第五章 毛细管电泳分离法1资料
5现代色谱分析-毛细管电泳
第二节 毛细管电泳基本理论
电泳和电渗 分离柱效 引起区带展宽的因素
一.电泳和电渗
电泳(electrophoresis)和电渗(electroosmosis) 是毛细管电泳分离理论中最基本的概念。 电泳是指溶液中带电粒子(离子)在电场中定 向移动的现象。 电泳迁移速度Vp为 Vp=µE=µV/L 式中 µ-电泳迁移率(电泳淌度) (electrophoresis mobility)(m2/V.s)
毛细管电泳最基本的分离模式。背景电 解质是缓冲液,分离是基于样品中各个 组分间质荷比的差异。有时需在缓冲液 中加入一定的添加剂,用以提高分离选 择性,改变电渗流的大小、方向或抑制 毛细管壁的示样 品离子的迁移,带正电荷的物质, 迁移方向与电渗流相同,带负电荷 物质的迁移方向则与电渗流相反
1984年,Terabe等建立了分离电中性有机 化合物的胶束电动毛细管色谱。此后相继 出现了毛细管等电聚焦、毛细管凝胶电泳、 毛细管电泳手性分离等。
毛细管电泳的优缺点
优点:与HPLC相比,CE操作简单,样 品消耗少,分离效率高,运行成本低。 缺点:在迁移时间的重现性、进样准确 性方面逊色于HPLC,并且不利于制备性 的分离。
在缓冲液中加入有机添加剂,如甲醇、 异丙醇等,或水溶性高分子物质,对 EOF也有较显著的抑制作用。
二.分离柱效
毛细管电泳中,若有电渗流存在,则分离 时间用表观电泳迁移率µapp表示为:
µapp=µ+µeo
按照Giddings的色谱柱效理论,分离柱效表 示为: N=l2/σ2 σ2是以标准差表示的区带展宽,l为区带移动 的距离。
毛细管电泳装置
1.高压电极槽和进样机构 2.填灌清洗机构 3.毛细管 4.检测器 5.铂丝电极 6.低压电极槽 7.恒温系统 8.数据记录处理系统
第五章 高效毛细管电泳和电动色谱
1.40 1.60 1.80 2.00 t/min 2.20 2.40 2.60 2.80
36
35
34 32 33
31
30
29
28
27
26
25
24
23
22
20
21
19
18 17 16
15
14
9
13 10
11
12
786
5 2
3Leabharlann 101三、毛细管凝胶电泳
毛细管凝胶电泳 CGE):按照试样中各个组 分相对分子质量的大小进行分离的方法。 用途:常用于蛋白质、寡聚核苷酸、核糖核 酸、DNA片段的分离和测序及聚合酶链反应产 物的分析。CGE能达到CE中最高的柱效。
• 毛细管等电聚焦是基于不同蛋白质或多肽之 间等电点的差异进行分离的电泳技术。 • 毛细管等电聚焦最具特色的应用是测定蛋白 质的等电点。在异构酶鉴定、单克隆抗体、 多克隆抗体、血红蛋白亚基等研究中,经常 用毛细管等电聚焦。
五、亲和毛细管电泳
亲和毛细管电泳是利用配体与受体之间存在特异性 相互作用,可以形成具有不同荷-质比的配合物而达 到分离目的。
梯度升压方式对毛细管电泳分离的影响 A. 2kV至25kV,0min,一步升压;B.2kV至25kV,5min,线性梯度 升压. 样品:β-乳球蛋白A,溶菌酶,细胞色素C,肌红蛋白,微白蛋白
二、毛细管及其温度控制
毛细管电泳柱作为分离分析的载体,其材料、 形状、内径、柱长、温度对分离度和重现性都 有影响。
缓冲液中加入添加剂,并让缓冲液与毛 细管充分平衡.如加入阳离子表面活性剂 十四烷基三甲基溴化铵(tetradecyl trimethyl ammonium bromide ,TTAB), 能在内壁形成物理吸附层,使EOF反向. 添加剂还有聚乙烯亚胺、甲基纤维素 (MC)、十六烷基溴化铵(CTAB)等。
毛细管电泳法
在毛细管中施加电场,带电粒子在电场的作用下产生迁移,由于迁移速度与粒 子所带电荷、半径、质量等因素有关,因此不同粒子在电场中产生不同的迁移 速度,从而实现分离。
发展历程
01
02
03
1980年代初期
毛细管电泳法由 Jorgenson和Lukacs首次 提出并实验验证。
1980年代中期
该技术逐渐成熟,被广泛 应用于生物、医药、环境 等领域。
饮用水安全
毛细管电泳法能够检测饮用水中 的消毒副产物、有机污染物等, 保障饮用水安全。
在食品检测领域的应用
食品添加剂分析
毛细管电泳法能够分离和检测食品中 的添加剂,如色素、防腐剂等,有助 于食品安全监管。
营养成分分析
毛细管电泳法能够快速分析食品中的 营养成分,如氨基酸、维生素等,有 助于食品质量控制和营养评价。
核酸分析
毛细管电泳法能够分离和检测核酸片段,用于基 因诊断、基因表达研究和法医学鉴定。
3
临床检验
毛细管电泳法可用于检测体液中的小分子代谢物, 如氨基酸、糖类等,辅助临床诊断。
在环境监测领域的应用
污染物分析
毛细管电泳法能够分离和检测水 体、土壤中的有害物质,如重金 属、农药残留等,有助于环境监 测和污染治理。
在化学分析领域的应用
有机物分析
毛细管电泳法能够分离和检测有机化合物,如药物、染料等 ,在药物研发、化工生产等领域有广泛应用。
金属离子分析
毛细管电泳法能够高灵敏度地检测金属离子,如铅、汞、镉 等,可用于地质、冶金和环境等领域的研究。
谢谢
THANKS
加样
将处理好的样品加入毛 细管中,注意控制加样
量。
施加电压
启动电源,施加适当的 电压,使带电粒子在电
第五章毛细管电泳
第十五页,本课件共有103页
在核酸/核苷酸分析中的应用
核酸、基因疫苗的质量控制 碱基、核苷和核苷酸的分析
纯度检测、片段收集和微量制备
PCR产物分析和dsDNA分析
蛋白质-DNA相互作用测定
基因突变测定 基因表达测定
DNA序列测定(CEQ2000XL)
第三十二页,本课件共有103页
电渗(electroosmotic flow ,EOF)
电渗流是一种液体相对于带电的管壁移动的现 象。
在毛细管电泳里在所指的电渗是:在高电压下, 溶液中的正电荷与毛细管管壁表面的负电荷之 间作用,引起流体朝负极方向运动的现象。
和电泳淌度相似,电渗淌度( eo )可表 示为:
毛细管电泳中的zeta电势
第一种:毛细管壁上的zeta电势
熔硅毛细管表面上的zeta电势正比于它表面上的 电荷数与对离子层厚度的乘积,但电荷数和对离子 层厚度又会受到对离子的性质、缓冲液的pH、缓冲 液中阳离子和熔硅基表面间的平衡等因素的影响。
对于熔硅或聚四氟乙烯材质的毛细管,管壁
上的zeta电势是毛细管电泳中的一个重要参数,对
毛细管电泳与平板凝胶电泳的比较
检测器选择 定量 自动化 分辨率
毛细管电泳 多
与 HPLC 相当 容易 高
平板凝胶电泳 少
困难 困难
低
第七页,本课件共有103页
毛细管电泳与HPLC的比较
相同之处:
1. 快速高效分离技术 2. 可定量 3. 全自动化 4. 可用不同模式 5. 在许多领域逐步取代HPLC
第四十页,本课件共有103页
毛细管电泳的分类及主要应用方向
按分离机理分:
毛细管区带电泳(CZE)
毛细管电泳分离技术
3、毛细管凝胶电泳 capillary gel electrophoresis ,CGE 将聚丙烯酰胺等在毛细管柱内交联生成凝胶。 将聚丙烯酰胺等在毛细管柱内交联生成凝胶。 其具有多孔性,类似分子筛的作用, 其具有多孔性,类似分子筛的作用,试样分子按大小分 离。能够有效减小组分扩散,所得峰型尖锐,分离效率高。 能够有效减小组分扩散,所得峰型尖锐,分离效率高。 蛋白质、DNA等的电荷/质量比与分子大小无关,CZE模 蛋白质、DNA等的电荷/质量比与分子大小无关,CZE模 等的电荷 式很难分离,采用CGE能获得良好分离,DNA排序的重要手段。 式很难分离,采用CGE能获得良好分离,DNA排序的重要手段。 CGE能获得良好分离 排序的重要手段 特点:抗对流性好,散热性好,分离度极高。 特点:抗对流性好,散热性好,分离度极高。
1、毛细管区带电泳 capillary zone electrophoresis ,CZE
样品在电解液中泳动,根据物质的荷/质比差异来进行分离,比值愈大, 样品在电解液中泳动,根据物质的荷/质比差异来进行分离,比值愈大, 跑得愈快. 跑得愈快. 带电粒子的迁移速度=电泳和电渗流速度的矢量和。 带电粒子的迁移速度=电泳和电渗流速度的矢量和。
2、 胶束电动毛细管色谱(MECC ,MEKC) micellar electrokinetic capillary chromatography,MEKC 1.缓冲溶液中加入离子型表面活性剂, 1.缓冲溶液中加入离子型表面活性剂,其浓度达到临界 缓冲溶液中加入离子型表面活性剂 浓度,形成一疏水内核、外部带负电的胶束。 浓度,形成一疏水内核、外部带负电的胶束。 在电场力的作 用下, 用下,胶束在柱中 移动。 移动。
2.药物分析 2.药物分析
检测体液或细胞中某 些代谢产物的分析; 些代谢产物的分析; 尿液中的氨基酸含量 作为临床诊断糖尿病的辅 助手段; 助手段; 采用毛细管区带电泳 方式, 11min内分离17 min内分离17种 方式,在11min内分离17种 药物; 药物;
第五章 高效毛细管电泳分离技术
第五章高效毛细管电泳分离技术第一节毛细管电泳技术发展简史及其特点电泳是指带电粒子在电场作用下向电性相反的方向迁移的现象。
据此对某些化学或生物化学组分进行分离的技术称为电泳技术。
从1930年瑞典科学家Arne Tiselius首次提出电泳法至今已有70年的历史。
电泳法的发展大致可分为三个阶段。
1950年以前属初创阶段,主要是界面移动自由电泳,一般在U型管内进行,无支持物。
50年代至80年代中期出现了各种有支持物的电泳方法,如纸电泳、醋酸纤维电泳、琼脂糖电泳、聚丙烯酰胺凝胶电泳等,70年代后实现了仪器的自动化。
80年代后期出现了毛细管电泳方法,实现了微型化、自动化、高效、快速分析,毛细管电泳技术已经成为同现代色谱技术相比的分析化学领域中的一个令人瞩目的分支。
毛细管电泳(Capillary Electrophoresis,CE)或高效毛细管电泳(High Performance Capillary Electrophoresis,HPCE)是指以毛细管为分离室、以高压电场为驱动力的一类新型现代电泳技术。
毛细管电泳仪的基本结构见图5-1。
HV(0-+30KV)图1 毛细管电泳仪的结构图C—毛细管;D—检测器;E—电极槽;HV—直流高压电源;Pt—铂电极;S—样品;DA—数据采集处理系统完善的毛细管电泳仪应具备(1)有多种施压模式;(2)恒温精度高,恒温范围宽;(3)精确的进样控制;(4)检测器的灵敏度高等条件。
毛细管电泳分离技术用的是内径为5-100μm,外径为370μm,长为10-100cm的弹性熔融石英毛细管,毛细管的特点是(1)体积小;(2)散热快,可承受高电场;(3)可使用自由溶液、凝胶等为支持电解质,在溶液介质下可产生平面形状的电渗流。
毛细管电泳分离技术与传统的平板电泳和现代液相色谱分离技术相比具有很多优点:(1)高效(105-107理论塔板/米);(2)快速(几十秒至几十分钟);(3)分离模式多,选择自由度大;(4)分析对象广,从无机离子到整个细胞;(5)高度自动化;(6)样品需量小,运行成本低,无环境污染。
毛细管电泳的分离原理
毛细管电泳的分离原理
毛细管电泳(CE)是一种基于电动力和色谱分离原理的分析技术。
它利用毛细管中载带电荷的离子在电场作用下的迁移速率的差异来实现分离。
在毛细管电泳中,首先将样品注入到一条非常细的毛细管内,然后通过使毛细管两端施加电场来产生电动力。
当电场施加到毛细管上时,带电的分析物会受到电场力的作用而在毛细管内迁移。
不同的物质由于自身的特性,比如大小、电荷等,会以不同的速率迁移。
具体来说,有两种常用的毛细管电泳模式:
1. 毛细管凝胶电泳(CGE):在该模式下,毛细管内填充了哑离子聚合物凝胶,通过凝胶的孔道来实现分离。
样品中的离子在电场作用下,根据尺寸的不同,在凝胶中迁移速度也不同,从而实现分离。
2. 毛细管毛细管区带电泳(CZE):在该模式下,毛细管内不填充任何分离介质。
样品中的离子自行在毛细管中迁移,根据大小和电荷的不同,迁移速度也不同,从而实现分离。
总的来说,毛细管电泳的分离原理是利用样品中离子在电场作用下的迁移速率差异,根据大小和电荷特性,在毛细管中实现分离。
毛细管电泳法
毛细管电泳法简介毛细管电泳法是一种常用于分离和检测化学物质的分析技术。
它基于样品在电场作用下在毛细管中的迁移速度的差异,利用电泳现象进行分离。
该方法具有分离效果好、分析速度快、样品消耗少等优点,被广泛应用于生物、环境、食品等领域的分析研究。
原理毛细管电泳法的基本原理是利用电场作用下带电粒子在毛细管中的迁移速度差异分离物质。
当样品通过直径较小的毛细管时,由于电场的作用,带电物质会在毛细管中产生电泳迁移。
迁移速度快的物质会较早到达检测器位置,而迁移速度慢的物质则会滞留在毛细管中,从而实现了物质的分离。
毛细管电泳法主要利用了物质在电场、毛细管中的迁移速度与其电荷、粒径、溶剂性质等因素之间的关系。
其中,电荷是最重要的因素之一。
毛细管电泳法可分为两种类型:正交电泳和非正交电泳。
正交电泳主要用于带电物质的分离,而非正交电泳则用于非带电物质的分离。
操作步骤1. 准备工作在进行毛细管电泳实验之前,需要准备好以下实验器材和试剂:•毛细管电泳仪•毛细管•电解质缓冲液•样品溶液2. 设置电泳条件根据实验需要,设置好合适的电场强度、电解液pH值和缓冲液浓度等参数。
这些参数的选择对于实验结果的准确性和分离效果的好坏至关重要。
3. 毛细管填充将毛细管浸入缓冲液中,通过电力作用使缓冲液进入毛细管,直至毛细管完全填充。
4. 样品进样通过微量注射器将样品溶液缓慢注入毛细管,注意避免气泡的产生。
5. 开始电泳将毛细管两端插入正、负电极中,开启电源,开始电泳过程。
6. 结果分析根据实验需要,可以选择不同的检测方法进行结果分析,如紫外检测、荧光检测等。
应用领域毛细管电泳法广泛应用于生物、环境、食品等领域的分析研究。
具体的应用包括:1.蛋白质分析:毛细管电泳法可用于蛋白质的分离和定量分析,对于药物研发、生物学研究等具有重要意义。
2.DNA分析:毛细管电泳法可以用于DNA序列分析、基因突变检测、DNA测序等领域,对于遗传学研究、法医学等具有重要意义。
《毛细管电泳法》PPT课件
;
毛细管凝胶电泳综合了电泳技术和平板 凝胶电泳的优点 :
电泳峰锋利,柱效极高 短柱上实现极好的分别 试样容量为10-12g
主要缺陷:制备柱较困难,寿命较短 已成为分别分析生物大分子如蛋白质、 多肽、核 酸、DNA等强有力的工具。 例运用CGE分别与激光诱导荧光检测相 结合,用于DNA序列快速分析。
;
5 毛细管等电聚焦 CIEF
1、毛细管内充有两性电解质〔合成的具有不同等电点 范围的脂肪族多胺基多羧酸混合物〕,当施加直流电压 〔6~8V〕时,管内将建立一个由阳极到阴极逐渐升高 的pH梯度;
2、氨基酸、蛋白质、多肽等的所带电荷与溶液pH有 关,在酸性溶液中带正电荷,反之带负电荷。在其等电 点时,呈电中性,淌度为零;
vT=vA=vB=vC=vL 或:
TET= AEA= BEB= CEC= LEL
式中, ,有效淌度, E,电场强度
由于
T〉 A〉 B〉 C〉 L,
所以有: E T < E A < E B < E C < E L
各区带的电场强度不同。前导电解质区带的电场强度最 小。
;
假设某一区带的离子进入前一区带, 由 于电场强度变小而减速,由假设进入到 下区带,由于电场强度变大而加速, 都 退回到原区带, 结果导致各区带构成鲜 明的界面.
毛细管电泳法
Capillary Electrophoresis, CE
;
毛细管电泳是带电粒子在电场力的 驱动下,在毛细管中按其淌度或分配系 数不同进展高效、快速分别的电泳新技 术,也称为高效毛细管电泳。
一、毛细管电泳的原理 二、分别方式
化学分离中的毛细管电泳法原理
化学分离中的毛细管电泳法原理毛细管电泳法是一种基于分子迁移速度的分离技术,它可以将混合物中的不同成分分离出来。
该技术常用于生化、制药等领域,可以对蛋白质、核酸等大分子进行分离,无需通过化学反应。
毛细管电泳法的原理是利用电场将带电分子推动至毛细管中的聚丙烯酰胺凝胶,不同分子的迁移速度不同,因而在凝胶中呈现不同位置。
毛细管电泳法所用的电场一般在数千至数万伏特/m的范围内,而分子的迁移速度则受到分子尺寸、电荷、以及运动物质中的分子浓度等因素的影响。
毛细管电泳法的优点在于它需要的样品量极少,约为微升至毫升的范围内。
同时,该技术具有高度准确性和分辨率,能够提供高质量的分析结果。
毛细管电泳法的步骤有以下几个:1.准备样品。
毛细管电泳法的样品可以是生物样品,也可以是化学样品。
无论是哪一种,都需要进行适当的前处理和稀释,以便在电泳分离过程中获得较好的结果。
2.填充毛细管。
一般情况下,毛细管需要填充一种聚合物凝胶,例如聚丙烯酰胺凝胶。
填充毛细管时需要保证凝胶均匀分布,以免影响分析结果。
3.注射样品。
将样品注入毛细管中进行分离。
注射的方式有几种,包括压力喷射、电子注射、超声波注射等。
4.电泳分离。
在加上电场之后,不同分子会因为荷电效应发生运动,运动的方向和速度取决于分子的荷电量、大小和电场强度等因素。
在电泳分离的过程中,毛细管内的缓冲液也会随之移动。
5.数据分析。
经过分离后,各个分子会聚集到毛细管中不同的位置。
为了分析样品,需要对分离结果进行数据测量和分析,以得出有关样品结构、组成和纯度方面的信息。
毛细管电泳法是一项高技术含量的分析技术。
虽然它在分离高分子大分子等方面具有很好的效果,但也存在一些局限性,例如分辨率等。
尽管如此,毛细管电泳法在生命科学、材料科学等领域广泛应用,是分子分析领域不可或缺的一项技术。
仪器分析毛细管电泳法
Capillary Electrophoresis
本章要求
⒈ 了解电泳、淌度、电渗的概念 ⒉ 了解毛细管电泳仪的结构 ⒊ 了解六种毛细管电泳分离模式
毛细管电泳(capillary electrophoresis,CE) 又称高效毛细管电泳(HPCE),是以毛细管为分离通道、 以高压直流电场为驱动力的液相分离技术。
根据各组分荷质比不同而分离。背景电解质仅起
传导电流的作用。
t=0
t>0
2. 毛细管等速电泳(CITP)
使用两种电解质:一种为迁移率较高的前导离子L电解 质,一种为迁移率较低的尾随离子T电解质,被分离组分夹在L 与T之间,以同一速度运动,由于迁移率不同而分离。
3. 毛细管等电聚焦 (CIEF)
基本操作步骤:进样、聚焦和迁移,用于生物大分子的分 离。
在毛细管中电渗速度可比电泳速度大一个数量级,所以能 实现样品组分同向泳动。正离子的运动方向和电渗流一致, 最先流出;中性粒子的电泳流速度为“零”,其迁移速度 相当于电渗流速度;负离子的运动方向和电渗流方向相反, 但因电渗流速度一般都大于电泳速度,在中性粒子之后流 出,从而因各种粒子迁移速度不同而实现分离。
3. 检测系统
紫外-可见检测器 ;激光诱导荧光检测器;电化学检测器。
4. 数据处理系统
5.3 毛细管电泳分离模 式
6种分离模式: 毛细管区带电泳CZE 毛细管等速电泳CITP 毛细管等电聚焦CIEF 毛细管电色谱CEC 胶束电动毛细管色谱MECC 毛细管凝胶电泳CGE
1. 毛细管区带电泳 (CZE) 用CZE时,整个系统用一种缓冲溶液 (背景电解质),
碱
酸
碱
酸
毛细管等电聚焦电泳的运行过程 (a)进样;(b)聚焦;(c)迁移
《色谱分析》教学课件—05毛细管电泳法
5.1.2 电泳参数
3.电渗和电渗淌度
电渗或电渗流 (electroosmotic flow, EOF) : 毛细管内溶液在电场作用 下,整体朝一个方向迁移的现象,电渗流迁移的速率成为电渗速率 (uos)。
uos E (5-4)
电渗速率uos与双电层的Zeta 电位ξ,介质的介电常数ε和粘 度η有关,和电场强度E成正比。
5.4 毛细管电泳仪的操作 Operation of CE
5.5 毛细管电泳法的应用 Application of CE
5.6 本章内容概图 Overview Chart of the Chapter
5.1 基本原理
5.1.1 概述
一、基本概念
1.毛细管电泳法(capillary electrophoresis;CE)又称为高效毛细管电泳 (high performance capillary electrophoresis;HPEC)是以毛细管为分离通道, 高压直流电场为驱动力的新型液相分离分析技术,即在毛细管中进行的电泳法。
(5-12)
由式(5-12)看出:理论塔板数和溶质的扩散系数成反比,而溶质分子越大, 则扩散系数越小,理论塔板数越大,柱效越高,因此毛细管电泳适合分离蛋白质 、DNA等生物大分子;毛细管的有效长度越长,总长度越短,则柱效越高;外加 电压越大,柱效越高。
(2)分离度
分离度指淌度相接近的组分分开的能力。同样,在实际毛细管电泳
为电泳速度uep。下标ep表示电泳(electrophoresis)。
uep ep E
(5-1)
式中E为电场强度, µep为电泳淌度(electrophoresis mobility)或电泳迁移率
毛细管电泳分离技术课件
电泳操作
01Leabharlann 准备毛细管电泳仪和样 品02
样品处理:稀释、离心、 过滤等
03
毛细管电泳仪设置:电 压、电流、温度等
04
毛细管电泳仪运行:样 品注入、电泳、检测等
05
数据分析:电泳图谱分 析、数据处理等
06
结果报告:电泳结果、 结论和建议等
数据分析
01
毛细管电泳分离技术 原理
03
毛细管电泳分离技术 数据分析方法
05
毛细管电泳分离技术 数据分析应用
02
毛细管电泳分离技术 操作步骤
04
毛细管电泳分离技术 数据分析结果分析
毛细管电泳分离技术的发展趋势
技术改进
1
2
提高分离效率: 通过优化毛细管 电泳参数和设计, 提高分离效率
降低成本:通过 改进毛细管电泳 设备,降低设备 成本和运行成本
3
4
提高灵敏度:通 过改进检测方法, 提高毛细管电泳 的灵敏度
毛细管电泳技术的特点
高效分离:毛细管电泳技术具有较高的分离效率, 能够快速分离复杂样品中的多种组分。
灵敏度高:毛细管电泳技术具有较高的灵敏度,能 够检测到样品中极低浓度的组分。
快速分析:毛细管电泳技术具有较快的分析速度, 能够在较短的时间内完成样品的分析。
应用广泛:毛细管电泳技术广泛应用于生物医学、 环境科学、食品科学等领域,具有广泛的应用前景。
演讲人
毛细管电泳分 离技术课件
2023-12-11
目录
01. 毛细管电泳分离技术的基本 原理
02. 毛细管电泳分离技术的应用 03. 毛细管电泳分离技术的操作
步骤
04. 毛细管电泳分离技术的发展 趋势
毛细管电泳 ppt课件
ppt课件
12
所以,迁移速度:
qE q E (球形离子) f 6π
物质离子在电场中差速迁移是电泳分离的基础。 淌度μ :单位电场强度下的平均电泳速度。
q E 6π
ppt课件
13
电渗现象与电渗流
1.电渗流现象
当固体与液体接触时,固体表面由于某种原因带一种电 荷,则因静电引力使其周围液体带有相反电荷,在液-固界 面形成双电层,二者之间存在电位差。
ppt课件
30
3.缓冲液池
化学惰性,机械稳定性好;
4. 检测器
要求:具有极高灵敏度,可柱端检测; 检测器、数据采集与计算机数据处理一体化;
类型 紫外-可见 荧光 激光诱导荧光 电导
检测限/mol 10-13~10-15 10-15~10-17 10-18~10-20 10-18~10-19
特点 加二极管阵列,光谱信息 灵敏度高,样品需衍生 灵敏度极高,样品需衍生 离子灵敏,需专用的装置;
第五章 毛细管电泳
High performance capillary electrophoresis,HPCE
ppt课件
1
主要内容
5.1 毛细管电泳的基本原理 5.2 毛细管电泳仪 5.3 毛细管电泳的分离模式 5.4 影响分辨率的因素及操作条件选择 5.5 毛细管电泳的应用
ppt课件
2
精品资料
缓冲溶液离子强度,影响双电层的厚度、溶液黏度和工 作电流,明显影响电渗流大小。缓冲溶液离子强度增加,电 渗流下降。
ppt课件
21
ppt课件
22
4. 温度的影响
毛细管内温度的升高,使溶液的黏度下降,电渗流增大。 温度变化来自于“焦耳热”;
焦耳热:毛细管溶液中有电流通过时,产生的热量; HPCE中的焦耳热与背景电解质的摩尔电导、浓度及电场 强度成正比。 温度每变化1,将引起背景电解质溶液黏度变化2%~3%;
【完整】高效毛细管电泳分离模式资料PPT
分离类型
八种分离类型,介绍常用的几种; 根据试样性质不同,采用不同的分离类型; 每种机理的选择性不同;
一、毛细管区带电泳
capillary zone electrophoresis ,CZE
带电粒子的迁移速度=电泳和电渗流速度的矢量和。 正离子:两种效应的运动方向一致,在负极最先流出; 中性粒子:无电泳现象,受电渗流影响,在阳离子后流 出; 阴离子:两种效应的运动方向 相反;ν电渗流 >ν电泳时,阴离子在 负极最后流出,在这种情况下,不但 可以按类分离,同种类离子由于差 速迁移被相互分离。
阳极端装稀磷酸溶液无,阴胶极端筛装稀分Na技OH溶术液;:采用低粘度的线性聚合物溶液代替高粘
度交联聚丙烯酰胺。柱便宜、易制备。
三、 胶束电动毛细管色谱(MECC ,MEKC)
micellar electrokinetic capillary chromatography,MEKC
1.缓冲溶液中加入离子型表面活性剂,其浓度达到临界 浓度,形成一疏水内核、外部带负电的胶束。
3. 氨基酸、蛋白质、多肽等的所带电荷与溶液pH有关, 在酸性溶液中带正电荷,反之带负电荷。在其等电点时,呈 电中性,淌度为零;
4. 聚焦:具有不同等电点的生物试样在电场力的作用下 迁移,分别到达满足其等电点pH的位置时,呈电中性,停止 移动,形成窄溶质带而相互分离;
5. 阳极端装稀磷酸溶液,阴极端装稀NaOH溶液;
最基本、应用广的分离模式;
二、毛细管凝胶电泳
capillary gel electrophoresis ,CGE
将聚丙烯酰胺等在毛细管柱内交联生成凝胶。 阳极端装稀磷酸溶液,阴极端装稀NaOH溶液;
ν电渗流 >ν电泳时,阴离子在负极最后流出,在这种情况下,不但可以按类分离,同种类离子由于差速迁移被相互分离。 负离子分析时,前导电解质的淌度大于试样中所有负离子的。
毛细管电泳分离技术
注:μe:电泳迁移率(电泳淌度); E:电场强度; V-毛细管柱两 端施加的电压;L-毛细管柱的长度。
μe =νe/E= Q/f
ve
Q f
V L
QV
6 Rs L
注: Q-离子所带的净电荷;f-Stokes阻力系数。η是缓冲 溶液的粘度(动力学的),Rs是离子的有效半径(包括溶剂化层)
分离过程
• 毛细管等电聚焦(CIEF)
• 毛细管等速电泳(CITP) 毛细管离子电泳(CIE)
• 毛细管电色谱
1、毛细管区带电泳(CZE)
毛细管区带电泳(capillary zone electrophoresis,CZE) 是毛细管电泳中最基本的操作模式,应用最广泛,是 其它操作模式的母体。
➢ 分离原理:由于各组分间荷质比的差异,混合组分处 在背景电解质溶液中,在外加电场作用下便获得分离, 即CZE是基于溶质的湍度差异进行分离的。
2、分离度
电泳中两峰的分离度,也称分辨率,它表明湍度相 近的组分分开的能力,可表达为(和哪些因素有关):
Rs (n1/2 / 4) ( / 平 )
柱效
相邻两区带的迁移速度差 两者的平均速度
/ 平 表示分离的选择性
分离度计算式(具体如何计算):
Rs 2(tm2 tm1) /(W1 W2 )
• 20世纪30年代,通过Tiselius的研究,电泳技术 才得到有实际意义的发展,Tiseluis也因此获得 了1948年度的诺贝尔奖。
• 到20世纪50年代,电泳已经是一种与纸和薄层的 平面色谱技术一样的实验室常用技术。
• 20世纪70年代在HPLC的推动下,电泳分离技术 成为了一种“灰姑娘”式的技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.HPCE中的电渗现象与电渗流
石英毛细管柱,内充液pH>3时,表面电离成-SiO-,管 内壁带负电荷,形成双电层。
在高电场的作用下,带正电荷的溶液表面及扩散层向阴 极移动,由于这些阳离子实际上是溶剂化的,故将引起柱中
的溶液整体向负极移动,速度ν电渗流。
2020/9/18
3.HPCE中电渗流的大小与方向
按形状分类:U型管电泳、柱状电泳、板电泳;
按载体分类:滤纸电泳、琼脂电泳、聚丙烯酰胺电泳、 自由电泳;
传统电泳分析:操作烦琐,分离效率低,定量困难,无 法与其他分析相比。
1981年,Jorgenson和Luckas,用75m内径石英毛细管进 行电泳分析,柱效高达40万/m,促进电泳技术发生了根本变 革,迅速发展成为可与GC、HPLC相媲美的崭新的分离分析技 术——高效毛细管电泳。
离子在负极最后流出,在这种情况下,不但可以按类分离,除中 性粒子外,同种类离子由于受到的电场力大小不一样也同时被 相互分离。
2020/9/18
高效毛细管电泳的特点
1.仪器简单、易自动化
电源、毛细管、检测器、溶液瓶
2.分析速度快、分离效率高
在3.1min内分离36种无机及有机阴离子,4.1min内分 离了24种阳离子;分离柱效:105~107/m理论塔板数;
2020/9/ห้องสมุดไป่ตู้8
三、高效毛细管电泳分析
high performance capillary electrophoresis
高效毛细管电泳在技术上采取了两项重要改进: 一是采用了0.05mm内径的毛细管,; 二是采用了高达数千伏的电压。
• 毛细管的采用使产生的热量能够较快散发,大大减 小了温度效应,使电场电压可以很高。 • 电压升高,电场推动力大,又可进一步使柱径变小, 柱长增加, • 高效毛细管电泳的柱效远高于高效液相色谱,理论塔 板数高达几十万块/米,特殊柱子可以达到数百万。
3.操作方便、消耗少
进样量极少,水介质中进行;
4.应用范围极广
有机物、无机物、生物、中性分子;生物大分子等; 分子生物学、医学、药学、化学、环境保护、材料等;
2020/9/18
第二节高效毛细管电泳理论 基础
2020/9/18
一、高效毛细管电泳(HPCE)基本原理
basic principles of PHCE
清提取的蛋白质混合液分离出白蛋白和α、β、γ球蛋白;
发现样品的迁移速度和方向由其电荷和淌度决定;
第一次的自由溶液电泳;第一台电泳仪;
1948年,获诺贝尔化学奖;
2020/9/18
二、经典电泳分析
traditional electrophoresis
利用电泳现象对某些化学或生物物质进行分离分析的方 法和技术叫电泳法或电泳技术。
2020/9/18
分离过程
电场作用下,毛细
管柱中出现:电泳现 象和电渗流现象。
带电粒子的迁移速度=电泳+电渗流;两种速度的矢量和。 正离子:两种效应的运动方向一致,在负极最先流出; 中性粒子无电泳现象,受电渗流影响,在阳离子后流出; 阴离子:两种效应的运动方向相反。ν电渗流 >ν电泳时,阴
2020/9/18
所以,迁移速度:
qE q E (球形离子) f 6π
物质离子在电场中差速迁移是电泳分离的基础。 淌度μ :单位电场强度下的平均电泳速度。
q E 6π
2020/9/18
二、电渗现象与电渗流
electroosmosis and electroosmotic flow
1.电渗流现象
Lef —毛细管有效长度; teo—电渗流标记物(中性物质)的迁移时间。
2020/9/18
HPCE中电渗流的方向
电渗流的方向取决于毛细管内表面电荷的性质: 内表面带负电荷,溶液带正电荷,电渗流流向阴极; 内表面带正电荷,溶液带负电荷,电渗流流向阳极; 石英毛细管;带负电荷,电渗流流向阴极; 改变电渗流方向的方法: (1)毛细管改性 表面键合阳离子基团; (2)加电渗流反转剂 内充液中加入大量的阳离子表面活性剂,将使石英毛细 管壁带正电荷,溶液表面带负电荷。电渗流流向阳极。
当固体与液体接触时,固体表面由于某种原因带一种电 荷,则因静电引力使其周围液体带有相反电荷,在液-固界 面形成双电层,二者之间存在电位差。
当液体两端施加电压时, 就会发生液体相对于固体表面 的移动,这种液体相对于固体 表面的移动的现象叫电渗现象。
电渗现象中整体移动着的 液体叫电渗流(electroosmotic flow ,简称EOF)。
第五章 毛细管电 泳分离法
第一节 概述
2020/9/18
一、概述 generalization
在电解质溶液中,位于电场中的带电离子在电场力的作 用下,以不同的速度向其所带电荷相反的电极方向迁移的现 象,称之为电泳。由于不同离子所带电荷及性质的不同,迁 移速率不同,可实现分离。
1937年,Tiselius(瑞典)将蛋白质混合液放在两段缓冲 溶液之间,两端施以电压进行自由溶液电泳,第一次将人血
2020/9/18
4. HPCE中电渗流的流形
电荷均匀分布,整体移动,电渗流的流动为平流,塞式 流动(谱带展宽很小);
液相色谱中的溶液流动为层流,抛物线流型,管壁处流 速为零,管中心处的速度为平均速度的2倍(引起谱带展宽 较大)。
电泳是指带电离子在电场中的定向移动,不同离子具有 不同的迁移速度,迁移速度与哪些因素有关?
当带电离子以速度ν 在电场中移动时,受到大小相等、
方向相反的电场推动力和平动摩擦阻力的作用。
电场力:FE = qE
阻 力:F = fν 故: qE = fν
q—离子所带的有效电荷; E —电场强度; ν—离子在电场中的迁移速度; f —平动摩擦系数 ( 对于球形离子: f =6πηγ;γ —离子的表观液态动力 学半径;η —介质的粘度; )
电渗流的大小用电渗流速度ν电渗流表示,取决于电渗淌 度μ和电场强度E。即
ν电渗流 = μ E
电渗淌度取决于电泳介质及双电层的Zeta电势,即
μ = ε0εξ
ε0—真空介电常数;ε—介电常数;ξ—毛细管壁的Zeta电势。
ν电渗流 = ε0εξ E
实际电泳分析,可在实验测定相应参数后,按下式计算
ν电渗流 = Lef/teo