(整理)圆的一般方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆的标准方程》教学设计
(教师用)
成都市洛带中学刘德军
一、教材分析
学习了“曲线与方程”之后,作为一般曲线典型例子,安排了本节的“圆的方程”。圆是学生比较熟悉的曲线,在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究它的方程,它与其他图形的位置关系及其应用同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其它圆锥曲线的方程奠定了基础也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用。
二、学情分析
学生在初中的学习中已初步了解了圆的有关知识,本节将在上章学习了曲线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,了解空间直角坐标系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。
三、教学目标
(一)知识与技能目标
(1)会推导圆的标准方程。
(2)能运用圆的标准方程正确地求出其圆心和半径。
(3)掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程。
(二)过程与方法目标
(1)体会数形结合思想,初步形成代数方法处理几何问题能力。
(2)能根据不同的条件,利用待定系数法求圆的标准方程。
(三)情感与态度目标
圆是基于初中的知识,同时又是初中的知识的加深,使学生懂得知识的连续性;圆在生活中很常见,通过圆的标准方程,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育.
四、重点、难点、疑点及解决办法
1、重点:圆的标准方程的推导过程和圆标准方程特征的理解与掌握。
2、难点:圆的标准方程的应用。
3、解决办法:充分利用课本提供的2个例题,通过例题的解决使学生初步熟悉圆的标准方程的用途和用法。
五、教学过程
首先通过课件展示生活中的圆,那么我们今天从另一个角度来研究圆。
(一)复习提问
在初中,大家学习了圆的概念,哪一位同学来回答?
问题1:具有什么性质的点的轨迹称为圆?
平面内与一定点距离等于定长的点的轨迹称为圆(教师在课件上画圆).
问题2:图哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?
圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.
问题3:求曲线的方程的一般步骤是什么?其中哪几个
步骤必不可少?
求曲线方程的一般步骤为:
(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点
M的坐标,简称建系设点;(如图)
(2)写出适合条件P的点M的集合P={M|P(M)|},简称写
点集;
(3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程;
(4)化方程f(x,y)=0为最简形式,简称化简方程;
(5)证明化简后的方程就是所求曲线的方程,简称证明.
其中步骤(1)(3)(4)必不可少.
下面我们用求曲线方程的一般步骤来建立圆的标准方程.
(二)建立圆的标准方程
1.建系设点
由学生在黑板上板演,并问有无不同建立坐标系的方法.教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导.因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y).
2.写点集
根据定义,圆就是集合P={M||MC|=r}.
3.列方程
由两点间的距离公式得:
4.化简方程
将上式两边平方得:(x-a)2+(y-b)2=r2. (1)
方程(1)就是圆心是C(a,b)、半径是r的圆的方程.我们把它叫做圆的标准方程.这时,请大家思考下面一个问题.
问题4:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?
这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为 x2+y2=r2.教师指出:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r>0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a、b、r,可以根据条件,利用待定系数法来解决.
(三)圆的标准方程的应用
学生练习一:
1说出下列圆的圆心和半径:(学生回答)
(1)(x-3)2+(y-2)2=5;
(2)(2x+4)2+(2y-4)2=8;
(3)(x+2)2+ y2=m2 (m≠0)
教师指出:已知圆的标准方程,要能够熟练地求出它的圆心和半径.
2、(1)圆心是(3,-3),半径是2的圆是_________________. (2)以(3,4)为圆心,且过点(0,0)的圆的方程为( )
A x 2+y 2= 25
B x 2+y 2= 5
C (x+3)2+(y+4)2= 25
D (x-3)2+(y-4)2= 25
教师纠错,分别给出正确答案:2、 (1)(x-3)2+(y +3)2=4;(2)D. 指出:要求能够用圆心坐标、半径长熟练地写出圆的标准方程. 例1求满足下列条件各圆的方程:
(1) 求以C(1,3)为圆心,并且和直线0743=--y x 相切的圆的方程
(2) 圆心在x 轴上,半径为5且过点(2,3)的圆。 解:(1)已知圆心坐标C(1,3),故只要求出圆的半径,就能写出圆的标准方程 因为圆C 和直线0743=--y x 相切,
所以半径r 就等于圆心C 到这条直线的距离 根据点到直线的距离公式,得
5
16)
4(3|73413|2
2
=
-+-⨯-⨯=
r 因此,所求的圆的方程是 25
256
)3()1(22=
-+-y x (2)设圆心在x 轴上半径为5的圆的方程为(x-a)2+y 2=25 ∵点A (2,3)在圆上∴(2-a)2+32=25∴a=-2或6 ∴所求圆的方程为(x +2)2+y 2=25或(x-6)2+y 2=25 这时,教师小结本题:求圆的方程的方法 (1)定义法
(2) 待定系数法,确定a ,b ,r ; 学生练习二:
1、以C (3,-5)为圆心,且和直线3x-7y+2=0相切的圆的方程_________________________.
教师纠错,分别给出正确答案:(x -3)2+(y+5)2=32。
例2已知圆的方程222r y x =+,求经过圆上一点),(00y x M 的切线方程
解:如图,设切线的斜率为k ,半径OM 的斜率为1k 因为圆
的切线垂直于过切点的半径,于是1
1
k k -
= ∵001x y k =
∴0
0y x
k -= (让学生注意斜率不存在时和为0的情况) 经过点M 的切线方程是 )(00
0x x y x y y --
=-,