仪器分析核磁共振波谱分析

合集下载

分析化学核磁共振波谱法

分析化学核磁共振波谱法

分析化学核磁共振波谱法分析化学核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy, NMR)是一种非常重要的分析技术,广泛应用于有机化学、生物化学等领域。

本文将从基本原理、仪器设备、样品制备和应用等方面对NMR进行分析。

基本原理核磁共振波谱法是基于核磁共振现象的,核磁共振是指在外加静磁场和射频磁场的作用下,原子核能级的分裂现象。

当样品中的核磁共振活性核被置于静磁场中时,它会分裂成若干个子能级,对应着不同的共振频率。

这些频率可以测量并转换为核磁共振谱图,从而确定样品中不同核的化学环境和相对位置。

仪器设备核磁共振仪包括主磁场、射频系统和梯度线圈等部分。

主磁场是核磁共振仪的核心组成部分,它通过产生一个稳定且均匀的静磁场使样品中的核磁共振现象能够发生。

射频系统用于产生能与样品中核的共振频率相匹配的射频脉冲,从而激发样品中的核磁共振信号。

梯度线圈用于产生梯度磁场,使样品中不同位置的核有不同的共振频率,从而可以对核的位置进行定位。

样品制备样品的制备是进行核磁共振分析的关键步骤,其中要求样品的纯度和浓度都需要达到一定的要求。

通常,为了提高样品的分析效果,可以进行特定的样品制备,例如通过标记原子核来增强信号强度,或者通过选择性的核磁共振脉冲来增强特定核的信号。

应用核磁共振波谱法在许多领域具有重要的应用价值。

在有机化学中,核磁共振波谱法常用于确定分子的结构和化学环境,从而帮助确定分子的组成和结构。

在生物化学中,核磁共振波谱法可以用于研究生物大分子(如蛋白质、核酸等)的结构和功能,从而帮助理解生物反应的机理。

此外,核磁共振波谱法还可以应用于材料科学、医学和环境科学等领域。

总结通过分析化学核磁共振波谱法的基本原理、仪器设备、样品制备和应用等方面,可以看出核磁共振波谱法是一种重要而常用的分析技术。

它可以提供关于化合物结构、分子环境和分子动力学等方面的信息,对于解决化学和生物化学中的许多问题具有不可替代的作用。

(2021年整理)仪器分析第7章核磁共振波谱法

(2021年整理)仪器分析第7章核磁共振波谱法

仪器分析第7章核磁共振波谱法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(仪器分析第7章核磁共振波谱法)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为仪器分析第7章核磁共振波谱法的全部内容。

核磁共振波谱法最早美国两所大学1945年同时发现NMR。

哈佛的Pacell和Pound发现石腊质子有NMR现象,斯坦富大学的Bloch和Honson发现H2O中质子有NMR,且Pacell和Bloch因此而获得诺贝尔奖。

1953年第一台仪器商品化,当时仅30MHZ,现已有700MC的仪器(MC越高,分辩率越高)。

至今50多年发展中,这门学科共12位科学家获诺贝尔奖。

第一节概述到目前为止,我们所学的光谱分析中,⑴除荧光分析外,均为吸收光谱,今天开始学的NMR亦是吸收光谱; ⑵除原子吸收,其余均为分子吸收,所以NMR属于分子吸收光谱。

一。

产生:置于强磁场中吸收无线电波试样H1长波长电磁波照射原子核自旋能原子核能级分裂 1-10 m级跃迁(核磁矩改变而产生电流,此现象为核磁共振)测产生的感应电流 NMR光谱。

利用核磁共振光谱进行结构测定,定性及定量分析的方法称为核磁共振光谱法。

NMR谱获得方法有两种:⒈扫场:固定照射频率υ,依次改变磁场强度H0—-常用之⒉扫频:固定磁场强度H0,依次改变照射频率υ0P151 图17-1五个部分:磁铁:提供稳定的高强度磁场H扫场线圈:附加磁场,可调节D接收线圈:产生感应电流R照射线圈:与外磁场H0垂直60兆,90兆…兆数越高,图谱越精密,易解释。

注:三个线圈互相垂直,互不干扰。

二。

与Vis—UV,IR比较:都属于分子吸收光谱例: CH3CH2OH 紫外几乎无吸收(仅末端吸收)无π骨架红外有υOHNMR:OH,CH2,CH3三种类型H0NMR有H1,C13谱。

《仪器分析》第十七章_核磁共振波谱法

《仪器分析》第十七章_核磁共振波谱法

周围分子骨架(晶格)中的其他核,变成平动能
和转动能。可用驰豫时间T1表征,是处于高能级的 磁核寿命的量度。 横向驰豫:自旋-自旋驰豫,两相邻的核处于不 同能级,但进动频率相同,发生横向驰豫,各自
旋状态的总数不变,各能级上核数目的比例不变,
但确实使某些高能级的核的寿命缩短了,以驰豫 时间T2表示。
及氘代溶剂(CDCl3 、D2O等,贵,溶解能力
好)
4 有机化合物结构与质子核磁共振波谱
理论上: 当一个自旋量子数不为零的核臵于外磁场中, 它只有一个共振频率,图谱上只有一个吸收峰。
如:在1.4092T磁场存在下, 1H的共振频率为
60MHz
2.675 108 1.4092 0 60.0MHz 2 π 2 3.14
E cos B0 z B0 核进动的角频率0:
0 20 B0 B0 0 核进动的线频率0 2
核磁共振吸收
在给定的磁场强度下,质子的进动频率是一定
的。若此时以相同的频率的射频辐射照射质子,
即满足“共振条件”,该质子就会有效地吸收射 频的能量,使其磁矩在磁场中的取向逆转,实现 了从低能级向高能级的跃迁过程。此即核磁共振 吸收过程。
e. 高速气流使样品管围绕y轴以每秒钟30转的速率
急速旋转,消除磁场非均匀性,提高分辨率
3 样品处理
a) 非粘滞性液体,直接分析 b) 粘滞性液体,配成2-10%溶液 c) 固体样品直接分析,图谱常有许多互相叠合的
谱带组成,很宽,对结构分析意义不大
d) 1H NMR,样品溶液不含质子,常用CCl4、CS2
, -I
对1H和13C,I=1/2,其 m值只能是+1/2和-1/2,表
示它们在磁场中,自旋轴只能有两种取向:

仪器分析 第十三章 核磁共振波谱分析PPT课件

仪器分析 第十三章 核磁共振波谱分析PPT课件

原子实际上受到的磁场强度B
B= B0-B’=B0-σB0=B0(1-σ)
σ为屏蔽常数, σB0为感应产生的次级磁场强度。
B为氢核真正受到的有效外磁场强度。 核外电子云产生感应磁场,抵消一部分
磁场,产生共振向高磁场方向移动。
2μB
B
h
2
2μB( 0 1σ)
h
hν B0 2μ(1σ)
B(0 1σ) 2
实际上各种化合物中的氢核的化学环境或结 合情况不同,所产生的共振吸收峰频率不同。
任何原子核都被电子云所包围,当1H核自旋时 ,核周围的电子云也随之转动,在外磁场作用下,会 感应产生一个与外加磁场方向相反的次级磁场,实际 上会使外磁场减弱,这种对抗外磁场的作用称为屏蔽 效应.
1H核由于在化合物中所 处的化学环境不同,核外电 子云的密度也不同,受到的 屏蔽作用的大小亦不同,所 以在同一磁场强度B0 下, 化学环境不同 1H核的共振 吸收峰频率不同。
(3)I=1/2的原子核 1H,13C,19F,31P
核电荷均匀分布的球体,并象陀螺一样自旋,有磁矩产 生,是核磁共振研究的主要对象,H、C也是有机化合物的主 要组成元素。
I=1/2的核自旋能级裂分与B0的关系
• 1H核在磁场 中,由低能级E1向高能级E2跃迁, 所需能量为
△E=E2-E1= B0 -(-B0) = 2 B0
四甲基硅烷 [(CH3)4Si] TMS
TMS
CH3OCH3
TMS
低场
高场 0
化学位移
TMS的优点
1)单峰:TMS分子中有12个氢核,所有质子等同 ,只有一个吸收峰。
2)TMS的屏蔽系数几乎比所有其他物质的都大(电 子云密度大),处在高场位置,对大多数有机化合 物氢核吸收峰不产生干扰。规定TMS氢核的 =0, 则其他化合物H核的共振频率都在左侧。

仪器分析的原理

仪器分析的原理

仪器分析的原理仪器分析是一种广泛应用于科学研究、工业生产和环境监测等领域的分析技术。

它通过使用各种仪器设备,利用物质的物理、化学性质和相互作用来定量或定性分析样品的成分和性质。

在仪器分析中,有多种原理被应用,下面将逐一介绍其中几种常见的原理。

1. 光谱分析原理:光谱分析是利用物质对光的吸收、发射或散射而进行分析的方法。

常见的光谱分析技术包括紫外可见光谱、红外光谱、质谱等。

光谱分析原理基于不同物质吸收或发射光的特征,通过测量样品与光源的相互作用,从而推断出样品的成分和浓度。

2. 色谱分析原理:色谱分析是利用物质在固定相和流动相中不同的分配或吸附性质进行分离分析的方法。

常见的色谱分析技术包括气相色谱、液相色谱等。

色谱分析原理基于样品成分在不同相中的携带速度差异,通过测量携带速度,从而实现对样品进行定性和定量分析。

3. 电化学分析原理:电化学分析是利用物质在电极上与电流或电势的关系进行分析的方法。

常见的电化学分析技术包括电解法、电沉积法、电化学阻抗谱等。

电化学分析原理基于物质在电场或电流的作用下,引起电势变化或电流变化,通过测量这些变化来推断样品的性质和浓度。

4. 质谱分析原理:质谱分析是利用物质在质谱仪中通过分子碎片的质量-电荷比进行分析的方法。

常见的质谱分析技术包括质谱质量分析、质谱图谱等。

质谱分析原理基于样品分子在高能状态下发生断裂,形成一系列碎片离子,根据这些离子的质量-电荷比进行分析。

5. 核磁共振分析原理:核磁共振分析是利用核自旋在外加磁场和射频电磁场的作用下发生共振而进行分析的方法。

常见的核磁共振分析技术包括核磁共振成像、核磁共振波谱等。

核磁共振分析原理基于不同核自旋在不同磁场中的共振频率差异,通过测量共振信号来推断样品的成分和分子结构。

综上所述,仪器分析的原理涵盖了光谱分析、色谱分析、电化学分析、质谱分析和核磁共振分析等多个领域,每种原理都有其独特的应用和优势。

仪器分析通过高效、准确的手段提供了快速分析样品成分和性质的方法,为科学研究和生产工作提供了重要的技术支持。

分析化学第14章核磁共振波谱法

分析化学第14章核磁共振波谱法

第十四章 核磁共振波谱法
仪器分析
为了提高单位时间的信息量,可采用多道发射 机同时发射多种频率,使处于不同化学环境的核 同时共振,再采用多道接收装置同时得到所有的 共振信息。例如,在100MHz共振仪中,质子共振 信号化学位移范围为10时,相当于1000Hz;若扫 描速度为2Hz∙s1,则连续波核磁共振仪需500s才 能扫完全谱。而在具有1000个频率间隔1Hz的发射 机和接收机同时工作时,只要1s即可扫完全谱。 显然,后者可大大提高分析速度和灵敏度。
仪器分析
图14-4
原子核的进动
第十四章 核磁共振波谱法
仪器分析
)与外加磁场强度(H0)的 进动频率(
关系用Larmor方程来说明:
H0 2

—— 磁旋比
第十四章 核磁共振波谱法
仪器分析
1H 的
2.67519 10 T S
8 -1
-1
H0 = 1.4092 T (Tesla)
第十四章 核磁共振波谱法
仪器分析

脉冲傅里叶变换共振仪是用一个强的射频,以脉冲 方式(一个脉冲中同时包含了一定范围的各种频率 的电磁辐射)将样品中所有化学环境不同的同类核 同时激发,发生共振,同时接收信号。而试样中每 种核都对脉冲中单个频率产生吸收。为了恢复平衡, 各个核通过各种方式驰豫,在接受器中可以得到一 个随时间逐步衰减的信号,称自由感应衰减( FID) 信号,经过傅里叶变换转换成一般的核磁共振图谱。 脉冲傅里叶变换共振实验脉冲时间短,每次脉冲的 时间间隔一般仅为几秒。许多在连续波仪器上无法 做到的测试可以在脉冲傅里叶变换共振仪上完成。
弛豫过程所需的时间用半衰期 T1 表示,
T1 是高能态寿命和弛豫效率的量度,T1

核磁共振波谱法-仪器分析

核磁共振波谱法-仪器分析
16:10:52
第一节 核磁共振波谱法基本原理
principles of nuclear magnetic resonance
• 一、原子核的自旋 • 二、核磁共振现象 • 三、自旋驰豫
16:10:52
一、 原子核的自旋
atomic nuclear spin
若原子核存在自旋,产生核磁矩.
自旋量子数(I)不为零的核都具有磁矩.
• 核磁共振波谱法:
ห้องสมุดไป่ตู้

利用核磁共振光谱进行结构测定,定性与
定量分析的方法.
在有机化合物中,经常研究的是1H和13C的共 振吸收谱,重点介绍H核共振的原理及应用
16:10:52
NMR与UV-Vis、IR比较
吸收 能量
紫外-可见
红外
核磁共振
无线电波1~300m
紫外可见光 200~800nm
红外光
760nm~1000 m
16:10:52
本章要求:
• 掌握核自旋类型;自旋能级分裂;共振 吸收的条件;屏蔽效应;化学位移及其 影响因素;自旋偶合和自旋分裂;偶合 常数;广义n+1规律;核磁共振氢谱一级 图谱分析
• 了解核磁共振仪;常见质子的化学位移, 碳谱。
16:10:52
概述
核磁共振( NMR) : “原子核”在磁场中吸收一定频率的无线电波, 而发生自旋能级跃迁的现象。
质量数为偶数
原子序数为 偶数
自旋量子数为0
无自旋 12C6,32S16,16O8
质量数为奇数
原子序数为 奇或偶数
自旋量子数为 1/2,3/2,5/2
质量数为偶数
原子序数为 奇数
自旋量子数为 1,2,3
16:10:52

仪器分析第8章核磁共振PPT

仪器分析第8章核磁共振PPT
24
8.2 理论核磁共振的产生 8.2.3 经典力学-进动模型(precession)
•当带正电荷的、且具有自旋量子数的核会产 生磁场,该自旋磁场与外加磁场相互作用, 将会产生回旋,称为进动(Procession),如下 图.进动频率与自旋核角速度及外加磁场的 关系可用Larmor方程表示:
0 2 0 B0
18
➢对氢核来说,I=1/2,其m值只能有 21/2+1=2个取向: +1/2和-1/2.也即表示H 核在磁场中,自旋轴只有两种取向: 与外加磁场方向相同,m=+1/2,磁能级 较低; 与外加磁场方向相反,m=-1/2,磁能级 较高.
19
自旋量子数为1/2的核的能级分裂:
20
8.2.2 量子力学处理核磁共振的产生
➢总之,无论从何种模型看,核在 磁场中都将发生分裂,可以吸收一 定频率的辐射而发生能级跃迁.
27
8.2.4 不同核的NMR

天然同位素
存在比(%)
1H
99.98
13C
1.1*
19F
100
31P
100
14N
99.63
15N
0.37*
17O
0.037*
*天然丰度越低,测定越困难。
B0 = 2.35T E (J) (MHz)
第8章 核磁共振波谱法 (NMR)
Nuclear Magnetic Resonance Spectroscopy
8.1 概述 8.1.1 什么是核磁共振 8.1.2 NMR发展简介
1
第8章 核磁共振波谱法 (NMR) 8.1 概述
Nuclear Magnetic Resonance Spectroscopy 8.1.1 什么是核磁共振

现代仪器分析——核磁共振波谱法

现代仪器分析——核磁共振波谱法
9
射频发射器
• 产生一个与外磁场匹配的射频频率,提供能量是自旋核从低能级跃迁到高能级。 • 相当于光谱仪中的光源。 • 测定的自旋核不同,射频发生器不同
– 在7.0463T的磁场中, 对1H射频发生器应产生 300MHz电磁波,而对13C,应产生75.432MHz的 电磁波。
10
射频接收器
• 接收携带样品核磁共振信号的射频输出,并传送到放大器放大。 • 相当于光谱仪器中的检测器。
探头
• 样品管座 发射线圈 接收线圈 预放大器 变温元件
11
扫描单元
• 用于控制扫描速度、扫描范围等参数; • 一般为扫场模式。在一定范围内,通过扫描线圈
在外磁场上附加一个连续作微小变化的小磁场, 依次使不同共振位置的自旋核共振。射频接收器 会检测到信号的损失并放大记录下来。 • 连续波共振仪为单通道式共振仪,为得到较好的 谱图,许多次扫描累加,费时。
浓度无关;分子间氢键,其化学位移的值与溶剂的性质以及浓度有关
15
4、自旋偶合、裂分
为什么每类氢核不总表现为单峰、有时出现多重峰? 原因:相邻两个氢核核磁距之间的自旋偶合(自旋干扰)
CH3CH2I
CH2I
-CH3
TMS
8.0
7.0
6.0ห้องสมุดไป่ตู้
5.0
4.0
3.0
2.0
1.0
0
δ /ppm
自旋偶合与自旋裂分
– 自旋氢核产生的顺着或逆着外磁场方向的核自旋磁 场可以影响到相距较近的另外一个氢核,使其核磁 共振频率发生分裂:
– 偶合关系的判断:
• 峰的裂分是对等的 – 裂分峰间距相等; – 两组峰相向
• 偶合是短程的
– 相互裂分的氢核间只 能间隔两到三个化学 键;

《仪器分析》——核磁共振波谱法

《仪器分析》——核磁共振波谱法

标准物
~ 有机溶剂时常用四13甲C 基m硅g烷(TMS)
重水时 4,4-二甲基-4硅代戊磺酸钠(DSS)
扫描范围 足够的谱带宽度
19
➢ 当电磁辐射的 0= 时, 产生共振吸收
H
02
0
E
无磁场
1
m =-
2
1
m =+
外加磁场
2
I=1/2核的能级分裂
1 2
H0
❖ 屏蔽效应 ❖ 屏蔽常数 ❖ 化学位移
20
环内 =-2.99 环外 =9.28
十八碳环壬烯C18H18
1 2
H0
27
苯环
正屏蔽区
负屏蔽区
=7.27
负屏蔽 (向左,低场)
H0
正屏蔽 (向右,高场)
1 2
H0
28
双键
负屏蔽区
负屏蔽 峰左移
H0
正屏蔽区
烯氢的质子处于负屏蔽区, 左移(4.5-5.7)
乙烯氢 5.25
29
叁键
正屏蔽 峰右移
炔氢的质子处于正屏蔽区, 右移 例如:乙炔氢 2.88,乙烯氢 5.25
n
2 3.1 4 1.3 8 10 300
1.0000099
低能态的核仅比高能态核多十万分之一 强射频波照射,吸收饱和,NMR信号消失
高能态核
恢复至低能态
14
三、自旋弛豫
非辐射途径
高能态核
恢复至低能态
T-半衰期(驰豫过程所需时间)
两种形式: 1.自旋-晶格弛豫(纵向驰豫) T1 2.自旋-自旋弛豫(横向驰豫) T2
自旋感应产生核磁矩( µ)
µ= P ❖磁旋比 是原子核的特征常数

(仪器分析)17.5二维核磁共振波谱

(仪器分析)17.5二维核磁共振波谱
2020/10/22
2D NMR谱图
2020/10/22
1D NMR的脉冲序列和原理示意图
90 x
t1
AQT
2020/10/22
准备期
检测期
90 R F
FID FT
t
FT
F (t1)
t
ω
F (ω )
傅 里 叶 变 换
2020/10/22
2D NMR
通过记录一系列的1D NMR 谱图获得的,每个1D NMR实验的差别仅在于在脉冲序列引入时间增量Δt (t1= t +Δt)。
2020/10/22
内容选择
17.1 核磁共振原理 17.2 核磁共振波谱仪 17.3 1H核磁共振波谱 17.4 13C核磁共振波谱 17.5 二维核磁共振波谱 第十八章
结束
2020/10/22
2020/10/22
17.5.2 2D NMR相关谱
1.1H-1H 相关谱 (1~4)
2020/10/22
1H-1H 相关谱 (6.8~8.6)
2020/10/22
2D NMR 相关谱
间二硝基苯 1H-1H 相关谱
2020/10/22
1H-13C相关谱2020/10/22薄醇1H-13C相 关谱
第十七章 核磁共振波谱
分析法
Nuclear magnetic resonance spectroscopy; NMR
第五节 二维核磁 共振波谱简介
2D NMR
17.5.1 概述 17.5.2 2D NMR谱
2020/10/22
17.5.1 概述
(1)二维核磁共振波谱:二个时间变量,二次傅里叶变 换,二个独立的频率信号,横坐标和纵坐标均为频率信 号,而第三维则为强度信号。 (2)两坐标代表的化学位移具有相关性,表明所有质子 发生自旋-自旋偶合的信息。 (3)可以是 1H-1H , 1H-13C相关谱;可提供邻近偶合、 远程偶合信息。 (4)不出现一维谱图中的多重峰重叠现象。

现代仪器分析 核磁共振波谱法

现代仪器分析 核磁共振波谱法

第一节 概 述
核磁共振波谱与紫外-可见光谱及红外光谱的区别
①照射频率不同而引起的跃迁类型不同。
光谱类型 紫外-可见吸收光谱
红外光谱 核磁共振谱
λ 200~760nm 2.5~25μm 60cm~300m
跃迁形式 外层电子能级跃迁 分子振-转能级跃迁 原子核自旋能级跃迁
②测定方法不同。
紫外及红外吸收光谱——亮背景下测暗信号。 核磁共振信号——暗背景下测定核磁共振信号,灵敏度较 高。
1953年:Varian开始商用仪器开发,并于同年制作了第一台高 分辨NMR仪器;
1956年:Knight发现元素所处的化学环境对NMR信号有影响, 而这一影响与物质分子结构有关。
1970年:Fourier(pilsed)-NMR 开始市场化(早期多使用的是 连续波NMR 仪器)。
第一节 概 述
(1)质子磁矩的发现
01
第一节 概 述 (3)脉冲傅立叶变换核磁共振仪的发明
PulseFT-NMR
瑞士Richard R. Ernst
1966年发明Fourier-NMR分光法和二维、多维的核磁共振技术, 获得了1991年诺贝尔化学奖
第一节 概 述
(4)生物大分子分析的NMR技术
3D Structure of Bio-macromolecules
2、物理化学研究方面 可以研究氢键、分子内旋转及测定反应速率常数等。
第一节 概 述
3、在定量方面 可以测定某些药物的含量及纯度检查。
•核磁共振表面探测仪 •核磁共振波谱仪
物质的分子结构与构象研究; 化学动力学、氢键或速率常数研究 药物、材料的研究与开发
第一节 概 述
核磁共振谱的应用极为广泛,可概括为定性、定量及定结 构研究、物理化学研究、生物活性测定、药理研究及医疗诊断 等方面。

仪器分析核磁共振波谱分析课件

仪器分析核磁共振波谱分析课件

2024/4/7
仪器分析核磁共振波谱分析课件
图12.9
·共轭效应:影响电子云密度,如,甲氧基苯环上的H,邻位的化学位移为 6.84,对位的化学位移为6.99,间位的化学位移为7.81。杂化影响:若无其它 效应的影响,杂化轨道随S成分增加而电子云密度降低,屏蔽作用减小,化
学位移增大
2024/4/7
仪器分析核磁共振波谱分析课件
2024/4/7
仪器分析核磁共振波谱分析课件
因此,处于高能级的核必须回到低能态,才能维持处
于低能态的核的微弱的数量优势,使得核磁共振信号得以 检测。这一过程以非辐射的形式实现,称为驰豫过程,可 分为: 1、自旋--晶格驰豫,又称纵向驰豫:
自旋核与周围分子交换能量的过程,如固体的晶格, 液体则为周围的同类分子或溶剂分子。用弛豫时间T1 示。 2、自旋--自旋驰豫,又称横向驰豫:
2024/4/7
(a)在CDCl3中 (b)~(d)中为逐步加入苯 4 二甲基甲酰胺的溶剂效应
仪器分析核磁共振波谱分析课件
2024/4/7
图12.15 苯环对二甲基甲酰胺甲基的屏蔽
仪器分析核磁共振波谱分析课件
交换反应: 1.位置交换: 活泼氢,如-OH, -SH,-COOH, -NH2 2.构象交换: 环己烷平伏键与直立键
2024/4/7
图12.13 单键的各向异性
仪器分析核磁共振波谱分析课件
(二) 氢键的影响:分子形成氢键后,使质子周围电子云密度降低,产生去屏
蔽作用而使化学位移向低场移动,如醇类、胺类和酸类等。
1. 分子间氢键:受溶液浓度、温度和溶剂的影响较显著; 2. 分子内氢键:几乎不受溶液浓度、温度和溶剂的影响。 溶剂效应:如二甲基甲酰胺,随各向异性溶剂苯的加入,两个甲基化学位移 发生变化

核磁共振波谱分析原理

核磁共振波谱分析原理

核磁共振波谱分析原理
核磁共振波谱分析(NMR)是一种基于核磁共振现象的分析
技术,用于确定分子结构和化学环境。

原理很简单:原子核具有自旋,当这些原子核处于外加磁场中时,会存在基态和激发态之间的能级差。

当外加磁场的强度等于能级差时,原子核会发生能级间的跃迁,而产生共振吸收信号。

核磁共振波谱分析基于这个原理,首先将样品置于强磁场中,使各个原子核的自旋方向与强磁场方向发生共线。

然后通过施加射频脉冲,使部分自旋发生共振吸收,从而产生强度较大的共振信号。

这些信号会被NMR仪器接收并处理,最终转换成
核磁共振波谱。

在核磁共振波谱图上,横轴表示共振频率,纵轴表示吸收强度。

通过对波谱图的分析,可以确定不同核的化学位移,从而推断其所处的化学环境和分子结构。

同时,核磁共振波谱还可以提供有关化学键长、化学键角和空间构型等信息。

核磁共振波谱分析在有机化学、生物化学、材料科学等领域有着广泛的应用。

它是一种无损分析方法,可以用来鉴定化合物、研究反应动力学、分析混合物等。

同时,核磁共振波谱分析还可以用来定量分析样品中不同核的含量,并通过不同核之间的耦合情况推断化学结构。

总之,核磁共振波谱分析是一种非常有用的分析技术,可以提供丰富的化学信息,对于科学研究和实际应用具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自旋核与周围分子交换能量的过程,如固体的晶格, 液体则为周围的同类分子或溶剂分子。用弛豫时间T1 示。 2、自旋--自旋驰豫,又称横向驰豫:
核与进行能量交换的过程。用弛豫时间T2 示。 试想:
纵向驰豫和横向驰豫有何区别和联系? 对NMR图谱
有何影响? 查阅文献,找出T1和T2 可能的用途。
第三节 化学位移的基本原理
氢核(I=1/2),两种取向(两个能级): a. 与外磁场平行,能量低,磁量子数m=+1/2; b. 与外磁场相反,能量高,磁量子数m=-1/2;
图 12.3 空间量子
因此,处于高能级的核必须回到低能态,才能维持处
于低能态的核的微弱的数量优势,使得核磁共振信号得以 检测。这一过程以非辐射的形式实现,称为驰豫过程,可 分为: 1、自旋--晶格驰豫,又称纵向驰豫:
混合物的快速成分分析(LC-NMR, DOSY)
三、核磁共振的分类 1.固体核磁共振
用于不溶性的高分子材料,膜蛋白,金属材料的研 究; 2. 液体核磁共振
用于有机化合物,天然产物,生物大分子的研究; 3. 核磁共振成像
临床诊断的成像仪,动植物实验、研究用的成像仪 四、核磁共振波谱分析的特点 1. 样品无损; 2. 结构信息丰富; 3. 新的分析测试技术不断出现。
Pz ,max=(h/2π)m 2、原子核的磁矩(矢量) ,绝对值为:
二、 核磁共振条件
(一)核磁共振现象 1. 量子力学观点: 1). 外磁场作用下核的能级分裂:自旋量子数 I=1/2的原子核(氢核 ),可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类 似一个小磁铁。当置于外加磁场H0中时,相对于外磁场,可以有( 2I+1)种取向:
一、化学位移的产生
理想化的、裸露的氢核;满足共振条件
产生单一的吸收峰; 实际上,氢核受周围不断运动着的电子影响。在 外磁场作用下,运动着的电子产生相对于外磁场方向的感应磁场,起
则到:屏蔽作用,使氢核实际受到的外磁场作用减小:
由于屏蔽作用的存在,氢核产生共振需要更大的外磁场强度(相对于 裸露的氢核),来抵消屏蔽影响。
1939:气态NMR试验成功;
1945:凝聚态NMR试验成功; 1945:美物理学家Block 和Purcell同时发现NMR现象,证实了核自旋的存在,为量子力学的一些理论提供了直接的验 证,是本世纪物理学发展史上的一件大事; 1950:W.G. Proctor 和当时旅美学者虞福春发现NH4NO3 中14N 的共振谱线为两条,说明同一核在不同化学环境会表 现出不同的核磁共振信号(化学位移δ不同); 1951:Gutowsky等发现POCl2F 溶液中19F 谱图中有两条谱线,而分子中只有一个F ,由此发现了自旋--自旋耦合( spin-spin coupling); 1952: Block 和Purcell二人因发现NMR现象,获诺贝尔物理奖; 1961: 法国著名物理学家A. Abragam 出版专著《核磁学原理》,目前已成为物理学中广泛引用的专著; 1966:高分辨核磁共振谱仪出现; 1970年代:R. R. Ernst 创立脉冲傅里叶变换核磁共振(FT-NMR); 1970-1980年代: R. R. Ernst发展了二维核磁共振 (2DNMR); 1987: R. R. Ernst及其学生G. Bodenhausen 和A. Wokaun 合作出版《一维和二维核磁共振原理》,此书与A. Abragam 出版的专著《核磁学原理》被国际NMR领域称为NMR发展史上的两块里程碑; 1991:R. R. Ernst因其创立脉冲傅里叶变换核磁共振(FT-NMR)及发展二维核磁共振 (2DNMR)这两项杰出贡献, 当之 无愧的独享了1991年诺贝尔化学奖; 1990年代----:高场超导核磁共振谱仪(目前世界已有900MHzNMR谱仪)以及与其他仪器联用(如:与液相色谱联用 ,NMR-LC)
第一节 引言(introduction)
定义:核磁共振谱(Nuclear Magnetic Resonance Spectroscopy—NMR):
低能电磁波(波长约106---109μm)与暴露在磁场中的磁性核相互作用,使其在外磁场中发
生能级的共振跃迁而产生吸收信号,称为核磁共振谱。
一、NMR发展简史:
二、 化学位移表示方法:
1.化学位移的标准
没有完全裸露的氢核,没有绝对的标准。
相对标准:四甲基硅烷
Si(CH3)4
(TMS)(内标)
位移常数TMS=0
2.为什么用TMS作为基准?
(1)12个氢处于完全相同的化学环境,只产生一个尖峰;
第二节 核磁共振谱
一、 核磁共振基本原理
1轴作旋转运动
若原子核存在自旋,产生角动量 ① 自旋角动量:矢量,绝对值为:
②自旋角动量(矢量)在Z轴之分量:
Pz =(h/2π)m m 为原子核的磁量子数,其值(共有2I+1个)为:
-I , -I+1 , -I+2 , …… ,-I-1, --- +I, 表示了磁性核在外磁场的取向,如,I= 1/2,表示有两 种取向-1/2和+1/2;I=1,表示有三种取向:- L 1,0,+1.亦表示了磁性核在外磁场中的能级数. Pz最大值为:
二、 NMR用途:
1. 化学: 研究分析结构; 2. 医学:病变诊断(如:人体断层成像); 3. 药学:药物成分研究; 4. 生物学:研究蛋白质结构、构象;
溶液高分辨核磁共振在化学中主要应用 基本化学结构的确定、立体构型和构象的确定 化学反应机理研究、化学反应速度测定 化学、物理变化过程的跟踪 化学平衡的研究及平衡常数的测定 溶液中分子相互作用及分子运动的研究(氢键相互作用、分 子链的缠结、胶束的结构等)
图 12.5 电子对质子的屏蔽作用图
由于屏蔽作用的存在,氢核产生共振需要更大的外磁场强度(相对于裸露 的氢核),来抵消屏蔽影响。
化学位移:在有机化合物中,各种氢核 周围的电子云密度不 同(结构中不同位置)共振频率有差异,即引起共振吸收峰的 位移,这种现象称为化学位移。
图 12.6 甲醇的核磁共振氢谱
相关文档
最新文档