电容充放电时间的计算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容充放电时间的计算:

1.L、C元件称为“惯性元件”,即电感中的电流、电容器两端的电压,都有一定的“电惯性”,不能突然变化。充放电时间,不光与L、C的容量有关,还与充/放电电路中的电阻R有关。“1UF电容它的充放电时间是多长?”,不讲电阻,就不能回答。

RC电路的时间常数:τ=RC

充电时,uc=U×[1-e^(-t/τ)]U是电源电压

放电时,uc=Uo×e^(-t/τ)Uo是放电前电容上电压

RL电路的时间常数:τ=L/R

LC电路接直流,i=Io[1-e^(-t/τ)]Io是最终稳定电流

LC电路的短路,i=Io×e^(-t/τ)]Io是短路前L中电流

2. 设V0 为电容上的初始电压值;

V1 为电容最终可充到或放到的电压值;

Vt 为t时刻电容上的电压值。则:

Vt=V0 +(V1-V0)× [1-exp(-t/RC)]

t = RC × Ln[(V1 - V0)/(V1 - Vt)]

例如,电压为E的电池通过R向初值为0的电容C充电,V0=0,V1=E,故充到t时刻电容上的电压为:

Vt=E × [1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电, V0=E,V1=0,故放到t时刻电容上的电压为:Vt=E × exp(-t/RC)

又如,初值为1/3Vcc的电容C通过R充电,充电终值为Vcc,问充到2/3Vcc需要的时间是多少?

V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故t=RC × Ln[(1-1/3)/(1-2/3)]=RC × Ln2 =0.693RC

注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函数

{e是一个数值,约等于2.7182818245,对数函数:以e为底X的对数就可以写成lne,叫做自然对数}

3. 提供一个恒流充放电的常用公式:?Vc=I*?t/C.再提供一个电容充电的常用公式:

Vc=E(1-e-(t/R*C))。RC电路充电公式Vc=E(1-e-(t/R*C))中的:-(t/R*C)是e的负指数项。

关于用于延时的电容用怎么样的电容比较好,不能一概而论,具体情况具体分析。实际电容附加有并联绝缘电阻,串联引线电感和引线电阻。还有更复杂的模式--引起吸附效应等等。供参考。

E是一个电压源的幅度,通过一个开关的闭合,形成一个阶跃信号并通过电阻R对电容C进行充电。E也可以是一个幅度从0V低电平变化到高电平幅度的连续脉冲信号的高电平幅度。电容两端电压Vc随时间的变化规律为充电公式Vc=E(1-e-(t/R*C))。其中的:-(t/R*C)是e的负指数项,这里没能表现出来,需要特别注意。式中的t是时间变量,小e是自然指数项。举例来说:当t=0时,e的0次方为1,算出Vc等于0V。符合电容两端电压不能突变的规律。对于恒流充放电的常用公式:?Vc=I*?t/C,其出自公式:Vc=Q/C=I*t/C。举例来说:设C=1000uF,I为1A电流幅度的恒流源(即:其输出幅度不随输出电压变化)给电容充电或放电,根据公式可看出,电容电压随时间线性增加或减少,很多三角波或锯齿波就是这样产生的。根据所设数值与公式可以算出,电容电压的变化速率为1V/mS。这表示可以用5mS的时间获得5V的电容电压变化;换句话说,已知Vc变化了2V,可推算出,经历了2mS的时间历程。当然在这个关系式中的C和I也都可以是变量或参考量。详细情况可参考相关的教材看看。供参考。

4. 首先设电容器极板在t时刻的电荷量为q,极板间的电压为u.,根据回路电压方程可得:

U-u=IR(I表示电流),

又因为u=q/C,I=dq/dt(这儿的d表示微分哦),

代入后得到:

U-q/C=R*dq/dt,

也就是Rdq/(U-q/C)=dt,然后两边求不定积分,并利用初始条件:t=0,q=0就得到q=CU【1-e^ -t/(RC)】这就是电容器极板上的电荷随时间t的变化关系函数。顺便指出,电工学上常把RC称为时间常数。

相应地,利用u=q/C,立即得到极板电压随时间变化的函数,

u=U【1-e^ -t/(RC)】。从得到的公式看,只有当时间t趋向无穷大时,极板上的电荷和电压才达到稳定,充电才算结束。

但在实际问题中,由于1-e ^-t/(RC)很快趋向1,故经过很短的一段时间后,电容器极板间电荷和电压的变化已经微乎其微,即使我们用灵敏度很高的电学仪器也察觉不出来q和u 在微小地变化,所以这时可以认为已达到平衡,充电结束。

举个实际例子吧,假定U=10伏,C=1皮法,R=100欧,利用我们推导的公式可以算出,经过t=4.6*10^(-10)秒后,极板电压已经达到了9.9伏。真可谓是风驰电掣的一刹那。

相关文档
最新文档