一元一次不等式的应用经典题型

合集下载

一元一次不等式15道应用题

一元一次不等式15道应用题

一、综合题(共15题;共160分)1.(2015•凉山州)2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案哪种租车方案费用最低,最低费用是多少》2.(2015•攀枝花)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件!(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.3.(2015•钦州)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.|(1)每个气排球和每个篮球的价格各是多少元(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低最低费用是多少元》4.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案&5.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要万元,购买2台电脑和1台电子白板需要万元.(1)求每台电脑、每台电子白板各多少万元(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低./"6.某超市销售甲、乙两种商品,五月份该超市第一次购进甲商品50件,乙商品30件,用去1400元,第二次购进甲商品40件,乙商品40件,用去1600元.(1)求两种商品进价分别是多少元.(2)由于商品受到市民欢迎,六月份决定再购进甲乙两种商品共80件,且进价不变,甲种商品售价15元,乙种商品售价40元,该超市为使甲、乙两种商品共80件的总利润(利润=售价﹣进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.^7.师生积极为地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,该厂生产的帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。

一元一次不等式经典例题+习题

一元一次不等式经典例题+习题

可编写可改正【经典例题1】1、已知 a< b,则以下不等式中不正确的选项是()<4b+4 < b+4 C. ﹣ 4a<﹣ 4b﹣4<b﹣ 42、不等式3x+ 2< 2x+ 3 的解集在数轴上表示正确的选项是()3、实数 a,b,c 在数轴上对应的点以以下列图所示,则以下式子中正确的选项是()> bc B.|a–b| = a–b C. – a < – b < c D. – a–c > – b–c【经典例题2】4、若是不等式组恰有3个整数解,则 a 的取值范围是()≤﹣ 1<﹣1 C. ﹣ 2≤ a<﹣ 1 D. ﹣ 2< a≤﹣ 15、对于 x 的不等式组有四个整数解,则 a 的取值范围是()A. ﹣<a≤﹣B. ﹣≤ a<﹣C. ﹣≤ a≤﹣D. ﹣<a<﹣6、若对于的不等式组有三个负整数解,则的取值范围是().<a<-3<a ≤-2≤ a<-3≤ a≤ -2【经典例题3】7、某商品的进价为800 元 , 销售标价为1200 元, 后出处于该商品积压, 商铺准备打折销售,要保证收益率不低于5% , 该商品最多可打( )A.9 折折 C.7 折 D.6 折可编写可改正8、在抗震救灾中,某抢险地段需实行爆破. 操作人员点燃导火线后,要在炸药爆炸前跑到400 米以外的安全地区.已知导火线的焚烧速度是厘米/ 秒,操作人员跑步的速度是 5 米 / 秒 . 为了保证操作人员的安全,导火线的长度要高出()厘米厘米厘米厘米9、某大型商场从生产基地购进一批水果,运输过程中质量损失10%,假定不计商场其他费用,若是商场要想最少获得20%的收益,那么这种水果的售价在进价的基础上应最少提高()%%【经典例题4】10、不等式﹣ 3x﹣ 1< 7 的负整数解是_________.11、某种商品的进价为15 元,销售时标价是元。

由于市场不景气销售情况不好,商铺准备降价办理,但要保证收益率不低于10%,那么该店最多降价____________元销售该商品。

一元一次不等式应用题集锦

一元一次不等式应用题集锦

() A.11辆 B.10辆
C.9辆
D.8辆
7、 (2001荆州)在双休日,某公司决定组织48名员工到附近一水上 公园坐船游园,公司先派一个人去了解船只的租金情况,这个人 看到的租金价格表如下:
船型
每只限载人数 (人)
租金 (元)
大船 5
3
小船 3
2
那么,怎样设计租船方案才能使所付租金最少?(严禁超载)
了节约资金应选择哪种方案?
18、 某商店需要购进一批电视机和洗衣机,根据市场调查,决定电 视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的 进价和售价如下表:
类 别
电视机 洗衣机
进价(元/ 台)
1800
1500
售价(元/ 台)
2000
1600
计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800 元.
(1)、求y与x之间的函数关系式,并画出函数的图象。 (2)、求弹簧所挂物体的最大质量是多少?
29、 某人点燃一根长度为25㎝的蜡烛,已知蜡烛每小时缩短5㎝, 设xh后蜡烛剩下的长度为y㎝。(1)、求y与x的函数关系式。 (2)、几个小时以后,蜡烛的长度不足10㎝?
30、 一艘轮船以20km/h的速度从甲港驶往160km远的乙港,2h后, 一艘快艇以40km/h的速度也从甲港驶往乙港。分别列出轮船和 快艇行驶的路程y km与时间x h的函数关系式,并在直角坐标 系中画出函数的图象,观察图象回答下列问题:(1)何时轮 船行驶在快艇的前面?(2)何时快艇行驶在轮船的前面? (3)哪一艘船先驶过60km?哪一艘船先驶过100km?
③每千克蟹苗的价格为75元,其饲养费用为525元,当年可获1 400 元收益;
④每千克虾苗的价格为15元,其饲养费用为85元,当年可获160元 收益.

(完整版)一元一次不等式和一元一次不等式组(经典难题)

(完整版)一元一次不等式和一元一次不等式组(经典难题)

一元一次不等式和一元一次不等式组1.某同学说213a a -+一定比21a -大,你认为对吗?说明理由。

2.已知方程组23121x y m x y m +=+⎧⎨-=-⎩(1) 请列出x>y 成立的关于m 的不等式。

(2) 运用不等式的基本性质将此不等式化为m>a 或m<a 的形式。

3.要使不等式(1)12a x x a ->+-的解集为x<-1,求a 的取值范围。

4.已知关于x 的一元一次方程4131x m x -+=-的解都是负数,求m 的取值范围.5.如果关于x 的不等式(1)524.a x a x a -<+<和的解集相同,求的值6.x 取哪些非负整数时,322x -的值不小于213x +与1的差。

7.m 取何值时,关于x 的方程6151632x m m x ---=-的解大于1?8.如果方程组24122x y m x y m -=+⎧⎨-=-⎩的解满足3x-y>0,求m 的取值范围.9.若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.10.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是 .11.对于整数a ,b ,c ,d ,定义bd ac c d ba -=,已知3411<<d b,则b +d 的值为_________.12.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.13.解下列不等式或不等式组:.15)2(22537313-+≤--+x x x ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x x x ⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x14.当310)3(2kk -<-时,求关于x 的不等式k x x k ->-4)5(的解集.15.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.16.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.17.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.18.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+ax x x x 322,3215只有4个整数解,求a 的取值范围.22.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程1.某水产品市场管理部门计划建造2400平方米的大棚,内设有A种和B种店面各80间。

A种店面的平均面积为28平方米,月租费为400元;B种店面的平均面积为20平方米,月租费为360元。

全部店面的建造面积不低于大棚总面积的85%。

现在要确定A种店面的数量。

解:设A种店面为a间,B种店面为80-a间。

根据题意,28a+20(80-a)≥2400×85%,化简得8a≥440,即a≥55.因此,A种店面至少应有55间。

为使店面的月租费最高,设月租费为y元,根据题意可得y=75%a×400+90%(80-a)×360=300a+-24a=-24a。

因为a≥55,所以当a=55时,y取最大值,即月租费最高为元。

2.水产养殖户XXX计划进行大闸蟹与河虾的混合养殖。

每亩地水面租金为500元,每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗。

每公斤蟹苗的价格为75元,饲养费用为525元,当年可获得1400元收益;每公斤虾苗的价格为15元,饲养费用为85元,当年可获得160元收益。

现在要求出每亩水面虾蟹混合养殖的年利润,并确定XXX应租多少亩水面,向银行贷款多少元,才能使年利润达到元。

解:每亩水面的成本包括水面年租金、苗种费用和饲养费用,即成本=500+75×4+15×20+525×4+85×20=4900元。

每亩水面的收益为1400×4+160×20=8800元。

因此,每亩水面的年利润为8800-4900=3900元。

设租a亩水面,贷款为4900a-元。

根据题意,收益为8800a,成本不超过元,即4900a≤,解得a≤10.2亩。

为使年利润达到元,可列出方程3900a+0.1(4900a-)=,解得a≈13.08亩,即XXX应租13亩水面,向银行贷款约为元。

某手机生产厂家决定对一款原售价为2000元的彩屏手机进行调价,按新单价的八折优惠出售。

一元一次不等式的应用练习题5套(含答案)

一元一次不等式的应用练习题5套(含答案)

一元一次不等式的应用练习题5套(含答案)(1)要点感知1.列不等式解应用题的一般步骤:(1)审题:弄清题意及题目中的__________;(2)设未知数,可__________设也可__________设;(3)列出__________;(4)解不等式,并验证解的__________;(5)写出__________.2.如图,a ,b 两种物体的质量的大小关系是__________.3.在开山工程爆破时,已知导火索燃烧速度为0.5 cm/s,人跑开的速度是4 m/s,为使放炮的人在爆破时能安全跑到100 m 以外的安全区,导火索的长度x(cm)应满足的不等式是( ) A.4×0.5x ≥100 B.4×0.5x ≤100 C.4×0.5x <100 D.4×0.5x >100练习题:1.一次环保知识竞赛中,一共有25道题,答对一题得5分,答错(或不答)一题扣2分.小明在这次竞赛中的得分超过了100分,则他至少要答对的题数是( )A.21道B.22道C.23道D.24道2.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买( )A.3支笔B.4支笔C.5支笔D.6支笔3.某品牌自行车进价为每辆800元,标价为每辆1 200元.店庆期间,商场为了答谢顾客,进行打折促销活动,但是要保证利润率不低于5%,则最多可打__________折.4.一只纸箱质量为1 kg,放入一些苹果(每个苹果质量为0.25 kg)后,纸箱和苹果的总质量不超过10 kg ,这只纸箱最多只能装多少个苹果?5.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员. (1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?6.为响应市政府“创建国家森林城市”的号召,某小区计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1 220元,问购进A 、B 两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.7.某射箭运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的记录,则他第7次射击不能少于( )A.6环B.7环C.8环D.9环8.有3人携带会议材料乘坐电梯,这3人的体重共210 kg.毎捆材料重20 kg.电梯最大负荷为1 050 kg,则该电梯在此3人乘坐的情况下最多能搭载__________捆材料.9.(2014·南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm,长与宽的比为3∶2,则该行李箱的长的最大值为__________cm.10.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对几道题?11.(2013·潍坊)为增强市民的节能意识,我市试行阶梯电价.从2013年开始,按照每户每年的用电量分三个档次计费,具体规定见图.小明统计了自家2013年前5个月的实际用电量为1 300度,请帮助小明分析下面问题.(1)若小明家计划2013年全年的用电量不超过2 520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2013年6至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?挑战自我12.某体育用品商场采购员要到厂家批发购进篮球和排球共100个,付款总额不得超过11 815元.已知厂家两种球的批发价和商场两种球的零售价如下表,试解答下列问题:品名厂家批发价(元/个) 商场零售价(元/个)篮球130 160排球100 120(1)(2)若该商场把这100个球全部以零售价售出,为使商场获得的利润不低于2 580元,则采购员至少要购篮球多少个?该商场最多可盈利多少元?练习1参考答案:1.B2.C3.七4.设这只纸箱内装了x个苹果.根据题意,得0.25x+1≤10.解得x≤36.答:这只纸箱最多只能装36个苹果.5.(1)120×0.95=114(元),所以实际应支付114元.(2)设购买商品的价格为x元,由题意得0.8x+168<0.95x,解得x>1 120.所以当购买商品的价格超过1 120元时,采用方案一更合算.6.(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得80x+60(17-x)=1 220,解得x=10,∴17-x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗y棵,则购进B种树苗(17-y)棵,根据题意得17-y<y,解得y>81 2 .购进A、B两种树苗所需费用为80y+60(17-y)=20y+1 020,则费用最省需y取最小整数9,此时17-y=8,这时所需费用为20×9+1 020=1 200(元).答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1 200元.7.C 8.42 9.7810.设要答对x道题.依题意,得10x+(-5)×(20-x)>100.解得x>131 3 .由x应为非负整数,得x≥14.答:他至少要答对14道题.11.(1)设平均每月用电量为x度.依题意,得7x+1 300≤2 520.解得x≤1742 7 .由x为整数,得x≤174.答:小明家平均每月用电量最多为174度.(2)1 300÷5×12=3 120(度),3 120-2 520=600(度),2 520×0.55+600×0.6=1 746(元).答:小明家2013年应交总电费1 746元.12.(1)设采购员最多可购进篮球x个,则排球是(100-x)个,依题意,得130x+100(100-x)≤11 815.解得x≤60.5.∵x是整数,∴x最大取60.答:该采购员最多可购进篮球60个.(2)设篮球x个,则排球是(100-x)个,则(160-130)x+(120-100)(100-x)≥2 580.解得x≥58. 又由第(1)问得x≤60.5,所以正整数x的取值为58,59,60. 即采购员至少要购篮球58个.∵篮球的利润大于排球的利润,因此这100个球中,当篮球最多时,商场可盈利最多,故篮球60个,排球40个,此时商场可盈利(160-130)×60+(120-100)×40=1 800+800=2 600(元),即该商场最多可盈利2 600元.(2)一.选择题(共5小题,满分25分,每小题5分)1.甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A.小于8km/h B.大于8km/h C.小于4km/h D.大于4km/h2.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x千米,出租车费为21.5元,那么x的最大值是()A.11 B.8 C.7 D.53.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块4.甲在集市上先买了3只羊,平均每只a元,稍后又买了2只,平均每只羊b元,后来他以每只元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是()A.a>b B.a=b C.a<b D.与a、b大小无关5.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x-100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元二.填空题(共6小题,满分30分,每小题5分)6.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价元商店老板才能出售.7.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.8.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对道题,成绩才能在60分以上.9.x的与6的差不小于-4的相反数,那么x的最小整数解是.10.张华同学和父母一起到距离家200公里的景区旅游.出发前,汽车油箱内储油45升;当行驶120公里时,发现油箱剩余油量为33升;已知油箱中剩余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?答:(填:能或不能)11.设x1,x2,…,x7为自然数,且x1<x2<…<x6<x7,又x1+x2+…+x7=159,则x1+x2+x3的最大值是.三.解答题(共4小题,满分45分)12.(10分)植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?13.(11分)某校“棋乐无穷”社团前两次购买的两种材质的象棋采购如下表(近期两种材质象棋的售价一直不变);塑料象棋玻璃象棋总价(元)第一次(盒) 1 3 26第二次(盒) 3 2 29(1)若该社团计划再采购这两种材质的象棋各5盒,则需要多少元?(2)若该社团准备购买这两种材质的象棋共50盒,且要求塑料象棋的数量不多于玻璃象棋数量的3倍,请设计出最省钱的购买方案,并说明理由.14.(12分)在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?15.(12分)哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?2)参考答案一、选择题1.B解答:设甲的速度为xkm/h,则乙的速度为0.5xkm/h,由已知得:2×(x+0.5x)>24,解得:x>8.故选B.2.B解答:解:根据题意得:8+2.6(x−3)≤21.5,解得:x≤8.19,∵不足1千米按1千米计,∴x的最大值是8.故选B3.C解答:解:设这批手表有x块,550×60+(x−60)×500>55000解得,x>104∴这批电话手表至少有105块,故选C.4.A解答:解:根据题意得到5×<3a+2b,解得a>b故选A5.A解答:解:由关系式可知:0.3(2x−100)<1000,由2x−100,得出两件商品减100元,以及由0.3(2x−100)得出买两件打3折,故可以理解为:买两件等值的商品可减100元,再打3折,最后不到1000元.故选:A.二、填空题6.120解答:解:设这件商品的进价为x.根据题意得:(1+80%)•x=360,解得:x=200.盈利的最低价格为200×(1+20%)=240,则商店老板最多会降价360−240=120(元).故答案为:120.7. x>49解答:解:第一次的结果为:2x−10,没有输出,则2x−10>88,解得:x>49.故x的取值范围是x>49.故答案为:x>498.12解答:解:设答对x道.故6x−2(15−x)>60解得:x>所以至少要答对12道题,成绩才能在60分以上.9.15解答:解:由题意x−6≥−(−4),解得x≥15,∴x的最小整数为15,故答案为15.10.能解答:解:由题意可得,张华同学和父母从家到景区然后返回家的耗油量为:400÷[120÷(45−33)]=40(L),∵45−40=5>3,故他们能在汽车报警前回到家,故答案为:能.11.61解答:解:∵x1,x2,…,x7为自然数,且x1<x2<x3<…<x6<x7,∴159=x1+x2+…+x7≥x1+(x1+1)+(x1+2)+…+(x1+6)=7x1+21,∴x1≤19,∴x1的最大值为19;又∵19+x2+x3+…+x7=159,∴140≥x2+(x2+1)+(x2+2)+…+(x2+5)=6x2+15,∴x2≤20,∴x2的最大值为20,当x1,x2都取最大值时,有120=x3+x4+…+x7≥x3+(x3+1)+(x3+4)=5x3+10,∴x3≤22,∴x3最大值为22.∴x1+x2+x3的最大值为19+20+22=61.三、综合题12. 解答:解:设B树苗的单价为x元,则A树苗的单价为y元,可得:,解得:,答:B树苗的单价为300元,A树苗的单价为200元;(2)设购买A种树苗a棵,则B种树苗为(30−a)棵,可得:200a+300(30−a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.13. 解答:解:(1)设一盒塑料象棋的售价是x元,一盒玻璃象棋的售价是y元,依题意得,,解得,,(5+7)×5=60(元),所以采购这两种材质的象棋各5盒需要60元;(2)设购进玻璃象棋m盒,总费用为w元,依题意得w=5×(50−m)+7m=2m+250.所以当m取最小值时w有最小值,因为50−m≤3m,解得m≥12.5,而m为正整数,所以当m=13时,w最小=2×13+250=276,此时50−13=37.所以最省钱的购买方案是购进塑料象棋37盒,玻璃象棋13盒.14. 解答:解:(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据题意得10(x+6)+15x=660,解得x=24.答:甲、乙两种门票每张各30元、24元;(2)设可购买y张甲种票,则购买(35−y)张乙种票,根据题意得30y+24(35−y)≤1000,解得y ≤26.答:最多可购买26张甲种票.15. 解答:解:(1)设甲种君子兰每株成本为x 元,乙种君子兰每株成本为y 元,依题意有,解得.故甲种君子兰每株成本为400元,乙种君子兰每株成本为300元.(2)设购进甲种君子兰a 株,则购进乙种君子兰(3a +10)株,依题意有400a +300(3a +10)≤30000, 解得a ≤.∵a 为整数 ∴a 最大为20.故最多购进甲种君子兰20株.(3)1.已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习(80 题、附答案)(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x ﹣≤2﹣.(3)2(x﹣1)+2<5﹣3(x+1)(4).(5)﹣<1;(6)3﹣(3y﹣1)≥(3+y)(7)x ﹣≥﹣1(8)﹣>﹣1 (9)﹣1≤.(10)﹣3x+2≤8.(11)﹣3x﹣4≥6x+2.(12)﹣8x﹣6≥4(2﹣x)+3.(13)(14)(15).(16)2(x﹣1)<﹣3(1﹣x)(17)≤﹣1 (18)10﹣3(x﹣2)≤2(x+1)(19)﹣2≤.(20)﹣3x>2(21)x >﹣x﹣2(22)3(x+1)<4(x﹣2)﹣3 (23)≤1.(24)≥;(25)﹣>﹣2.(26)5x﹣4>3x+2(27)4(2x﹣1)>3(4x+2)(28)≤(29)﹣2≥.(30)4(x﹣1)+3≥3x;(31)2x﹣3<;(32)≤1.(33)3[x﹣2(x﹣2)]>6+3 (34)(35)(36).(37)3(x+2)﹣8≥1﹣2(x﹣1);(38)>;(39)≤;(40)<.(41)3(2x﹣3)≥2(x﹣4)(42)≥0(43)7(1﹣2x)>10﹣5(4x﹣3)(44).(45)﹣<0;(46)1﹣≤﹣x.(47)5x﹣12≤2(4x﹣3);(48)≥x﹣2.(49)4x﹣2(3+x)<0 (50)﹣≥0.(51)3x﹣2<﹣4(x﹣5);(52)﹣1<<2.(53);(54).(55)5x+15>4x﹣13(56)≤.(57)7(4﹣x)﹣2(4﹣3x)<4x;(58)10﹣4(x﹣3)≥2(x﹣1);(59)3[x﹣2(x﹣2)]>x﹣3(x﹣3);(60)(2x﹣1)+x﹣1+(1﹣2x)≤0;(61)﹣y ﹣;(62).(63)x(x+1)>(x﹣2)2;(64).(65)3(y﹣3)<7y﹣4(66)﹣21<6﹣3x≤9.(67);(68);(69)0.5x+3(1﹣0.2x)≥0.4x﹣0.6;(70)x ﹣<1﹣;(71)2[x﹣(x﹣1)+2]<1﹣x;(72).(73)3x﹣7<5x﹣3;(74).(75)(76)(77)≤.(78)3x﹣9≤0;(79)2x﹣5<5x﹣2;(80)2(﹣3+x)>3(x+2);参考答案:(1)3(x+2)﹣8≥1﹣2(x﹣1),3x+6﹣8≥1﹣2x+2,3x+2x≥1+2﹣6+8,5x≥5,x≥1;(2)x ﹣≤2﹣,6x﹣3(x﹣1)≤12﹣2(x+2),6x﹣3x+3≤12﹣2x﹣4,3x+2x≤8﹣3,5x≤5,x≤1(3)2(x﹣1)+2<5﹣3(x+1)2x﹣2+2<5﹣3x﹣3,2x+3x<5﹣3+2﹣2,5x<2,x,(4),3(1+x)≤2(2x﹣1)+6,3+3x≤4x﹣2+6,3x﹣4x≤﹣2+6﹣3,﹣x≤1,x≥﹣1(5)去分母得,2x﹣3(x﹣1)<6,去括号得,2x﹣3x+3<6,移项、合并同类项得,﹣x<3,把x的系数化为1得,x>﹣3.(6)去分母得,24﹣2(3y﹣1)≥5(3+y),去括号得,24﹣6y+2≥15+5y,移项、合并同类项,﹣11y≥﹣11,把x的系数化为1得,y≤1(7)去分母得,6x﹣2(2x﹣1)≥3(2+x)﹣6去括号得,6x﹣4x+2>6+3x﹣6,移项得,6x﹣8x﹣3x>6﹣6﹣2,合并同类项得,﹣5x>﹣2,把x的系数化为1得,x <﹣,(8)去分母得,6(2x﹣1)﹣4(2x+5)>3(6x﹣1),去括号得,12x﹣6﹣8x﹣20>18x﹣3,移项得,12x﹣8x﹣18x>﹣3+6+20,合并同类项得,﹣14x>23,把x的系数化为1得,x <﹣,(9)分子与分母同时乘以10得,﹣1≤,去分母得,2(2x﹣1)﹣6≤3(5x+2),去括号得,4x﹣2﹣6≤15x+6,移项得,4x﹣15x≤6+2+6,合并同类项得,﹣11x≤14,把x的系数化为1得,x ≥﹣(10)移项合并得:﹣3x≤6,解得:x≥﹣2,(11)移项合并得:9x≤﹣6,解得:x ≤﹣,(12)去括号得:﹣8x﹣6≥8﹣4x+3,移项合并得:﹣4x≥17,解得:x ≤﹣(13)去分母得:4x﹣8>6x+2,移项合并得:﹣2x>10,解得:x<﹣5;(14)去分母得:2x﹣4x+1<3,移项合并得:﹣2x<2,解得:x>﹣1;(15)去分母得:12+3x﹣6≥8x+8,移项合并得:5x≥﹣2,解得:x ≤﹣(16)去括号得,2x﹣2≤﹣3+3x,移项得,2x﹣3x≤﹣3+2,合并同类项得,﹣x≤﹣1把x的系数化为1得,x≥1,(17)去分母得,3(2﹣3x)≤2x﹣1﹣6,去括号得,6﹣9x≤3x﹣7,移项得,﹣9x﹣3x≤﹣7﹣6,合并同类项得,﹣12x≤13,x的系数化为1得,x ≥﹣,(18)去括号得,10﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣10﹣6,合并同类项得,﹣5x≤﹣24把x的系数化为1得,x ≥﹣,(19)去分母得,2(1﹣5x)﹣24≤3(3﹣x)去括号得,2﹣10x﹣24≤9﹣3x,移项得,﹣10x+3x≤9﹣2+24,合并同类项得,﹣7x≤31,x的系数化为1得,x ≥﹣(20)﹣3x>2,解得:x <﹣;(21)去分母得:x>﹣2x﹣6,解得:x>﹣2;(22)去括号得:3x+3<4x﹣8﹣3,解得:x>14;(23)去分母得:2(2x﹣1)﹣3(5x+1)≤6,去括号得: 4x﹣2﹣15x﹣3≤6,解得: x≥﹣1(24)去分母得,3(x+4)≥﹣2(2x+1),去括号得,3x+12≥﹣4x﹣2,移项、合并同类项得,7x≥﹣14,把x的系数化为1得,x ≥﹣.(25)去分母得,4(x﹣1)﹣3(2x+5)>﹣24,去括号得,4x﹣4﹣6x﹣15>﹣24,移项、合并同类项得,﹣2x>﹣5,把x的系数化为1得,x <(26)移项得,5x﹣3x>2+4,合并同类项得,2x>6,把x的系数化为1得,x>3.(27)去括号得,8x﹣4>12x+6,移项得,8x﹣12x>6+4,合并同类项得,﹣4x>10,把x的系数化为1得,x<﹣.(28)去分母得,3(4x﹣1)≤1﹣5x,去括号得,12x﹣3≤1﹣5x,移项得,12x+5x≤1+3,合并同类项得,17x≤4,把x的系数化为1得,x ≤.(29)去分母得,2(5x+1)﹣24≥3(x﹣5),去括号得,10x+2﹣24≥3x﹣15,移项得,10x﹣3x≥﹣15﹣2+24,合并同类项得,7x≥7,把x的系数化为1得,x≥1(30)去括号得,4x﹣4+3≥3x,移项得,4x﹣3x≤4﹣3,合并同类项得,x≤1,(31)去分母得,3(2x﹣3)<x+1,去括号得,6x﹣9<x+1,移项得,6x﹣x<1+9,合并同类项得,5x<10,x的系数化为1得,x<2,(32)去分母得,2(2x﹣1)﹣(9x+2)≤6,去括号得,4x﹣2﹣9x﹣2≤6,移项得,4x﹣9x≤6+2+2,合并同类项得,﹣5x≤10,x的系数化为1得,x≥﹣2(33)3[x﹣2(x﹣2)]>6+3x解:去小括号,3[x﹣3x+4]>6+3x合并,3[﹣x+4]>6+3x去中括号,﹣3x+12>6+3x移项,合并,﹣6x>﹣6化系数为1,x<1.(34)解:去分母,2(2x﹣5)≤3(3x+1)﹣8x去括号,4x﹣10≤9x+3﹣8x移项合并,3x≤13化系数为1,x ≤.(35)解:去分母,3(2﹣x)﹣3(x﹣5)>2(﹣4x+1)+8 去括号,6﹣9x﹣3x+15>﹣8x+2+8移项合并,﹣4x>﹣11化系数为1,x <.(36)解:利用分数基本性质化小数分母为整数去括号,4x﹣1﹣10x+7>2﹣4x移项合并,﹣2x>﹣4化系数为1,x<2(37)去括号,得:3x+6﹣8≥1﹣2x+2,移项、合并同类项,得:5x≥5,系数化成1得:x≥1;(38)去分母,得:3(x﹣3)﹣6>2(x﹣5),去括号,得:3x﹣9﹣6>2x﹣10,移项、合并同类项得:x>5;(39)去分母,得:6x﹣3(x﹣1)≤12﹣2(x+2),去括号,得:6x﹣3x+3≤12﹣2x﹣4,移项、合并同类项得:5x≤5系数化成1得:x≤1;(40)去分母,得:6x﹣3x<6+x+8﹣2(x+1),去括号,得:6x﹣3x<6+x+8﹣2x﹣2,移项得:6x﹣3x﹣x+2x<6﹣2+8合并同类项得:4x<12系数化成1得:x<3(41)去括号,得6x﹣9≥2x﹣8,移项,得6x﹣2x≥﹣8+9,合并同类项,得4x≥1,两边同除以4,得x ≥,(42)去分母,得4﹣8x≥0,移项得﹣8x≥﹣4,两边同除以﹣8,得x ≤,(43)去括号,得7﹣14x>10﹣20x+15,移项,得﹣14x+20x>10+15﹣7,合并同类项得6x>18,两边同除以6得x>3,(44)去分母,得2x+6<﹣6x﹣3(x+10),去括号,得2x+6<﹣6x﹣3x﹣30,移项,得2x+6x+3x<﹣30﹣6,合并同类项,得11x<﹣36,两边同除以11得x <﹣(45)去分母得:2(2x+1)﹣(5﹣2x)<0,去括号得:4x+2﹣5+2x<0,移项合并得:6x<3,解得:x <,表示在数轴上,如图所示:;(46)去分母得:6﹣2(x﹣1)≤3(2x+3)﹣6x,去括号得:6﹣2x+2≤6x+9﹣6x,移项合并得:﹣2x≤1,解得:x ≥﹣(47)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(48)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1(49)去括号得4x﹣6﹣2x<0,移项、合并同类项得2x<6,系数化为1得x<3;这个不等式的解集在数轴上表示如图1:(50)去分母得3(2x﹣3)﹣4(x﹣2)≥0,去括号得6x﹣9﹣4x+8≥0,移项、合并同类项得2x≥1,系数化为1得x≥0.5(51)3x﹣2<﹣4(x﹣5);去括号得3x﹣2<﹣4x+20,移项得3x+4x<20+2合并同类项得7x<22未知项的系数化为1得x <,(52)﹣1<<2,去分母得﹣3<2﹣x<6,移项得﹣3﹣2<﹣x<6﹣2,合并同类项得﹣5<﹣x<4未知项的系数化为1得﹣4<x<5(53)去分母得,2(x﹣1)﹣3(x+4)>﹣12,去括号得,2x﹣2﹣3x﹣12>﹣12,移项、合并同类项得﹣x<2,化系数为1得x<﹣2.(54)去分母得,(x﹣2)﹣3(x﹣1)<3,去括号得,x﹣2﹣3x+3<3,移项、合并同类项得﹣2x<2,化系数为1得x>﹣120.解:(55)移项,得:5x﹣4x>﹣13﹣15,合并同类项,得:x>﹣28;(56)去分母,得:2(2x﹣1)≤3x﹣4,去括号,得:4x﹣2≤3x﹣4,移项,得:4x﹣3x≤﹣4+2,合并同类项,得:x≤﹣2(57)去括号得,28﹣7x﹣8+6x<4x,移项得,﹣7x+6x﹣4x<8﹣28,合并同类项得,﹣5x<﹣20,系数化为1得,x>4.(58)去括号得,10﹣4x+12≥2x﹣2,移项得,﹣4x﹣2x≥﹣2﹣10﹣12,合并同类项得,﹣6x≥﹣24,系数化为1得,x≤4.(59)去括号得,3x﹣6x+12>x﹣3x+9,移项得,x﹣6x﹣x+4x>9﹣12,合并同类项得,﹣3x>﹣3,系数化为1得,x<1.(60)去分母得,(2x﹣1)+3x﹣3+(1﹣2x)≤0,去括号得,2x﹣1+3x﹣3+1﹣2x≤0,移项得,2x+3x﹣2x≤3+1﹣1,合并同类项得,3x≤3,系数化为1得,x>1.(61)去分母得,﹣10y﹣5(y﹣1)≥20﹣2(y+2),去括号得,﹣10y﹣5y+5≥20﹣2y﹣4,移项得,﹣10y﹣5y+2y≥20﹣4﹣5,合并同类项得,﹣13y≥11,系数化为1得,y ≤﹣.(62)去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,系数化为1得,x<﹣9(63)由原不等式,得x2+x>x2﹣4x+4,移项、合并同类项,得5x>4,不等式两边同时除以5,得x >,即原不等式的解集是x >;(64)由原不等式,得﹣17x+1<12﹣10x,移项、合并同类项,得﹣7x<11,不等式两边同时除以﹣7(不等号的方向发生改变),得x >﹣,即原不等式的解集是x >﹣(65)去括号,得:3y﹣9<7y﹣4,移项,得:3y﹣7y<9﹣4,即﹣4y<5,;(66)﹣21<6﹣3x≤9两边同时减去6再除以﹣3,不等号的方向改变,得:﹣1≤x<9(67)去分母得,2(1﹣2x)≥4﹣3x,去括号得,2﹣4x≥4﹣3x,移项得,﹣4x+3x≥4﹣2,合并同类项得,﹣x≥2,化系数为1得,x≤﹣2;(68)去分母得,2(x+4)﹣3(3x﹣1)<6,去括号得,2x+8﹣9x+3<6,移项得,2x﹣9x<6﹣8﹣3,合并同类项得,﹣7x<﹣5,化系数为1得,x >;(69)去括号得,0.5x+3﹣0.6x≥0.4x﹣0.6,移项得,0.5x﹣0.6x﹣0.4x≥﹣0.6﹣3,合并同类项得,﹣0.5x≥﹣3.6,化系数为1得,x≤7.2.(70)去分母得,6x﹣3x﹣(x+8)<6﹣2(x+1),去括号得,6x﹣3x﹣x﹣8<6﹣2x﹣2,移项得,6x﹣3x﹣x+2x<6﹣2+8,合并同类项得,4x<12,化系数为1得,x<3;(71)去括号得,2x﹣2x+2+4<1﹣x,移项得,2x﹣2x+x<1﹣2﹣4,合并同类项得,x<﹣5;(72)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,化系数为1得,x≥﹣1(73)移项合并得:﹣2x<4,解得:x>﹣2;(74)去分母得:3(x+5)﹣2(2x+3)≥12,去括号得:3x+15﹣4x﹣6≥12,移项合并得:﹣x≥3,解得:x≤﹣3(75)原不等式的两边同时乘以6,得2x+6>21﹣3x,移项,合并同类项,得5x>15,不等式的两边同时除以5,得x>3,∴原不等式的解集是x>3.(76)原不等式的两边同时乘以6,得8x+2≤14﹣x,移项,合并同类项,得9x≤16,不等式的两边同时除以9,得x≤;所以,原不等式的解集是x≤;(77)原不等式的两边同时乘以6,得8﹣2x≤9,移项,合并同类项,得﹣2x≤1,不等式的两边同时除以﹣2,得x≥﹣,所以,原不等式的解集是x≥﹣(78)移项得,3x≤9,x的系数化为1得,x≤3.(79)移项得,2x﹣5x<﹣2+5,合并同类项得,﹣3x<3,把x的系数化为1得,x>﹣1.。

一元一次不等式(组)应用题及练习(含答案)

一元一次不等式(组)应用题及练习(含答案)

类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。

一元一次不等式知识归纳及例题

一元一次不等式知识归纳及例题

一元一次不等式知识点及例题1.用不等号>、<表示不等关系的式子,叫不等式。

如120>135 ,x <30 ,120<5x例题:用不等式表示下列数量关系。

(1)a 的一半与-3的和小于或等于1。

解:x 的5倍加16:5x +16其关系不大于:练习用不等式表示:x 的2倍与1的和大于-1为__________,y 的与t 的差的一半是负数为_________2.能使不等式成立的未知数的值,叫不等式的解。

例题:下列各数中,哪些是不等式x+2>5的解?那些不是?-3,-2,-1,0,1.5,2.5,3,3.5,5,73.一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集。

例题:两个不等式的解集分别为x <2和x ≦2,他们有什么不同?在数组上怎么表示他们的区别?练习:两个不等式的解集分别为x ≦1和x>1,他们有什么不同?在数组上怎么表示他们的区别?4.不等式的性质。

如果(1)a >b ,那么a+c >b+c,a-c >b-c.(2).如果a >b,并且c >0,那么ac >bc. (3).如果a >c ,并且c <0,那么ac <bc.例题: 指出下列各题中不等式的变形依据练习: 把下列不等式变成x>a x<a 的形式。

()的与的差的相反数不小于。

2a 3525-()的相反数的不大于的倍加。

317516x x ()的一半:112a a 与-的和:3123a +-()小于或等于:11231a +-≤()故:1231a +-≤()()的与的差:2352352a a -相反数:-()352a -不小于-:53525--≥-()a 故:---≥-()3525a ()的相反数的:31717x x --≤+17516x x 故:-≤+17516x x5不等号的两边都是整数,而且只含有一个未知数,未知数的最高次数是一次,这样的不等式叫做一元一次不等式。

例题判断下列属于一元一次不等式的是()10>8 2x+1>3y+2 121)1(2->+y y x 2 +3>5 判断下列哪些是一元一次方程,哪些是一元一次不等式x+1<6 x+8=2 x 30 x ≥90 x+1<6 x+2 x ≦3 13 x+1=6 6一元一次方程的解法解一元一次方程有哪些步骤⑴去分母——方程两边同乘以各分母的最小公倍数.⑵去括号——应用分配律、去括号法则,⑶移项—一般把含未知数的项移到方程的左边,常数项移到方程的右边。

完整版)一元一次不等式应用题分类专题(10种)

完整版)一元一次不等式应用题分类专题(10种)

完整版)一元一次不等式应用题分类专题(10种)1.一堆玩具要分给若干个小朋友,每人分3件,剩余4件;每人分4件,最后一人得到的玩具最多3件。

问小朋友的人数至少有多少人?2.用若干辆载重量为8吨的汽车运一批货物。

每辆汽车只装4吨时,剩下20吨货物;每辆汽车装满8吨时,最后一辆汽车不满也不空。

问有多少辆汽车?3.一次知识竞赛有15道题,对1题记8分,错1题扣4分,不答不得分。

XXX2道题没答,飞艇队全答了,两队的成绩都超过了90分。

问两队分别至少答对了几道题?4.在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得分不少于35分的射手为优胜者。

问至少要中靶多少次才能成为优胜者?5.某校校长暑假将带领该校“三好学生”去三峡旅游。

甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。

已知两家旅行社的全票价都是240元,问至少要多少名学生选甲旅行社比较好?6.XXX有存款600元,XXX有存款2000元。

从本月开始,XXX每月存款500元,XXX每月存款200元。

问到第几个月,XXX的存款能超过XXX的存款?7.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s。

为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?8.XXX家到学校2.1千米,现在需要在18分钟内走完这段路。

已知XXX步行速度为90米/分,跑步速度为210米/分。

问XXX至少需要跑几分钟?9.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方。

现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?10.某工人计划在15天里加工408个零件。

最初三天中每天加工24个。

问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?11.在1千克含有40克食盐的海水中,加入食盐,使其成为浓度不低于20%的食盐水。

一元一次不等式典型例题分类讲解

一元一次不等式典型例题分类讲解

类型一:不等式性质1.若,则的大小关系为( ) A .B .C .D .不能确定2.若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->- C .32x y +>+D .33x y> 类型二:比较大小1.若则的大小关系是( ) A . B . C . D .2.实数在数轴上对应的点如图所示,则,,的大小关系正确的是( ) A . B .C .D .类型三:解一元一次不等式 1.不等式的解集为 . 2.解不等式:2(x +)-1≤-x +9 类型四:不等式中字母的取值范围1.关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是2.已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________. (2)若0b >,且225a b +=,则a b +=____________.3.关于x 的不等式2x -a ≤-1的解集如图2所示,则a 的取值是( )。

A 、0B 、-3C 、-2D 、-1类型五:解一元一次不等式组1.不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .2.解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤0 1-1-2 (图2)类型六:解一元一次不等式组及解集在数轴上的表示 1.不等式组的解集在数轴上表示为( )A .B .C .D .2.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )类型七:不等式组的整数解1.不等式组2752312x xx x -<-⎧⎪⎨++>⎪⎩的整数解是.2.不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩的整数解是()A .1,2B .1,2,3C .331<<xD .0,1,23.解不等式组并写出该不等式组的最大整数解.4.解不等式组并求出所有整数解的和.类型八:已知不等式组的整数解,求字母的取值范围1.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .2.若不等式组有实数解,则实数的取值范围是( )1 2 3-1 0 -2 1 2 3-1 0 -2 1 2 3-1 0 -2 1 2 3-1 0 -2 1 2 01 20 C .1 2 0D .1 2A .B .C .D .3.若不等式组的解集为,则a 的取值范围为( ) A . a >0 B . a =0 C . a >4 D . a =44.如果一元一次不等式组3x x a >⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <类型九:利用不等式组的解集求值1.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .2.若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += . 3.若不等式组 , 的整数解是关于x 的方程的根,求a 的值 4.已知不等式组的解集为-1<x <2,则(m +n)2008=_______________.类型十:不等式应用题1:一般不等式应用题1.在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设初三(1)班有名同学,则这批树苗有多少棵?(用含的代数式表示). (2) 初三(1)班至少有多少名同学?最多有多少名2.北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)3.某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3分,负一场得分.(1)如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少?(2)假设比赛结束后,甲班得分是乙班的3倍,甲班获胜的场数不超过5场,且甲班获胜的场数多于乙班,请你求出甲班、乙班各胜了几场.4.已知一件文化衫价格为18元,一个书包的价格是一件文化衫的2倍还少6元.(1)求一个书包的价格是多少元?(2)某公司出资1800元,拿出不少于350元但不超过400元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?5. 1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为元/吨。

一元一次不等式练习题(含五篇)

一元一次不等式练习题(含五篇)

一元一次不等式练习题(含五篇)第一篇:一元一次不等式练习题一元一次不等式练习题解下列不等式,并把解集在数轴上表示出来:(1)3x-2>2x+1(2)3(x+3)<5(x-1)+7(3)2x-19<7x+3126(4)3x-2(9-x)>3(7+2x)-(11-6x).(5)2(3x-1)-3(4x+5)≤x-4(x-7)(6)2(x-1)-x>3(x-1)-3x-5.(7)3[y-2(y-7)]≤4yxx+1x-1x+43y+17y-32(y-2)-≥-2>1(8)15-(7+5x)≤2x+(5-3x).(9(10-1<+11+323515322x+1x-22x+1x-22x+1x-3->1(13)-(x+1)>-2(14)->-1(15)->2(12)23323-23--223-x)-(x+1)≤-2(18)-3>(16)-3>(17)(223(19)2x-x11x+1x-2x+1x-21-x≥-(20)4-2x≤--x(21)-≥-1(22)-≥-1 2222323417.求不等式8(1-x)≤5(4-x)+3的负整数解.一元一次不等式练习题解下列不等式,并把解集在数轴上表示出来:(1)3x-2>2x+1(2)3(x+3)<5(x-1)+7(3)2x-19<7x+3126(4)3x-2(9-x)>3(7+2x)-(11-6x).(5)2(3x-1)-3(4x+5)≤x-4(x-7)(6)2(x-1)-x>3(x-1)-3x-5.(7)3[y-2(y-7)]≤4yxx+1x-1x+43y+17y-32(y-2)-≥-2>1(8)15-(7+5x)≤2x+(5-3x).(9(10-1<+11+323515322x+1x-22x+1x-22x+1x-3->1(13)-(x+1)>-2(14)->-1(15)->2(12)23323-23--223-x)-(x+1)≤-2(18)-3>(16)-3>(17)(223(19)2x-x11x+1x-2x+1x-21-x≥-(20)4-2x≤--x(21)-≥-1(22)-≥-1 2222323417.求不等式8(1-x)≤5(4-x)+3的负整数解.第二篇:解一元一次不等式练习题1、判断下列式子是否一元一次不等式:(是的打√,否的打╳)(1)7>4(2)3x ≥ 2x+1(3)2>0(4)x+y>1(5)x2+3>2xx1、解下列的一元一次不等式(并在数轴上表示出来,自己画数轴)(1)x-5<0(2)x+3 ≥ 4(3)3x > 2x+1(4)-2x+3 >-3x+1(1)2x > 1(2)–2x ≤ 1(3)2x >-1(4)22x>2(5)-x>-2(6)-x>2 33(1)2(x+3)<7(2)3x-2(x+1)>0(3)3x-2(x-1)>0(4)-(x-1)>04、下列的一元一次不等式(1)xx+1xx2x+1x-2xx>1(3)->1(4)->1 >(2)+323223231、解下列不等式12(1)-x>-(2)-(x+1)>-2(3)-x>2+x232x+1x-2->-1(4)-(x+1)>-2(5)323-2x+1x-3->2(7)-3(6)-23> 2已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围第三篇:一元一次不等式和分式练习题复习题(1)1、已知2-a和3-2a的值的符号相反,那么a的取值范围是:2、.当m________时,不等式(2-m)x<8的解集为x>82-m.3、生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b小时,则____________< b <_____________.4、若干学生分宿舍,每间 4 人余 20 人,每间 8 人有一间不空也不满,则宿舍有()间.A、5B、6C、7D、85、x为何值时,代数式-6、设关于x的不等式组⎨⎧2x-m>2⎩3x-2m<-13(x+1)的值比代数式-3的值大.无解,求m的取值范围.7、某公司经营甲、乙两种商品,每件甲种商品进价12万元,•售价14.5万元.每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.•现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?8、当x时,分式1a1bxx-4x+2无意义;当x时,分式x-4x+2的值为零.9、已知-=3,求2a+3ab-2ba-2ab-b的值。

一元一次不等式组应用题汇总

一元一次不等式组应用题汇总

一元一次不等式组应用题汇总1、某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:沼气池修建费用(万元/个)可供使用户数(户/个)占地面积(m2/个)A型 3 20 48B型 2 3 6 政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.2、学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖二等奖三等奖1盒福娃和1枚徽章1盒福娃1枚徽章用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:(1)求一盒“福娃”和一枚徽章各多少元?(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?3.某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。

(1)若该超市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案。

4.惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.① 3名驾驶员开甲种货车,6名驾驶员开乙种货车,能否将救灾物资一次性地运往灾区?②要使救灾物资一次性地运往灾区,共有哪几种运货方案?5.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨. 现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.(1) 将这些货物一次性运到目的地,有几种租用货车的方案?(2) 若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?6. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.7.某超市销售甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.8. 某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。

一元一次不等式试题(大全5篇)

一元一次不等式试题(大全5篇)

一元一次不等式试题(大全5篇)第一篇:一元一次不等式试题10.(2012湖北随州4分)若不等式组⎨⎧x-b<0⎩x+a>0的解集为2A.-2,3B.2,-3C.3,-2D.-3,2【答案】A。

【考点】解一元一次不等式组【分析】∵解不等式x-b<0得:x<b,解不等式x+a>0得:x >-a,∴不等式组的解集是:-a<x<b,∵不等式组⎨⎧x-b<0 ⎩x+a>0解集为2<x<3,∴-a=2,b=3,即a=-2,b=3。

故选A。

11.(2012湖北孝感3分)若关于x的一元一次不等式组⎨范围是【】⎧x-a>0⎩1-2x>x-2无解,则a的取值A.a≥1B.a>1C.a≤-1D.a<-1【答案】A。

【考点】解一元一次不等式组。

【分析】解出两个不等式,再根据“大大小小找不到”的原则解答即可:⎧x-a>0①,由①得:x>a,由②得:x<1。

⎨1-2x>x-2②⎩∵不等式组无解,∴a≥1。

故选A。

12.(2012湖北襄阳3分)若不等式组⎨⎧1+x>a⎩2x-4≤0有解,则a的取值范围是【】A.a≤3B.a<3C.a<2D.a≤2【答案】B。

【考点】解一元一次不等式组。

【分析】先求出不等式的解集,再不等式组有解根据“同大取大,同小取小,大小小大中间找,大大小小解不了(无解)”即可得到关于a的不等式,求出a的取值范围即可:由1+x>a得,x>a﹣1;由2x-4≤0得,x≤2。

∵此不等式组有解,∴a﹣1<2,解得a<3。

故选B。

20.(2012四川凉山4分)设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<aB.b<c<aC.c<a<bD.b<a<c【答案】A。

30.(2012山东淄博4分)若a>b,则下列不等式不一定成立的是【】(A)a+m>b+m(B)a(m2+1)>b(m2+1)(C)-a2<-b2(D)a2>b2x+2⎧4+x>⎪32的解集为x<2,则a的取值范9.(2012湖北鄂州3分)若关于x的不等式组⎪⎨⎪x+a<0⎪⎩2围是▲.12.(2012四川广安3分)不等式2x+9≥13.(2012四川达州3分)若关于x、y的二元一次方程组⎨⎧2x+y=3k-1⎩x+2y=-2的解满足x+y>1,则k的取值范围是▲.3(x+2)的正整数解是14.(2012四川绵阳4分)如果关于x的不等式组:⎨⎧3x-a≥0⎩2x-b≤0,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有▲个。

一元一次不等式知识点及典型例题

一元一次不等式知识点及典型例题

一元一次不等式 考点一、不等式的概念 1、不等式:用不等号表示不等关系的式子,叫做不等式。

例 判断如下各式是否是一元一次不等式? word-x≥5 2x-y<02x 34x 5x22 x532、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数二 不等式的解 :的值,都叫做这个不等式的解。

三 不等式的解集:3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简 例 判断如下说法是否正确,为什么?称这个不等式的解集。

X=2 是不等式 x+3<2 的解。

X=2 是不等式 3x<7 的解。

不等式 3x<7 的4、求不等式的解集的过程,叫做解不等式。

解是 x<2。

X=3 是不等式 3x≥9 的解5、用数轴表示不等式的方法四 一元一次不等式:考点二、不等式根本性质例 判断如下各式是否是一元一次不等式1、不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以〔或除以〕同一个正数,不等号的方向不变。

-x<5 2x-y<02x 3x22 x 5 ≥3x3、不等式两边都乘以〔或除以〕同一个负数,不等号的方向改变。

例 五.不等式的根本性质问题4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运 例 1 指出如下各题中不等式的变形依据算改变。

②如果不等式乘以 0,那么不等号改为等号所以在题目中,要求出乘以的 数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的1〕由 3a>2 得 a> 2 32) 由 3+7>0 得 a>-7数就不等为 0,否如此不等式不成立; 考点三、一元一次不等式3〕由-5a<1 得 a>- 1 54)由 4a>3a+1 得 a>11、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是 1, 例 2 用>〞或<〞填空,并说明理由且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

解一元一次不等式专项练习50题(有答案)-不等式去分母的题

解一元一次不等式专项练习50题(有答案)-不等式去分母的题

解一元一次不等式专项练习50题(有答案)-不等式去分母的题1.解:去分母得 3(x+1)。

2x+6,去括号得 3x+3.2x+6,移项合并同类项得 x。

3,因此不等式的解集为 x。

3.2.解:去分母得 x+1-2(x-1) ≤ 2,化简得 -x ≤ -1,两边同乘-1得x ≥ 1,因此不等式的解集为x ≥ 1.3.解:去分母得 2(x+4)-6.3(3x-1),化简得 2x+8-6.9x-3,移项合并同类项得 -7x。

-5,化系数为1得 x < 5/7.4.解:去分母得 3x+6.-1,因此不等式的解集为 x。

-1.5.解:去分母得6x+2(x+1) ≤ 6-(x-14),化简得8x+8 ≤ 20-x,移项合并同类项得9x ≤ 12,因此不等式的解集为x ≤ 4/3.6.解:去分母得 2(2x-3)。

3(3x-2),化简得 4x-6.9x-6,移项合并同类项得 -5x。

0,化系数为1得 x < 0.7.解:去分母得 3(3x-4)+30 ≥ 2(x+2),化简得 9x-12+30 ≥2x+4,移项合并同类项得7x ≥ -14,化系数为1得x ≥ -2.8.解:将原不等式化简得:x-3<24-2(3-4x)。

x-3<24-6+8x。

x<21。

x>-3.9.解:将原不等式化简得:6(3x-1)<(10x+5)-6。

8x>=-16。

x>=-2.10.解:将原不等式化简得:3(x+1)-8>4(x-5)-8x。

3x+3-8>4x-20-8x。

7x>-15。

x>-15/7.11.解:将原不等式化简得:x+5-2<3x+2。

x-3x<2+2-5。

2x<-1。

x>1/2.12.解:将原不等式化简得:3(x+1)>=2(2x+1)+6。

3x+3>=4x+2+6。

x>=5。

x<=-5.13.解:将原不等式化简得:2(2x-1)-24>-3(x+4)。

不等式经典例题

不等式经典例题

不等式经典例题一、一元一次不等式例1:解不等式2x + 3>5x - 11. 移项- 将含有x的项移到一边,常数项移到另一边。

- 得到2x-5x > - 1 - 3。

2. 合并同类项- 计算得-3x>-4。

3. 求解x的范围- 两边同时除以-3,因为除以一个负数,不等式要变号。

- 所以x <(4)/(3)。

二、一元一次不等式组例2:解不等式组x + 3>2x - 1 2x - 1≥(1)/(2)x1. 解第一个不等式x + 3>2x - 1- 移项可得x-2x > - 1 - 3。

- 合并同类项得-x>-4。

- 两边同时除以-1,不等式变号,解得x < 4。

2. 解第二个不等式2x - 1≥(1)/(2)x- 移项得到2x-(1)/(2)x≥1。

- 合并同类项(3)/(2)x≥1。

- 两边同时乘以(2)/(3),解得x≥(2)/(3)。

3. 综合两个不等式的解- 所以不等式组的解集为(2)/(3)≤x < 4。

三、一元二次不等式例3:解不等式x^2-3x + 2>01. 因式分解- 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)>0。

2. 分析不等式的解- 要使(x - 1)(x - 2)>0成立,则有两种情况:- 情况一:x - 1>0 x - 2>0,即x>1 x>2,取交集得x>2。

- 情况二:x - 1<0 x - 2<0,即x<1 x<2,取交集得x<1。

- 所以不等式的解集为x < 1或x>2。

中小学数学_一元一次不等式应用题 答案解析100道【经典数学资料系列】

中小学数学_一元一次不等式应用题 答案解析100道【经典数学资料系列】

一元一次不等式(组)应用题练习及答案1.修筑高速公路经过某村,需搬迁一批农户,为了节约土地资源和保持环境,政府统一规划搬迁建房区域,规划要求区域内绿色环境占地面积不得低于区域总面积的20%,若搬迁农民建房每户占地150m2,则绿色环境面积还占总面积的40%;政府又鼓励其他有积蓄的农户到规划区域建房,这样又有20户加入建房,若仍以每户占地150m2计算,则这时绿色环境面积只占总面积的15%,为了符合规划要求,又需要退出部分农户。

(1)最初需搬迁的农户有多少户?政府规划的建房区域总面积是多少?(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需要退出农户几户?2.某公司为了扩大经营,决定购进6台机器用于生产某种活塞。

现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。

经过预算,本次购买机器所耗资金不能超过34万元。

甲乙价格(万元/台)7 5每台日产量(个)100 60(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?3.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若使总收入不低于15.6万,则最多只能安排多少人种甲种蔬菜?4.小杰到学校食堂买饭,看到A、B两窗口前面排队的人一样多(设为a人,a>8),就站到A窗口队伍的后面. 过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.(1)此时,若小杰继续在A窗口排队,则他到达窗口所花的时间是多少(用含a的代数式表示)?(2)此时,若小杰迅速从A窗口队伍转移到B窗口队伍后面重新排队,且到达B窗口所花的时间比继续在A窗口排队到达A窗口所花的时间少,求a的取值范围(不考虑其他因素).AB5.小明在上午8:20分步行出发去春游,10:20小刚在同一地骑自行车出发,已知小明每小时走4千米,小刚要在11点前追上小明,小刚的速度应至少是多少?6.某厂原定计划年产某种机器1000台,现在改进了技术,准备力争提前超额完成,但开始的三个月内,由于工人不熟悉新技术,只生产100台机器,问以后每个月至少要生产多少台?7.学校图书馆有15万册图书需要搬迁,原准备每天在一个班级的劳动课上,安排一个小组同学帮助搬运图书,两天共搬了1.8万册。

列一元一次不等式或不等式组解应用题

列一元一次不等式或不等式组解应用题

列一元一次不等式组解应用题题型一:列关于x的不等式组a<x<b的形式(例如分物品,分房间等问题)关键是找出a和b的值例1 一堆玩具分给若干个小朋友,若每人分3件,则剩余3件,若每人分5件,则每人都分到玩具,但有一个小朋友的玩具不足3件,则共有多少个小朋友?练习:1为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?2、实验学校为初一寄宿学生安排宿舍,若每间4人,则有20人无法安排,若每间8人,则有一间不空也不满,求宿舍间数和寄宿学生人数。

3、小记者团有48人要在某招待所住宿,招待所一楼没住客的客房比二楼少5间,如果全部住一楼,每间住5人,则住不满;每间住4人,则不够住,如果全部住在二楼,每间住4人,则住不满;每间住3人,则不够住。

招待所一楼和二楼各有几间尚未住客的客房?题型二:与二元一次方程组知识结合的题目(一般需要加入x≥0的条件)例2 某公司为了扩大经营,决定购进6台机器用于生产某种活塞。

现有甲、乙两种机器供选择,其中每种机34万元。

(1(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?练习:1、某公司为了扩大经营,决定购进5台机器用于生产某种活塞。

现有甲、乙两种机器供选择,其中每经过预算,本次购买机器所耗资金不能超过22万元。

(1)按该公司要求可以有几种购买方案?(2)若该公司购进的5台机器的日生产能力不能低于280个,那么为了节约资金应选择哪种方案?2、某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.题型三:有A、B两种物品,列不等式组的依据:以A、B为依据列不等式组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设这批计算机有X台,列不等式得: 5500×60+5000(X-60)>550000 解得 X>104
根据实际X应为正整数,所以x最少有105台, 答:这批计算机最少有105台.
一元一次不等式的应用
6、一次爆破中,用1米的导火索来引爆炸药,导 火索的燃烧速度为0.5厘米/秒.点燃导火索后, 引爆者至少需以多快的速度才能跑到600米 以外(包括600米)的安全区域?
⑤将14.8℃的冷水加入电热淋浴器内, 淋浴器开始加热,每分钟可使水温上升1.2℃。 现要求热水温度不超过40℃, 设通电时间最长x分钟,水温才适宜, 请你写出x满足的关系式。
14.81.2x40
一元一次不等式的应用
• 1、爸爸今年36岁,儿子今年8岁,如果x年 后,爸爸的年龄小于儿子年龄的3倍,那么x 的范围为何?
一元一次不等式的应用
1、解一元一次不等式包括哪些步骤,应注意什么?
(1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)系数化为1。
在(1)(5)这两个步骤要特别注意不等式两边 是同乘以(除以)的数是正数还是负数,如果是负 数不等号必须改变方向。
2、列一元一次方程解应用题包括哪些步骤?
2、小明家的客厅长5m,宽4m,现在想购买长 为80cm的正方形地板砖把地面铺满,至少需 要购买多少这样的地板砖?
• 解:设需要x块这样的地板砖,由题意得: 每块地板砖的面积是__0_.6_4__平方米,客厅பைடு நூலகம்面
的面积是 __2_0__平方米,从而有 ____0_._6_4_x_≥_2_0_______
解这个不等式,得
____x_≥_3_1_.5_2_____ 因为 _3_1_.2_5_=__3_1_+_0_.2_5_,而x表示地板砖的数量,
所以x至少是_____32
一元一次不等式的应用
3、在一次知识竞赛中,有10道必答题。 答对一题得10分,答错一题扣5分,不答得0 分。玲玲有一道题没回答,成绩仍然不低于 60分,你认为她最多答对了几道题?
2
的和不大于3
复习:用不等式表示
①a的绝对值是非负数 a 0
②x不大于y的2倍
x 2y
③-4与x的 1
2
的和不大于3
④不等式 x 3 的正整数解分别是 .
⑤将14.8℃的冷水加入电热淋浴器内, 淋浴器开始加热,每分钟可使水温上升1.2℃。 现要求热水温度不超过40℃, 设通电时间最长x分钟,水温才适宜, 请你写出x满足的关系式。
④不等式 x 3 的正整数解分别是 .
x=1,x=2,x=3
⑤将14.8℃的冷水加入电热淋浴器内, 淋浴器开始加热,每分钟可使水温上升1.2℃。 现要求热水温度不超过40℃, 设通电时间最长x分钟,水温才适宜, 请你写出x满足的关系式。
④不等式 x 3 的正整数解分别是 .
x=1,x=2,x=3
3、在一次知识竞赛中,有10道必答题。答对 一题得10分,答错一题扣5分,不答得0分。玲 玲有一道题没回答,成绩仍然不低于60分,你 认为她最多答对了几道题?
解:设玲玲答对的题数为 x ,由于她有一题没
有答,所以答错的题数为 9-x 。根据题意,得
10x-5(9-x) ≥60
解这个不等式得
x ≥7
根据题意,x必须为不大于20的整数 所以这些学生可能答对题数为12,13, 14,15,16,17,18,19,20道。
一元一次不等式的应用
4、小兰准备用30元买钢笔和笔记本,已知一 支钢笔4.5元,一本笔记本3元,如果她钢 笔和笔记本共买了8件,每一种至少买一件, 则她有多少种购买方案?
4、小兰准备用30元买钢笔和笔记本,已知一支钢
6、一次爆破中,用1米的导火索来引爆炸药,导火索的 燃烧速度为0.5厘米/秒.点燃导火索后,引爆者至少需 以多快的速度才能跑到600米以外(包括600米)的安全 区域?
解:设引爆者的速度为x米/秒.
不等量关系为:
引爆者的速度×时间≥600
x 1 600 解方程得:x≥3(米/秒) 0.005
答:引爆者至少要以3(米/秒)的速度才能跑到600米以 外的安全区域.
答:她至少答对了 7 道题。
在“科学与艺术”知识竞赛的预选赛中共有 20道题,对于每一道题,答对得10分,答错或 不答扣5分,总得分不少于80分者通过预选赛, 育才中学25名学生通过了预选赛,他们分别可 能答对了多少道题?
解:设他们分别可能答对了x道题
10x - 5(20-x)≥80
解得:x≥12
笔4.5元,一本笔记本3元,如果她钢笔和笔记本共
买了8件,每一种至少买一件,则她有多少种购买方
案?
解:设他可以买x支钢笔,则笔记本为(8-x)个, 由题意,得 4.5x+3(8-x)≤30 解得 x≤4 ∵X为正整数, ∴X=4或3或2或1
答:小兰有4种购买方案, ①4支钢笔和4本笔记本, ② 3支钢笔和5本笔记,③ 2支钢笔和6本笔记, ④ 1支钢笔和7本笔记.
一元一次不等式的应用
5、电脑公司销售一批计算机,第一个月以每 台5500元的价格出售60台,第二个月其降 价后以每台5000元的价格将这批计算机全 部售出,销售款总量超过55万元。这批计 算机最少有多少台?
5、电脑公司销售一批计算机,第一个月以每台
5500元的价格出售60台,第二个月其降价后以每台 5000元的价格将这批计算机全部售出,销售款总量 超过55万元。这批计算机最少有多少台?
1、审题:弄清题意和数量关系;
2、设未知数; 3、由相等关系列出方程; 4、解方程; 5、写出符合题意的答案(包括单位名称)。
复习:用不等式表示
①a的绝对值是非负数
②x不大于y的2倍
③-4与x的 1
2
的和不大于3
复习:用不等式表示
①a的绝对值是非负数 a 0
②x不大于y的2倍
③-4与x的 1
一元一次不等式的应用
• 1、爸爸今年36岁,儿子今年8岁,如果x年 后,爸爸的年龄小于儿子年龄的3倍,那么x 的范围为何?
解:由题意可得
36+x<3(8+x)
解这个不等式,得
x>6
答:6年以后就满足爸爸的年龄小于儿子年 龄的3倍。
一元一次不等式的应用
• 2、小明家的客厅长6m,宽4m,现在想购买 长为80cm的正方形地板砖把地面铺满,至少 需要购买多少这样的地板砖?
相关文档
最新文档