微型机继电保护基础1 微机保护的硬件原理及设计选择原则

合集下载

《微机继电保护》课件

《微机继电保护》课件
感谢您的观看
03 微机继电保护的算法与实 现
微机继电保护的算法分类
01
02
03
04
差分算法
通过比较线路两侧的电流或电 压差值来检测故障,具有简单
、可靠的特点。
傅里叶算法
利用傅里叶变换分析信号频率 特性,用于检测谐波电流或电
压。
波形比较算法
通过比较正常与异常时的电流 或电压波形来检测故障。
人工神经网络算法
模拟人脑神经元网络,通过训 练学习识别故障特征。
微机继电保护的历史与发展
总结词
微机继电保护经历了从模拟式到数字式、从集中式到 分布式的发展历程。
详细描述
微机继电保护最早出现于20世纪70年代,当时采用的 是模拟式元件和电路,功能较为简单。随着计算机技 术和数字信号处理技术的发展,数字式微机继电保护 逐渐取代了模拟式保护。同时,随着分布式系统和网 络通信技术的发展,分布式微机继电保护系统也逐渐 成为主流。未来,随着人工智能和大数据技术的应用 ,微机继电保护将更加智能化和自适应化。
人工智能应用
人工智能和机器学习技术在微机继电 保护领域的应用正在逐步深化。这些 技术可以帮助系统自动识别和应对各 种复杂的电力故障情况。
网络化
网络技术的广泛应用为微机继电保护 带来了新的可能性。通过网络化控制 ,可以实现更快速、更准确的故障定 位和隔离。
集成化和模块化
为了提高系统的可靠性和可维护性, 微机继电保护系统正在朝着集成化和 模块化的方向发展。
《微机继电保护》PPT课件
目 录
• 微机继电保护概述 • 微机继电保护的基本原理 • 微机继电保护的算法与实现 • 微机继电保护的应用与案例分析 • 微机继电保护的发展趋势与展望
01 微机继电保护概述

微机继电保护

微机继电保护
第一章 微机继电保护概述
1.1.1 继电保护及微机继电保护 电力系统继电保护是指继电保护技术和由继电保护装置组成的继电保护系统。继 电保护装置在电力系统中承担重要的保护任务,在系统发生故障时,自动、迅速、有 选择地将故障设备从电力系统中切除,保证非故障部分正常运行;在系统出现不正常 工作状态时,可动作于发出信号、减负荷或跳闸。继电保护在技术上一般应满足选择 性、速动性、灵敏性和可靠性的基本要求。 继电保护装置发展的初期, 主要是由电磁型、 感应型继电器构成的继电保护装置; 20 世纪 60 年代由于半导体二极管的问世,出现了整流型继电保护装置;70 年代,由 于半导体技术的进一步发展,出现了晶体管继电保护装置;80 年代,由于大规模集成 电路的出现,又出现了集成电路型继电保护装置;20 世纪 80 年代中期,由于计算机 技术和微型计算机的快速发展,出现了微机型继电保护装置;电力系统的飞速发展对 继电保护不断提出新的要求,电子技术、计算机技术与信息技术的飞速发展又为继电 保护技术的发展不断地注入了新的活力。电力系统微机继电保护是指以微型计算机和 微型控制器作为核心部件,基于数字信号处理技术的继电保护,简称微机保护。 1.1.2 微机保护的发展现状 微机保护是基于微处理器的继电保护,它的出现和发展过程与计算机技术迅猛发 展和应用息息相关。电子计算机技术特别是微型计算机技术的飞速发展,广泛深入地 影响着科学技术、生产和生活等各个领域,使各行业的面貌发生了很大的变化。数字 电力系统的概念形象的说明了电力系统各方面受计算机技术发展的影响的深度和广 度。 计算机及相关技术在电力系统继电保护方面的应用使得继电保护技术有了新发展, 即电力系统微机继电保护,出现了微机继电保护装置的研发和应用。 1.国外微机保护发展简况 20 世纪 60 年代末期国外提出用计算机构成继电保护装置的倡议。在 1965 年,英 国剑桥大学的 P. G. Mcalaran 及其同事就提出用计算机构成电力系统继电保护的设想, 并发表了《Sampling Techniques applied to derivation Letter》的文章。1967 年澳大利亚 新南威尔士大学的 I. F. Morrison 预测了输电线路的计算机控制的前景。1969 年美国 西屋公司的 G. D. Rockefeller 发表了 《Fault Protection with A Digital Computer》 的文章。

微型机继电保护原理 第一章

微型机继电保护原理 第一章

微型机继电保护原理第一章 绪论一. 计算机继电保护的发展概况用计算机构成继电保护装置的设想始于60年代中期,70年代,计算机保护的研究工作主要是作理论探索(特别是算法研究、数据适配、数字滤波)及在实验室作样机试验。

限于当时计算机硬件的制造水平以及昂贵的价格,早期的研究工作是以小型计算机为基础的。

人们企图用一台小型计算机实现多种保护功能或保护多个电气设备,这就使得计算机保护的可靠性难以保证,一旦该计算机出现了故障,所有的被保护设备都将失去保护。

到了70年代末期,出现了一批功能强足够强的微型计算机,价格也大幅度降低,这时无论在技术上,还是在经济上,已具备一台微型计算机来完成一个电气设备保护功能的条件。

有时为了提高可靠性,还设置多重化的硬件,用几台微机互为备用地构成一个电气设备的保护装置。

到70年代后期,国外已有少数样机在电力系统中试运行,微机保护逐渐进入实用阶段。

国内计算机保护方面的研究工作起步较晚(始于70年代后半期),但进展很快,1984年上半年,华北电力学院研制的第一套距离保护样机投入试运行,年底在华中理工大学召开了我国第一次计算机继电保护学术会议,推动了我国微机保护的开发运用进入一个新的阶段。

经过20多年的研究、应用、推广与实践,现在新投入使用的高中压等级继电保护设备几乎均为微机保护产品,继电保护领域的研究部门和制造部门和制造厂家已经完全转向进行微机保护的研究与制造。

将微机保护和网络通信技术结合后,变电站自动化系统、配网自动化系统也已经在全国电力系统中得到了广泛的应用,将保护、测量、控制、录波、监视、通信、调节、报表和防误操作等多种功能融为一体,进一步提高了电力系统的安全性和经济运行水平,也为变电站实现无人或少人值班创造了条件。

预计在未来的几年内,微机保护将朝着更可靠、更简便、更灵活和网络化、智能化、动作过程透明化的方向展开,并可以方便地与电子式互感器、光学互感器实现连接。

要跳出传统“继电器”的概念,充分利用计算机的计算速度、数据处理能力、通信能力以及硬件集成度不断提高等各方面的优势,结合模糊理论、自适应原理、行波原理、小波变化等方法,设计出性能更优良、维护工作量更少的微机保护装置。

电力系统继电保护应用技术02微机保护基础-文档资料

电力系统继电保护应用技术02微机保护基础-文档资料
中性点电压传感器输出二次变换 母线电压传感器输出二次变换
合并单元
数字输出
电时 源钟
图 2.27 合并器的基本输入规模
22.2.2 GOOSE 报文的传送执行 当保护装置发现并判断故障出现在保护
区内时就应立即动作,与传统保护不同,将 跳闸GOOSE命令以数字帧的形式发送到通信网 络上,对应的智能一次设备接收到该GOOSE报 文命令后执2.行2.相2 应G的OO跳SE闸报操文作的。传送
第二章微机、数字化继电保护基础
2.1 微机继电保护的硬件构成原理 1)微型机系统 2)模拟数据采集系统 3)开关量输入和输出系统 4)人机对话微型机系统 5)电源系统:它是装置可靠工作的基础,
应满足精度,谐波系数、可靠性等指标要求。 常用3V, 5V,15V,24V多个电压等级。
硬件构成原理如下图所示。
数字化继电保护现场信息输入由电子式互 感器和合并器完成,为适应老站改造的需要, 目前大多数产品都保留了由传统电磁互感器引 入的模拟量通道模块。
图2.22 数字化继电保护现场信息采集输入系统 组成原理图
(1)电子式互感器 主要有高、低压耦合隔离,传感头,A/D 转换及数字量标准化输出等环节。
电子式是互感器、传感头的主要类型:
的构架。
工作站1
工作站2
远动站
站控层
间隔层 过程层
装置1
合并器单元
ECVT电子式互感器智接口以太网 IEC61850-8-1
装置n
光纤以太网 GOOSE +SMV
智能一次设备
图2.31 智能变电站通信网络
图2.32 线路保护中的SV网和GOOSE网
监控1
监控2
远动1
远动2
...

微机继电保护原理

微机继电保护原理

第一节 电力系统继电保护的 任务与要求
输入量
n 被保护的设备正常运行时,输入量 不会越过整定值或边界,自动化开 关是打开的,没有输出量,保护装 置不动作;当被保护设备发生故障 或出现不正常工作状态时,输入量 就会越过整定值或边界,自动化开 关自动闭合,有输出量及保护装置 动作。
n 在继电保护技术中,将继电保护装 置的自动化开关特性,称为继电特 性,即当控制量(输入量)变化到某 一定值(整定值或边界)时被控量(输
和多CPU的结构方式。在中、低压变电所 中,多数简单的保护装置,采用单CPU结 构,而在大型发电厂和高压及超高压变 电所中,复杂的保护装置,广泛采用多 CPU的结构方式。
第三节 微机保护的硬件结构
n (一)单CPU的结构原理
第三节 微机保护的硬件结构
n (二)多CPU微机保护装置的结构原理
第三节 微机保护的硬件结构
n 保护管理机具有以下功能:保护管理机利用URPC软件,实现电气 接线画面。画面分为总画面和分画面,在分画面上,可以选出各 保护装置内的保护配置内容,调用并分析各保护装置的各种信息, 对各保护装置进行整定等。各保护装置向保护管理机屏提供的信 息至少包括:定值清单、保护事件记录、装置告警及异常、故障 跳闸报告(含故障类型、故障波形等)。保护管理机屏,至少应有 能接人各保护装置的串行口,并提供一定数量的备用接口,以便 扩建各种保护接人,还应有串行输出接口。在保护管理机内,应 有操作许可密码,密码分为三级:一级为运行人员查看,二级为 检修人员投入和退出保护,三级为继保专业人员整定。保护装置 的参数、整定和投运情况,可作为分画面显示。在CRT画面上,应 有光字牌报警功能。
n (6)每一种保护必须使用两个各自独立的断路器脱扣执行机构。

微机继电保护装置的硬件原理

微机继电保护装置的硬件原理
移相、提取某一分量或抑制某些分量等,根据需要可 以通过软件来实现。
在非周期分量的作用下容易饱和,线性度较差,动态 范围也较小。
一般采用电流变换器将电流信号变换为电压信号
第一章 微型机保护的硬件原理
1-2 模拟量输入系统(数据采集系统)
Z 为模拟低通滤波器及A/D 输入端等回路构成的综合 阻抗,在工频信号条件下,该综合阻抗的数值可达 80KΩ 以上
在逻辑输入为高电平时 AS 闭合,此时,电路处于采样 状态。Ch 迅速充电或放电到usr(t)在采样时刻的电压值。 AS 的闭合时间应满足使Ch 有足够的充电或放电时间 即采样时间,显然希望采样时间越短越好。这里,应 用阻抗变换器I 的目的是,它在输入端呈现高阻抗,对 输入回路的影响很小;而输出阻抗很低,使充放电回 路的时间常数很小,保证Ch 上的电压能迅速跟踪到 usr(t)在采样时刻的瞬时值。
跟随器的输入阻抗很高(达1010Ω),输出阻抗很低 (最大6Ω),因而A1对输入信号usr来说是高阻,而在 采样状态时,对电容Ch 为低阻充放电,故可快速采样。 又由于A2 的缓冲和隔离作用,使电路有较好的保持性 能。
第一章 微型机保护的硬件原理
二、采样保持电路和模拟低通滤波器
(二)对采样保持电路的要求
阻抗变换器I 和Ⅱ可由运算放大器构成。
TC 称为采样脉冲宽度,TS 称为采样间隔(或称采样 周期)。
等间隔的采样脉冲由微型机控制内部的定时器产生。
第一章 微型机保护的硬件原理
二、采样保持电路和模拟低通滤波器
(二)对采样保持电路的要求
1)Ch 上电压按一定的精度(如误差小于0.1%)跟踪上 Usr 所需要的最小采样宽度Tc(或称为截获时间),对 快速变化的信号采样时,要求Tc 尽量短,以便可用很 窄的采样脉冲,这样才能更准确地反映某一时刻的Usr 值。

微机保护

微机保护

)
M P X
)
电压形成
LPF
S/H 定时器 采样脉冲
)
数据采集系统
微型机系统
输入/输出系统
1-2 数据采集系统
一、电压形成回路
微机保护要从被保护电力线路的电流互感器、电压互感器 取得电流、电压信息,必须把这些电流互感器、电压互感器的 二次电流、电压(5A或1A、100V)进一步变换降低为±3.3V 、 ±5V、±10V范围内的电压信号,供微机保护的模数转换芯片 使用。(并满足交流采样要求)
软件措施+硬件措施
(3)易于获得附加功能 可以通过配置的打印机、显示屏、网络 提供电力系统故障后的多种信息,有助于运 行部门对事故的分析和处理。
(4)灵活性大
只需通过改变软件来改变保护性能和功 能;硬件平台通用新好。 (5)保护性能得到很好改善
充分利用计算机的智能特点,数字信号 处理、人工智能算法等应用。
(三)模拟低通滤波器
电力系统故障初期,电流、电压中可能含有相当高的频率 分量(如2kHZ以上)。而目前大多数微机保护原理都是反映 50HZ工频分量的。因此,在采样保持前用一个模拟低通滤波器 把高频分量过滤掉,防止高频分量混叠到工频来。 最简单的二阶无源模拟低通滤波器是RC低通滤波器。
R R
其中 R 4.3k
(1)输入电压的电压形成回路
把一次电压互感器输出的二次额定 100V电压变换成最大 ±5V模拟电压信号,供模数转换芯片使用。 可以采用电压变换器实现。
(2)输入电流的电压形成回路
把一次电流互感器输出的二次额定5A/1A电流变换成最大 ±5V模拟电压信号,供模数转换芯片使用。 可以采用电流变换器或电抗变换器实现。
双极性模拟量的模数转换

电力系统继电保护原理-微型机继电保护基础 PPT精品课件

电力系统继电保护原理-微型机继电保护基础 PPT精品课件

EPROM、 EEPROM、 F并L行AS接H口、:RAM
输 入
并行接口 连接开入开出系
统。
数据采集系统
微机主系统
10.1 微机继电保护的硬件构成
一、概述
2.单CPU微机保护硬件结构示意图★★

CPU

TA
电压形成 LF S/H
EPROM
TV
二 次 侧
.
M
EEPROM
.
P AD
FLASH
的 模
.
X
10.1 微机继电保护的硬件构成
二、数据采集系统
1.电压形成★ (2)输出电气量
一般都是电压信号。
根据模数转换器的不同,范围有0~5V,0~10V,2.5V~+2.5V,-5V~+5V,-10V~+10V等。
2.单CPU微机保护硬件结构示意图★★
CPU:

CPU 中央处理单元。

TA
电压形成 LF S/H
TV
EPROM 存储器:
二 次 侧 的 模 拟 量
.
M
.
P AD
.
X
电压形成 LF S/H
EEPROM FLASH RAM 定时器
EPROM、 EEPROM、 F定L时AS器H:、RAM
输 入
完成计时、采样
RAM
拟 量
电压形成 LF S/H
定时器 光
输 入
并行接口
电出
隔 离
口 电 路
人机对话 打印机 开关量输入
开关量输出
数据采集系统
微机主系统
开入/开出系统
10.1 微机继电保护的硬件构成
一、概述

第三章 微机继电保护基础

第三章 微机继电保护基础

跟随器的输入阻抗很高(达 1010 ), 输出阻抗很低(最大 ),因而A1对输入 6 u sr 来说是高阻抗;而在采样状态时,对 信号 C h 为低阻抗充电,故可快速采样。又 电容器 由于A2的缓冲和隔离作用,使电路有较好的 保持性能。
SA为场效应晶体管模拟开关,由运算放大器A3 驱动。A3的逻辑输入端 S / H 由外部电路(通常可 C h 处于 由定时器)按一定时序控制,进而控制着 采样或保持状态。符号 表示该端子有双重功 S/H 能,即 S/H S / H =“1”电平为采样(Sample)功能, =“0”电平为保持(Hold)功能。某个符号 上面带一横,表示该功能为低电平有效,这是数字 电路的习惯表示法。
A1和A2的接法实质相同,在采样状态(SA接通时),A1 的反相输入端从A2输出端经电阻器R获得负反馈,使输出跟 踪输入电压。在SA断开后的保持阶段,虽然模拟量输入仍 在变化,但A2的输出电压却不再变化,这样A1不再从A2的 输出端获得负反馈,为此在A1的输出端和反相输入端之间跨 接了两个反向并联的二极管,直接从A1的输出端经过二极 管获得负反馈,以防止A1进入饱和区,同时配合电阻器R起 到隔离第二级输出与第一级 fmax
目前大多数的微机保护原理都是反映工频量的,在这种 情况下,可以在采样前用一个低通模拟滤波器(Low Pass Fliter, LPF)将高频分量滤掉,这样就可以降低 f S 。实际 上,由于数字滤波器有许多优点,因而通常并不要求图3-1中 的模拟低通滤波器滤掉所有的高频分量,而仅用它滤掉 f S / 2 以上的分量,以消除频率混叠,防止高频分量混叠到工频附 近来。低于 f S / 2 的其他暂态频率分量,可以通过数字滤波 来滤除。
由于Z g 很小,所以共模干扰信号对变 换器二次侧的影响得到了极大的抑制。这 样中间变换器还起到屏蔽和隔离共模干扰 信号的作用,可提高交流回路的可靠性。

微型机继电保护基础_课本

微型机继电保护基础_课本

第一章1、微机保护的硬件:①数据采集系统②微型机主系统③开关量输入/输出系统④电源系统2、采样保护电路的作用:在一个极短的时间内测量模拟输入量在该时刻的瞬时值,并在模拟—数字转换器进行转换的时间内保持其输出不变3、采样频率的选择原则:采样定理fs>2fmax,如果被采样信号中所含最高频率成分的频率为fmax,则采样频率fs必须大于fmax的2倍4、模拟低通滤波器的应用:将高频分量滤掉,这样就可以降低fs,从而降低对硬件的要求5、模数转换器的评价指标:①转换时间②数字输出的位数6、开关量输出类型:①保护的跳闸出口②本地和中央信号③通信接口④打印机接口7、光电耦合器的作用:可以实现两侧电路之间的电气隔离,可以用来传递模拟信号,也可以作为开关器件使用第二章1、数字滤波器:将输入模拟信号X(t)经过采样和模数转换变成数字量后,进行某种数字处理以去掉信号中的无用成分,然后再经过数模转换得到模拟量输出Y(t)2、时不变系统:满足T[x(t-t1)]=y(t-t1)即如果输入信号推迟一个时间t1,则输出也将推迟同一个时间t1,但波形不变3、因果系统:是指输出变化不会发生在输入变化之前的系统4、P505、频率特性是冲激响应的傅氏变换6、滤波器的响应时间:一个滤波器的输入从一个稳态变到另一个稳态时,其输出要经过一个过渡过程的延时才能达到新的稳态输出,这种延时称为滤波器的响应时间7、离散时间信号的傅氏变换定义式:P568、Z变换定义式:P599、非递归型数字滤波器是将输入信号和滤波器的单位冲激响应作卷积而实现的一类滤波器。

是无限冲激响应滤波器(FIR):对单位冲激的输入信号的响应为无限长序列的数字滤波器递归型滤波器是用前几次的输出值作为输入来求下一次的输出。

是有限冲激响应滤波器:对单位冲激的输入信号的响应为有限长序列的数字滤波器10、计算:P69第三章1、评价算法的标准:精度、速度速度包括:①数据窗的长度Dw②运算工作量(乘除法的次数)2、导数法的优缺点:优①需要的数据窗短②算式和乘积法相似,不复杂缺①要求数字滤波器有良好的滤去高频分量的能力②要求有较高的采样率3、半周积分算法的依据:一个正弦量在任意半个周期内绝对值的积分为一常数S,即S= 半周积分算法需要的数据窗长度为10ms4、突变电流算法计算公式P805、为什么要进行故障选相:①可以用于选相跳闸②可以在阻抗继电器中做到仅投入故障特征最明显的阻抗测量元件6、傅里叶级数算法:P877、傅氏算法的滤波特性:它假定被采样信号是周期性的,符合这一假定时,它可以准确地求出基频分量,不仅能完全滤掉各种整次谐波和纯直流分量,对非整次高频分量和按指数衰减的非周期分量包含的低频分量也有一定的抑制能力8、R-L模型算法仅用于计算线路阻抗9、傅氏算法和两点乘积算法的比较:两点乘积法要求用一个50Hz带通滤波器获得基波正弦量,然后利用滤波器相隔5ms的两点输出,计算有效值及相位,因此它的总延时是滤波器的延时再加5ms。

微机继电保护原理讲解

微机继电保护原理讲解

微机继电保护原理讲解微机继电保护原理浅析摘要:本文就继电保护领域日益应用广泛的微机继电保护,从硬件、算法、电磁兼容等几方面作以原理性的浅析。

关键词:微机继电保护1.概述继电保护是关系着电力系统安全运行的关键。

继电保护技术的发展大致分为四个阶段:电磁型、晶体管型(又称半导体型或分立元件型)、集成电路型、微型计算机型。

目前,随着微电子技术的发展,微机型继电保护技术的应用已越来越广泛。

与传统的继电保护技术相比,微机继电保护主要有以下的优点:(1)改善和提高继电保护的动作特性和性能;(2)可靠性大为提高;(3)内部编程软接线的方式大大降低了电气二次线路的复杂性;(4)可以充分利用CPU的资源,实现其他测量、管理、通讯等功能;(5)微机特有的记忆存槠功能能很好的实现故障追忆,提高运行管理效率;(6)自检能力强,可以省去每年花费大量人力物力而必须去做的继电保护预防性试验,可以保证生产的连续运行;(7)扩展能力强。

2.微机型继电保护装置的硬件构成2.1微机继电保护装置典型硬件结构微机型继电保护装置是微机控制技术的应用实例之一。

它是以微处理器(单片机)为核心,配以输入、输出通道,人机接口和通讯接口等。

图2-1给出了微机保护的典型硬件结构图。

2.2微机保护装置的输入输出通道微机保护的输入通道分为模拟量输入通道和开关量输入通道,输出通道主要为继电器逻辑回路。

输入通道主要完成电力系统的电压、电流信号的采集和一次设备的状态量采集(比如断路器的运行状态);而输出通道主要完成保护跳闸信号、告警信号的输出。

2.2.1模拟量输入通道目前,微机保护的模拟量采集均采用交流采样技术。

模拟量输入通道主要由模拟量输入变换回路、低通滤波器、采样和A/D转换器等几个环节构成。

2.2.1.1模拟量输入变换回路由一次回路的CT、PT的二次侧输入至微机保护器的信号,一般数值较大,不适合内部A/D转换的电平要求(一般A/D转换回路的输入电压范围为±2.5V、±5V 或±10V)。

电气系统继电保护第10章微机保护基础

电气系统继电保护第10章微机保护基础
图中K1~K11受寄存器Z1~Z11状态控制的电子开关当Zi=“1” 时,K接电源+VR;当Z=“0”时,Ki接地。
R—2R网络的一个特点是:如果K1~K11全部接地,从任意一 个节点Pi(i=1,2,……,11)向右看(不包括节点下面的2R电 阻),右边电路的等效电阻总是等于2R。为此,可以找出网络
图10.1 传统继电保护装置的原理结构图
各基本部分的作用是: (l)测量部分是测量与被保护设备工作状态(正常状态、 故障状态或不正常工作状态)相关的电气量,并与给定的整定 值比较,从而判断保护是否应该起动。 (2)逻辑部分是根据各测量元件输出量的大小、性质、组 合方式、出现的顺序,来判断被保护设备的工作状态,以决定 保护是否应该动作。 (3)执行部分是根据逻辑部分传送的信号,执行保护装置 所承担的任务。如内部故障时动作于跳闸;不正常运行时发出 报警信号;正常运行时不动作等。
(2)可靠性高 在各种保护方法中,考虑到了电力系统中的各种情况, 具有很强的综合分析和判断能力。微机系统运行时,可以不 断进行自检,因此,可以立即检查出微机保护内部的大多数 随机故障,而采取适当的纠正措施。 (3)易于获得各种附加功能 由于计算机的通用性,因而在继电保护硬件的基础上, 可以很方便地通过增加软件的方法获得保护之外的功能。例 如,保护的动作顺序记录,故障谐波分析,故障测距,低频 减载等。
电力系统发生故障时,相关电气参数将发生变化。例如, 电流增大、电压降低以及电流与电压之间的相位角变化等。利 用故障前后这些基本电气参数的差别,就可构成不同原理的继 电保护装置,如:
(l)反应电流数值变化的电流速断保护、定时限过电流保 护、反时限过电流保护;
(2)反应电压数值变化的低电压或过电压保护; (3)既反应电流数值变化义反应短路功率方向的方向过电 流保护;

微机继电保护PPT课件

微机继电保护PPT课件
继电保护概述 • 微机继电保护的基本原理 • 微机继电保护的分类与应用 • 微机继电保护的优缺点与展望 • 微机继电保护的实际应用案例
01 微机继电保护概述
CHAPTER
定义与特点
定义
微机继电保护是指利用微型计算 机技术来实现电力系统继电保护 功能的系统。
微机继电保护装置具有灵活的配置和编程 能力,可以根据需要进行定制和扩展,适 应不同系统的需求。
微机继电保护装置具有自我诊断和修复功 能,能够检测和修复潜在的故障,提高系 统的可靠性和稳定性。
微机继电保护的缺点
对硬件和软件要求高
01
微机继电保护装置需要高性能的硬件和软件支持,增加了系统
的复杂性和成本。
对数据传输和处理能力要求高
02
微机继电保护装置需要实时传输和处理大量数据,对数据传输
和处理能力要求较高。
对外部环境因素敏感
03
微机继电保护装置对外部环境因素较为敏感,如温度、湿度、
电磁干扰等,需要采取相应的防护措施。
微机继电保护的展望
智能化发展
随着人工智能技术的发展,微机继电保护装置将更加智能化,能 够自适应地学习和优化保护策略。
应用效果
该系统的应用显著提高了发电厂的安全性和可靠性,减少了设备 损坏和事故发生。
技术特点
该系统采用了基于数字信号处理技术的继电保护算法,具有高灵 敏度和快速响应的特点。
某变电站的微机继电保护系统
案例概述
某变电站的微机继电保护系统采用了先进的微机继电保护装置,实 现了对变电站的全面保护。
应用效果
该系统的应用显著提高了变电站的安全性和可靠性,减少了设备损 坏和事故发生。
04 微机继电保护的优缺点与展望
CHAPTER

微机继电保护精品课件教材课程

微机继电保护精品课件教材课程

大数据技术在微机继电保护中的应用
大数据技术可以对大量的电力系统运 行数据进行分析和处理,提取出有用 的信息,用于优化保护装置的配置和 整定值。
大数据技术还可以用于对历史故障数 据进行挖掘和分析,找出故障发生的 规律和原因,为预防和解决故障提供 科学依据。
大数据技术还可以用于对电力系统的 运行状态进行实时监测和预警,及时 发现潜在的故障风险,提高电力系统 的安全性和稳定性。
详细描述
通信故障通常表现为通信指示灯不亮、通信数据异常等。这 可能是由于通信接口接触不良、通信线缆损坏或通信协议不 匹配等原因造成的。处理通信故障需要检查通信接口和线缆 是否正常,同时确保通信协议的一致性。
通信故障
总结词
通信故障是指微机继电保护装置与其他设备或系统之间的通 信出现问题,导致信息传输受阻或数据错误。
物联网技术在微机继电保护中的应用
物联网技术可以实现电力设备和 保护装置之间的信息交互和远程 控制,提高保护装置的自动化和
智能化水平。
物联网技术还可以用于对电力设 备的运行状态进行实时监测和预 警,及时发现设备的异常情况,
提高设备的可靠性和安全性。
物联网技术还可以用于实现电力 系统的远程管理和控制,提高电 力系统的运行效率和可靠性。
靠性。
距离保护
距离保护通过测量故障点到保护装 置的距离,判断故障位置,实现选 择性保护。
方向保护
方向保护通过比较故障电流的方向, 判断故障是否发生在被保护线路的 内部,实现选择性保护。
微机继电保护的软件算法
电流差动保护
电流差动保护通过比较线路两侧 电流的大小和相位来判断故障是 否发生,具有较高的灵敏度和可
大数据技术在微机继电保护中的应用
大数据技术可以对大量的电力系统运 行数据进行分析和处理,提取出有用 的信息,用于优化保护装置的配置和 整定值。

微机保护原理内容梗概

微机保护原理内容梗概

绪论一、微机继电保护装置的特点1.维护调试方便2.可靠性高3.易于获得附加功能4. 灵活性大5.保护性能得到很好改善二、微波保护:微波中继通信-利用微波实现信息交换行波保护:应用与故障测距研究热点:自适应保护,暂态量保护,广域信息保护,智能式继电保护,参数识别原理继电保护微机保护发展:从原件到线路从高压到低压单cpu——多cpu硬件结构-高性能德16位单片机构成——32位psp+cpu智能变电站:非常规互感器,IEC61850标准,一次设备智能化,网络通信技术智能变电站体系结构易于获得附加功能:各部分的动作顺序记录简单故障录波故障类别线路:测距微机保护与常规保护的区别:系统性,动态性,速度,功能,通用性,工作环境中间变换器:交流电压信号——电压变换器交流电流信号——电抗变换器或电流变换器阻值放大高频分量有稳相第一章微机保护的硬件原理一、数据采集系统(或称为模拟量输入系统):完成将模拟输入量准确地转换为微型机能够识别的数字量。

微型机主系统:执行编制好的程序,对数据采集系统输入至RAM 区的原始数据进行分析、处理,完成各种继电保护的测量、逻辑和控制功能。

开关量(或数字量)输入/输出系统:完成保护的出口跳闸、信号、外部触点输入、人机对话及通信等功能。

微处理器选择原则:速度、功能、通用性、工作环境 电压互感器二次侧额定电压:100V电流互感器二次侧额定电流:1A 或5A 。

电抗变换器:具有阻止直流、放大高频分量的作用;线性范围较大,铁芯不易饱和,有移相作用。

二、电流变换器:只要铁芯不饱和,则二次电流及并联电阻上的二次电压的波形可基本保持与一次电流波形相同,不会移相。

在非周期分量的作用下易饱和,线性度差,动态范围也较小。

工频:Hz f 500= N=12 基频:1f (实际值) 采样频率:s f 每个周期(基频)采样的点数N 0Nf f s =采样周期:fs 1s =T采样定律:max s f 2f ≥ hz 300f max =数据采集核心器件:模数转换器(编码电路)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=R U U D sr n 212*.......2*22*1---+++=Bn B B DB →二进制数三、模数转换器(ADC 或A/D 转换器)分辨率: A /D 转换器所能分辨模拟输入信号的最小变化量。

微型机继电保护基础-杨奇逊

微型机继电保护基础-杨奇逊

绪论一、计算机在继电保护领域中的应用和发展概况电子计算机特别是微型计算机(以下简称微型机)技术发展很快,其应用已广泛而深入地影响着科学技术、生产和生活等各个领域。

它使各行业的面貌发生了巨大的,往往是质的变化,继电保护技术也不例外。

在继电保护技术领域,除了离线地应用计算机作故障分析和继电保护装置的整定计算、动作行为分析外,60 年代末期已提出用计算机构成保护装置的倡议。

最早的两篇几乎同时发表的关于计算机保护的研究报告[1,2] ,揭示了它的巨大潜力,引起了世界各国继电保护工作者的兴趣。

在70 年代,掀起了研究热潮,仅公开发表的有关论文就有200 余篇[3] ,在此期间提出了各种不同的算法原理和分析方法。

但是限于计算机硬件的制造水平以及价格过高,故当时还不具备商业性地生产这类保护装置的条件。

早期的研究工作是以小型计算机为基础的,出于经济上的考虑,曾试图用一台小型计算机来实现多个电气设备或整个变电站的保护功能。

这种想法使可靠性难以得到保证,因为一旦当该台计算机出现故障,所有的被保护设备都将失去保护,同时,按照当时计算机的接口条件和内部资源来说,也无法实现这种设想。

到了70 年代末期,出现了一批功能足够强的微型机,价格也大幅度降低,因而无论在技术上还是经济上,已具备用一台微型机来完成一个电气设备保护功能的条件。

甚至为了增加可靠性,还可以设置多重化的硬件,用几台微型机互为备用地构成一个电气设备的保护装置,从而大大提高了可靠性。

美国电气和电子工程师学会(IEEE)的教育委员会在1979 年曾组织过一次世界性的计算机保护研究班(其讲义有中译本[4])。

这个研究班之后,世界各大继电器制造商都先后推出了各种定型的商业性微机保护装置产品。

由于微机保护装置具有一系列独特的优点,这些产品问世后很快受到用户的欢迎。

国内在微型机保护方面的研究工作起步较晚,但进展却很快。

1984 年国内第一套微机距离保护样机在经过试运行后,通过了科研鉴定[5]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章微机保护的硬件原理及设计选择原则1-1概述微机保护出现20年来,得到了快速的发展,现有多个专业厂家生产微机保护装置,其硬件系统各有特点。

华北电力大学、杨奇逊院士:第一代(84-90年)MPD-1、单CPU结构、硬件示意图如下:可靠性差。

第二代:WXH-11(90年代以后)、多CPU结构系统机PRINTER整个系统有五个CPU(8031)。

四个CPU分别用来构成高频、距离、零序保护和综合重合闸,另一个CPU用来构成人机接口,A/D 转换采用VFC型。

每一个CPU系统都是一个独立的微机系统,任何一个损坏,系统仍然工作。

数据总线、控制总线和地址总线均不引出印刷电路板,可靠性较高。

交流输入及跳闸出口部分可靠性较高。

第三代:CSL101A(1994年鉴定,96年推广)多CPU结构,与第二代不同之处在于:(1)C PU采用不扩展的单片机,即构成微机系统所需的微处理器、RAM、EPROM等全部集中在一个芯片内部,总线不出芯片,具有很高的抗干扰能力。

(2)V FC采用第三代VFC芯片VFC110最高震荡频率为4M,相当于A/D精度的14位。

(3)设有高频、距离、零序和录波CPU插件,重合闸不包括在保护之中。

南京电力自动化研究院、南瑞公司 LFP-900系列(沈国荣院士)LFP-900系列包括从35KV~66KV 中低压线路保护220KV~500KV 线路高压超高压线路保护,用于不同电压等级时,保护的配置情况有所不同。

以LFP-901为例,说明配置情况。

采用多CPU 结构,含有三个CPU ,两个用于构成保护,一个用于人机接口CPU 均为Intel 80196KC1CPU :纵联保护(工频变化量方向、零序功率方向、复合式距离元件)1Z 、零序后备保护2CPU :距离保护、综合重合闸3CPU :人机对话、起动、为出口提供?电压1CPU 、2CPU 采用VFC 型A/D 转换,3CPU 采用逐次逼近式A/D转换最近又推出RCS-9000系列保护(单片机加DSP 结构)此外,还有许继电器股份有限公司生产的WXH-800系列微机保护、国家电力公司南京电力自动化设备总厂生产的PSL601(602)数字式高压线路保护的等,都各有特点,不再一一论述。

各种微机保护硬件虽各不相同但一般均包括以下三大部分:(1).模拟量输入系统(数据采集系统)作用:TA输出电流(计算机能辨识TV输出电压处理的数字量)构成:型:电压形成、ALF、S/H、MPX、A/D型:电压形成、VFC、光隔、计数器(2).CPU主系统作用:对采集系统采集到的数据分析计算、完成各种继电保护功能。

构成:CPU、EPROM、RAM、PROME2目前的保护都有多个CPU(3).开关量输入输出系统开关量输入:断路器位置等作用:开关量输出:继电器输出(4)人机接口(5)通讯接口1-2 模拟量输入系统(数据采集系统)1-2-1 A/D型模拟量输入系统一﹑基本框图: 总线二﹑电压形成回路TV :二次额定电压为100V 。

正常运行时输出100V 左右,系统故障时,输出在0—100V 之间变化TA :输出正比于一次电流。

额定输出1A或5A 。

正常一般小于额定值。

系统故障时其二次电流可在1—20倍额定范围内变化。

ALF ﹑S/H ﹑MPX 及A/D等电子回路允许的输入信号的范围一般为-5V — +5V 或-10V — +10V (也有0—5V ,0—10V 者)因而需要变换。

电压:100V25V 或210V实现 : (1)电压变换器25或210V(2)电流变换器或210V电流(10—20)I n 25A 或210A实现: (1 )电流变换器25或210V(2)电抗变换器25或210V各变换器除具有电平变换作用外,还具有隔离的作用,使TA ﹑TV 二次回路与微电子电路之间没有电的联系。

三﹑采样保持电路(S/H )和模拟低通滤波器ALF (一)S/H 电路的作用和原理。

作用:在一个极短的时间内测量模拟输入量在该时刻的瞬时值,并在模数转换器转换期间保持其输出不变。

原理:U sc U阻抗变换器:实际是电压跟随器(运放型),有很大的输入阻抗和很小的输出阻抗。

AS :受控电子开关,逻辑输入高电平,AS 接通。

逻辑输入低电平,AS 断开。

c h:保持电容,AS 接通时,c h 快速充放电,使u u u sr ch sc == 称为采样或跟踪。

AS 断开时,c h 放电回路电阻很大,短时间内可认为不变。

u u usr cn sc≠=AS 在处于接通和断开交替的状态,则整个电路不断工作在采样﹑保持状态。

采样过程的示意图如下:书上P4页图1-3为理想化情况,实际情况下,采样脉冲必须有一定的宽度,使c h 有足够的时间跟踪u sr 的变化。

信号u sr逻辑输入(采样脉冲)T c u sc T s(二)对采样保持电路的要求1) 采样时间t c 应尽量小 2) 保持时间尽量长3) 模拟开关动作时间延时小,R on 小,R off 大。

(三)采样频率的选择和ALF 的应用单位时间内采样的点数,称为采样频率,它等于采样间隔(周期)T s 的倒数,既Tfss1=优:可以准确的还原波形采样频率的选择:T T fs s s↓↑)1(时间内完成所有计算困难。

(2)同样的输入,采样得数据量多,运算复杂,占内存多。

↑↓T f s s数据量减小,运算时间充裕。

f s太低,将无法由采样数据还原出原波形。

要求:fs必须大于被采样信号中存含最高频率成分fmax的两倍,既ffsmax2>否则会产生叠影现象。

见P7,图1-6 (a ).被采信号(b ).max f f s =,还原为直流信号 (c ).书上图c 对应s f <m ax fm ax f <s f <2m ax f ,还原为一个低频信号。

只有s f >2m ax f 时,才能换远处被采信号系统短路,u,I 中既包含工频量,还含有高频信号,即m ax f 较大,而这些高频信号为无用信号,为防叠频 增大s f ,使s f >2m ax f ,往往导致s f 太大ALF ,将高频信号滤掉,即减小m ax f ,使s f >2m ax f目前一般均采用方法(2),即ALF 法,当前A/D 快,DSP 快,也可增大s f 法,ALF 的具体电路一般可以为无源RC 或有源滤波,此处不在细论。

四、模拟多路开关许多继电保护装置,需要输入多个电气量可有三种方式: (1).同时采样,同时A/D 转换优点:控制简单,同时性好,对A/D 速度要求不高 价格高 功耗大 缺点:需多片A/D 体积大 接口复杂(2).同时采样,依次A/D 转换同时采样,由MPX 依次切换至A/D 分别转换 优点:只用一片A/D缺点:控制复杂,要求A/D 速度高(3)顺序采样总线缺点:不能同时采样,各通道出现相位差 在(2)(3)两种方式下,均需使用MPX MPX :受控多转1的电子开关 2转1 4转18转1 16转1 16转1多路开关芯片AD7506的逻辑框图如下: E n Ao A1 A2 A3 +15V-15V⎩⎨⎧=决定由—所有开关均断—30~10A A EN 要求:时间快、Ron 小、Roff 大 五﹑A/D 转换器作用:将S/H 离散化的模拟信号变换为离散化的数字信号,既对模拟信号大小编码。

两者之间的关系为:UU RA D =UR参考电压,一般U U A R <所以D 〈1,既为小数,可表示为2222211n n B B B D ---+⋅⋅⋅++=n 为数据编码位数,也就是A/D 转换位数,它是A/D 的一个重要指标。

n 有限,D 必须为舍去比LSB 更小的数,带来误差,成为量化误差,n 增加量化误差减小。

一般n=8﹑10﹑12﹑14﹑16等。

常用的A/D 转换器有逐次比较式和并联比较式两种,此处只讨论逐次比较式:(设n=8)(1) A /D 转换启动后,数码设定为10000000由D/A 输出一个对应的模拟电压U 0(2) 比较U A 与U 0 U A 〉U 0:保留最高位1,下一位设为1U A 〈U 0:最高位变零,下一位设为1D/A 输出一个与新编码对应的模拟量U 1 (3)比较U A 与U 1U A 〉U 1:保留次高位1,设第三位为1 U A 〈U 1:次高位取0,设第三位为1。

经n 次比较后,最终可以确定出与U 对应的数字编码。

AD574简介 (1) 基本指标:精度:12位 转换时间:25微秒 (2) 电源电压:AGND v15± AGNDv 5± 模拟地 数字地 (3) 模拟输入:+20V : 0—20V-10V—+10V+10V 0—+10V-5V—+5V(4)数据量输出:12位8位机,分两次读16位机,一次读。

(5)控制状态线控制:CE—控制时钟CS_____—片选输入,来自译码器R/C__—1,读转换结果0,启动转换CE=0 CE=1启动转换:CS_____=0 读结果:CS_____=0R/C__=0 R/C__=1 CS_____来自译码电路,反映了A/D在微机系统中的地址。

8__/128__/12=116位CPU时一次读取12位结果A0A0=08__/12=08位CPU 0,高8位读A0= 1,读低4位状态输出端:STS= 0,不忙1,忙六:数据采集系统与微机的接口(1)程序查询方式硬件接口图见P16图1—18硬件包括:电压形成,ALF﹑S/H﹑MPX﹑A/D﹑并行口﹑数据线﹑定时器。

软件包括:并行口初始化。

采样数据寄存器地址指针初始化。

定时器初始化。

开放中断。

定时器中断时,执行中断服务程序。

中断服务程序包括以下内容:1)清中断请求,准备下一次中断。

2)命令AD574开始转换,读STS 状态STS=0,已换完,读结果,存入RAMSTS=1,未转换完,等待。

3)更新地址指针的指向。

每读一个结果,地址加2,判是否到达存储区末端,如果不到,顺序下存,如果到,则将地址指针指向初地址,循环存取,初地址末地址4)控制MPX,指向下一个通道,A/D转换……共16个通道(最多),最好一个通道转换完后,重新切回0通道5)执行中断服务程序中的其他内容。

6)中断返回要求:整个中断服务程序必须在两个采样时间间隔内完成。

特点:每次启动A/D后,CPU就开始不断查询STS的状态,耗时较多,要求A/D快。

T sT i确保T i〈T s,对硬件要求较高。

(二)中断方式启动A/D后,CPU无须等待,转去处理其它事件,A/D转换结束后,发出中断,读取转换结果,更新地址指针,更新通道,启动下通道A/D转换,从A/D转换中断返回,再去处理其它程序。

A/D转换结束中断嵌套在定时器中断之中,要求其优先级高于定时器中断。

相关文档
最新文档