初中数学二次函数学案合集

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 26.1 二次函数

一、阅读教科书第4—6页上方 二、学习目标:

1.知道二次函数的一般表达式; 2.会利用二次函数的概念分析解题; 3.列二次函数表达式解实际问题. 三、知识点:

一般地,形如____________________________的函数,叫做二次函数。其中x 是________,a 是__________,b 是___________,c 是_____________. 四、基本知识练习

1.观察:①y =6x 2;②y =-3

2 x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽

然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________. 2.函数y =(m -2)x 2+mx -3(m 为常数). (1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数.

3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数. (1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2 (4)y =3x 3+2x 2

(5)y =x +1

x

五、课堂训练 1.y =(m +1)x

m

m 2-3x +1是二次函数,则m 的值为_________________.

2.下列函数中是二次函数的是( ) A .y =x +1

2

B . y =3 (x -1)2

C .y =(x +1)2-x 2

D .y =1

x

2 -x

3.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米

4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.

5.已知y 与x 2成正比例,并且当x =-1时,y =-3. 求:(1)函数y 与x 的函数关系式;

(2)当x =4时,y 的值;

(3)当y =-1

3

时,x 的值.

6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围. 六、目标检测

1.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1 B .a =±1 C .a ≠1 D .a ≠-1

2.下列函数中,是二次函数的是( ) A .y =x 2-1

B .y =x -1

C .y =8

x

D .y =8

x

2

3.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式. 4.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式.

第5课时 二次函数y =a(x -h)2+k 的图象与性质

一、阅读课本:第12页~第13页上方. 二、学习目标:

1.会画二次函数的顶点式y =a (x -h)2+k 的图象; 2.掌握二次函数y =a (x -h)2+k 的性质;

3.会应用二次函数y =a (x -h)2+k 的性质解题. 三、探索新知:

画出函数y =-1

2 (x +1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减

性.

列表:

由图象归纳:

2.把抛物线y =-1

2 x 2向_______平移______个单位,再向_______平移_______个单位,

就得到抛物线y =-1

2 (x +1)2-1.

四、理一理知识点

五、课堂练习

2.y =6x +3与y =6 (x -1)+10_____________相同,而____________不同. 3.顶点坐标为(-2,3),开口方向和大小与抛物线y =1

2 x 2相同的解析式为( )

A .y =1

2 (x -2)2+3

B .y =1

2 (x +2)2-3

C .y =1

2

(x +2)2+3

D .y =-1

2

(x +2)2+3

4.二次函数y =(x -1)2+2的最小值为__________________.

5.将抛物线y =5(x -1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物

线的解析式为_______________________.

6.若抛物线y =ax 2+k 的顶点在直线y =-2上,且x =1时,y =-3,求a 、k 的值. 7.若抛物线y =a (x -1)2+k 上有一点A (3,5),则点A 关于对称轴对称点A ’的坐标为

__________________. 六、目标检测

y=2 (x-3)2

y=-(x+5)2-4

2.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()

A B C D

4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.

5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)

第6课时二次函数y=ax2+bx+c的图象与性质

一、阅读课本:第14页~第15页上方.

二、学习目标:

1.配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;

2.熟记二次函数y=ax2+bx+c的顶点坐标公式;

3.会画二次函数一般式y=ax2+bx+c的图象.

三、探索新知:

1.求二次函数y=1

2x

2-6x+21的顶点坐标与对称轴.

解:将函数等号右边配方:y=1

2x

2-6x+21

2.画二次函数y=1

2x

2-6x+21的图象.

解:y=1

2x

2-6x+21配成顶点式为_______________________.

x … 3 4 5 6 7 8 9 …

y=1

2x

2-6x+21 ……

3

四、理一理知识点:

y=ax2y=ax2+k y=a(x-h)2y=a(x-h)2+k y=ax2+bx+c

相关文档
最新文档