控制不合理,未将其控制在规定范围内,不能维持低PH、低密度运行,没有反应完的CaCO3被烟气携带粘附在除雾器表面,与烟气中的SO2反应,生成硫酸钙/亚硫酸钙结成硬垢,无法清除。
2.2 脱硫系统浆液循环泵运行方式调整不当。
当入口硫份低时不能及时停运上层喷淋层,除雾器容易结垢、堵塞,导致差压升高。
脱硫吸收塔除雾器吸附特点及过滤处理说明
脱硫吸收塔除雾器吸附特点及过滤处理说明天然气脱硫技术分为物理吸收法、化学吸收法和氧化法三种。
物理吸收法是采用有机溶剂作为吸收剂,加压吸收H2S,再经减压将吸收的H2S释放出来,吸收剂循环使用,该法以环丁矾法为代表;化学吸收法是以弱碱性溶剂为吸收剂,吸收过程伴随化学反应过程,吸收H2S后的吸收剂经增温、减压后得以再生,热砷碱法即属化学吸附法;氧化法是以碱性溶液为吸收剂,并加入载氧体为催化剂,吸收H2S,并将其氧化成单质硫,氧化法以改良ADA法和栲胶法为代表。
脱硫处理技术工艺流程含有H2S的煤气从脱硫塔下部进入,在填料层内与塔顶喷淋下的脱硫贫液发生反应,将H2S吸收脱除,净化后的气体从脱硫塔顶排出,然后在捕滴器内脱除多余水分后送入车间使用。
从塔顶淋下的溶液吸收 H2S后流入富液槽进行析硫,然后经再生泵送至喷射再生槽与空气反应,溶液被氧化、再生后经液位调节器流入贫液槽,再经脱硫泵打入脱硫塔,连续脱硫。
同时喷射再生槽内产生的硫泡沫溢流到泡沫池过滤,滤出硫膏。
天然气脱硫技术特点1、天然气净度可根据实际需要调节,可以平稳的控制煤气中的H2S的含量。
2、与干法脱硫相比,虽然投资是干法脱硫的2-3倍,但是运行成本低,1000Nm³实际脱硫费用为4元左右,避免了干式脱硫系统因脱硫剂再生后脱硫效果差及硫的吸附等原因而导致的生产成本增加的问题。
3、具有操作稳定、运行安全,脱硫效率高的特点。
脱硫效率可达到97%以上,脱硫后煤气中H2S含量<50mg/Nm3。
4、如果脱硫催化剂是PDS或’888’,不但能脱除H2S而且能脱煤气中占总硫含硫10%左右的部分有机硫。
湿法天然气脱硫技术适用范围适用于各种煤气、沼气和天然气的脱硫(H2S)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脱硫吸收塔除雾器的性能特性参数分析
• (2)除雾器临界烟气流速 在一定烟速范围内,除雾器对液滴分离能力随烟气流 速增大而提高,但当烟气流速超过一定流速后除雾能 力下降,这一临界烟气流速称为除雾器临界烟气流速 。,临即界分点离的下。 出来现的,雾是沫由,于再产次生被了气雾流沫带的走二,次其夹原带因所大致致 是:①撞在叶片上的液滴由于自身动量过大而破裂、 飞溅;②气流冲刷叶片表面上的液膜,将其卷起、带 走。因此,为达到一定的除雾效果,必须控制流速在 一合适范围:最高速度不能超过临界气速;最低速度 要确保能达到所要求的最低除雾效率。
脱硫吸收塔除雾器的性能特性参数分析
• I在除雾器出口烟道上用烟气采样仪采集烟气, 记录采样时间,同步测量烟气流速、标准干烟气 量、烟温、烟气含湿量、烟气含氧量等。 II在除雾。器出口,用带加热采样管和尘分离器的 标准除尘设备对气体进行等速采样。采样体积 为5m3,采样后用超纯水对采样管和采样设备进 行反复冲洗,洗液倒入250ml容量瓶中定容。混 匀后用EDTA法测定Mg2 含量。
脱硫吸收塔除雾器的性能特性参数分析
• 湿法吸收塔在运行过程中,易产生粒径 为10~60um的“雾”。“雾”不仅含有水 分,它还溶有硫酸、硫酸盐、SO2等,如 不妥善解决,任何进入烟囱的“雾”, 实际就是把SO2排放到大气中,同时也造 成风机的严重腐蚀。因此,工艺上对吸 收设备提出除雾的要求。被净化的气体 在离开吸收塔之前要进行除雾。
脱硫吸收塔除雾器的性能特性参数分析
• 通常,除雾器多设在吸收塔的顶部。若吸收塔 出口不设置除雾器,这不仅造成SO2的二次污 染,同时对烟囱的腐蚀也相当严重。所以在脱 硫塔顶部净化后烟气的出口应设有除雾器,通 常为二级除雾器,安装在塔的圆筒顶部或塔出 口的弯道后的平直烟道上。后者允许烟气流速 高于前者。对于除雾器应设置冲洗水,间歇冲 洗除雾器。净化除雾后烟气中残余的水分一般 不得超过100mg/m3,更不允许超过200mg/m3 ,否则收塔除雾器的性能特性参数分析
• 对于脱硫来说,目前用于衡量除雾性能的参数 主要是除雾后烟气中的雾滴含量。一般要求, 通过除雾器后雾滴含量一个冲洗周期内的平均 值小于7。5mg/Nm3。该处的雾滴是指雾滴粒径 大于15μm的雾滴,烟气为标准干烟气。其取样 距离为离除雾器距离1-2m的范围内。 目前国内尚无脱硫系统除雾器性能测试标准,连 州电厂根据美国AE公司提供的资料采用以下方 法:
脱硫吸收塔除雾器的性能特性参数分析 • 1主要性能参数
(1)除雾性能 除雾性能可用除雾效率来表示。除雾效率指除 雾器在单位时间内捕集到的液滴质量与进入除 雾器液滴。质量的比值。除雾效率是考核除雾器 性能的关键指标。影响除雾效率的因素很多, 主要包括:烟气流速、通过除雾器断面气流分 布的均匀性、叶片结构、叶片之间的距离及除 雾器布置形式等。
脱硫吸收塔除雾器的性能特性参数分析
• III用稀释的高氯酸和超纯水对采样后的 微纤维过滤器进行反复冲洗,洗液用慢速 厚型定性层析滤纸过滤到250ml容量瓶中, 定容。混。 匀后用EDTA法测定Mg2 含量。 另取1个新的微纤维过滤器作空白样。 IV用烟尘采样仪测定吸收塔进口烟尘浓 度,然后计算除雾器出口液滴质量浓度。
脱硫吸收塔除雾器的性能特性参数分析
• 2除雾器的特性参数 (1)除雾器临界分离粒径dcr 波形板除雾器利用液滴的惯性力进行分离,在一定的 气流流速下,粒径大的液滴惯性力大,易于分离,当 液滴粒径小。 到一定程度时,除雾器对液滴失去了分离 能力。除雾器临界分离粒径是指除雾器在一定气流流 速下能被完全分离的最小液滴粒径。除雾器临界分离 粒径越小,表示除雾器除雾能力越强。 应用于湿法脱硫系统屋脊式除雾器,其除雾器临界分 离粒径在20-30μm。
脱硫吸收塔除雾器的性能特性参数分析
• (3)除雾器的级数 级数的增加,除雾效率增大,而压力损失也随 之增大。除雾器的设计要以提高除雾效率和降 低阻力损。失为宗旨。因此,单纯地追求除雾效 率而增加级数,却忽视了气流阻力损失的增加 ,其结果将使能量的损耗显著增加。现在的 WFGD系统采用两级除雾系统。
脱硫吸收塔除雾器的性能特性参数分析
• (2)除雾器叶片间距 叶片间距的大小,对除雾器除雾效率有很大影响。随着 叶片间距的增大除雾效率降低。板间距离的增大,使得 颗粒在通道中的流通面积变大,同时气流的速度方向变 化趋于平缓,而使得颗粒对气流的跟随性更好,易于随 着除气雾流器流叶出片。 叶间片距通的道选而取不对被保捕证集除,雾因效此率除 ,雾维效持率除降雾低系。统 稳定运行至关重要。叶片间距大,除雾效率低,烟气带 水严重,易造成风机故障,导致整个系统非正常停运。 叶片间距选取过小,除加大能耗外,冲洗的效果也有所 下降,叶片上易结垢、堵塞,最终也会造成系统停运。 叶片间距根据系统烟气特征(流速、SO2含量、带水负荷 、粉尘浓度等)、吸收剂利用率、叶片结构等综合因素进 行选取。叶片间距一般设计在20~95mm。目前脱硫系统 中最常用的除雾器叶片间距大多在30~50mm。
脱硫吸收塔除雾器的性能特性参数分析
• (2)压力降 压力降指烟气通过除雾器通道时所产生的压力损失, 系统压力降越大,能耗就越高。除雾系统压降的大小 主要与烟气流速、叶片结构、叶片间距及烟气带水负 荷等因素有。 关。当除雾器叶片上结垢严重时系统压力 降会明显提高,所以通过监测压力降的变化有助把握 系统的状行状态,及时发现问题,并进行处理。 湿法脱硫系统除雾器的压力降一般要求小于200Pa。
脱硫吸收塔除雾器的性能特性参数分析
• 3除雾器的主要设计参数 (1)烟气流速 通过除雾器断面的烟气流速过高或过低都不利于除雾 器的正常运行,烟气流速过高易造成烟气二次带水, 从而降低除。 雾效率,同时流速高系统阻力大,能耗高 。通过除雾器断面的流速过低,不利于气液分离,同 样不利于提高除雾效率。此外设计的流速低,吸收塔 断面尺寸就会加大,投资也随之增加。设计烟气流速 应接近于临界流速。根据不同除雾器叶片结构及布置 形式,设计流速一般选定在3.5~5.5m/s之间。