数学建模军事建模40页PPT

合集下载

《数学建模》课件

《数学建模》课件

第一章课程概述§1.1 数学模型与数学建模一.基本概念数学是研究现实世界中数量关系和空间形式的科学。

其产生以及许多重大发展都是和现实世界的生产活动和其他相应学科的需要密切相关的;同时,作为认识和改造世界的强有力的工具,又促进了科学技术和生产建设的发展。

特别在当今时代,由于计算机软硬件的迅速发展和普及,数学方法被广泛应用于生产实践、社会管理的各个领域和层面。

对具体的应用问题或问题类进行合理的简化假设以及适当的抽象并最终表述为某种数学结构,即我们在这里讨论的数学模型,是现代生产实践与社会生活实现优化决策和科学管理的必要环节。

而数学建模则是指根据实际需要或最终管理目标,对现实问题构建数学模型,对模型进行分析求解,并最终将模型解翻译为决策方案应用于实际的一个由诸多环节组成的一个完整过程。

为理解现实对象与数学模型的关系,以下给出数学建模的一个流程图:二.(引例1)椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。

这一现象是偶然的呢,还是有其必然性呢?三.(引例2)商人过河设有三名商人,各带一个随从,欲乘一小船渡河,小船只能容纳两人,须由他们自己划行。

随从们密约,在河的任何一岸,一旦随从的人数比商人多,就杀人越货。

而如何乘船渡河的大权掌握在商人们的手中。

商人们怎样才能安全渡河呢?椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。

这一现象是偶然的呢,还是有其必然性呢?以下的模型给出了肯定的回答。

一.模型假设:1.椅子四条腿一样长,椅脚与地面接触处可视为一点,四脚的连线呈正方形;2.地面高度是连续变化的,沿任何方向都不会出现间断(没台阶)。

即地面可视为数学上的连续曲面;3.对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置上至少有三只脚同时着地。

第2讲 数学建模初等模型优秀课件

第2讲 数学建模初等模型优秀课件
2、室内温 度T1与户外温 度T2均 为常数。 3、玻璃是均匀的,热传导系数 为常数。
室 设玻璃的热传导系数 为k1,空气的

内 热传导系数 为k2,单位时间通过单

Ta
位面积由温度高的一侧流向温度低 T1 的一侧的热量为Q
T2
Tb
由热传导公式 Q =kΔT/d
dl d
Q
k1
T1
d
Ta
k2 Ta
x y 其分中 别为(x和ix,yi和i) yi
的平均值
x O
解相应方程组,求得:
a
b
y
n i 1
(xi
n
i1
x)( (xi
yi x)
2
ax
y)
例1(举重成绩的比较)
举重重量是级一(种上限一体般人都能看懂成的绩运动,它共分
九个重量重级),有两抓种举(主公要斤的) 比赛挺举方(法公:斤)抓举
Tb l
k1 Tb
T2 d
解得:
Ta
1 k1l k2d T1 T2
2 (k1l) /(k2d )
Q
k1
T1
(1
k1l k2d )T1 2 k1l k2d
d
T2
k1
d
T1 2
T2 k1l k2d
f(h)
1室
室 外
0.9 0.8
内 T1
类似有
Q
Q'
k1
T1 T2 2d
2
T2 0.7 0.6
和挺举。52 表中给出了1到09 1977年底为14止1 九个
重量级的56世界纪录。120.5
151
60
130
161.5

数学建模实例战争模型

数学建模实例战争模型

x
y0
x = f ( y)
x0
x
战争模型正规战和游击战军备竞赛核武器竞赛正规战与游击战战争分类正规战争游击战争混合战争只考虑双方兵力多少和战斗力强弱兵力因战斗及非战斗减员而减少因增援而增加战斗力与射击次数及命中率有关第一次世界大战lanchester提出预测战役结局的模型00ytgxyvtxtfxyxyut?????一般模型?每方战斗减员率取决于双方的兵力和战斗力?每方非战斗减员率与本方兵力成正比?甲乙双方的增援率为utvtxt甲方兵力yt乙方兵力模型假设fg取决于战争类型模型vtxyaybxxyut???????正规战争模型?甲方战斗减员率只取决于乙方的兵力和战斗力fxy?aya乙方每个士兵的杀伤率arypyry射击率py命中率双方均以正规部队作战xxgbxbrp??忽略非战斗减员?假设没有增援0000xyxaybxxyy???????正规战争模型???????000y0xyxbxyayxaybxdxdy???2020bxayk?0kbxay?22tytx0ak0k0kbk?0k00kx?y0kk??0yyxxprprabxy甲方胜?????200乙方胜平局游击战争模型双方都用游击部队作战?甲方战斗减员率还随着甲方兵力的增加而增加fxy?cxyc乙方每个士兵的杀伤率crypyry射击率py命中率sry乙方射击有效面积?忽略非战斗减员?假设没有增援gxyxxxrxydxydrprss???0000xyxcxydxyxyy?????pysrysxsx甲方活动面积tycm0dm?tx0m0m0m??????游击战争模型?dxyy0000xyyxcxyx00dxcymmdxcy??r?000mxy?y00yryyxrxxssrsscdxmm00??cddxdy乙方胜甲方胜平局tytx0乙方胜0n平局0n甲方胜0n0000xyxcxybxxyy???????220022cynbx???ncy??0ybx混合战争模型甲方为游击部队乙方为正规部队?yx??设x0100rxry12px01sx1km2sry1m2200202crb2??0nx200100yx00xsrspxryyxxx??????乙方必须10倍于甲方的兵力乙方胜美国人曾用这个模型对越南战争进行分析认为在混合战争中要想战胜至少应投入8倍于游击部队一方的兵力而美国人只能派出6倍于越南的兵力那么就不得不接受和谈的结局退兵根据二战中的硫磺岛战役中的纪录数据engel对正规战争模型进行了验证

数学建模培训精品课件ppt

数学建模培训精品课件ppt
提高解决问题的能力
学员们认为,通过案例分析和实践操作,他们能够更好地解决实 际问题,提高了工作效率。
结识优秀的同行
学员们结识了很多优秀的同行,通过互相学习和交流,彼此的能 力都得到了提升。
未来发展趋势预测
数学建模与大数据结合
随着大数据时代的到来,数学建模将会与大数据更加紧密 结合,利用数据挖掘和分析技术,更好地解决实际问题。
数学建模培训精品课 件
汇报人:可编辑 2023-12-22
目 录
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模实践项目 • 数学建模培训总结与展望
01
数学建模概述
定义与特点
定义
数学建模是指用数学语言描述实 际现象、解释自然规律、解决实 际问题的过程。
Python
一款开源的编程语言,具有丰富的数 学库和工具包,适用于各种数学建模 任务。
03
数学建模方法与技巧
建模方法分类
初等模型
利用初等数学知识建立 模型,如代数方程、不
等式、几何图形等。
微分方程模型
利用微积分知识,通过 建立微分方程来描述实
际问题。
概率统计模型
利用概率论和统计学知 识,通过随机变量和随 机过程来描述实际问题
求解与分析
指导学生运用数学软件或编程语言对模型 进行求解和分析,得出结论。
建立模型
指导学生根据问题特点,选择合适的数学 方法和工具,建立数学模型。
项目成果展示与评价
成果展示
组织学生进行项目成果展示, 包括项目报告、论文、PPT演示
等。
评价标准
制定评价标准,包括问题的难 度、模型的合理性、求解的准 确性、论文的规范性等方面。

《数学建模培训》PPT课件

《数学建模培训》PPT课件

数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。

数学建模军事建模40页PPT

数学建模军事建模40页PPT

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
数学建模军事建模
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使Leabharlann 渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比

《数学建模》课件

《数学建模》课件

第一章课程概述§1.1 数学模型与数学建模一.基本概念数学是研究现实世界中数量关系和空间形式的科学。

其产生以及许多重大发展都是和现实世界的生产活动和其他相应学科的需要密切相关的;同时,作为认识和改造世界的强有力的工具,又促进了科学技术和生产建设的发展。

特别在当今时代,由于计算机软硬件的迅速发展和普及,数学方法被广泛应用于生产实践、社会管理的各个领域和层面。

对具体的应用问题或问题类进行合理的简化假设以及适当的抽象并最终表述为某种数学结构,即我们在这里讨论的数学模型,是现代生产实践与社会生活实现优化决策和科学管理的必要环节。

而数学建模则是指根据实际需要或最终管理目标,对现实问题构建数学模型,对模型进行分析求解,并最终将模型解翻译为决策方案应用于实际的一个由诸多环节组成的一个完整过程。

为理解现实对象与数学模型的关系,以下给出数学建模的一个流程图:二.(引例1)椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。

这一现象是偶然的呢,还是有其必然性呢?三.(引例2)商人过河设有三名商人,各带一个随从,欲乘一小船渡河,小船只能容纳两人,须由他们自己划行。

随从们密约,在河的任何一岸,一旦随从的人数比商人多,就杀人越货。

而如何乘船渡河的大权掌握在商人们的手中。

商人们怎样才能安全渡河呢?椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。

这一现象是偶然的呢,还是有其必然性呢?以下的模型给出了肯定的回答。

一.模型假设:1.椅子四条腿一样长,椅脚与地面接触处可视为一点,四脚的连线呈正方形;2.地面高度是连续变化的,沿任何方向都不会出现间断(没台阶)。

即地面可视为数学上的连续曲面;3.对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置上至少有三只脚同时着地。

数学建模培训精品课件ppt

数学建模培训精品课件ppt

MATLAB在数学建模中的应用
MATLAB概述
01
MATLAB是一种用于算法开发、数据可视化、数据分析和数值
计算的编程语言和开发环境。
MATLAB在数学建模中的优势
02
MATLAB提供了丰富的数学函数库和工具箱,支持矩阵运算、
符号计算和数值分析,适用于各种数学建模场景。
MATLAB在数学建模中的应用案例
数学建模在金融领域的应用
金融行业对数学建模的需求日益增长,涉及风险管理、投资组合优化、市场预测等领域 。
数学建模在物理科学和工程中的应用
物理科学和工程领域中的复杂问题需要借助数学建模进行深入研究,如流体动力学、材 料科学等。
提高数学建模能力的建议
01
掌握数学基础知识
数学建模需要扎实的数学基础, 如概率论、统计学、线性代数和 微积分等。
深度学习中的数学建模
探讨深度学习领域中常用的数学方法和模型,如卷积神经网络、循 环神经网络等。
数据科学中的数学建模
数据清洗与预处理
数据可视化的数学基础
介绍数据科学中数据预处理的基本方 法和数学原理。
介绍数据可视化中涉及的数学原理和 可视化技术。
统计分析方法
阐述统计分析中常用的方法和模型, 如回归分析、聚类分析等。
02
实践经验积累
03
学习优秀案例
通过参与数学建模竞赛、科研项 目等方式,积累实践经验,提高 解决实际问题的能力。
学习经典数学建模案例,了解不 同领域中数学建模的应用方法和 技巧。
对未来数学建模的展望
跨学科交叉融合
未来数学建模将更加注重与其他学科的交叉融合,如生物 学、环境科学、社会科学等。
人工智能与数学建模结合

数学建模数学建模简介ppt课件

数学建模数学建模简介ppt课件

2006
B A B A B
2007 2008
2009
A B A
制动器试验台的控制方法分析 眼科病床的合理安排 储油罐的变位识别与罐容表标 定 2010 年上海世博会影响力的定 量评估
2010
B A B A B
如何写好数学建模竞赛答卷
一、写好数模答卷的重要性 二、答卷的基本内容,需要重视的问题 三、对分工执笔的同学的要求 四、关于写答卷前的思考和工作规划 五、答卷要求的原理
数学建模
任课教师: 朱 伟
联系方式: zhuwei@; 13062398142
主要参考书籍: 1. 数学建模与数学实验, 赵静, 但琦 2. 数学实验, 萧树铁 3. 数学建模方法及其应用, 韩中庚 4. 数学建模导论, 陈理荣
数学建模(Mathematical Modelling)
数学建模的一般步骤
实际问题
抽象、简化、假设 确定变量、参数 建立数学模型并数学、数值地求解、确定参数
用实际问题的实测数据等来检验该数学模 型
不符合实际 符合实际
交付使用,从而可产生经济、社会效益
数学模型(Mathematical Model)
• 数学模型是对于现实世界的一个特定对象, 一个特定目的,根据特有的内在规律,做出 一些必要的假设,运用适当的数学工具,得 到一个数学结构。 • 简单地说:就是系统的某种特征的本质的数 学表达式(或是用数学术语对部分现实世界 的描述),即用数学式子(如函数、图形、 代数方程、微分方程、积分方程、差分方程 等)来描述(表述、模拟)所研究的客观对 象或系统在某一方面的存在规律。
数学建模是利用数学方法解决实际问题的 一种实践。即通过抽象、简化、假设、引 进变量等处理过程后,将实际问题用数学 方式表达,建立起数学模型。数学建模所 涉及的问题都是现实生活中的实际问题, 范围广、学科多,包括工业、农业、医学、 生物学、政治、经济、军事、社会、管理、 信息技术等方面。

数学建模常用方法介绍ppt课件

数学建模常用方法介绍ppt课件

遗传算法一般步骤
1. 完成了预先给定的进 化代数 2. 种群中的最优个体在 连续若干代后没有改进 3. 平均适应度在连续若 干代后基本没有改进
竞赛中的群体思维方法
✓平等地位、相互尊重、充分交流 ✓杜绝武断评价 ✓不要回避责任 ✓不要对交流失去信心
竞赛中的发散性思维方法
➢ 借助于一系列问题来展开思路
与模糊数学相关的问题(二)
模糊聚类分析—根据研究对象本身的属性构造 模糊矩阵,在此基础上根据一定的隶属度来 确定其分类关系
模糊层次分析法—两两比较指标的确定
模糊综合评判—综合评判就是对受到多个因素 制约的事物或对象作出一个总的评价,如产 品质量评定、科技成果鉴定、某种作物种植 适应性的评价等,都属于综合评判问题。由 于从多方面对事物进行评价难免带有模糊性 和主观性,采用模糊数学的方法进行综合评 判将使结果尽量客观从而取得更好的实际效 果
3. 合并距离最近的两类为一个新类 4. 计算新类与当前各类的距离(新类与当
前类的距离等于当前类与组合类中包含 的类的距离最小值),若类的个数等于 1,转5,否则转3 5. 画聚类图 6. 决定类的个数和类。
统计方法(判别分析)
➢ 判别分析—在已知研究对象分成若干类型,并已取 得各种类型的一批已知样品的观测数据,在此基础 上根据某些准则建立判别式,然后对未知类型的样 品进行判别分类。
这个问题与什么问题相似? 如果将问题分解成两个或几个部分会怎样? 极限情形(或理想状态)如何? 综合问题的条件可得到什么结果? 要实现问题的目标需要什么条件?
➢ 借助于下意识的联想(灵感)来展开思路
抓住问题的个别条件或关键词展开联想或猜想 综合所得到的联想和猜想,得到一些结论 进一步思考找出新思路和方法

数学建模课件03-2第三章 第9节 微分方程模型.

数学建模课件03-2第三章 第9节 微分方程模型.

硫黄岛位于东京以南660英里的海面上,是日军 的重要空军基地,美军在1945年2月19日开始进攻, 激烈的战斗持续了一个月,双方伤亡惨重,日军守 军21500人全部阵亡或被浮,美军投入兵力73000人, 伤亡20265人,战斗进行到28天时美军宣布占领该岛, 实际战斗到36天才停止。美军的战地记录有按天统 计的战斗减员和增援情况,日军没有后援。根据实 际战地记录,由正规战争模型得到的美军伤亡的理 论曲线与实际伤亡曲线相当吻合。
所以正规战争模型为
dx dt
ay
dy
dt
bx
(10 1)
其中a 0,b 0 均为常数,
a(或b)越大,表示乙军(或甲军)战斗力越强。 记E= b 称为甲军与乙军的交换比,
a 联立方程(10-1)求解得
dy bx E x dx ay y
(10 2)
分离变量并积分得
2
y2 E x2 C 2 22
§9 作战模型
问题:两军对阵,现甲军有 x0个士兵,乙军有 y0
个士兵,试讨论战斗过程中双方的伤亡情况以及最 后的结局。
一、正规战争模型
令x (t )表示t时刻甲军人数, y(t) 表示t时刻乙军人数。 在以上假设下,显然甲军人数越多,乙军伤
亡越大,反之亦然,所以有 甲军人数的减员率与乙军人数成正比; 乙军人数的减员率与甲军人数成正比。 1
如果交换比E= 1
C
4 30002
1
60002
0
所以当乙军被消4 灭,即y=0时,x=0,即双
方“同归于尽”。1
如果交换比E= 5 得
C 30002 1 60002 180000 0 乙军胜
当x=0时,
5
y C 1800000 1340

数学建模案例PPT课件

数学建模案例PPT课件

第12页/共41页
建模示例五:轮廓模型
轮廓模型是以量纲模型为基础,利用量 的比例关系而构造简单数学模型的一种方法。 因为这种比例关系比较粗糙,因而成为轮廓 模型。
(货物的包装成本)在超市中可以看到许 多商品(如面粉、白糖、奶粉等)都以包装 的形式出售,同一种商品的包装也经常有大 小不同的规格,出售的价格也高低不同。下 表是一些例子。
第24页/共41页
四、数学建模的特点
第25页/共41页
五、数学建模的分类
1)按变量的性质分:
离散模型
确定性模型
线性模型
连续模型
随机性模型
非线性模型
单变量模型 多变量模型
2)按时间变化对模型的影响分
静态模型 动态模型
参数定常模型 参数时变模型
第26页/共41页
3)按模型的应用领域(或所属学科)分 人口模型、交通模型、生态模型、城镇规划模型、 水资源模型、再生资源利用模型、污染模型、 生物数学模型、医学数学模型、地质数学模型、 数量经济学模型、数学社会学模型等。
下面计算南北方向车辆在此路口滞留 的时间y1.
第9页/共41页
在一个周期中,从南北方向到达路口的车辆数为V,该
周期中南北方向亮红灯的比率是t/T,需停车等待的车辆
数是V t/T.这些车辆等待时间最短为0(刚停下,红灯就转
换为绿灯),最长为t(到达口时,绿灯刚转换为红灯),由假
设2"车流量均匀"可知,它们的平均等待时间是t/2.由此可
➢ 1987年改为 Mathematical Contest in Modeling, 其缩写
【数值模拟】
H V
取"问题背景"中调查的数据,即T=88,H=30,V=24,

数学建模军事建模

数学建模军事建模

数学建模
军事模型
6
正规战模型
甲乙双方都用正规部队作战。我们只须分析甲方的 战斗减员率f ( x, y ) . f 可简单假设为
f =ay
其中:a —乙方平均每个士兵对甲方士兵的杀伤率(单位 时间的杀伤数),称为乙方的战斗有效系数。
a = ry py
其中: ry—乙方的射击率(每个士兵单位时间的射击次数) py—乙方的命中率
等因素,而仅靠战场上兵力的优劣是很难估计战
争胜负的, 所以用这些模型判断整个战争的结
局是不可能的,但是对于局部战役来说或许还有
参考价值。 更重要的是,建模的思路和方法为
我们借助数学模型讨论社会科学领域中的实际问
题提供了可以借鉴的示例。
数学建模
军事模型
4
一般战争模型
用x( t ) 和y( t ) 表示甲乙交战双方 t 时刻的兵力
如果在某个时刻x ( t ) = 0 ,并且 g = 0 ,但由于x’( t ) = ky , x ( t ) 也不会保持为零。
数学建模 军事模型 29
线性常系数微分方程组 X’ = AX + R 的平衡点是稳
定的 A的所有特征根都具有负实部。
dx dt dy dt
x ky g lx y h (19)
假设
1. 每一方的战斗减员率取决于双方的兵力和战斗力, 用f ( x, y ) 和 g( x, y ) 表示。 2. 每一方的非战斗减员率(由疾病、逃跑等因素引 起)与本方的兵力成正比。
3. 每一方的增援率是给定的函数,用u( t ) 和 v( t ) 表示。
数学建模 军事模型 5
由此可以写出用微分方程表示的模型
dx f ( x y ) x u (t ) 0 dt dy g ( x y ) y v(t ) 0 dt

数学建模培训精品课件ppt

数学建模培训精品课件ppt
03
跨学科的数学建模需要加强交流与合作,打破学科壁垒,促进知识的融合和应用。
总结
数学建模是利用数学语言描述现实世界的过程,它在科学、工程、经济、金融等领域有着广泛的应用。
重要性
数学建模能够将实际问题抽象化,通过数学分析和计算得出结论,为决策提供科学依据。
应用领域
数学建模在物理、化学、生物、环境科学、医学、社会科学等领域都有应用,是解决复杂问题的重要工具。
数学建模竞赛经验分享
数学建模竞赛需要学生运用所学知识解决实际问题,有助于培养他们的创新思维和解决问题的能力。
培养创新思维
参加数学建模竞赛可以提高学生的数学素养、编程能力、团队协作和沟通能力等,有助于提升学生的综合素质。
提高综合素质
在数学建模竞赛中取得优异成绩,可以为学生未来的学术和职业发展提供有力支持,增强他们的竞争力。
随着实际问题越来越复杂,数学建模面临诸多挑战,如模型建立、数据获取和处理、计算效率等。
挑战
随着科技的发展,数学建模在大数据分析、人工智能、机器学习等领域的应用越来越广泛,为数学建模提供了新的机遇。
技术创新
随着计算技术和算法的发展,数学建模将更加高效和精确,能够处理更大规模和更复杂的数据。
应用拓展
LINGO是一款由Lindo Systems公司开发的商业优化软件,主要用于解决线性规划、整数规划、非线性规划等问题。
LINGO内置了多种求解器,可以快速求解大规模的优化问题,支持多种目标函数和约束条件。
LINGO提供了友好的用户界面和强大的建模功能,支持多种优化模型,包括线性规划、整数规划、二次规划等。
Python的语法简单易懂,易于上手,适合初学者快速入门。
Python的可视化库也非常丰富,如Matplotlib、Seaborn等,可以方便地绘制各种统计图形和数据可视化。

数学建模培训PPT课件

数学建模培训PPT课件
第15页/共62页
数学建模作为用数学方法解决实际问题的 第一步,越来越受到人们的重视。
第16页/共62页
数学建模的一般步骤
实体 信息
假设
建模


应用 验证 分析
第17页/共62页
数学模型的分类
分类标准
具体类别
对某个实际问题 了解的深入程度
白箱模型、灰箱模型、黑箱模型
模型中变量的特 连续模型、离散模型;确定性模型、随
第28页/共62页
建模:
x k • :第 次渡河前此岸的商人数 k
yk:第 k次渡河前此岸的随从数
xk , yk 0,1, 2,3; k 1, 2, sk (xk , yk ) :过程的状态
S :允许状态的集合
S {(x, y) | x 0, y 0,1,2,3; x 3, y 0,1,2,3; x y 1,2}
x=(x1, …, xn)T: 决策变量 f (x): 目标函数, hi(x), gp(x): 约束函数
第38页/共62页
数学规划的一般模型
• min f (x) s.t. hi(x)=0, i=1, …, m gp(x)≥0, p=1, …, t
(MP)
若f(x), hi(x)( i=1, …, m), gp(x)( p=1, …, t) 均为线性函数,则问题(MP)就被称为线
相遇时他已步行了多少分钟?
请思考:本题解答中隐含了哪些假设条 件?
5:30
5分钟 5:35
会合点
相遇点

第35页/共62页
预备技能
• 数学知识
分析、代数、几何、概率、统计、优化、 方程…
软件使用
Matlab, Mathematica, Maple, Lindo, Lingo…
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模军事建模
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而
相关文档
最新文档