小学奥数——巧数图形教案资料

合集下载

四年级《数图形》奥数教案

四年级《数图形》奥数教案

(四年级)备课教员:第1讲数图形一、教学目标:会数线段、角、长方形的数量。

二、教学重点:掌握数图形的方法:先确定数的顺序,再从左往右依次数。

三、教学难点:较大的图形数的时候需要用手比着从左往右依次数,避免漏掉。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)师:同学们,请看,这是什么?生:魔方!师:对啦,这是一个三阶魔方,它的主人是卡尔。

你们想玩吗?生:想。

师:嗯,不仅是你们想玩,卡尔的另外两个小伙伴阿派和欧拉也想玩,但是卡尔很为难,不知道要把魔方借给谁。

于是啊,他就出了一个难题,你们知道是什么难题吗?生:不知道。

师:卡尔出的难题是这样的“你们谁要是说出这个魔方的一面有多少个正方形,我就借给谁。

”你们知道正确答案吗?师:嗯,看来你们也有很多不同的答案嘛。

那我就接着往下讲,阿派听到这个难题后,立马就说了,是9个正方形,但是,欧拉却说是14个,你们猜谁说对了?师:最后啊,卡尔把魔方借给了欧拉,因为欧拉说的是对的。

你们知道为什么是14个正方形吗?怎么数的?生:因为有小的正方形,还有小正方形拼成的大正方形。

师:说的很棒,但是太抽象了,我们最好自己动手数一数。

【课件演示数魔方一面的正方形个数的动画,教师配合学生一步步演示过程。

】师:同学们真棒,都很聪明,所以,卡尔最终把魔方借给了欧拉,是明智的吧。

师:这就是我们今天要学习的《数图形》。

【板书课题:数图形。

】二、探索发现授课(40分)(一)例题1:(13分)你能数出下图中共有多少条线段吗?你是怎样做的?师:请问,题目中,最主要的字眼是什么?数一数下图中有多少条线段?分析:由图可知,端点共有7个,但是按顺序相加只能从6开始加,一直加到1即可。

板书:6+5+4+3+2+1=21(条)答:图中一共有21条线段。

(二)例题2:(13分)你能用数线段的方法数出下图中共有多少个角吗?师:做完了简单的数线段的问题,现在我们来了解一下更深层次的问题。

请看例题二。

4.7巧数图形(教案教学设计导学案)

4.7巧数图形(教案教学设计导学案)

教学目标:1、 掌握数数三角形、长方形和正方形数量的方法。

2、 通过数三角形、长方形和正方形的过程,发现其中的规律。

3、 比较熟练地掌握数图形的方法,提高有序思考,类推的能力 教学重、难点: 1、 让学生熟练掌握数三角形、长方形和正方形数量的方法。

2、 提高学生有序思考,类推的能力。

教学过程:一、情境体验:师:今天老师要和同学们玩一个小游戏, 考考大家的眼力。

窗户,数一数,窗户上一共有几个长方形?生:窗户上有6个长方形。

生:不对,不只6个。

师:那到底有几个呢? 学生思考怎样正确地计数。

二、思维探索(建立知识模型)例1:图中有多少个三角形?师:怎样才能准确地数出三角形的个数呢?生:可以一个一个地数,但是好麻烦。

师:数出来的这些三角形,大家发现它们有什么共同之处吗?生:有一个顶点相同。

师:是的,这些三角形有一个顶点相同,底边不同,底边的每一条线段对应一个 三角形。

所以我们要数出有多少条底边。

生:底边要分两层来数,我们先数第一层,如下图:7、巧数图形F 面的一幅图是一扇师:底边上共有几条线段呢?生:我们可以在底边上从左往右依次标上“0、1、2、3、4”,线段条数是0+1+2+3+4=10(条),对应的三角形个数是10 个。

师:第二层的底边上有几条线段,几个三角形呢?生:第二层底边上有线段:0+1+2+3+4+5=15(条),对应的三角形个数是15 个。

小结:数三角形与数线段的规律类似:先看三角形的底边一共有多少条线段,就有多少个三角形;如果三角形有分层,先分别数出每层三角形底边有多少条线段,再相加。

三、思维拓展(知识模型的运用)例2 :数一数,图中有多少个三角形?师:三角形有单个的,也有几个小三角形组合成的,怎样数呢?生:可以把三角形分类,有单个的小三角形,也有几个小三角形组合成的大三角形。

生:观察图形,可以知道单个的小三角形有16个,由4个小△组成的有6个,共16+6=22(个)例3:下图中有多少个长方形?师:要想准确地数出图中长方形的个数,一个一个地数很容易重复或者遗漏,而且很麻烦。

二年级奥数:巧数图形

二年级奥数:巧数图形

二年级奥数:巧数图形体系所属体系板块:第三级上能力培养:分类思考、数形结合思想体系对接:第一级下《有趣的平面图形》第三级下《飞速图形计数》预热知识一、分类法1、打枪法2、恰含法3、分大小【例】下图你能数出多少条线段?【例】下图共有多少个长方形?【解析】分类法(打枪法)【解析】分类数(恰含法)总:4+3+2+1=10(个)总:3+2+1=6(个)答:共10个。

答:共6个。

【例】下图你能数出多少个正方形?【解析】分类数(大小)1个小正方形:4个4个小正方形:1个总:4+1=5(个)答:共5个。

二、巧数图形(分层数)1、总数=每层个数相加每层个数=上层个数+看得见【例】下图中的小方块有几个?【解析】巧数图形(分层数)总:1+4+5=10(个)答:有10个。

课前思考1、正方形如何计数呢?2、小方块如何计数呢?3、如何利用学过的乘法来进行计数?4、一年级秋季要求背的1-10的三角形数还记得吗?数数中的枚举知识点精讲知识点总结一、数字:0、1、2、3、4、5、6、7、8、9(共10个)数:由数字组成的(无数个)二、组数(最高位不为0)1.确定几位数2.确定从哪位开始写注:①“比”后为目标②“相差”:2种情况3.确定顺序(从小到大/从大到小)4.有无特殊要求反序数下降数(上升数)例题精讲1.根据条件组数——有序的排列(例2)你能根据下面的要求,写出所有符合条件的两位数吗?(1)十位上的数字比个位上的数字大2;(2)十位上的数字与个位上的数字相差2。

解析:(1)先确定要题目要求我们写的是两位数,再确定从哪一位开始写——通过比较,发现先写出“比”字后面的,再写前面的思考起来更容易,所以一般我们把“比”字后面的当做是目标。

在这里也就是“个位上的数字”为目标,先写出来个位可能是几,再寻找十位上比个位上大2的数字即可组成我们需要的两位数。

个位上可能是:0、1、2、3、4、5、6、7、8、9。

而十位上最大是9,十位上的数字比个位上的数字大2,所以个位上最大是7。

奥数-小二教案-16-数图形

奥数-小二教案-16-数图形

第2讲我会数图形一年级我们已经认识了各种图形,并会数简单的图形.在这个基础上,本节课我们就将进一步深入的学习图形计数的方法.从简单的数线段的方法入手,拓展到数角、三角形、长方形、正方形等.通过数图形的练习,来让学生总结方法,找到计数的技巧.培养学生有序的思考问题的能力.知识点:1.掌握数规则的图形的个数的方法.(如线段、三角形、长方形等)1.教学点将给老师提供本节课的挂图.2.老师把每个图形制成图片.第2讲【教学思路】课前复习通过数简单的图形,使学生养成做记号的好习惯,为后面的学习奠定基础.⑴ 三角形有6个,正方形有3个,长方形有4个,椭圆形有8个.⑵ 正方形有4个,长方形有6个,三角形有3个,平行四边形有4个,圆形有5个.⑴下面的图各画了几个三角形、正方形、长方形和椭圆形?( )个三角形 ( )个正方形 ( )个长方形 ( )个椭圆形⑵ 这所漂亮的房子是用哪些图形拼成的呢?数一数.同学们,我们已经会数简单的图形,今天这节课我们将继续来学习数图形的方法.在数图形的时候,同学们要认真仔细,必须要做到按顺序、有条理、不遗漏、不重复得来数.这样我们在数图形的时候,才能数得又快又准.数一数,下图中有多少条线段?【教学思路】在一年级的时候,我们已经学过了数线段的基本方法,今天继续学习老师要引导学生把这种数图形,有方法, 要认真,别慌张.OEDC B AOE C( )条线段 ( )个角 ( )个三角形这些图形你会数吗?在数这些图形的时候,方法有什么相同和不同?方法进行推广和拓展.数线段有两种方法,具体分析如下:方法一:已知在两点间的直线部分就是一条线段,这两个点就叫做线段的端点,我们分别以不同端点为出发点按顺序数.⑴以A点为左端点的线段有:AB、AC、AD,共3条.⑵以B点为左端点的线段有:BC、BD,共2条.⑶以C点为左端点的线段有:CD,共1条.总共有:3216++= (条).方法二:如果把相邻两点间的线段叫做基本线段,即此图中AB、BC、CD是基本线段,我们也可从基本线段开始数.⑴由1条基本线段组成的线段有:AB、BC、CD共3条.⑵由2条基本线段组成的线段有:AC、BD共2条.⑶由3条基本线段组成的线段有:AD共1条.总共有:3216++= (条).总结方法:在数线段中,我们一定要抓住端点个数减1就是基本线段的条数来计算,而若有n个端点,线段总数则有12321()()条.-+-++++n n1.数一数,下面图形中有多少条线段?【教学思路】数一数一共有6个端点,那么基本线段就有615++++-=条,这个图中一共就有:54321 =(条)线段.152.在一条直线上画9个端点,可以数出(36)条线段.【教学思路】一共有9个端点,那么基本线段就有918-=(条),这个图中一共就有:8765432++++++ +=(条),可以数出36条线段.136数一数,图中共有多少个锐角?【教学思路】从图上可以看出,任意两条从O 点发出的射线都能组成一个角,先数以OA 为公共边的锐角有:∠AOB 、∠AOC 、∠AOD 、∠AOE ,共4个;以OB 为公共边的锐角有:∠BOC 、∠BOD 、∠BOE ,共3个: 以OC 为公共边的锐角有:∠COD 、∠COE ,共2个: 以OD 为公共边的锐角有:∠DOE ,共1个. 所以,锐角总数: 432110+++=(个).角的总数与射线的条数之间的关系:基本角(我们将相邻两条射线构成的角叫基本角)总比射线的条数少1,而角的总数应等于从1开始的一串连续自然数之和,其中最大的自然数等于基本角的个数.如果有1n +条射线,则有n 个基本角,而角的总数应等于12n n -+-+()() 321+++.数角方法也可推广到数三角形.数一数,图中有多少个三角形?【教学思路】数线段的方法也可以推广到数三角形,在这个图中一共有4个基本三角形,那么一共有432110+++=(个)三角形.数一数下图中有多少个长方形?OED C B AOEC【教学思路】注意到图中AD 上的每一条线段与宽都可以构成一个长方形.因此,AD 上有多少条线段就有多少个长方形,AD 上有线段:432110+++= (条),这10条线段都可以和宽AB 组成一个长方形,所以一共有10个长方形.数一数下图中有多少个长方形?【教学思路】上面第一层以AB 为宽的有10个长方形,下面第二层以BE 为宽的也就有10个长方形.另外把第一层和第二层合在一起以AE 为宽的长方形还有10个,一层有10个,共3层,这样一共就有10330⨯=(个)长方形.总结方法:数长方形时,分层数最简单,我们可以先数出一层有多少个,再数出有几层,长方形的个数就是:每层的个数×层数DCB AF E DCB A【教学思路】牧童指给秀才的是左边那条路.“句”字左边添一竖,念“向”,牧童的意思是向左边走.这些图形你会数吗?我们发现,在数图形时,如果图形比较复杂,就应观察能否将图形按某一位秀才赴京赶考.一日,他走到一处三岔路口,感到左右为难.正在这时,有一牧童路过此地,秀才忙上前向他问路.那牧童一句话也没说,只是低头用树枝在地上划了一个“句”字,起身便要离开.秀才以为牧童没有听清楚,不料牧童却指着地上的字说:“我不是已经告诉你了吗!”说完,扬长而去.秀才听了牧童的话,先是一愣,再看一眼牧童写下的这个字,高兴地上路了.你知道牧童指给秀才的是哪一条路吗?数一数,下图中共有多少个三角形?【教学思路】这个图形比较复杂我们可以分类来数,这样不会重复也不会遗漏.具体分析如下:⑴ 左边三角形ABD 中有3216++=(个)三角形; ⑵ 右边三角形ADC 中有3216++=(个)三角形; ⑶ 左右合起来三角形ABC 中有3个三角形; 一共有:66315++=(个)三角形.数一数,图中共有多少个三角形?【教学思路】这道题有两种分类的方法,分析如下:方法一:先看部分,再看整体.观察此图,发现三角形BCO 和三角形ACO 是相同类型的,所以我们仍可分为两类来研究.先看三角形BOC 中有213+=(个)三角形,所以CAO 中仍有3个三角形.最后看由三角形BCO 和三角形CAO 共同组成的三角形,有三角形ADB 和三角形AOB 共2个.所以此图三角形共有:3328++=(个). F EDCBAODCBA方法二:根据三角形包含基本三角形的个数来分类数.先数基本三角形有4个;再数包含两个基本三角形的三角形有3个,分别是三角形BOC、三角形AOC和三角形BDA;最后数包含四个基本三角形的三角形有1个,是三角形AOB.所以此图三角形共有:4318++=(个)如下图,数数有()个三角形.【教学思路】根据三角形包含基本三角形的个数来分类数,方法如下:分类数第一类(含1个基本三角形,最小的):1359++=(个);第二类(含4个基本三角形,次大的):3个;第三类(含9个基本三角形,最大的):1个.一共有93113++=(个)三角形.数一数,下图中共有多少个正方形?【教学思路】仔细观察,这个图形一共有三层.我们可以分层数,具体分析如下:最里面一层有5个正方形.中间一层有5个正方形.外面一层有5个正方形.合起来一共有55515++=(个)正方形.【教学思路】如果时间有限,拓展与提高可留为课后思考题.具体分析如下:⑴ 一共有30条线段.这个大五角星中有5条长线段,每条长线段上共可以数出:3216++=(条)线段,那么五角星中共有6530⨯=(条)线段.⑵ 一共有8个三角形.五角星的每个角上分别有1个小三角形,总共有5个;另外还有5个类似图中阴影的较大三角形,所以共有5510+=(个)三角形.(老师可根据自己的课堂进度灵活处理讲义内容,附加题仅供老师参考使用.)拓 展 与 提 高——巧 数 五 角 星蜘蛛妈妈织了一张漂亮的大网,如图所示.小蜘蛛想跟妈妈学织网,妈妈说:“要想学织网首先要弄明白这张网的结构.你先去数一数,这张网上有多少条线段,多少个三角形.”小蜘蛛数了半天,怎么也数不清,你能帮帮它吗?下面图中给出了五个点,在每两点之间画线段.一共可以画多少条?【教学思路】两点之间可以画一条线段.图中有5个点,每一点都可以向其他4点画线段,这样就可以画5420÷=(条)线段.⨯=条线段,但两点之间都算了两条线段,重复了,所以只能画20210数一数,下图中共有多少个小于180°角?【教学思路】用角的顶点和位置的变化进行分类:以A为顶点的角有∠BA0,∠DA0,BAD共3个,同理:以B、C、D为顶点的角各3个.以0为顶点的角有∠AOB,∠BOC,∠CDD,∠DOA共4个.图中共有小于180°角:34416⨯+= (个)数一数,下图中共有多少个三角形?【教学思路】图中共有44个三角形.其中最大的2个、次大的6个、次小的12个、最小的24个.1.数一数.o(10)条线段(6)个锐角2.数一数,图中有多少个三角形?(5)个(6)个(5)个3.图中有多少个正方形?(17)个(14)个4.数一数,图形中有几个长方形?5.数一数,下图中共有多少个三角形?【答案】根据三角形包含基本三角形的个数来分类数.只含有一个基本三角形的三角形有6个; 恰含两个基本三角形的三角形有3个; 恰含三个基本三角形的三角形有6个;恰含四个或五个基本三角形的三角形一个也没有;恰含六个基本三角形的三角形只有1个. 图中共有三角形:636116+++= (个).( 7 )个( 18 )个 ⑴⑵FEDCB A什么海没有鱼呢?一只蚂蚁可以从日本爬到中国,可能吗?什么牛不会拉车、耕地?什么东西落在水里却不会湿?把一只鸡和一只鹅放到冰箱里,结果鸡冻有一只羊,一年吃了草地上一半的草,问它死了,鹅却活着,这是为什么呢?把草全部吃光,需要多少年?平平把鱼放在鱼缸里,不到十分钟鱼都死在地上有100元钱和一块肉骨头,可是为什了,为什么?么努比拣起了肉骨头而没有拣钱呢?【答案】1.辞海、林海2.可能,在地图上爬3.蜗牛4.影子5.企鹅6.不能全吃光,因为草会年年生长的7.鱼缸里没有水8.努比是一只小狗十大环祸患威胁人类(二)六、化学污染工业带来的数百万种化合物存在于空气、土壤、水、植物、动物和人体中。

巧数图形教案

巧数图形教案

巧数图形教案教案标题:巧数图形教案教案目标:1. 理解巧数的概念,并能通过观察图形找出巧数。

2. 能够解释巧数图形的特征和规律。

3. 发展学生的逻辑思维和数学推理能力。

教学资源:1. 巧数图形的示例和问题。

2. 黑板/白板、彩色粉笔/白板笔。

3. 学生用纸和铅笔。

教学步骤:引入(10分钟):1. 谈论巧数的定义:巧数是指能够被3整除的数。

2. 引导学生列举一些巧数并讨论其规律:3、6、9、12、15等。

3. 提问学生:巧数有什么特征或规律?学生回答后进行解释和总结。

探究(20分钟):1. 展示一系列巧数图形的示例,例如由方块或圆圈组成的图形。

2. 让学生观察这些图形并尝试找出其中的巧数。

3. 学生思考并记录他们找到的巧数,并与同学交流发现。

整理(10分钟):1. 邀请学生分享他们找到的巧数,并将其记录在黑板/白板上。

2. 引导学生一起观察这些巧数图形的特征和规律,例如巧数图形中的方块或圆圈数量与巧数的关系。

3. 引导学生总结巧数图形的规律,并鼓励他们进行逻辑推理和解释。

拓展(15分钟):1. 给学生一些新的巧数图形示例,并鼓励他们找出其中的巧数。

2. 提问学生:是否可以用其他形状和不同的巧数找出新的巧数图形?3. 鼓励学生用纸和铅笔设计自己的巧数图形,并在班级中展示和分享。

巩固(5分钟):1. 总结巧数图形的概念和规律,并再次强调巧数是能够被3整除的数。

2. 提醒学生继续观察和思考数学中的规律,并勉励他们尝试解决更复杂的问题。

评估:观察学生在探究和拓展环节中的表现,包括他们参与讨论的贡献、解释和设计的巧数图形。

评估的重点在于学生对巧数概念和图形规律的理解和应用能力。

拓展活动或作业建议:1. 给学生布置巧数图形的作业,让他们设计和绘制一个符合巧数规律的图形,并解释其特征和规律。

2. 鼓励学生在日常生活中观察巧数,并记录下他们发现的巧数图形或情况。

在下堂课中,学生可以分享他们的发现。

3. 给学生提供更多的巧数和图形问题,让他们进行推理和解决。

【二升三】小学数学奥数第13讲:数图形-教案

【二升三】小学数学奥数第13讲:数图形-教案

(三年级)暑期备课教员:* * *第十三讲数图形一、教学目标: 1. 掌握数角、数线段和三角形、长方形数量的方法。

2. 通过数线段、角或三角形的过程,发现其中的规律。

3. 比较熟练地掌握数线段或角的方法,提高有序思考,类推的能力,既不多数也不少数。

4.理解“按顺序数”的方法,初步培养孩子确定顺序的能力,按长度或段数从小到大数线段,按角度从小到大的顺序数角,按长方形面积从小到大顺序数长方形。

5.减少同学们的畏难情绪,通过数图形培养孩子们对平面图形的兴趣。

二、教学重点: 1. 掌握数图形的方法:先确定数的顺序,再从左往右依次数。

2. 理解“按顺序数”的好处,既不重复也不遗漏。

3. 培养学生分类的思想,全面考虑问题的习惯。

三、教学难点:理解“按顺序数”的方法,初步培养孩子确定顺序的能力,按长度或段数从小到大数线段,按角度从小到大的顺序数角,按长方形面积从小到大顺序数长方形,避免遗漏。

四、教学准备:PPT、投影仪。

五、教学过程:第一课时(50分钟)一、导入(5分)师:同学们,看到这个点你想到什么?生:……师:看这两个点,你又想到什么呢?生:……师:同学们关于线段的知识都掌握得很好哦,两个点可以组成一条线段,那如果老师再加一个点,你能提出什么问题?生:这时候一共有几条线段?师:同学们思考得很认真,我们发现多加了一个点,老师知道肯定是多了一条线段,所以3个点共有两条线段,同意吗?生1:同意。

生2:不同意,应该是有3条线段。

师:有的同学同意,有的同学不同意,到底有几条线段呢,我们分别请同学上来给我们分析一下。

(分别请同学上去讲解)师:现在我们发现,原来,多了一个点不止是会多一条线段,那如果不止3个点,有4个点、5个点、6个点……呢?我们怎么数才不遗漏也不重复呢?生:……师:你们想知道数法吗?生:想!师:这就是我们今天要学习的内容--数图形,相信学了这节课之后,每个同学都能把图形数全了,有信心吗?生:有!(板书课题:数图形)二、探索发现授课(40分)师:前面我们学习了线段怎么数,那角你们会数吗?生:……师:角分为哪些,谁能来说一说?生:锐角、直角和钝角。

奥数中的巧数图形讲义及习题

奥数中的巧数图形讲义及习题

奥数中的巧数图形讲义及习题(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数学竞赛中常遇到数图形问题。

这类问题一般都要先寻求规律,而后按照这个规律去数图形。

数图形时要有次序、有条理,才能不遗漏、不重复。

因此,一般步骤应是:仔细观察、发现规律、应用规津。

运用规律常能使解法简便。

例1下面两根线段中各有多少条线段解(1)由一条基本线段构成的线段有:AB、BC、CD、DE,共4条;由两条基本线段构成的线段有:AC、BD、CE,共3条;由三条基本线段构成的线段有:AD、BE,共2条;由四条基本线段构成的线段只有AE1条。

因此共有线段:4+3+2+1=(4+1)×4÷2=10(条)(2)可以采用(1)同样的解法:由一条基本线段组成的线段有6条,由两条基本线段组成的线段有5条,由三条基本线段组成的线段有4条,由四条基本线段组成的线段有3条,由五条基本线段组成的线段有2条,由六条基本线段组成的线段有1条,共有线段:6+5+4+3+2+1=(6+1)×6÷2=21(条)答(1)中有10条线段。

(2)中有21条线段。

这种先分类再排序的方法称为分类排序法。

这样排序,不易遗漏和重复。

由以上例子可以推知,如果线段上有五个点,就构成了四条基本线段,总线段数为四个连续自然数的和:4+3+2+1。

如果有n个点,线段总数为(n-1)+(n-2)+…+3+2+1=n×(n-1)÷2(条)。

找到了这个规律,我们就可以运用这个公式来解答这类问题。

例2 在∠AOB(图6-2)内有8条从O点引出的射线,可组成各种大小不同的角一共有多少个解这问题类似于例1,10×9÷2=45(个)答图中有45个角。

解3 数一数,图6-3一共有几个长方形分析可以按照顺序去数长方形的个数,也可以通过分析研究,找出数长方形的规律。

小学奥数数数图形教案

小学奥数数数图形教案

小学奥数数数图形教案第一篇:小学奥数数数图形教案我是闯关小达人关卡一:握手游戏有6个小朋友,每2人握一次手并且只能握一次手,一共要握几次手?关卡二:你知道怎么算吗从青岛到上海的直达列车,中途停靠5个大站,这趟列车共有多少种不同的车票?关卡三:和爸爸妈妈合影如果让你和爸爸妈妈一起并排站着合影,你知道你们有几种不同的排列顺序吗?关卡四:我不会上当的哦老师在黑板上写下了0,2,4,6这四个数字,请同学们想想它们能组成几个三位数?数数图形教案例1:数一数,图中有多少个锐角?如何做到不重复又不遗漏呢?第一种方法:列举法第二种方法:图示法小朋友们,你们发现什么规律了吗?例2:数一数,下面图形中共有几个三角形?(1)(2)方法解析:按照三角形的拼组方式或者形状的大小将给定的图形分类数数。

(1)(2)例3:动动脑,数数下图中有几个长方形?例4:数数下图中有几个正方形?例5:数一数,下图中的大长方体是由多少个小长方体组成的?例6:下图所示的“塔”由四层没有缝隙的小立方块垒成,求塔中共有多少个小立方块?练习1.你知道下图中共有几个角吗?(1)(2)2.数一数,下面的图形有几条线段?(1)(2)3.你知道下图中共有几个三角形吗?(1)(2)4.下面图形有多少个长方形?(1)(2)5.下图是由小立方块码放起来的,其中有一些小立方体被压住看不见,请你数一数共有多少小立方体?第二篇:四年级奥数-数数图形-教案四年级奥数第十三章《数数图形》教案教学目标:1、在学过一些基本的几何图形的基础上,通过观察掌握数线段、角、三角形、长方形的规律和方法。

2、学生通知亲身体验明白数图形时不重复、不遗漏的规律,锻炼数学思维的严谨性。

教学重、难点:在观察的基础上,自己总结出数图形的规律和方法。

教学过程:一、复习:复习以前所学的数简单的线段、三角形、角的方法。

二、新授:例1:数一数,下图中有多少条线段?(1)(2)解答:(1)4+3+2+1=10(条)答:有10个线段。

四年级奥数数数图形教案

四年级奥数数数图形教案

四年级奥数-数数图形-教案第一章:认识图形教学目标:1. 让学生了解和认识常见的平面图形,如三角形、四边形、五边形、六边形等。

2. 培养学生观察、描述和分类图形的能力。

教学内容:1. 介绍各种平面图形的名称和特征。

2. 通过实物或图片,让学生观察和描述图形的形状、大小、位置等。

3. 让学生通过折纸、拼图等活动,亲身体验图形的变换和组合。

教学活动:1. 教师展示各种平面图形,引导学生说出图形的名称和特征。

2. 学生分组讨论,观察和描述给定图形的形状、大小、位置等。

3. 学生进行折纸、拼图等活动,体验图形的变换和组合。

第二章:数图形教学目标:1. 培养学生数图形的能力,提高学生的逻辑思维和观察能力。

2. 让学生掌握数图形的规律和方法。

教学内容:1. 介绍数图形的规律和方法。

2. 通过实例,让学生练习数图形,找出规律。

教学活动:1. 教师讲解数图形的规律和方法,引导学生理解并掌握。

2. 学生分组练习,数给定图形的个数,找出规律。

3. 教师选取一些学生的作品进行展示和讲解,帮助学生巩固所学知识。

第三章:拼图游戏教学目标:1. 培养学生的动手操作能力和观察能力。

2. 让学生学会用简单的图形拼出复杂的图形。

教学内容:1. 介绍拼图游戏的基本方法和技巧。

2. 通过实例,让学生练习拼图游戏,学会用简单的图形拼出复杂的图形。

教学活动:1. 教师讲解拼图游戏的基本方法和技巧,引导学生理解并掌握。

2. 学生分组进行拼图游戏,用简单的图形拼出复杂的图形。

3. 教师选取一些学生的作品进行展示和讲解,帮助学生巩固所学知识。

第四章:图形变换教学目标:1. 培养学生对图形变换的理解和应用能力。

2. 让学生学会用语言描述图形的变换过程。

教学内容:1. 介绍图形变换的基本概念和类型,如平移、旋转、翻转等。

2. 通过实例,让学生观察和描述图形的变换过程。

教学活动:1. 教师讲解图形变换的基本概念和类型,引导学生理解并掌握。

2. 学生分组讨论,观察和描述给定图形的变换过程。

巧数图形教案

巧数图形教案

巧数图形教案篇一:巧数图形巧数图形1、教材地位及作用《数图形中的学问》是第八册书中第一个专题性活动。

在第二单元认识各种图形之后,本课设计了数简单图形个数的活动,使学生初步体会有序思考的必要性,培养学生有序思考的习惯。

为后面学习“图形中的规律”打下坚实的基础。

2、教学目标:1、体会到按一定规律去数,可以做到不重复,不遗漏,发展有序思维。

2、引导学生在按一定规律数的基础上发现数图形的规律。

3、教学重点:有规律地数,不重复不遗漏。

教学难点:引导学生在按一定规律数的基础上发现数图形的规律。

【学情分析】学生们能够数出简单的图形的个数,但是不一定做到按着一定的顺序来数。

只有极少数学生知道数图形的规律并用算式来计数,绝大多数同学并没有发现数图形的规律,更不会用算式来计数。

设计中注意兼顾各层面学生的不同需求,做到有层次、有梯度。

【教学策略】1、留出空白,放手探究。

课堂教学中在以下几个环节中留出“空白”,让学生去探索、思考。

⑴在寻找新旧知识的衔接点时留“空白”;⑵在提问后留“空白”;⑶当学生对知识认识模糊时留“空白”;⑷在概括结论之前留“空白”;⑸在出现错误之后留“空白”;⑹在出现难题时留“空白”。

2、群体互动,合作探究。

在数较复杂的图形的个数时,有计划地组织他们进行合作探究,以形成集体探究的氛围,培养学生的合作精神。

【教学过程】一、激趣导入。

同学们,今天这节数学课有一些老朋友要和我们一起来上课,欢迎吗?快来看看它们是谁吧!(出示图一)(图一)这些老朋友是谁呀?(指名回答:梯形、三角形、长方形??)今天他们不仅自己来到了课堂,还带来了各自的兄弟姐妹,快来看看向我们提出了什么问题?(出示图二)?共()个共()个(图二)原来让我们数他们兄弟姐妹的个数,也就是数图形的个数。

同学们,你们会数吗?(生有答会数,有答不会数)好,今天这节课我们就一起来研究——数图形中的学问。

(板书课题)咱们先从简单的图形数起吧,这么多图形,你觉得谁的兄弟姐妹的个数最好数呀?(角)(设计意图:引发学生认知冲突,激发学生学习兴趣)二、探索规律。

三年级奥数巧数图形(供参考)

三年级奥数巧数图形(供参考)

第2讲 巧数图形知识要点同窗们,咱们常常会碰到数图形的问题,关于较复杂的图形,常常会显现数重复或数漏掉的错误。

如何才能不重复也不遗漏地数出图形的个数呢?这节课,咱们将一路来寻觅好的方式。

要正确数出图形的个数,关键是要从大体图形入手。

第一要弄清图形中包括的大体图形是什么,有多少个,然后再数出由大体图形组成的新的图形,并求出它们的和。

精典例题例1: 数出以下图中有多少条线段?仿照练习数一数,每种图形有多少个?有( )条线段 有( )个三角形有( )个角 有( )个长方形 有( )个正方形例2: 数出图中共有多少个三角形?从短的线段入手,再两条两条拼接起来数,你发现规律了吗?还能用刚才的方法来数吗?EABCDODC B A FEA仿照练习数一数,每幅图里有多少个三角形? (1) (2)有( )个三角形 有( )个三角形例3:下面的图形中有多少个三角形?(第九届中国青青年数学论坛趣味数学解题技术展现大赛试题)仿照练习数一数,图中共有几个正方形?(2020武汉明心数学资优生水平测试题)精典例题例4: 数出以下图中有多少个长方形?多少个正方形?三角形很多,可以尝试按三角形的方向和大小尝试分类数。

KG I H G A仿照练习1.数一数,图中有多少个长方形?2.数一数图中有多少个正方形?家庭作业1.数一数每幅图里面图形的个数(能计算的写出算式)。

(1) (2)前面学习的数长方形的方法还有用吗?怎么能用上呢?DCBA D CBA有( )条线段 有( )个角2.右图中有多少个三角形?3.图中有多少个长方形?(把你的方式分享给你的爸爸妈妈听,你能教会他们吗?分享后让爸爸妈妈给你打星,最多5颗星)4.数一数,右图中有多少个正方形?5.数一数,其中共有多少个包括“(2020年“陈省身杯”国际青青年数学邀请赛试题)。

四年级奥数-巧数图形个数

四年级奥数-巧数图形个数

姓名:巧数图形个数“数图形的个数”是趣味图形问题的一种,由于几何图形千变万化,错综复杂,要想准确地数出图形中所包含的某一个几何图形的个数,关键是要掌握有条理有次序地数图形的方法。

数图形的个数时,既不能同一图形数两次,又不能把有的图形漏掉不数,常用的计算方法有按顺序和分类数两种。

下面举例介绍两种方法的运用规律:例:数一数下面图中有多少条线段。

第一:按含基本线段的顺序去数。

上图一共有5条小线段,这每条小线段就是基本线段,有5条基本线段,包含有两条基本线段的有4条……第二:按端点进行分类去数。

以线段最左边的点为第一个端点,第二个点为第二个端点……为了方便同学们计数,向大家介绍数线段、三角形、角数量的公式:1+2+…+(n-2)+(n-1)=2)1(nn一、试一试,看谁数得又对又快。

一共有()个三角形。

一共有()个角。

二、填空。

1. 算式中有乘法和加、减法,应先算();算式中有除法和加、减法,应先算();算式中有括号的,应先算()。

2. 在计算25+13×2时,先算( )法,再算( )法。

3. 在计算78÷16×3时,先算()法,再算()法。

4. 在算式50-20÷5里,如果要先算减法,那么算式应该是:()。

里填上“<”“>”或“=”。

20×5+×(5+3)48÷6÷÷(6×8)280-37-280-(37+163)60-24÷60-24)÷12小故事明明和沉沉都十分喜欢数学。

一天明明问沉沉:“你最喜欢几?”“我最喜欢9。

”“那你说说从1数到100,要说几次‘9’?”“啊!……这”沉沉被难住了,“这要数一数才能知道,一分钟时间。

”同学们,请你在一分钟内说出从1到100有多少个9?。

二年级奥数:巧数图形

二年级奥数:巧数图形

二年级奥数:巧数图形体系所属体系板块:第三级上能力培养:分类思考、数形结合思想体系对接:第一级下《有趣的平面图形》第三级下《飞速图形计数》预热知识一、分类法1、打枪法2、恰含法3、分大小【例】下图你能数出多少条线段? 【例】下图共有多少个长方形?【解析】分类法(打枪法)【解析】分类数(恰含法)总:4+3+2+1=10(个)总:3+2+1=6(个)答:共10个. 答:共6个.【例】下图你能数出多少个正方形?【解析】分类数(大小)1个小正方形:4个4个小正方形:1个总: 4+1=5(个)答:共5个.二、巧数图形(分层数)1、 总数=每层个数相加每层个数=上层个数+看得见【例】下图中的小方块有几个? 【解析】巧数图形(分层数)总:1+4+5=10(个)答:有10个.课前思考1、 正方形如何计数呢?2、 小方块如何计数呢?3、 如何利用学过的乘法来进行计数?4、一年级秋季要求背的1-10的三角形数还记得吗?1个 1+3=4(个) 4+1=5(个)数数中的枚举知识点精讲知识点总结一、数字:0、1、2、3、4、5、6、7、8、9(共10个)数:由数字组成的(无数个)二、组数(最高位不为0)1.确定几位数2.确定从哪位开始写注:①“比”后为目标②“相差”:2种情况3.确定顺序(从小到大/从大到小)4.有无特殊要求反序数 下降数(上升数)例题精讲1.根据条件组数——有序的排列(例2)你能根据下面的要求,写出所有符合条件的两位数吗?(1) 十位上的数字比个位上的数字大2;(2) 十位上的数字与个位上的数字相差2.解析:(1)先确定要题目要求我们写的是两位数,再确定从哪一位开始写——通过比较,发现先写出“比”字后面的,再写前面的思考起来更容易,所以一般我们把“比”字后面的当做是目标.在这里也就是“个位上的数字”为目标,先写出来个位可能是几,再寻找十位上比个位上大2的数字即可组成我们需要的两位数.个位上可能是:0、1、2、3、4、5、6、7、8、9.而十位上最大是9,十位上的数字比个位上的数字大2,所以个位上最大是7.十位上的数字比个位上的数字大2的数有8个:20、31、42、53、64、75、86、97.(2)区分“相差”和“比”的不同意思:看到“比”就直接知道谁大谁小,但是“相差”有两种情况:十位上数字比个位上数字大2,或者个位上数字比十位上数字大2.(1)中答案就是十位上数字比个位上数字大2的情况.还有个位上数字比十位上数字大2,方法一样.最终答案有15个:20、31、42、53、64、75、86、97,13,24,35,46,57,68,79.2.反序数(例4)像17和71这样的十位数字与个位数字顺序颠倒的一对两位数是一家人,它们相加的和是88,请问像这样的相加和是99的一家人有几对?解析:个位与十位两个数字相加是9,即()+()=9,不难得出这样的情况有1+8=9,2+7=9,3+6=9,4+5=9,所以这样的两位数共有4对,即18和81,27和72,36和63,45和54.最后检验,18+81=99,27+72=99,36+63=99, 45+54=99.3、下降数(例5)自然数21,654,752这些数有一个共同的特点,相邻两个数字,左边的数字大于右边的数字.我们取名为“下降数”.用4,6,7,9这四个数字,可以组成多少个“下降数”?解析:有序思考问题.这样的“下降数”中最高位是“9”的有:9764,976,974,964,97,96,94(写的时候可以按从四位数、三位数、两位数的顺序去写,下同);最高位是“7”的有:764,76,74;最高位是“6”的有:64.一共有11个.数数中的枚举练习一、基础过关篇1、有一些两位数,十位上的数字和个位上的数字之和都等于9,这样的两位数有多少个?2、小嘉有4张数字卡片,分别是“0,1,3,7”,每次抽出2张组成一个两位数,可以组成的哪些两位数呢?二、强化提高篇1、请你根据下面的要求,写出所有符合条件的两位数(1)十位上的数字比个位上的数字大3;(2)个位上的数字和十位上的数字相差3.2、写出80以内,十位上的数字比个位上的数字大的所有两位数,你能写出多少个呢?3、像18和81这样十位数字和个位数字顺序颠倒的一对两位数是好朋友,它们相加和是99,请问像这样的相加和是99的好朋友有几对?4、用8、3、7、9四张卡片,可以组成若干个没有重复数字的四位数,其中最大数与最小数的差是多少?答案解析一、基础过关篇1、有一些两位数,十位上的数字和个位上的数字之和都等于9,这样的两位数有多少个? 解析:这样的两位数共有9个:18,27,36,45,54,63,72,81,902、小嘉有4张数字卡片,分别是“0,1,3,7”,每次抽出2张组成一个两位数,可以组成的哪些两位数呢?解析:最高位不能为0,所以只能是1打头或3打头或7打头:1打头的两位数:10、13、17;3打头的两位数:30、31、37;7打头的两位数:70、71、73;一共有9个这样子的两位数.二、强化提高篇1、请你根据下面的要求,写出所有符合条件的两位数(1)十位上的数比个位上的数大3;解析:十位个位数3 0 304 1 415 2 526 3 637 4 748 5 859 6 9610 7 107答:这样子的两位数有30、41、52、63、74、85、96.(2)个位上的数字和十位上的数字相差3.解析:有两种情况:①十位上的数比个位上的数大3:跟(1)一样:这样子的两位数有30、41、52、63、74、85、96.②个位上的数比十位上的数大3:同上述方法相同,这样的两位数有14、25、36、47、58、69.答:这样子的两位数有30、41、52、63、74、85、96、14、25、36、47、58、69.2、写出80以内,十位上的数字比个位上的数字大的所有两位数,你能写出多少个呢? 解析:所以符合条件的数的个数是:1+2+3+4+5+6+8=29(个)3、像18和81这样十位数字和个位数字顺序颠倒的一对两位数是好朋友,它们相加和是99,请问像这样的相加和是99的好朋友有几对?解析:十位个位好朋友1 8 18——812 7 27——723 6 36——634 5 45——54有好朋友4对.4、用8、3、7、9四张卡片,可以组成若干个没有重复数字的四位数,其中最大数与最小数的差是多少?解析:最大:从高位排,9873最小:从高位排,3789差:9873-3789=6084补充说明:在这类卡片组数的问题中,如果题目中没有说明卡片是可以翻转的,就默认为卡片是不翻转的,故不必要把卡片“9”倒过来看成卡片“6”.近年来杯赛已经避免卡片问题,特此统一说明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数——巧数图

巧数图形
分析与解:我们可以按照线段的左端点的位置分为A,B,C三类。

如下图所示,以A为左端点的线段有3条,以B为左端点的线段有2条,以C为左端点的线段有1条。

所以共有3+2+1=6(条)。

我们也可以按照一条线段是由几条小线段构成的来分类。

如下图所示,AB,BC,CD是最基本的小线段,由一条线段构成的线段有3条,由两条小线段构成的线段有2条,由三条小线段构成的线段有1条。

由例1看出,数图形的分类方法可以不同,关键是分类要科学,所分的类型要包含所有的情况,并且相互不重叠,这样才能做到不重复、不遗漏。

例2 下列各图形中,三角形的个数各是多少?
分析与解:因为底边上的任何一条线段都对应一个三角形(以顶点及这条线段的两个端点为顶点的三角形),所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数。

由前面数线段的方法知,
图(1)中有三角形1+2=3(个)。

图(2)中有三角形1+2+3=6(个)。

图(3)中有三角形1+2+3+4=10(个)。

图(4)中有三角形1+2+3+4+5=15(个)。

图(5)中有三角形
1+2+3+4+5+6=21(个)。

例3下列图形中各有多少个三角形?
分析与解:(1)只需分别求出以AB,ED为底边的三角形中各有多少个三角形。

以AB为底边的三角形ABC中,有三角形
1+2+3=6(个)。

以ED为底边的三角形CDE中,有三角形
1+2+3=6(个)。

所以共有三角形6+6=12(个)。

这是以底边为标准来分类计算的方法。

它的好处是可以借助“求底边线段数”而得出三角形的个数。

我们也可以以小块个数作为分类的标准来计算:图中共有6个小块。

由1个小块组成的三角形有3个;
由2个小块组成的三角形有5个;
由3个小块组成的三角形有1个;
由4个小块组成的三角形有2个;
由6个小块组成的三角形有1个。

所以,共有三角形
3+5+1+2+1=12(个)。

(2)如果以底边来分类计算,各种情况较复杂,因此我们采用以“小块个数”为分类标准来计算:由1个小块组成的三角形有4个;由2个小块组成的三角形有6个;
由3个小块组成的三角形有2个;由4个小块组成的三角形有2个;
由6个小块组成的三角形有1个。

所以,共有三角形
4+6+2+2+1=15(个)。

例4右图中有多少个三角形?
解:假设每一个最小三角
形的边长为1。

按边的长度来分
类计算三角形的个数。

边长为1的三角形,从上到下一层一层地数,有
1+3+5+7=16(个);
边长为2的三角形(注意,有一个尖朝下的三角形)有1+2+3+1=7(个);
边长为3的三角形有1+2=3(个);
边长为4的三角形有1个。

所以,共有三角形
16+7+3+1=27(个)。

例5数出下页左上图中锐角的个数。

分析与解:在图中加一条虚线,如下页右上图。


易发现,所要数的每个角都对应一个三角形(这个角与它所截的虚线段构成的三角形),这就回到例2,从而回到例1的问题,即所求锐角的个数,就等于从O点引出的6条射线将虚线截得的线段的条数。

虚线上线段的条数有
1+2+3+4+5=15(条)。

所以图中共有15个锐角。

例6在下图中,包含“*”号的长方形和正方形共有多少个?
解:按包含的小块分类计数。

包含1小块的有1个;包含2小块的有4个;
包含3小块的有4个;包含4小块的有7个;
包含5小块的有2个;包含6小块的有6个;
包含8小块的有4个;包含9小块的有3个;
包含10小块的有2个;包含12小块的有4个;
包含15小块的有2个。

所以共有 1+4+4+7+2+6+4+3+2+4+2=39(个)。

练习
1.下图中各有多少条线段?
(1)
(2)
(3)
A
B C D E F A
B C D E F F
G H I A B
C E F
2.下列图形中各有多少个三角形?
3.下列图形中,各有多少个小于180°的角?
4.下列图形中各有多少个三角形?
5.下列图形中各有多少个长方形?
6.下列图形中,包含“*”号的三角形或长方形各有多少?。

相关文档
最新文档