spass方差分析实验报告
SPSS的方差分析实验报告
实验报告
2 选择菜单:【Analyze】→【Compare Means】→【One-Way ANOVA】,将“月销售额”作为观测变量选入【Dependent List】,将“促销方式”作为控制变量选入【Factor】,选择按钮“Option”,打开对话框,选择方差齐性检验,观测变量的基本统计量,选择输出个水平下观测变量均值的折线图
3 选择“Post Hoc”按钮,选择方差相同和方差不同情况下的多重比较的检验方法,如图所示第三题:
1 根据题目建立某商品在不同地区和不同日期的销售数据的文件,如图
2 选择菜单:【Analyze】→【General Linear Model】→【Univariate】,将“销售量”选入【Dependent Variable】,将“地区和日期”选入【Fixed Factor(s)】,选择“Options”,在【Display】中选择“Homogeneity tests”。
如图所示
四、实验结果及分析(最好有截图):
第一题:
(1) 0.000<0.005拒绝原假设.说明不同的促销方式是对该类商品销售量的增长有显著影响
(2) 特价销售的促销方式好
(3)
第三题:
(1) 建立数据文件如图
(2)地区0.313>0.05,接受原假设。
地区对销售量没有显著性影响
日期0.254>0.05,接受原假设。
日期对销售量没有显著性影响
地区和日期0.000<0.05,拒绝原假设。
地区和日期的交互作用对销售量有显著性影响。
spss 方差分析(多因素方差分析)实验报告
大学经济管理学院学生实验报告实验课程名称:统计软件及应用专业工商管理班级学号姓名成绩实验地点实验性质:演示性 验证性综合性设计性实验项目名称方差分析(多因素方差分析)指导教师一、实验目的掌握利用SPSS 进行单因素方差分析、多因素方差分析的基本方法,并能够解释软件运行结果。
二、实验内容及步骤(包括实验案例及基本操作步骤)实验案例:为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下日平均销售量数据。
销售量日期周一至周三周四至周五周末地区一5000 6000 4000 6000 8000 3000 4000 7000 5000地区二700080008000500050006000500060004000地区三300020004000600060005000800090006000(1)选择恰当的数据组织方式建立关于上述数据的SPSS数据文件。
在SPSS输入数据。
(2)利用多因素方差分析法,分析不同地区和不同日期对该商品的销售是否产生了显著影响。
1. 选择菜单Analyze,General Linear Model,Univariate;2. 指定观测变量销售额到Dependant Variable框中;3. 指定固定效应的控制变量到Fixed Factors框中,4. OK,得到分析结果。
(3)地区和日期是否对该商品的销售产生了交互影响?若没有显著的交互影响,则试建立非饱和模型进行分析,并与饱和模型进行对比。
三、实验结论(包括SPSS输出结果及分析解释)SPSS输出的多因素方差分析的饱和模型分析:表的第一列是对观测变量总变差分解的说明;第二列是观测变量变差分解的结果;第三列是自由度;第四列是方差;第五列是F检验统计量的观测值;第六列是检验统计量的概率P-值。
F日期,,F地区,F日期*地区概率P-值分别为0.254,0.313,0.000。
如果显著性水平α为0.05,由于F日期、,F地区大于显著性水平α,所以不应拒绝原假设,不同地区和不同日期对该商品没有显著性影响。
SPSS实验报告4
《统计分析软件》实验报告实验序号:B0901153-4实验项目名称:方差分析学号姓名专业、班级实验地点指导教师时间一、实验目的及要求实验目的:(1)加深对方差分析基本思想的进一步理解;(2)熟悉F检验方法和主要的方差分析方法。
实验要求:(1)单因素方差分析过程;(2)双因素方差分析过程;(3)有交互作用的双因素方差分析过程;(4)掌握各个分析过程的基本步骤、主要选择项的含义,输出结果的信息含义。
二、实验设备(环境)及要求微型计算机,SPSS、EViews等统计分析软件三、实验内容与数据来源实验内容和数据根据《SPSS实验上机题》实验四及《试验4补充题》四、实验步骤与结果1、(1)数据中的因变量是学生独立思考水平提高的成绩,因素是学生采用的学习方式。
(2)建立数据文件首先在变量视图中定义变量的属性,总共有三个变量,分别为方式、提高的成绩,均定义为数值型的变量:再在数据视图中输入变量值:单击“分析”→“比较均值”→“单因素”,再出现的对话框中,选择变量“学生提高的成绩”为“因变量列表”,选择“方式”为“因子”单击“对比”,选择“多项式”,然后点击“继续”单击“两两比较”,选择“LSD”,然后点击“继续”单击“选项”,选择“方差同质性检验”以及“均值图”,然后单击“继续”最后单击“确定”,得出下列结果结论:(1)、方差齐次性检验表:输出的显著性为0.307,远大于0.05,因此我们认为各组的总体方差相等。
(2)、方差分析表:总离差平方和为1156.800,组间离差平方和为1069.400,组内离差平方和为87.400,在组间离差平方和中可以被线性解释的部分为396.050;方差检验F=165.182,对应的显著性为0,小于显著性水平0.05,因此我们认为3组中至少有一组与另一组存在显著性差异。
(3)、多重比较表(LSD法):由表可知,三组互相的显著性水平都为0,小于0.05,因此说明这几组之间的差异性显著。
SPSS实验3-单因素方差分析
SPSS作业3:方差分析不同学校专业类别对报名人数的分析(一)单因素方差分析基本操作:(1)选择菜单Analyz e-Compare means―One-Way ANOVA;(2)分别选择“报名人数”“专业类别”和“报名人数”“学校”做分析,结果如下:a.专业类别对报名人数的单因素方差分析结果b.不同学校对报名人数的单因素方差分析结果1分析:提出零假设―选择检验统计量―计算检验统计量的观测值及概率p值―给出显著性水平a,做出决策。
零假设:不同专业类别对报名人数没有显著影响;备择假设:不同专业类别对报名人数有显著影响。
图a是专业类别对报名人数的单因素方差分析结果。
可以看出,报名人数的总离差平方和为2.617E8;如果仅考虑专业类别单个因素的影响,则报名人数总变差中,专业类别可解释的变差为5.866E7,抽样误差引起的变差为2.030E8,他们的方差分别为1.955E7和1450230.159,相除所得的F统计量为13.483,对应的p值近似为0。
如果显著水平为a=0.05,由于p值小于a,则应拒绝原假设,认为不同专业类别对报名人数产生了显著影响,它对报名人数的影响效应应不全为0。
零假设:不同学校对报名人数没有显著影响:备择假设:不同学校对报名人数有显著影响。
图b是不同学校对报名人数的单因素方差分析结果。
可以看出,报名人数的总离差平方和为2.617E8;如果仅考虑学校单个因素的影响,则报名人数总变差中,不同学校可解释的变差为9.265E7,抽样误差引起的变差为1.690E8,他们的方差分别为5450179.739和1341587.302,相除所得的F统计量为4.062,对应的p值近似为0。
如果显著水平为a=0.05,由于p值小于a,则应拒绝原假设,认为不同学校对报名人数产生了显著影响,它对报名人数的影响效应应不全为0。
(二)单因素方差的进一步分析基本操作:在Optio n、Post Hoc、Contrasts框中,选择所需要的计算值,结果如下:不同专业类别对报名人数的基本描述统计量及95%置信区间2分析:在4中不同专业类别中,各有36个样本,其中,经管类的报名人数最多,其次是理工类,然后是艺术类,最少的是文学类。
SPSS多因素方差分析报告
体育统计与SPSS读书笔记(八)—多因素方差分析(1)具有两个或两个以上因素的方差分析称为多因素方差分析。
多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。
如果再加上性别上的因素,那就成了三因素了。
如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。
如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。
下面用例子的形式来说说多因素方差分析的运用。
还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。
形成年级和不同教学法班级双因素。
分析:1. 根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据),年级不同教学方法的班级定性班定量班定性定量班五年级(班级每个人)(班级每个人)(班级每个人)初中二年级(班级每个人)(班级每个人)(班级每个人)高中二年级(班级每个人)(班级每个人)(班级每个人)2. 因为有重复数据,所以存在在数据交互效应的可能。
我们来看看交效应的含义:如果在A因素的不同水平上, B 因素对因变量的影响不同, 则说明A、B两因素间存在交互作用。
交互作用是多因素实验分析的一个非常重要的内容。
如因素间存在交互作用而又被忽视, 则常会掩盖因素的主效应的显著性, 另一方面, 如果对因变量Y, 因素A与B 之间存在交互作用则已说明这两个因素都Y 对有影响, 而不管其主效应是否具有显著性。
在统计模型中考虑交互作用, 是系统论思想在统计方法中的反映。
在大多数场合交互作用的信息比主效应的信息更为有用。
根据上面的判断。
根据上面的说法,我也无法判断是否有交互作用,不像身高和体重那么直接。
spss实验报告---方差分析
实验报告——(方差分析)一、实验目的熟练使用SPSS软件进行方差分析。
学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。
二、实验内容1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.53.01.82.33.41.92.43.01.82.43.41.8 3.32.03.5SPSS计算结果:在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。
零假设:各水平下总体方差没有显著差异。
相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。
从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。
2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。
(1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题?SPSS计算结果:(1)此为多因素方差分析相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。
不同地区贡献的离差平方和为7149.781,均方为3574.891;不同广告贡献的离差平方和为7625.708,均方为3812.854。
说明不同广告和不同地区对汽车销量都有显著性影响。
广告对于销量的影响略大于地区对销量的影响。
从地区这个变量比较:第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.028,低于显著性水平,二、三组均值差异显著。
方差分析实验报告
实验报告方差分析学院:参赛队员:参赛队员: 参赛队员: 指导老师:目录一、实验目的 (6)1.了解方差分析的基本容; (6)2.了解单因素方差分析; (6)3.了解多因素方差分析; (6)4.学会运用spss软件求解问题; (6)5.加深理论与实践相结合的能力。
(6)二、实验环境 (6)三、实验方法 (7)1. 单因素方差分析; (7)2. 多因素方差分析。
(7)四、实验过程 (7)问题一: (7)1.1实验过程 (7)1.1.1输入数据,数据处理; (7)1.1.2单因素方差分析 (8)1.2输出结果 (9)1.3结果分析 (10)1.3.1描述 (10)1.3.2方差性检验 (10)1.3.3单因素方差分析 (10)问题二: (10)2.1实验步骤 (11)2.1.1命名变量 (11)2.1.2导入数据 (11)2.1.3单因素方差分析 (12)2.1.4输出结果 (14)2.2结果分析 (15)2.2.1描述 (15)2.2.2方差性检验 (15)2.2.3单因素方差分析 (15)问题三: (15)3.1提出假设 (16)3.2实验步骤 (16)3.2.1数据分组编号 (16)3.2.2多因素方差分析 (17)3.2.3输出结果 (22)3.3结果分析 (23)五、实验总结 (23)方差分析一、实验目的1.了解方差分析的基本容;2.了解单因素方差分析;3.了解多因素方差分析;4.学会运用spss软件求解问题;5.加深理论与实践相结合的能力。
二、实验环境Spss、office三、实验方法1. 单因素方差分析;2. 多因素方差分析。
四、实验过程问题一:用二氧化硒50mg对大鼠染尘后不同时期全肺湿重的变化见下表,试比较染尘后1个月,3个月,6个月,三个时期的全肺湿重有无差别。
1个月3个月6个月3.4 3.4 3.63.64.4 4.44.3 3.45.14.1 4.2 54.2 4.75.53.34.2 4.71.1实验过程1.1.1输入数据,数据处理;1.1.2单因素方差分析选择:分析比较均值单因素AVONA;将变量大鼠全肺湿重放置因变量列表栏中,月份放置因子栏中;两两比较中,勾选最小显著差异法;选项中,勾选描述性,方差同质性检验,welch;1.3.1描述由描述可知,一月份的均值为3.817,标准差为0.4355,三月份的均值为4.050,标准差为0.5357,六月份的均值为4.717,标准差为0.66161.3.2方差性检验由方差齐性检验可知,Sig值=0.826>0.05,说明各组的方差在α=0.05水平上没有显著性差异,即方差具有齐次性1.3.3单因素方差分析根据输出的p值为0.034可以看出,小于0.05,大于0.01,因此拒绝原假设,染尘后1个月,3个月,6个月,三个时期的全肺湿重有无差别有显著性意义,结论是染尘后1个月,3个月,6个月,三个时期的全肺湿重有差别,一个月大鼠的全肺湿重最小,三个月其次,六个月大鼠的全肺湿重最大。
SPSS——单因素方差分析报告详解
SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。
[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。
表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。
图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。
或者打开已存在的数据文件“data1.sav”。
2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。
图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。
本例选择“幼虫”。
因素变量:选择一个因素变量进入“Factor”框中。
本例选择“品种”。
4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。
该对话框用于设置均值的多项式比较。
图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。
SPSS的方差分析实验报告
实验报告
2 选择菜单:【Analyze】→【Compare Means】→【One-Way ANOVA】,将“月销售额”作为观测变量选入【Dependent List】,将“促销方式”作为控制变量选入【Factor】,选择按钮“Option”,打开对话框,选择方差齐性检验,观测变量的基本统计量,选择输出个水平下观测变量均值的折线图
3 选择“Post Hoc”按钮,选择方差相同和方差不同情况下的多重比较的检验方法,如图所示
第三题:
1 根据题目建立某商品在不同地区和不同日期的销售数据的文件,如图
2 选择菜单:【Analyze】→【General Linear Model】→【Univariate】,将“销售量”选入【Dependent Variable】,将“地区和日期”选入【Fixed Factor(s)】,选择“Options”,在【Display】中选择“Homogeneity tests”。
如图所示
四、实验结果及分析(最好有截图):
第一题:
(1) <拒绝原假设.说明不同的促销方式是对该类商品销售量的增长有显著影响
(2) 特价销售的促销方式好
(3)
第三题:
(1) 建立数据文件如图
(2)地区>,接受原假设。
地区对销售量没有显著性影响
日期>,接受原假设。
日期对销售量没有显著性影响
地区和日期<,拒绝原假设。
地区和日期的交互作用对销售量有显著性影响。
SPSS的方差分析实验报告
第三题:
1根据题目建立某商品在不同地区和不同日期的销售数据的文件,如图
2 选择菜单:【Analyze】→【General Linear Model】→【Univariate】,将“销售量”选入【Dependent Variable】,将“地区和日期”选入【Fixed Factor(s)】,选择“Options”,在【Display】中选择“Homogeneity tests”。如图所示
地区和日期0.000<0.05,拒绝原假设。地区和日期的交互作用对销售量有显著性影响
(3)是否任意两种促销方式的效果之间都存在显著差异?
3. 为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下平均销售量数据
销售量
日期
周一到周三
周四到周五
周末
地区一
5000
6000
4000
6000
8000
3000
4000
7000
5000
地区二
7000
5000
5000
8000
5000
6000
8000
2 选择菜单:【Analyze】→【Compare Means】→【One-Way ANOVA】,将“月销售额”作为观测变量选入【Dependent List】,将“促销方式”作为控制变量选入【Factor】,选择按钮“Option”,打开对话框,选择方差齐性检验,观测变量的基本统计量,选择输出个水平下观测变量均值的折:
(1) 0.000<0.005拒绝原假设.说明不同的促销方式是对该类商品销售量的增长有显著影响
(2) 特价销售的促销方式好
spss方差分析报告报告材料
方差分析是用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。
在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。
通常是比较不同实验条件下样本均值间的差异。
例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。
方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。
用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。
总偏差平方和 SS t = SS b + SS w。
组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。
另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。
那么,MS b>>MS w(远远大于)。
MS b/MS w比值构成F分布。
用F值与其临界值比较,推断各样本是否来自相同的总体。
方差分析的假设检验假设有m个样本,如果原假设H0:样本均数都相同即μ1=μ2=μ3=…=μm=μ,m个样本有共同的方差。
SPSS上机实验报告6 多因素方差分析
SPSS上机实验报告(6)学生姓名学号成绩上机实验题目考勤上机表现实验时间一、实验目的:1.熟悉并掌握单因素、双因素方差分析,univarate协方差分析的SPSS操作,其他较简单的方差分析问题,多元方差分析,重复测量的方差分析的具体操作。
2、对分析的结果能给出统计学的解释二、实验内容:1、熟悉方差分析菜单界面,掌握方差分析的操作。
2、对得到的结果进行解释。
3、掌握不同实验设计所使用的统计方法。
4、实际应用1)p151的三个实例,根据提示作相应的方差分析2)P153(5、6、7、8)题建立数据文件,进行方差分析三、实验要求:1、根据上机报告模板详细书写上机报告2、作业发到邮箱*****************四第七题第1步分析:需要研究不同包装和不同摆放位置对销量的影响。
这是一个多因素(双因素)方差分析问题。
第2步数据组织:如上表的变量名组织成4列数据。
第3步变量设置:按“分析|一般线性模型| 单变量”的步骤打开单变量对话框。
并将“销量”变量移入因变量框中,将“casing”和“摆放位置”移入固定因子中,如下图:第4步选择建立多因素方差分析的模型种类:打开“模型”对话框,本例用默认的全因子模型。
第5步以图形方式展示交互效果:设置方式如下图第6步设置方差齐性检验:由于方差分析要求不同casing数据方差相等,故应进行方差齐性检验,单击“选项”按钮,选中“方差齐性检验”,显著性水平设为默认值0.05。
75步设置控制变量的多重比较分析:单击“两两比较”按钮,如下图,在其中选出需要进行比较分析的控制变量,这里选“casing”,再选择一种方差相等时的检验模型,如LSD。
第8步对控制变量各个水平上的观察变量的差异进行对比检验:选择“对比”对话框,对两种因素均进行对比分析,用“简单”方法,并以最后一个水平的观察变量均值为标准。
五、程序运行结果:第七题运行结果UNIANOVA主体间因子值标签N包装1 A1 92 A2 93 A3 9摆放位置1 B1 92 B2 93 B3 9误差方差等同性的 Levene 检验a因变量: 销量F df1 df2 Sig..754 8 18 .646检验零假设,即在所有组中因变量的误差方差均相等。
SPSS重复测量地多因素方差分析报告
SPSS重复测量地多因素方差分析报告
一、实验结果的总体分析
1、总体数据及描述性统计
首先我们来分析实验的总体数据,主要包括对被试者的一般信息及参
与实验的各个变量的描述统计及分布情况。
基本信息:本次实验共有30名参与者,其平均年龄为31岁。
其中男
性占比为53.3,女性占比为46.7%。
变量的描述性统计:检测变量的标准差为0.614,最小值为1.4,最
大值为3.0,平均值为2.2,中位数为2.2,偏度为0.00,峰度为0.61变量的分布情况:根据变量分布图可以看出,变量的分布情况接近正
态分布。
2、数据检验
完成数据收集后需要对数据进行检验,以确保数据的准确性和可靠性。
检验的方法包括残差检验、异方差分析以及 Shapiro-Wilk 检验等。
经过
检验后,发现所有数据满足检验条件,可以用于进一步的分析。
二、多因素重复测量方差分析
本次实验使用多因素重复测量方差分析,用来检验被试者对不同环境
条件下的反应差异。
由于本次实验中因素为环境条件A、B、C,为三因素
实验,所以本次实验的实验设计为3X3实验设计。
1、方差分析表
计算完毕后,计算结果如下所示:。
SPSS统计实验报告多因素方差分析
SPSS统计实验报告多因素⽅差分析班级期末成绩教师等级1 87 1 1 96 1 1 80 1 1 90 1 1 882 1 70 21 67 22 72 2 2 70 2 2 75 2 2 86 2 2 773 2 68 32 65 33 61 3 3 93 1 3 88 1 3 80 3 3 85 3 3 85 3 3 80 3多因素⽅差分析期末成绩是否受班级不同、教师等级⽔平的不同⽽出现显著性差异?并对影响因素做出⽐较。
表中可看出⽅差模型对应的⾃由度为5,均⽅=188.488,F检验统计量的观测值=2.748,P值=0.059⼤于显著性⽔平0.05,即说明模型不存在显著性差异。
观测变量(期末成绩)总变差平⽅和=1971.238,总共被分解为四部分。
1)班级不同引起的变差=95.8802)教师等级不同引起的变差=527.4483)教师等级和班级不同交互作⽤引起的变差=24.0484)随机因素引起的变差=1028.800.教师等级的P值=0.045班级的P值=0.513交互作⽤的P值=0.563,交互作⽤的P值⼤于显著性⽔平取0.05的值,即交互作⽤不显著,即为不饱和模型。
⽐较不同班级,不同教师等级⽔平对期末成绩的影响,并从图中可知教师等级⽔平不同和班级不同都会对期末成绩产⽣⼀定的影响,通过对教师等级不同和班级不同对期末成绩影响的⽐较可知班级对期末成绩的影响⼤于教师等级⽔平对期末成绩的影响。
饱和模型K矩阵教师等级⽔平1下期末成绩均值与检验值的差=6.283,教师等级⽔平2下期末成绩均值与检验值的差=-0.267,即从中可看出在教师⽔平等级1下的期末成绩的均值⼤于在教师⽔平2下的期末成绩的均值,说明教师⽔平等级1下的期末成绩的总体⽔平⽐教师⽔平2的总体⽔平好。
控制交互作⽤图形分析从图中也可看出期末成绩在教师等级为2的⽔平是最低的,其次是教师等级⽔平1略低于教师等级⽔平3的。
结论:期末成绩受班级不同和教师等级⽔平不同的影响,且班级不同对期末成绩的影响⼤于教师等级⽔平不同对期末成绩的影响。
spss方差分析报告报告材料
方差分析是用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。
在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。
通常是比较不同实验条件下样本均值间的差异。
例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。
方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。
用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。
总偏差平方和 SS t = SS b + SS w。
组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。
另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。
那么,MS b>>MS w(远远大于)。
MS b/MS w比值构成F分布。
用F值与其临界值比较,推断各样本是否来自相同的总体。
方差分析的假设检验假设有m个样本,如果原假设H0:样本均数都相同即μ1=μ2=μ3=…=μm=μ,m个样本有共同的方差。
SPSS实验单因素方差分析7
23.7
2
23.8
2
37.2
2
33
2
21.9
2
36.1
2
31.7
2
27.6
2
26
2
20.3
2
32.6
2
25.8
2
21.2
2
36.3
2
34.2
2
17.7
3
34.3
3
25.1
3
27
3
29.1
3
33.3
3
38.4
3
14.9
3
38.7
3
32.7
3
34
3
23.8
3
13.3
3
32.4
3
36.2
3
33.7
3
29.2
-1.899
3
-7.6100*
2.2824
.002
-12.181
-3.039
2
1
6.4700*
2.2824
.006
1.899
11.041
3
-1.1400
2.2824
.619
-5.711
3.431
3
1
7.6100*
2.2824
.002
3.039
12.181
2
1.1400
2.2824
.619
-3.431
有第二张表可得即单因素方差分析表中F值为6.467,对应的P值为0.003<0.05,可以认为不同的方案对语言能力的提升有显著性影响。该结果虽然说明了三种方案对语言能力的影响是显著性的,但是不能给出各种方案两两之间的差异情况,这就需要多重比较。
Spss方差分析报告
课本P164页第一题:(1)1、打开spss输入数据;2、Analyze→Compare Means→One-way ANOV A;3、将‘推销方法’选入Factor,将‘推销额’选入Dependent List(操作如下:)(输出结果如下:)ANOVA销售额Sum ofSquares df Mean Square F Sig. Between Groups 405.534 4 101.384 11.276 .000 Within Groups 269.737 30 8.991Total 675.271 34上表是不同的销售方法对销售额影响的单因素方差分析结果。
可以看出,如果仅考虑这五种推销方法单个因素的影响,则销售额总变差(675.271)中不同推销方法可解释的变差为405.534,抽样误差引起的变差为269.737,它们的方差分别为101.384和8.991,相除所得的F统计量的观测值为11.276,对应的P-值近似为0。
如果显著性水平a为0.05,有概率P-值小雨显著性水平a,所以应拒绝原假设,认为不同推销方法对销售额的平均值产生了显著影响,不同推销方法对销售额的影响效力应不全为0。
(2)1、Analyze→Compare Means→One-way ANOV A;2、点击Options,选择Descriptive、Means plot和Exclude cases analysis by analysis→Continue.(输出结果如下:)Descriptives销售额Means Plots以上表格表示五种推销方法各有7个样本。
其中第五种推销方法下的销售额最高,而第二种推销方法下的效果与之相近,第四种推销方法的销售效果最不理想。
这些都可以在上面图表中得到验证。
3、Analyze→Compare Means→One-way ANOV A;4、点击Post Hoc Multiple Comparisons,并且选择LSD,即利用LSD方法进行多重比较检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)分析:根据方差分析的多重比较结果,分别进行了两两比较,以A2品种与A1
、A3、A4的比较为例。
A2品种与A1、A3、A4种的均值相差分别为-31.70000、-7.02500、-16.82500,而且所有的相伴概率sig=0.000<0.05,这说明了A2种与
其他三种饲料均具有显著性差异,而且从产量均值的差异上看Mean Difference (I-J)
均低于其他3种品种,说明A2种的效果没有其他品种的效果好。
(4)分析:从均值折线图上反映出来四种轮胎相互之间均存在显著性差异,从效果来看
(4)分析:
有最终的交互影响折线图来看,A2品种在B1土地上种植最终的产量最高。
(4)分析:由交互影响折线图可以看到,
品放在B3货架上销售量最高。
第五题:研究杨树一年生长量与施用氮肥和钾肥的关系。
为了研究这种关系,一共进行了18个样地的栽培实验,测定杨树苗的一年生长量、初始高度、全部实验条件(包括氮肥量和钾肥量)及实验结果(杨树苗的生长量)
下检验氮肥量、钾肥量及树苗初始高度中哪些对杨树的生长有显著性影响。
《生物数学模型的统计学基础》李勇,科学出版社;数据文件:
表
序号氮肥量钾肥量树苗初高生长量
1 少0 4.5
实训的心得与体会
通过本次实验用spass统计分析软件来进行方差分析后,感觉统计学中的很多问题不再像以前那么陌生了,同时也感觉统计学不再是想象中那么困难,之前学习统计学最怕的就是对数据进行求解与分析,现在使用这款软件后,让我从之前对统计学的陌生转变为熟悉,从此,在解决统计方面的问题又多了一项解决的工具:spss。
在本章学习了用spss软件方差分析后,我学会了单因素、双因素及多因素的方差分析。
进一步,在掌握了关键因素,如品种、施肥量等以后,还需要对不同的施肥量进行对比分析,研究究竟哪个品种的产量的产量高,施肥量躲闪合适,哪种品种与哪种施肥水平搭配最优,等等,在生活及工农业方面有很大的应用。