2019武汉初三元调数学试卷及答案
湖北省武汉市2019年九年级元月调考数学复习试卷(一)含答案解析

湖北省武汉市2019年九年级元月调考数学复习试卷(一)含答案解析一.选择题(共8小题)1.在数1,2,3和4中,是方程x2+x﹣6=0的根的为()A.1 B.2 C.3 D.42.桌上倒扣着形状,大小,背面图案都相同的10张扑克牌,其中6张梅花、4张红桃,则()A.从中随机抽取1张,抽到梅花的可能性更大B.从中随机抽取1张,抽到梅花和红桃的可能性一样大C.从中随机抽取6张必有2张红桃D.从中随机抽取5张,可能都是红桃3.抛物线y=2(x﹣3)2﹣7的顶点坐标是()A.(3,7)B.(﹣3,7)C.(3,﹣7)D.(﹣3,﹣7)4.在⊙O中,弦AB的长为8,⊙O的半径为5,则圆心O到AB的距离为()A.4 B.3 C.2 D.15.在平面直角坐标系中,有A(3,﹣2),B(﹣3,﹣2),C(2,2),D(﹣3,2)四点.其中关于原点对称的两点为()A.点A和点B B.点B和点C C.点C和点D D.点D和点A 6.方程x2﹣x+2=0的根的情况是()A.两实数根的积为2 B.两实数根的和为1C.没有实数根D.有两个不相等的实数根7.将抛物线y=﹣(x+1)2向右平移3个单位,再向上平移2个单位后得到的抛物线的解析式为()A.y=﹣(x+4)2+2 B.y=﹣(x+4)2﹣2C.y=﹣(x﹣2)2﹣2 D.y=﹣(x﹣2)2+28.如图,点O1是△ABC的外心,以AB为直径作⊙O恰好过点O1,若AC=2,BC=4,则AO1的长是()A.3B.C.2D.2二.填空题(共5小题)9.掷一枚质地不均匀的骰子,做了大量的重复试验,发现“朝上一面为3点“出现的频率越来越稳定于0.3.那么,掷一次该骰子,“朝上一面为3点”的概率为.10.如图,AB为⊙O的直径,点C、D在⊙O上.若∠CAB=40°,则∠D的大小为度.11.圆心角为125°的扇形的弧长是12.5π.则扇形的面积为.12.如图是一块矩形铁皮,将四个角各剪去一个边长为1米的正方形后剩下的部分做成一个容积为70立方米的无盖长方体箱子,已知长方体箱子底面的长比宽多3米,则矩形铁皮的面积为m2.13.如图,正三角的边长为6cm,则这个正三角形的内部任意一点到三边的距离和为cm.三.解答题(共8小题)14.解方程:x2﹣2x﹣4=0.15.△ABC内接于⊙O,AB=AC,∠BAC=40°.(1)求∠ABC的度数;(2)D为AB的中点,过B作BE∥AD交⊙O于点E,求∠CAE的度数.16.阅读材料,回答问题.材料:题1:假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部孵化成功后,求3只雏鸟中恰有2只雄鸟的概率,我们可以用“袋中摸球”的试验来模拟题1:在口袋中放两种不同颜色的小球,红球表示雌鸟,黄球表示雄鸟,3只雏鸟孵化小鸟.相当于从三个这样的口装中各随机换出一球.恰好有2个黄球.题2:一天晚上,小伟帮助妈妈清洗两套只有颜色不同的有盖茶杯.突然停电了.小伟只好把杯等和茶杯随机地搭配在一起:求颜色搭配正确的概率.(1)设计一个“袋中模球”的试验模拟题2,请筒要说明你的方案;(2)请直接写出题2的概率的结果.17.如图所示,在直角坐标系中,已知A(2,2)、B(0,1),平移线段AB至线段DC,使得点A与点D重合,点B与点C重合(1)若C(1,0),请画出此四边形ABCD,此时四边形ABCD的面积为;(2)若四边形ABCD为正方形,直接写出点C的坐标为;(3)若点C在坐标轴上,且四边形ABCD为菱形,则满足条件的菱形有个.18.如图,点C在以AB为直径的⊙O上.AE与过点C的切线垂直,垂足为D,AD交⊙O于点E,过B作BF∥AE交⊙O于点F,连接CF.(1)求证:∠B=2∠F;(2)已知AE=8,DE=2,过B作BF∥AE交〇O于F,连接CF,求CF的长.19.某产品每件成本10元,试销阶段日销售量y(件)与每件产品的销售单价x(元/件)之间的关系如表.X(元/件)15 18 20 22y(件)250 220 200 180(1)直接写出日销售量y(件)与每件产品的销售单价x(元/件)之间的函数解析式;(2)销售单价定为多少元时,销售利润最大;(3)若销售利润为1250元,且使销售量最大,求销售单价.20.如图,将△ABC绕点A逆时针旋转90°得到△ADE,将线段BC绕点C顺时针旋转90°得线段CG,DG交EC于O点,求证:EO=OC.21.已知抛物线y=(m+1)x2+(m﹣2)x﹣3,抛物线必过第三象限一个定点,求该定点的坐标.参考答案与试题解析一.选择题(共8小题)1.在数1,2,3和4中,是方程x2+x﹣6=0的根的为()A.1 B.2 C.3 D.4【分析】求出方程的解,判断即可.【解答】解:方程分解得:(x﹣2)(x+3)=0,可得x﹣2=0或x+3=0,解得:x=2或x=﹣3,故选:B.2.桌上倒扣着形状,大小,背面图案都相同的10张扑克牌,其中6张梅花、4张红桃,则()A.从中随机抽取1张,抽到梅花的可能性更大B.从中随机抽取1张,抽到梅花和红桃的可能性一样大C.从中随机抽取6张必有2张红桃D.从中随机抽取5张,可能都是红桃【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:A、从中随机抽取1张,抽到梅花的可能性为0.6,抽到红桃的可能性为0.4,故正确;B、从中随机抽取1张,抽到梅花和红桃的可能性不是一样大,故错误;C、从中随机抽取6张,不一定必有2张红桃,故错误;D、从中随机抽取5张,不可能都是红桃,故错误,故选:A.3.抛物线y=2(x﹣3)2﹣7的顶点坐标是()A.(3,7)B.(﹣3,7)C.(3,﹣7)D.(﹣3,﹣7)【分析】直接利用顶点式的特点可知顶点坐标.【解答】解:因为y=2(x﹣3)2﹣7是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,﹣7);故选:C.4.在⊙O中,弦AB的长为8,⊙O的半径为5,则圆心O到AB的距离为()A.4 B.3 C.2 D.1【分析】连接OA,因为OC为圆心O到AB的距离,所以OC⊥AB,根据垂径定理,AC=CB =AB=4,因为圆O的半径为5,所以OA=5,在Rt△AOC中,利用勾股定理,可以求出OC=3.【解答】解:如图,连接OA,作OC⊥AB于C.∵OC为圆心O到AB的距离,∴OC⊥AB,∵AB=8,∴AC=CB=AB=4,∵圆O的半径为5,∴OA=5,在Rt△AOC中,根据勾股定理,OC===3,故选:B.5.在平面直角坐标系中,有A(3,﹣2),B(﹣3,﹣2),C(2,2),D(﹣3,2)四点.其中关于原点对称的两点为()A.点A和点B B.点B和点C C.点C和点D D.点D和点A【分析】根据关于原点对称,横纵坐标都互为相反数,即可得出答案.【解答】解:由题可得,A(3,﹣2)与D(﹣3,2)关于原点对称,故选:D.6.方程x2﹣x+2=0的根的情况是()A.两实数根的积为2 B.两实数根的和为1C.没有实数根D.有两个不相等的实数根【分析】根据根的判别式即可求出答案.【解答】解:由题意可知:△=1﹣4×2=﹣7<0,故选:C.7.将抛物线y=﹣(x+1)2向右平移3个单位,再向上平移2个单位后得到的抛物线的解析式为()A.y=﹣(x+4)2+2 B.y=﹣(x+4)2﹣2C.y=﹣(x﹣2)2﹣2 D.y=﹣(x﹣2)2+2【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=﹣(x+1)2向右平移3个单位,再向上平移2个单位后所得直线解析式为:y=﹣(x+1﹣3)2+2,即y=﹣(x﹣2)2+2.故选:D.8.如图,点O1是△ABC的外心,以AB为直径作⊙O恰好过点O1,若AC=2,BC=4,则AO1的长是()A.3B.C.2D.2【分析】连接AO1、BO1,首先由直径所对的圆周角是直角得出∠AO1B=90°,再由圆周角定理得出∠ACB=(360°﹣90°),延长AC交⊙O于D,求得∠BCD=45°,根据勾股定理得到AB===2,根据等腰直角三角形的性质即可得出结果.【解答】解:作△ABC的外接圆,连接AO1、BO1,如图所示:∵AB是⊙O的直径,∴∠AO1B=90°,由圆周角定理得:∠ACB=(360°﹣90°)=135°,延长AC交⊙O于D,∴∠BCD=45°,∵AB是⊙O的直径,∴∠D=90°,∴CD=BD=BC=4,∴AD=AC+CD=6,∴AB===2,∵点O1是△ABC的外心,∴AO1=BO1,∵∠AO1B=90°,∴AO1=AB=,故选:B.二.填空题(共5小题)9.掷一枚质地不均匀的骰子,做了大量的重复试验,发现“朝上一面为3点“出现的频率越来越稳定于0.3.那么,掷一次该骰子,“朝上一面为3点”的概率为0.3 .【分析】利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可.【解答】解:∵大量的重复试验,发现“朝上一面为3点“出现的频率越来越稳定于0.3,∴掷一次该骰子,“朝上一面为3点”的概率为0.3故答案为:0.3.10.如图,AB为⊙O的直径,点C、D在⊙O上.若∠CAB=40°,则∠D的大小为50 度.【分析】连接BC,求出∠ABC的度数,然后根据圆周角定理求出∠D的度数.【解答】解:连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∴∠B=∠ABC=50°,故答案为50.11.圆心角为125°的扇形的弧长是12.5π.则扇形的面积为112.5π.【分析】首先利用弧长公式得出半径,进而利用扇形面积求法得出答案.【解答】解:∵圆心角为125°的扇形的弧长是12.5π,∴12.5π=,解得:r=18,故扇形的面积为:×18×12.5π=112.5π.故答案为:112.5π.12.如图是一块矩形铁皮,将四个角各剪去一个边长为1米的正方形后剩下的部分做成一个容积为70立方米的无盖长方体箱子,已知长方体箱子底面的长比宽多3米,则矩形铁皮的面积为108 m2.【分析】设矩形铁皮的宽为x米,则长为(x+3)米,无盖长方体箱子底面长为(x+3﹣2)米,宽为(x﹣2)米,根据长方体的体积公式,即可得出关于x的一元二次方程,解之即可得出x的值,再利用矩形的面积公式即可求出矩形铁皮的面积.【解答】解:设矩形铁皮的宽为x米,则长为(x+3)米,无盖长方体箱子底面长为(x+3﹣2)米,宽为(x﹣2)米,依题意,得:1×(x+3﹣2)×(x﹣2)=70,整理,得:x2﹣x﹣72=0,解得:x1=9,x2=﹣8(不合题意,舍去),∴x(x+3)=108.故答案为:108.13.如图,正三角的边长为6cm,则这个正三角形的内部任意一点到三边的距离和为3cm.【分析】由条件可以求出边长为2的等边三角形的高为3,连接PA,PB,PC,仿照面积的割补法,得出S△PBC+S△PAC+S△PAB=S△ABC,而这几个三角形的底相等,故化简后可得出高的关系.【解答】解:分别连接AP,BP,CP,作AD⊥BC于D,∴∠ADB=90°,∵△ABC是等边三角形∴AB=BC=AC=2,∠ABC=60°,∴∠BAD=30°,∴BD=3,在Rt△ABD中,由勾股定理,得∴AD=3∵S△ABP+S△BCP+S△ACP=S△ABC.∴AB•r1+BC•r2+AC•r3=BC×AD,∵BC=AC=AB,∴r1+r2+r3=AD.∴r1+r2+r3=3.故答案是:3.三.解答题(共8小题)14.解方程:x2﹣2x﹣4=0.【分析】在本题中,把常数项﹣4移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:由原方程移项,得x2﹣2x=4,等式两边同时加上一次项系数一半的平方,得x2﹣2x+1=5,配方,得(x﹣1)2=5,∴x=1±,∴x1=1+,x2=1﹣.15.△ABC内接于⊙O,AB=AC,∠BAC=40°.(1)求∠ABC的度数;(2)D为AB的中点,过B作BE∥AD交⊙O于点E,求∠CAE的度数.【分析】(1)利用等腰三角形的性质和三角形内角和求解;(2)连接BD,如图,先利用圆心角、弧、弦的关系得到AD=BD,则∠BAD=∠ABD,根据圆内接四边形的性质得∠D=110°,则∠ABD=∠BAD=35°,再利用平行线的性质得∠D+∠DBE=180°,所以∠DBE=∠ABC=70°,然后计算∠CBE即可得到∠CAE的度数.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=(180°﹣∠BAC)=(180°﹣40°)=70°;(2)连接BD,如图,∵D为的中点,∴AD=BD,∴∠BAD=∠ABD,∵∠D+∠C=180°,∴∠D=180°﹣70°=110°,∴∠ABD=∠BAD=(180°﹣110°)=35°,∵BE∥AD,∴∠D+∠DBE=180°,∴∠DBE=∠ABC=70°,∴∠CBE=∠ABD=35°,∴∠CAE=∠CBE=35°.16.阅读材料,回答问题.材料:题1:假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部孵化成功后,求3只雏鸟中恰有2只雄鸟的概率,我们可以用“袋中摸球”的试验来模拟题1:在口袋中放两种不同颜色的小球,红球表示雌鸟,黄球表示雄鸟,3只雏鸟孵化小鸟.相当于从三个这样的口装中各随机换出一球.恰好有2个黄球.题2:一天晚上,小伟帮助妈妈清洗两套只有颜色不同的有盖茶杯.突然停电了.小伟只好把杯等和茶杯随机地搭配在一起:求颜色搭配正确的概率.(1)设计一个“袋中模球”的试验模拟题2,请筒要说明你的方案;(2)请直接写出题2的概率的结果.【分析】(1)口袋中放两种不同颜色的小球,红球表示某种颜色的杯或盖,黄球表示另一种颜色的杯或盖,据此可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【解答】解:(1)口袋中放两种不同颜色的小球,红球表示某种颜色的杯或盖,黄球表示另一种颜色的杯或盖,颜色搭配正确,相当于从两个这样的口袋中各随机取出一球,颜色相同.(2)画树状图如下:由树状图知,共有4种等可能结果,其中颜色搭配正确的有2种结果,∴颜色搭配正确的概率为=.17.如图所示,在直角坐标系中,已知A(2,2)、B(0,1),平移线段AB至线段DC,使得点A与点D重合,点B与点C重合(1)若C(1,0),请画出此四边形ABCD,此时四边形ABCD的面积为 3 ;(2)若四边形ABCD为正方形,直接写出点C的坐标为(1,﹣1)或(﹣1,3);(3)若点C在坐标轴上,且四边形ABCD为菱形,则满足条件的菱形有 3 个.【分析】(1)依据C(1,0),即可得到CD的位置,进而得出四边形ABCD的面积;(2)依据四边形ABCD为正方形,即可得到点C的坐标为(1,﹣1),(3)依据点C在坐标轴上,且四边形ABCD为菱形,即可得到菱形ABCD的位置.【解答】解:(1)如图所示,四边形ABCD即为所求;四边形ABCD的面积为×3×(1+1)=3,故答案为:3;(2)如图所示:当四边形ABCD为正方形时,点C的坐标为(1,﹣1)或(﹣1,3),故答案为:(1,﹣1)或(﹣1,3);(3)如图所示,满足条件的菱形有3个.故答案为:3.18.如图,点C在以AB为直径的⊙O上.AE与过点C的切线垂直,垂足为D,AD交⊙O于点E,过B作BF∥AE交⊙O于点F,连接CF.(1)求证:∠B=2∠F;(2)已知AE=8,DE=2,过B作BF∥AE交〇O于F,连接CF,求CF的长.【分析】(1)连接OC,根据切线的性质得出OC⊥CD,即可证得OC∥AD,根据平行线的性质以及等腰三角形的性质得出∠DAB=2∠F,进而即可证得结论;(2)连接AF、AC,延长CO交⊙O于H,过O作OG⊥AE于G,首先根据平行线的性质证得∠ACH=∠HCF然后根据垂径定理证得AH=FH,根据垂直平分线的性质得出AC=FC,进而通过证得四边形OCDG是矩形求得半径,然后根据勾股定理求得OG.得出CD,最后根据勾股定理求得AC,从而求得FC.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠BOC=∠DAB,由圆周角定理得,∠BOC=2∠F,∴∠DAB=2∠F,∵AD∥BF,∴∠B=∠DAB,∴∠B=2∠F;(2)解:连接AF、AC,延长CO交⊙O于H,过O作OG⊥AE于G,∵OC∥AD,AE∥BF,∴OC∥BF,∴∠F=∠HFF,∵∠B=2∠F,∴∠B=2∠HCF,∵∠ACF=∠B,∴∠ACF=2∠HCF,∴∠ACH=∠HCF,∴=,∴CH垂直平分AF,∴CF=AC,∵OG⊥AE,∴AG=EG=4,∴GD=GE+ED=4+2=6,∵∠OGD=∠D=∠OCD=90°,∴四边形OCDG是矩形,∴OC=GD=6,OG=CD,∵OA=OC=6,AG=4,∴OG===2,∴DC=2,在Rt△ADC中,AC===2∴CF=AC=2.19.某产品每件成本10元,试销阶段日销售量y(件)与每件产品的销售单价x(元/件)之间的关系如表.X(元/件)15 18 20 22y(件)250 220 200 180(1)直接写出日销售量y(件)与每件产品的销售单价x(元/件)之间的函数解析式;(2)销售单价定为多少元时,销售利润最大;(3)若销售利润为1250元,且使销售量最大,求销售单价.【分析】(1)根据题意得出日销售量y是销售价x的一次函数,再利用待定系数法求出即可;(2)根据销量×每件利润=总利润,即可得出所获利润W为二次函数;(3)利用销售利润为1250元,解方程,即可得出结论.【解答】解:(1)由图表中数据得出y与x是一次函数关系,设解析式为:y=kx+b,则,解得:.故y与x之间的函数关系式为:y=﹣10x+400;(2)日销售利润w(元)与销售单价x(元)之间的函数关系式为:w=(x﹣10)y=(x﹣10)(﹣10x+400)=﹣10x2+500x﹣4000=﹣10(x﹣25)2+2250,故x=25时,w最大;(3)由题意可得:(﹣10x+400)(x﹣10)=1250解得:x=15或35(舍),答:销售单价为15元.20.如图,将△ABC绕点A逆时针旋转90°得到△ADE,将线段BC绕点C顺时针旋转90°得线段CG,DG交EC于O点,求证:EO=OC.【分析】如图,把△ABC绕点C顺时针旋转90°,得到△GFC,由旋转的性质可证DE=CG,∠AED=∠FCG,EA∥FC,可得∠CHG=∠AMG=∠DME,可证△DOE≌△GOC,可得EO =OC.【解答】解:如图,把△ABC绕点C顺时针旋转90°,得到△GFC,∵将BC绕点C顺时针旋转90°得CG,∴CF⊥AC,∵将△ABC绕点A逆时针旋转90°得到△ADE,∴EA⊥AC,∴EA∥FC,∴∠CHG=∠AMG=∠DME,∵△ADE和△FGC都是△ABC旋转而成,∴DE=CG,∠AED=∠FCG,∴∠EDG=∠CGD,在△DOE和△GOC中,,∴△DOE≌△GOC(AAS),∴EO=OC,21.已知抛物线y=(m+1)x2+(m﹣2)x﹣3,抛物线必过第三象限一个定点,求该定点的坐标.【分析】解析式变形为y=m(x2+x)+x2﹣2x﹣3,则当x2+x=0,抛物线必过第三象限一个定点,解得x2+x=0,的解为x=0或﹣,然后把x=﹣代入解析式得y=,即可求得定点坐标为为(﹣).【解答】解:∵y=(m+1)x2+(m﹣2)x﹣3=m(x2+x)+x2﹣2x﹣3,∴当x2+x=0,则x=0或﹣,把x=﹣代入得y=∴第三象限定点为(﹣).。
最新2019—2020学年度武汉市部分学校九年级调研测试数学试卷(含答案)

最新2019—最新2019—2020学年度武汉市部分学校九年级调研测试数学试卷(含答案)考试时间:2019年1月17日14:00~16:00一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( )A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于125.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( )A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .61B .83C .85D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形面积是( )A .63π-B .623π-C .823π-D .33π- 9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a ,则该方程的一个正根是( ) A .AC 的长 B .BC 的长 C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( )A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________.12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____.13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,童威为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……,不断重复上述过程,童威共摸了100次,其中20次摸到黑球,根据上述数据,可估计口袋中的白球大约有___________个.14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm 、宽为20 cm ,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41.为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为____________________.15.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m .16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________.三、解答题(共8题,共72分)17.(本题8分)解方程:x 2-3x -1=0.18.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD .19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A 、B 、C 、D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E 、F 、G 、H ),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A 、B 、E 、F )这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C 、D 、G 、H )这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率.20.(本题8分)如图,在边长为1的正方形网格中,A (1,7)、B (5,5)、C (7,5)、D (5,1).(1) 将线段AB 绕点B 逆时针旋转,得到对应线段BE .当BE 与CD 第一次平行时,画出点A 运动的路径,并直接写出点A 运动的路径长;(2) 线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线;(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件.(1) 求出y与x的函数关系式;(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润.23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE =62,连接BE,P为BE的中点,连接PD、AD.(1) 为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系;(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 如图3,若∠ACD=45°,求△P AD的面积.24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C.(1) 如图1,m=3.①直接写出A、B、C三点的坐标;②若抛物线上有一点D,∠ACD=45°,求点D的坐标.(2) 如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N两点,求证:OM·ON是一个定值.。
2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)

2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为 ⊙O 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61 B .83 C .85 D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a,则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇 匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸 到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm ,宽为20 cm ,他 想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41. 为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A,B,C,D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A,B,E,F)这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C,D,G,H)这四种美食中选择一种,用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,点A的坐标为(1,7),点B的坐标为(5,5),点C的坐标为(7,5),点D的坐标为(5,1)(1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标第20题图21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°, 2,连接BE,P为BE的中点,连接PD、ADAB=CE=6(1) 小亮为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△P AD的面积24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A,B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A,B,C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P,Q两点,连接AP,AQ,分别交y轴于M,N两点,求证:OM·ON是一个定值。
2019年湖北省武汉市九年级数学调考模拟试卷(含答案)

2019年湖北省武汉市九年级数学调考模拟试卷(含答案)一.选择题(满分30分,每小题3分)1.方程x2=4的解是()A.x=2B.x=﹣2C.x=±2D.没有实数根2.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.袋中有形状、大小、质地完全一样的3个红球和2个白球,下列说法正确的是()A.从中随机抽出一个球,一定是红球B.从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率一样大C.从袋中随机抽出2个球,出现都是红球的概率为D.从袋中抽出2个球,出现颜色不同的球的概率是4.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)5.第24届冬奥会将于2022年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A.B.C.D.6.如图,AB是⊙O的直径,P A切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=20°,则∠B的度数是()A.20°B.25°C.30°D.35°7.已知⊙O的半径是一元二次方程x2﹣3x﹣4=0的一个根,圆心O到直线l的距离d=6.则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.无法判断8.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为()A.100cm B.cm C.10cm D.cm9.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是()A.m<n B.m≤n C.m>n D.m≥n10.如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.二.填空题(满分18分,每小题3分)11.已知平面直角坐标系上的三个点D(0,0),A(﹣1,1),B(﹣1,0).将△ABD绕点D旋转180°,则点A、B的对应点A、B的坐标分别是A1,B112.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从A,B,C,D,E,F五个点中任意取一点,以所取点及G、E为顶点画三角形,所画三角形是等腰三角形的概率是.13.要为一幅矩形照片配一个镜框,如图,要求镜框的四条边宽度都相等,且镜框所占面积是照片本身面积的四分之一,已知照片的长为21cm,宽为10cm,求镜框的宽度.设镜框的宽度为xcm,依题意列方程,化成一般式为.14.将抛物线y=x2+2x向右平移1个单位后的解析式为.15.如图,⊙P的半径为10,A、B是圆上任意两点,且AB=12,以AB为边作正方形ABCD (点D、P在直线AB两侧),若AB边绕点P旋转一周,则CD边扫过的面积为.16.已知抛物线y=x2+2kx﹣6与x轴有两个交点,且这两个交点分别在直线x=2的两侧,则k的取值范围是.三.解答题(共8小题,满分72分)17.(8分)已知:关于x的方程x2+2kx+k2﹣1=0.(1)试说明无论取何值时,方程总有两个不相等的实数根.(2)如果方程有一个根为3,试求2k2+12k+2019的值.18.(8分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1)一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2)随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率.19.(8分)如图,在平面直角坐标系中,已知线段OA,点A(3,4).(1)将线段OA绕点O逆时针旋转90°得到OA',画出线段OA'.(2)直接写出点A'的坐标.20.(8分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.21.(8分)AE为⊙O的直径,D为的中点,过E点的切线交AD的延长线于F.(1)求证:∠AEB=2∠F;(2)若AD=2,DF=4,求BE的长.22.(10分)某水果商店以5元/千克的价格购进一批水果进行销售,运输过程中质量耗5%,运输费用是0.7元/千克,假设不计其他费用(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过科中,商店发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系m=﹣10x+120,那么当销售单价定为多少时,每天获得的利润w最大?(3)该商店决定每销售一千克水果就捐赠a元利润(a≥1)给希望工程,通过销售记录发现,销侮价格大于每千克11元时,扣除捐赠后每天的利润随x增大而减小,直接写出a的取值范围.23.(10分)如图1,在△ABC中,AB=AC,∠BAC=120°,点D,E分别在边AB,AC 上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,∠MPN的度数是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=8,请直接写出△PMN面积的取值范围.24.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B (2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P 的坐标.参考答案一.选择题1.解:∵x2=4,∴x=±2,故选:C.2.解:第一个图是轴对称图形,是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个,故选:B.3.解:A.从中随机抽出一个球,不一定是红球,故此选项不合题意;B.从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率不相同,故此选项不合题意;C.从袋中随机抽出2个球,出现都是红球的概率为,故此选项不合题意;D.从袋中抽出2个球,出现颜色不同的球的概率是,故此选项符合题意;故选:D.4.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.5.解:∵有5张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是;故选:B.6.解:连接AC,根据切线的性质定理得AB⊥AP,∴∠AOP=70°,∵OA=OC,∴∠OAC=∠OCA=55°;∵AB是直径,∴∠ACB=90°,∴∠B=35°.故选:D.7.解:∵x2﹣3x﹣4=0,∴x1=﹣1,x2=4,∵⊙O的半径为一元二次方程3x﹣4=0的根,∴r=,4,∵d>r∴直线l与⊙O的位置关系是相离,故选:A.8.解:设母线长为R,圆锥的侧面积==10π,∴R=10cm故选:C.9.解:∵y=ax2﹣4ax+4a﹣1=a(x﹣2)2﹣1,∴此抛物线对称轴为x=2,∵抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,∴当ax2﹣4ax+4a﹣1=0时,△=(﹣4a)2﹣4a×(4a﹣1)>0,得a>0,∵x1<2<x2,x1+x2<4,∴2﹣x1>x2﹣2,∴m>n,故选:C.10.【解答】解:作点P关于直线L的对称点P′,连接QP′交直线L于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:旋转180°后,各对应点将关于原点对称,∴A1(1,﹣1),B1(1,0).12.解:∵从A,B,C,D,E,F五个点中任意取一点共有5种情况,其中G、E、F;G、E、A两种取法,可使这三定组成等腰三角形,∴所画三角形时等腰三角形的概率是,故答案为:.13.解:设镜框的宽度为xcm,依题意,得:21×10=4[(21+2x)(10+2x)﹣21×10],整理,得:8x2+124x﹣105=0.故答案为:8x2+124x﹣105=0.14.解:∵y=x2+2x=(x+1)2﹣1,∴抛物线的顶点为(﹣1,﹣1),将抛物线y=x2+2x向右平移1个单位后的顶点坐标为(0,﹣1),∴所得新抛物线的函数解析式是y=x2﹣1.故答案为y=x2﹣1.15.解:连接P A、PD,过点P作PE垂直AB于点E,延长PE交CD于点F,如图所示.∵AB是⊙P上一弦,且PE⊥AB,∴AE=BE=AB=6,∵四边形ABCD是正方形,∴∠DAE=∠ADF=∠DFE=90°,∴四边形AEFD是矩形,∴DF=AE=6,∵若AB边绕点P旋转一周,则CD边扫过的图形为以PF为内圆半径、以PD为外圆半径的圆环.∴S=π•PD2﹣πPF2=π(PD2﹣PF2)=πDF2=36π,故答案为:36π.16.解:∵y=x2+2kx﹣6与x轴有两个交点,两个交点分别在直线x=2的两侧,∴当x=2时,y<0.∴4+4k﹣6<0解得:k<;∴k的取值范围是k,故答案为:k.三.解答题(共8小题,满分72分)17.解:(1)∵△=(2k)2﹣4×1×(k2﹣1)=4k2﹣4k2+4=4>0,∴无论k取何值时,方程总有两个不相等的实数根;(2)把x=3代入x2+2kx+k2﹣1=0得9+6k+k2﹣1=0,∴k2+6k=﹣8,∴2k2+12k+2019=2(k2+6k)+2019=﹣16+2019=2003.18.解:(1)依题意列表如下:由上表可知,随机抽取2张卡片可能出现的结果有15个,它们出现的可能性相等,其中“两张卡片上的数都是偶数”的结果有3个,所以P(两张卡片上的数都是偶数)=;(2)画树形图得:随机抽取2张卡片可能出现的结果有36个,第二次取出的数字小于第一次取出的数字有15种,所以其概率==.19.解:(1)如图,线段OA'为所作;′(2)点A'的坐标为(﹣4,3).20.解:设第一次降价的百分率为x,则第二次降价的百分率为2x,根据题意得:500(1﹣x)(1﹣2x)=240,解得x1=0.2=20%,x2=1.3=130%.则第一次降价的百分率为20%,第二次降价的百分率为40%.21.证明:(1)如图1,连接ED,∵D为的中点,∴=,∴∠AED=∠BED,∵AE为⊙O的直径,∴∠ADE=90°,∴∠A+∠AED=90°,∵EF为⊙O的切线,∴AE⊥EF,∴∠AEF=90°,∴∠A+∠F=90°,∴∠AED=∠F,∵∠AEB=∠AED+∠BED=2∠AED,∴∠AEB=2∠F;(2)如图2,∵∠A=∠A,∠ADE=∠AEF=90°,∴△ADE∽△AEF,∴,∵AD=2,DF=4,∴,∴AE=±2,∴AE=2,∴AO=,连接AB、OD,AB、OD交于点G,∵D为的中点,∴OD⊥AB,∴AG=BG,∵AO=OE,∴OG=BE,设OG=x,则GD=﹣x,由勾股定理得:AO2﹣OG2=AD2﹣GD2,则,解得:x=,∴OG=,∴BE=2OG=.22.解:(1)设购进水果k千克,水果售价定为y元/千克时,水果商才不会亏本,由题意得y•k(1﹣5%)≥(5+0.7)k,由k>0可解得:y≥6,所以,水果商要把水果售价至少定为6元/千克才不会亏本.(2)由(1)可知,每千克水果的平均成本为6元,由题意得w=(x﹣6))m=(x﹣6)(﹣10x+120)=﹣10(x﹣9)2+90因此,当x=9时,w有最大值.所以,当销售单价定为9元/千克时,每天可获利润w最大.(3)设扣除捐赠后的利润为P,则P=(x﹣6﹣a)(﹣10x+120)=﹣10x2+(10a+180)x﹣120(a+6),抛物线开口向下,对称轴为直线x=﹣=,∵销售价格大于每千克11元时,扣除捐赠后每天的利润P随x增大而减小,∴≤11,解得:a≤4,故1≤a≤4.23.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=120°,∴∠ADC+∠ACD=60°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=60°,故答案为:PM=PN,60°;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,PM最小时,△PMN面积最小∴点D在BA的延长线上,△PMN的面积最大,∴BD=AB+AD=12,∴PM=6,=PM2=×62=9,∴S△PMN最大当点D在线段AB上时,△PMN的面积最小,∴BD=AB﹣AD=4,∴PM=2,S=PM2=×22=,△PMN最小∴≤S≤9.△PMN24.解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)。
2019武汉元调数学试卷及答案(Word精校版)解析

2019武汉元调数学试卷及答案(Word精校版)解析2018-2019学年度武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程式是( ) A .2316x x B . 2316x x C . 2361x x D . 2361x x 2.下列图形中,是中心对称图形的是( )3.若将抛物线2yx 先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .2(1)2y xB . 2(1)2y xC . 2(1)2y xD . 2(1)2y x4.投掷两枚质地均匀的骰子,骰子的六个面上分别有刻有1和6的点数,则下列事件为随机事件的是( ) A .两枚骰子向上一面的点数之和大于1 B .两枚骰子向上一面的点数之和等于1 C .两枚骰子向上一面的点数之和大于12 D .两枚骰子向上一面的点数之和等于125.已知O 的半径等于8cm ,圆心O 到直线l 的距离为9cm ,则直线l 与O 的公共点的个数为( ) A .0 B . 1 C . 2 D .无法确定6.如图,“圆材埋壁” 是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为O 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B . 13寸C . 25寸D . 26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .16B .38C .58D .238.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在AB 上,点B 的对应点为C ,连接BC ,则图中CD ,BC 和BD 围成的封闭图形面积是( ) A6 B .6 C .8 D .39.古希腊数学家欧几里得的《几何原本》记载,形如22x ax b 的方程的图解是:如图,画Rt ABC ,∠ACB =90°,2a BC ,AC b ,再在斜边AB 上截取2aBD .则该方程的一个正根是( )A .AC 的长B . BC 的长 C . AD 的长 D .CD 的长10.已知抛物线2(0)y ax bx c a 的对称轴为1x ,与x 轴的一个交点为(2,0).若关于x 的一元一次方D .C .B .A.CA程2(0)ax bx c p p 有整数根,则p 的值有( )A .2个B .3个C . 4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程2x p 的一个根,则另一个根是________.12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是________.13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…….,不断重复上述过程,小刚共摸了100次,其中20次摸到黑球,根据上述数据,小刚可估计口袋中的白球大约有________个.14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行.小明幸运获得了一张军运会吉祥物“兵兵”的照片,如图,该照片(中间的矩形)长29cm ,宽为20cm ,他想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的14,为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为________.15.如图是抛物线拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加________m .16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是________.三、解答题(共8题,共72分)17.(本题8分)解方程:2310x x --=18.(本题8分)如图,A ,B ,C ,D 是⊙O 上四点,且AD =CB ,求证:AB =C D .19.(本题8分)武汉的早点种类丰富,品种繁多.某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A ,B ,C ,D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E ,F ,G ,H ),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”GDA(即A ,B ,E ,F )这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C ,D ,G ,H )这四种美食中选择一种.用列举法求小李和小王同时选择的美食都是甲类食品的概率.20.(本题8分)如图,在边长为1的正方形网格中,点A 的坐标为(1,7),点B 的坐标为(5,5),点C 的坐标为(7,5),点D 的坐标为(5,1).(1)将线段AB 绕点B 逆时针旋转,得到对应线段BE ,当BE 与CD 第一次平行时,画出点A 运动的路径,并直接写出点A 运动的路径长;(2)小贝同学发现:线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(本题8分)如图,在四边形ABCD 中,AD BC ,AD CD ⊥,AC AB =,O 为ABC ?的外接圆. (1)如图1,求证:AD 是O 的切线;(2)如图2,CD 交O 于点E ,过点A 作AG BE ⊥,垂足为F ,交BC 于点G . ①求证:AG BG =②若2AD =,3CD =,求FG 的长.图1 图222.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y (件)与当天的销售单价x (元/件)满足一次函数关系,并且当x =25时,y =550元;当x =30时,y =500.物价部门规定,该商品的销售单价不能超过48元/件. (1)求出y 与x 的函数关系式;(2)问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元? (3)直接写出商家销售该商品每天获得的最大利润.23.(本题10分)如图,等边ABC ?与等腰EDC ?有公共顶点C ,其中120EDC ∠=?,AB CE ==BE ,P 为BE 的中点,连接PD AD 、.(1)小亮为了研究线段AD 与PD 的数量关系,将图1中的EDC ?绕点C 旋转一个适当的角度,使CE 与CA 重合,如图2,请直接写出AD 与PD 的数量关系;(2)如图1,(1)中的结论是否依然成立?若成立,请给出证明,若不成立,请说明理由; (3)如图3,若45ACD ∠=?,求PAD ?的面积.图1图2 图3BBB24.(本题12分)如图,在平面直角坐标系中,抛物线2(1)y x m x m =+--交x 轴于A B 、两点(点A 在点B 的左边),交y 轴负半轴于点C .(1)如图1,3m =.①直接写出A B C 、、三点的坐标;②若抛物线上有一点D ,45ACD ∠=?,求点D 的坐标.(2)如图2,过点(2)E m ,作一直线交抛物线于P Q 、两点,连接AP AQ 、,分别交y 轴于M N 、两点,求证:OM ON ?是一个定值.图1图2。
2019年湖北省武汉市中考数学调研试卷(3月份)(有答案含解析)

2019年湖北省武汉市中考数学调研试卷(3月份)一、填空题(每题3分,共30分)1.在数轴上,把表示﹣4的点移动1个单位长度后,所得到的对应点表示的数为()A.﹣2 B.﹣6 C.﹣3 或﹣5 D.无法确定2.无论x取什么数,总有意义的分式是()A.B.C.D.3.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1 B.﹣2x2+5x+1 C.8x2﹣5x+1 D.2x2﹣5x﹣1 4.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()A.35% B.30% C.20% D.10%5.下列运算中,正确的是()A.(﹣)﹣1=﹣2 B.a3•a6=a18C.6a6÷3a2=2a3D.(﹣2ab2)2=2a2b46.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)7.如图所示零件的左视图是()A.B.C.D.8.某校在“爱护地球,绿化祖国”的创建活动中,组织了100名学生开展植树造林活动,其植树情况整理如下表:则这100名学生所植树棵树的中位数为()A.4 B.5 C. 5.5 D.69.要将9个参加数学竞赛的名额分配给6所学校,每所学校至少要分得一个名额,那么不同的分配方案共有()A.56种B.36种C.28种D.72种10.如图,点D在半圆O上,半径OB=,AD=10,点C在弧BD上移动,连接AC,H是MC上一点,∠DHC=90°,连接BH,点C在移动的过程中,BH的最小值是()A.5 B.6 C.7 D.8二、填空题(每题3分,共18分)11.计算×=12.化简÷=.13.抛掷两枚均匀的正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),骰子朝上的面的数字分别为a,b,则a+b=6的概率为.14.如图,在直角梯形ABCD中,∠A=90°,AB=7,AD=2,BC=3,如果边AB上的一点P,使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似,则AP =.15.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C 以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为秒.16.已知m、n均为整数,当x≥0时,mx2+(mn+6)x+6n≤0恒成立,则m+n=.三、解答题(共72分)17.(8分)解方程组:18.(8分)如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.(1)求证:△ADB≌△CDE;(2)求∠MDN的度数..19.(8分)甲、乙两人5场10次投篮命中次数如图:(1)填写表格:(2)①教练根据这5个成绩,选择甲参加投篮比赛,理由是什么?②如果乙再投篮1场,命中8次,那么乙的投篮成绩的方差将会怎样变化?(“变大”“变小”或“不变”)20.(8分)某校两次购买足球和篮球的支出情况如表:(1)求购买一个足球、一个篮球的花费各需多少元?(请列方程组求解)(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?21.(8分)如图,已知△BAC为圆O内接三角形,AB=AC,D为⊙O上一点,连接CD、BD,BD与AC交于点E,且BC2=AC•CE①求证:∠CDB=∠CBD;②若∠D=30°,且⊙O的半径为3+,I为△BCD内心,求OI的长.22.(10分)如图,点A(m,m+1),B(m+3,m﹣1)都在反比例函数y=的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式;(3)将线段AB沿直线y=kx+b进行对折得到线段A1B1,且点A1始终在直线OA上,当线段A1B1与x轴有交点时,则b的取值范围为(直接写出答案)23.(10分)如图,△ABC中,∠BAC=90°,∠ABC=45°,点D为AB延长线上一点,连接CD,∠AMC=90°,AM交BC于点N,∠APB=90°,AP交CD于点Q.(1)求证:AN=CQ;(2)如图,点E在BA的延长线上,且AD=BE,连接EN并延长交CD于点F,求证:DQ=EN;(3)在(2)的条件下,当3AE=2AB时,请直接写出EN:FN的值为.24.(12分)如图,A(﹣1,0),B(4,0),C(0,3)三点在抛物线y=ax2+bx+c上,D为直线BC上方抛物线上一动点,E在CB上,∠DEC=90°(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,F为AB的中点,连接CF,CD,当△CDE中有一个角与∠CFO相等时,求点D的横坐标;若不存在,请说明理由.参考答案一、填空题1.在数轴上,把表示﹣4的点移动1个单位长度后,所得到的对应点表示的数为()A.﹣2 B.﹣6 C.﹣3 或﹣5 D.无法确定【分析】讨论:把表示﹣4的点向左移动1个单位长度或向右移动1个单位长度,然后根据数轴表示数的方法可分别得到所得到的对应点表示的数.解:∵表示﹣4的点移动1个单位长度,∴所得到的对应点表示为﹣5或﹣3.故选:C.【点评】本题考查了数轴:数轴的三要素(正方向、原点和单位长度);数轴上原点左边的点表示负数,右边的点表示正数;左边的点表示的数比右边的点表示的数要小.也考查了分类讨论的思想.2.无论x取什么数,总有意义的分式是()A.B.C.D.【分析】按照分式有意义,分母不为零即可求解.解:A.,x3+1≠0,x≠﹣1,B.,(x+1)2≠0,x≠﹣1,C.,x2+1≠0,x为任意实数,D.,x2≠0,x≠0;故选:C.【点评】本题考查的是分式有意义的条件,按照分式有意义,分母不为零即可求解3.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1 B.﹣2x2+5x+1 C.8x2﹣5x+1 D.2x2﹣5x﹣1 【分析】根据和减去一个加数等于另一个加数,计算即可得到结果.解:根据题意得:(5x2+4x﹣1)﹣(3x2+9x)=5x2+4x﹣1﹣3x2﹣9x=2x2﹣5x﹣1.故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()A.35% B.30% C.20% D.10%【分析】首先根据表格,计算其总人数;再根据频率=频数÷总数进行计算.解:优胜者的频率是18÷(1+19+22+18)=0.3=30%,故选:B.【点评】本题考查频率、频数的关系:频率=频数÷数据总和.5.下列运算中,正确的是()A.(﹣)﹣1=﹣2 B.a3•a6=a18C.6a6÷3a2=2a3D.(﹣2ab2)2=2a2b4【分析】直接利用整式的乘除运算法则以及积的乘方运算法则分别计算得出答案.解:A、(﹣)﹣1=﹣2,正确;B、a3•a6=a9,故此选项错误;C、6a6÷3a2=2a4,故此选项错误;D、(﹣2ab2)2=4a2b4,故此选项错误;故选:A.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.6.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,则当放的位置是(﹣1,1)时构成轴对称图形.故选:B.【点评】本题考查了轴对称图形和坐标位置的确定,正确确定x轴、y轴的位置是关键.7.如图所示零件的左视图是()A.B.C.D.【分析】根据已知几何体可得,左视图为一个矩形里有一条横向的实线.解:如图所示零件的左视图是:.故选:B.【点评】本题考查了简单几何体的三视图;用到的知识点为:主视图,俯视图,左视图分别是从正面看,从上面看,从左面看得到的平面图形.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.8.某校在“爱护地球,绿化祖国”的创建活动中,组织了100名学生开展植树造林活动,其植树情况整理如下表:则这100名学生所植树棵树的中位数为()A.4 B.5 C.5.5 D.6【分析】利用中位数的定义求得中位数即可.解:因为共有100个数,把这组数据从小到大排列,最中间两个数的平均数是第50个数和第51个数的平均数,所以中位数是(5+5)÷2=5.故选:B.【点评】本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9.要将9个参加数学竞赛的名额分配给6所学校,每所学校至少要分得一个名额,那么不同的分配方案共有()A.56种B.36种C.28种D.72种【分析】可以将问题转化为9个人站成一排,每所学校至少要1名,就有8个空然后插入5个板子把他们隔开,从8个里选5个即可答案.解:可以利用9个人站成一排,每所学校至少要1名,就有8个空,然后插入5个板子把他们隔开,从8个里选5个,就是C85==56,故选:A.【点评】本题主要考查了排列组合的应用即挡板法的运用,利用等价转化是解题的关键.10.如图,点D在半圆O上,半径OB=,AD=10,点C在弧BD上移动,连接AC,H是MC上一点,∠DHC=90°,连接BH,点C在移动的过程中,BH的最小值是()A.5 B.6 C.7 D.8【分析】如图,取AD的中点M,连接BD,HM,BM.由题意点H在以M为圆心,MD为半径的⊙M上,推出当M、H、B共线时,BH的值最小;解:如图,取AD的中点M,连接BD,HM,BM.∵DH⊥AC,∴∠AHD=90°,∴点H在以M为圆心,MD为半径的⊙M上,∴当M、H、B共线时,BH的值最小,∵AB是直径,∴∠ADB=90°,∴BD==12,BM===13,∴BH的最小值为BM﹣MH=13﹣5=8.故选:D.【点评】本题考查点与圆的位置关系、勾股定理、圆周角定理等知识,解题的关键是学会添加常用辅助线,利用辅助线=圆解决问题,属于中考选择题中的压轴题.二、填空题(每题3分,共18分)11.计算×=【分析】根据二次根式的运算法则即可求出答案.解:原式=××==故答案为:【点评】本题考查二次根式运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.12.化简÷=x+1 .【分析】先将除式的分母因式分解,再将除法转化为乘法,最后约分即可得.解:原式=÷=•(x+1)(x﹣1)=x+1,故答案为:x+1.【点评】本题主要考查分式的乘除法,解题的关键是熟练掌握分式乘除法的运算法则.13.抛掷两枚均匀的正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),骰子朝上的面的数字分别为a,b,则a+b=6的概率为.【分析】列举出所有情况,让a+b=6的情况数除以总情况数即为所求的概率.解:由树状图可知共有6×6=36种可能,骰子朝上的面的数字和为6的有5种,所以概率是.【点评】用到的知识点为:概率=所求情况数与总情况数之比.14.如图,在直角梯形ABCD中,∠A=90°,AB=7,AD=2,BC=3,如果边AB上的一点P,使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似,则AP=1或6或.【分析】要使两个三角形相似,则可能是△APD∽△BPC,也可能是△APD∽△BCP,所以应分两种情况讨论,进而求解AP的值即可.解:可设PA的长为x,假设△APD∽△BPC,则=,即=,解得x=;当△APD∽△BCP时,则=,即=,解得x=1或x=6.故答案为或1或6.【点评】本题主要考查了相似三角形的判定及性质问题,能够利用其性质求解一些简单的计算问题.15.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C 以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为7或25 秒.【分析】根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.解:如图,作AD⊥BC,交BC于点D,∵BC=8cm,∴BD=CD=BC=4cm,∴AD==3,分两种情况:当点P运动t秒后有PA⊥AC时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t,∴t=7秒,当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴点P运动的时间为7秒或25秒.【点评】本题利用了等腰三角形的性质和勾股定理求解.16.已知m、n均为整数,当x≥0时,mx2+(mn+6)x+6n≤0恒成立,则m+n=﹣7或﹣5 .【分析】根据题意可知抛物线y=(mx+6)(x+n)与x轴最多一个交点,且开口方向向下,由此求得整数m、n的值即可.解:∵当x≥0时,(mx+6)(x+n)≤0恒成立,∴抛物线y=(mx+6)(x+n)即y=mx2+(6+mn)+6n与x轴只有一个交点,且开口方向向下,∴m<0,△=(6+mn)2﹣24mn≤0,∴(6﹣mn)2≤0,则6=mn,∵m、n均为整数,且m<0,∴m=﹣1,n=﹣6;m=﹣2,n=﹣3;m=﹣3,n=﹣2;m=﹣6,n=﹣1,∴m+n=﹣7或m+n=﹣5,故答案是:﹣7或﹣5.【点评】考查了抛物线与x轴的交点,解题的关键是熟悉抛物线的开口方向和抛物线与x轴交点情况.三、解答题(共72分)17.(8分)解方程组:【分析】方程组利用加减消元法求出解即可.解:,②×3﹣①×4得:2x=﹣10解得:x=﹣5,把x=﹣5代入①得:y=﹣7,所以方程组的解为:【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.(1)求证:△ADB≌△CDE;(2)求∠MDN的度数..【分析】(1)由垂直的定义得到∠ADB=∠ADC=90°,根据已知条件即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠DCE,根据直角三角形的性质得到AM=CN,由△ADM≌△CDN,可得∠ADM=∠CDN,再根据∠CDN+∠ADN=90°,可得∠ADM+∠ADN=90°,即可得出∠MDN=90°.解:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°,在△ABD与△CDE中,,∴△ABD≌△CDE(SAS);(2)∵△ABD≌△CDE,∴∠BAD=∠DCE,AB=CE,∵M、N分别是AB、CE的中点,∴AM=AB,CN=CE,∴AM=CN,在△ADM和△CDN中,,∴△ADM≌△CDN(SAS),∴∠ADM=∠CDN,∵∠CDN+∠ADN=90°,∴∠ADM+∠ADN=90°,∴∠MDN=90°.【点评】本题考查了全等三角形的判定和性质,直角三角形斜边上中线的性质,熟练掌握全等三角形的性质定理是解题的关键.19.(8分)甲、乙两人5场10次投篮命中次数如图:(1)填写表格:(2)①教练根据这5个成绩,选择甲参加投篮比赛,理由是什么?②如果乙再投篮1场,命中8次,那么乙的投篮成绩的方差将会怎样变化?(“变大”“变小”或“不变”)【分析】(1)根据众数、中位数的定义进行填空即可;(2)①根据方差可得出数据的波动大小,从而得出甲稳定;②根据方差的公式进行计算即可.解:(1)甲5次的成绩是:8,8,7,8,9;则众数为8;乙5次的成绩是:5,9,7,10,9;则中位数为9;(2)①∵S甲2=0.4<S乙2=3.2,∴甲的成绩稳定,故选甲;②如果乙再投篮1场,命中8次,那么乙的投篮成绩的方差将会变小.【点评】本题考查了方差、中位数、众数以及平均数,掌握各个量的定义以及计算方法是解题的关键.20.(8分)某校两次购买足球和篮球的支出情况如表:(1)求购买一个足球、一个篮球的花费各需多少元?(请列方程组求解)(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【分析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可;(2)设这所学校再次购买y个乙种足球,根据题意列出不等式解答即可解:(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得,解得:.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.【点评】本题考查了二元一次方程组的一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.21.(8分)如图,已知△BAC为圆O内接三角形,AB=AC,D为⊙O上一点,连接CD、BD,BD与AC交于点E,且BC2=AC•CE①求证:∠CDB=∠CBD;②若∠D=30°,且⊙O的半径为3+,I为△BCD内心,求OI的长.【分析】①先求出=,然后求出△BCE和△ACB相似,根据相似三角形对应角相等可得∠A=∠CBE,再根据在同圆或等圆中,同弧所对的圆周角相等可得∠A=∠CDB,然后求出∠CDB=∠CBD;②连接OB、OC,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠BOC =60°,然后判定△OBC是等边三角形,再根据等腰三角形三线合一的性质以及三角形的内心的性质可得OC经过点I,设OC与BD相交于点F,然后求出CF,再根据I是三角形的内心,利用三角形的面积求出IF,然后求出CI,最后根据OI=OC﹣CI计算即可得解.①证明:∵BC2=AC•CE,∴=,又∵AB=AC,∴∠BCE=∠ABC,∴△BCE∽△ACB,∴∠CBD=∠A,∵∠A=∠CDB,∴∠CDB=∠CBD.②解:连接OB、OC,∵∠A=30°,∴∠BOC=2∠A=2×30°=60°,∵OB=OC,∴△OBC是等边三角形,∵CD=CB,I是△BCD的内心,∴OC经过点I,设OC与BD相交于点F,则CF=BC×sin30°=BC,BF=BC•cos30°=BC,所以,BD=2BF=2×BC=BC,设△BCD内切圆的半径为r,则S△BCD=BD•CF=(BD+CD+BC)•r,即•BC•BC=(BC+BC+BC)•r,解得r=BC=BC,即IF=BC,所以,CI=CF﹣IF=BC﹣BC=(2﹣)BC,OI=OC﹣CI=BC﹣(2﹣)BC=(﹣1)BC,∵⊙O的半径为3+,∴BC=3+,∴OI=(﹣1)(3+)=3+3﹣3﹣=2.【点评】本题是圆的综合题型,主要考查了相似三角形的判定与性质,等腰三角形的判定与性质,圆周角定理,等边三角形的判定与性质,三角形的内心的性质,(2)作辅助线构造出等边三角形并证明得到OC经过△BCD的内心I是解题的关键.22.(10分)如图,点A(m,m+1),B(m+3,m﹣1)都在反比例函数y=的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式;(3)将线段AB沿直线y=kx+b进行对折得到线段A1B1,且点A1始终在直线OA上,当线段A1B1与x轴有交点时,则b的取值范围为≤b≤(直接写出答案)【分析】(1)由题可得m(m+1)=(m+3)(m﹣1)=k,解这个方程就可求出m、k的值.(2)由于点A、点B是定点,可对线段AB进行分类讨论:AB是平行四边形的边、AB 是平行四边形的对角线,再利用平行四边形的性质、中点坐标公式及直线的相关知识就可解决问题.(3)由于点A关于直线y=kx+b的对称点点A1始终在直线OA上,因此直线y=kx+b 必与直线OA垂直,只需考虑两个临界位置(A1在x轴上、B1在x轴上)对应的b的值,就可以求出b的取值范围.解:(1)∵点A(m,m+1),B(m+3,m﹣1)都在反比例函数y=的图象上.∴m(m+1)=(m+3)(m﹣1)=k.解得:m=3,k=12.∴m、k的值分别为3、12.(2)设点M的坐标为(m,0),点N的坐标为(O,n).①若AB为平行四边形的一边.Ⅰ.点M在x轴的正半轴,点N在y轴的正半轴,连接BN、AM交于点E,连接AN、BM,如图1,∵四边形ABMN是平行四边形,∴AE=ME,NE=BE.∵A(3,4)、B(6,2)、M(m,0)、N(0,n),∴由中点坐标公式可得:x E==,y E==.∴m=3,n=2.∴M(3,0)、N(0,2).设直线MN的解析式为y=kx+b.则有解得:.∴直线MN的解析式为y=﹣x+2.Ⅱ.点M在x轴的负半轴,点N在y轴的负半轴,连接BM、AN交于点E,连接AM、BN,如图2,同理可得:直线MN的解析式为y=﹣x﹣2.②若AB为平行四边形的一条对角线,连接AN、BM,设AB与MN交于点F,如图3,同理可得:直线MN的解析式为y=﹣x+6,此时点A、B都在直线MN上,故舍去.综上所述:直线MN的解析式为y=﹣x+2或y=﹣x﹣2.(3)①当点B1落到x轴上时,如图4,设直线OA的解析式为y=ax,∵点A的坐标为(3,4),∴3a=4,即a=.∴直线OA的解析式为y=x.∵点A1始终在直线OA上,∴直线y=kx+b与直线OA垂直.∴k=﹣1.∴k=﹣.由于BB1∥OA,因此直线BB1可设为y=x+c.∵点B的坐标为(6,2),∴×6+c=2,即c=﹣6.∴直线BB1解析式为y=x﹣6.当y=0时,x﹣6=0.则有x=.∴点B1的坐标为(,0).∵点C是BB1的中点,∴点C的坐标为(,)即(,1).∵点C在直线y=﹣x+b上,∴﹣×+b=1.解得:b=.②当点A1落到x轴上时,如图5,此时,点A1与点O重合.∵点D是AA1的中点,A(3,4),A1(0,0),∴D(,2).∵点D在直线y=﹣x+b上,∴﹣×+b=2.解得:b=.综上所述:当线段A1B1与x轴有交点时,则b的取值范围为≤b≤.故答案为:≤b≤.【点评】本题考查了反比例函数图象上点的坐标特征、用待定系数法求一次函数的解析式、平行四边形的性质、轴对称的性质、中点坐标公式[若点A(a,b)、B(c,d),则线段AB的中点坐标为(,)]等知识,本题还考查了分类讨论的思想方法,是一道好题.23.(10分)如图,△ABC中,∠BAC=90°,∠ABC=45°,点D为AB延长线上一点,连接CD,∠AMC=90°,AM交BC于点N,∠APB=90°,AP交CD于点Q.(1)求证:AN=CQ;(2)如图,点E在BA的延长线上,且AD=BE,连接EN并延长交CD于点F,求证:DQ=EN;(3)在(2)的条件下,当3AE=2AB时,请直接写出EN:FN的值为25:3 .【分析】(1)利用ASA证明△APN≌△CPQ,可得AN=CQ;(2)如图2,连接BQ,证明△DBQ≌△EAN(SAS),可得DQ=EN;(3)设AE=2x,AB=3x,则BD=2x,DC=x,作辅助线,构建直角三角形和相似三角形,证明△AHE∽△AMD和△DQA∽△ANC,得=,设AH=8m,AM=20m,AN=17m,再证明△EHN∽△FMN,可得结论.解:(1)证明:∵∠APB=90°∴∠APN=∠CPQ=90°,∴∠PNA+∠NAP=∠NAP+∠CQP=90°,∴∠PNA=∠CQP,∵AB=AC,∠BAC=90°,∴AP=PC,∴△APN≌△CPQ(ASA),∴AN=CQ;(2)证明:如图2,连接BQ,由(1)知:AP是BC的垂直平分线,∴BQ=CQ,∵AN=CQ,∴AN=BQ,∵BQ=BC,∴∠QBC=∠QCB=∠NAP,∵∠PBA=∠PAB=45°,∴∠QBA=∠BAN,∴∠DBQ=∠NAE,∵BD=AE,∴△DBQ≌△EAN(SAS),∴DQ=EN;(3)∵3AE=2AB,∴设AE=2x,AB=3x,则BD=2x,DC=x,如图3,过E作EH⊥AM,交MA的延长线于H,∴∠H=∠AMD=90°,∴EH∥DC,∴∠HEA=∠CDA,∴△AHE∽△AMD,∴===,∵∠MAC=∠CDA,∠ACN=∠DAQ=45°,∴△DQA∽△ANC,∴,由(2)知:CQ=AN,∴,∴AN=CQ=x,S△ADC=,,AM=,∴=,∴设AH=8m,AM=20m,AN=17m,则MN=3m,∵EH∥FM,∴△EHN∽△FMN,∴===.故答案为:25:3.【点评】此题是相似形综合题,主要考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的性质和判定,解本题的关键是利用比例的条件设未知数表示一些线段的长,作出辅助线是解本题的难点,是一道比较难的中考常考题.24.(12分)如图,A(﹣1,0),B(4,0),C(0,3)三点在抛物线y=ax2+bx+c上,D为直线BC上方抛物线上一动点,E在CB上,∠DEC=90°(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,F为AB的中点,连接CF,CD,当△CDE中有一个角与∠CFO相等时,求点D的横坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得DM,根据相似三角形的判定与性质,可得DE的长,根据二次函数的性质,可得答案;(3)根据正切函数,可得∠CFO,根据相似三角形的性质,可得GH,BH,根据待定系数法,可得CG的解析式,根据解方程组,可得答案.解:(1)由题意,得,解得,抛物线的函数表达式为y=﹣x2+x+3;(2)设直线BC的解析是为y=kx+b,,解得,∴y=﹣x+3,设D(a,﹣a2+a+3),(0<a<4),过点D作DM⊥x轴交BC于M点,如图1,M(a,﹣a+3),DM=(﹣a2+a+3)﹣(﹣a+3)=﹣a2+3a,∵∠DME=∠OCB,∠DEM=∠BOC,∴△DEM∽△BOC,∴,∵OB=4,OC=3,∴BC=5,∴DE=DM∴DE=﹣a2+a=﹣(a﹣2)2+,当a=2时,DE取最大值,最大值是,(3)假设存在这样的点D,△CDE使得中有一个角与∠CFO相等,∵点F为AB的中点,∴OF=,tan∠CFO==2,过点B作BG⊥BC,交CD的延长线于G点,过点G作GH⊥x轴,垂足为H,如图2,①若∠DCE =∠CFO ,∴tan ∠DCE ==2,∴BG =10,∵△GBH ∽BCO ,∴==, ∴GH =8,BH =6,∴G (10,8),设直线CG 的解析式为y =kx +b ,∴,解得,∴直线CG 的解析式为y =x +3,∴,解得x =,或x =0(舍).②若∠CDE =∠CFO ,同理可得BG =,GH =2,BH =,∴G (,2),同理可得,直线CG的解析是为y=﹣x+3,∴,解得x=或x=0(舍),综上所述,存在点D,使得△CDE中有一个角与∠CFO相等,点D的横坐标为或.【点评】本题考查了二次函数的综合题:熟练掌握二次函数的性质、二次函数图象上点的坐标特征和三角形的外心性质;会利用待定系数法求函数解析式;会利用相似三角形的性质表示线段之间的关系,从而构建一元二次方程;理解坐标与图形性质.。
2019年湖北省武汉市部分学校九年级元月调考数学试卷(word版含答案)

武汉市部分学校九年级调研测试数学试卷一、选择题(共10小题,每小题3分,共30分)1.方程x (x -5)=0化成一般形式后,它的常数项是( )A .-5B .5C .0D .1 2.二次函数y =2(x -3)2-6( ) A .最小值为-6B .最大值为-6C .最小值为3D .最大值为33.下列交通标志中,是中心对称图形的是( )A .B .C .D .4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件5.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是( )A .连续抛掷2次必有1次正面朝上B .连续抛掷10次不可能都正面朝上C .大量反复抛掷每100次出现正面朝上50次D .通过抛掷硬币确定谁先发球的比赛规则是公平的6.一元二次方程0322=++m x x 有两个不相等的实数根,则( )A .m >3B .m =3C .m <3D .m ≤3 7.圆的直径是13 cm ,如果圆心与直线上某一点的距离是6.5 cm ,那么该直线和圆的位置关系是( )A .相离B .相切C .相交D .相交或相切8.如图,等边△ABC 的边长为4,D 、E 、F 分别为边AB 、BC 、AC 的中点,分别以A 、B 、C 三点为圆心,以AD 长为半径作三条圆弧,则图中三条圆弧的弧长之和是( )A .πB .2πC .4πD .6π9.如图,△ABC 的内切圆与三边分别相切于点D 、E 、F ,则下列等式:① ∠EDF =∠B ;② 2∠EDF =∠A +∠C ;③ 2∠A =∠FED +∠EDF ;④ ∠AED +∠BFE +∠CDF =180°,其中成立的个数是( )A .1个B .2个C .3个D .4个10.二次函数y =-x 2-2x +c 在-3≤x ≤2的范围内有最小值-5,则c 的值是( )A .-6B .-2C .2D .3二、填空题(本大题共6个小题,每小题3分,共18分)11.一元二次方程x 2-a =0的一个根是2,则a 的值是___________12.把抛物线y =2x 2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是____13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是_______14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2 m ,那么上部应设计为多高?设雕像的上部高x m ,列方程,并化成一般形式是___________15.如图,正六边形ABCDEF 中,P 是边ED 的中点,连接AP ,则ABAP =___________16.在⊙O 中,弧AB 所对的圆心角∠AOB =108°,点C 为⊙O 上的动点,以AO 、AC 为边构造□AODC .当∠A =__________°时,线段BD 最长三、解答题(共8题,共72分)17.(本题8分)解方程:x 2+x -3=018.(本题8分)如图,在⊙O 中,半径OA 与弦BD 垂直,点C 在⊙O 上,∠AOB =80°(1) 若点C 在优弧BD 上,求∠ACD 的大小(2) 若点C 在劣弧BD 上,直接写出∠ACD 的大小19.(本题8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1) 请画树状图,列举所有可能出现的结果(2) 请直接写出事件“取出至少一个红球”的概率20.(本题8分)如图,在平面直角坐标系中有点A (-4,0)、B (0,3)、P (a ,-a )三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1) 当a=-4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形(2) 当a=___________时,四边形ABCD为正方形21.(本题8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1) 求证:AC平分∠DAE(2) 若AB=6,BD=2,求CE的长22.(本题10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1) 设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式(2) 若菜园面积为384 m2,求x的值(3) 求菜园的最大面积23.(本题10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1) 如图1,若点C是AB的中点,则∠AED=___________(2) 如图2,若点C不是AB的中点①求证:△DEF为等边三角形②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长24.(本题12分)已知抛物线y=ax2+2x+c与x轴交于A(-1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)(1) 求抛物线的解析式(2) 若m=3,直线l与抛物线只有一个公共点,求k的值(3) 若k=-2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标。
2019年度武汉元调数学试卷及其规范标准答案(精校版)

2018-2019学年度武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程式是( ) A .2316x x += B . 2316x x -= C . 2361x x += D . 2361x x -= 2.下列图形中,是中心对称图形的是( )3.若将抛物线2y x =先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .2(1)2y x =-+B . 2(1)2y x =--C . 2(1)2y x =++D . 2(1)2y x =+-4.投掷两枚质地均匀的骰子,骰子的六个面上分别有刻有1和6的点数,则下列事件为随机事件的是( ) A .两枚骰子向上一面的点数之和大于1 B .两枚骰子向上一面的点数之和等于1 C .两枚骰子向上一面的点数之和大于12 D .两枚骰子向上一面的点数之和等于125.已知O e 的半径等于8cm ,圆心O 到直线l 的距离为9cm ,则直线l 与O e 的公共点的个数为( ) A .0 B . 1 C . 2 D . 无法确定6.如图,“圆材埋壁” 是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为O e 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B . 13寸C . 25寸D . 26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .16B .38C .58D .238.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在»AB 上,点B 的对应点为C ,连接BC ,则图中CD ,BC 和»BD围成的封闭图形面积是( ) A6p B .6p C .8pD .3p 9.古希腊数学家欧几里得的《几何原本》记载,形如22x ax b +=的方程的图解是:如图,画Rt ABC D ,∠ACB =90°,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B . BC 的长 C . AD 的长 D .CD 的长10.已知抛物线2(0)y ax bx c a =++<的对称轴为1x =-,与x 轴的一个交点为(2,0).若关于x 的一元一次方程2(0)ax bx c p p ++=>有整数根,则p 的值有( )D .C .B .A.CAA .2个B .3个C . 4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程2x p =的一个根,则另一个根是________.12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是________.13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…….,不断重复上述过程,小刚共摸了100次,其中20次摸到黑球,根据上述数据,小刚可估计口袋中的白球大约有________个.14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行.小明幸运获得了一张军运会吉祥物“兵兵”的照片,如图,该照片(中间的矩形)长29cm ,宽为20cm ,他想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的14,为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为________.15.如图是抛物线拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加________m .16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是________.三、解答题(共8题,共72分)17.(本题8分)解方程:2310x x --=18.(本题8分)如图,A ,B ,C ,D 是⊙O 上四点,且AD =CB ,求证:AB =C D .19.(本题8分)武汉的早点种类丰富,品种繁多.某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A ,B ,C ,D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E ,F ,G ,H ),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A ,B ,E ,F )这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C ,D ,G ,H )这四种美食中选择一种.用列举法求小李和小王同时选择的美食都是甲类食品的概率.GDA20.(本题8分)如图,在边长为1的正方形网格中,点A 的坐标为(1,7),点B 的坐标为(5,5),点C 的坐标为(7,5),点D 的坐标为(5,1).(1)将线段AB 绕点B 逆时针旋转,得到对应线段BE ,当BE 与CD 第一次平行时,画出点A 运动的路径,并直接写出点A 运动的路径长;(2)小贝同学发现:线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(本题8分)如图,在四边形ABCD 中,AD BC P ,AD CD ⊥,AC AB =,O e 为ABC ∆的外接圆. (1)如图1,求证:AD 是O e 的切线;(2)如图2,CD 交O e 于点E ,过点A 作AG BE ⊥,垂足为F ,交BC 于点G . ①求证:AG BG =②若2AD =,3CD =,求FG 的长.图1 图222.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y (件)与当天的销售单价x (元/件)满足一次函数关系,并且当x =25时,y =550元;当x =30时,y =500.物价部门规定,该商品的销售单价不能超过48元/件. (1)求出y 与x 的函数关系式;(2)问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元? (3)直接写出商家销售该商品每天获得的最大利润.23.(本题10分)如图,等边ABC ∆与等腰EDC ∆有公共顶点C ,其中120EDC ∠=︒,AB CE ==BE ,P 为BE 的中点,连接PD AD 、.(1)小亮为了研究线段AD 与PD 的数量关系,将图1中的EDC ∆绕点C 旋转一个适当的角度,使CE 与CA 重合,如图2,请直接写出AD 与PD 的数量关系;(2)如图1,(1)中的结论是否依然成立?若成立,请给出证明,若不成立,请说明理由; (3)如图3,若45ACD ∠=︒,求PAD ∆的面积.图1图2 图3BBB24.(本题12分)如图,在平面直角坐标系中,抛物线2(1)y x m x m =+--交x 轴于A B 、两点(点A 在点B 的左边),交y 轴负半轴于点C .(1)如图1,3m =.①直接写出A B C 、、三点的坐标;②若抛物线上有一点D ,45ACD ∠=︒,求点D 的坐标.(2)如图2,过点(2)E m ,作一直线交抛物线于P Q 、两点,连接AP AQ 、,分别交y 轴于M N 、两点, 求证:OM ON ⋅是一个定值.图1图22018-2019学年度武汉市部分学校九年级元月调考数学试卷参考答案9解析:设AD 为x ,根据Rt ABC D ,222()()22x b +=+, 得:222244a a x axb ++=+,22x ax b +=,所以可以求出x ,所以AD 即所求. 10解析:依图形可知二、填空题(本大题共6个小题,每小题3分,共18分) 11. -3 12.(1,2) 13. 12 14.24981450x x +-= 15. 2 16.115.解析:以抛物线的顶点为原点,建立平面直角坐标系.则A (2,-2),B (-2,-2)∴212y x =-,令 4.5y =-,解得3x =±.∴此时水面宽度为6米,增加了2米 16.解析:∵∠AGB=90°,AB =4,∴G 在以AB 为直径的圆上运动 当CF 与圆相切时,∠BCF 最大,此时AF 最大 设AF =FG =x ,BC =CG=4,,则DF =4-x在Rt △FDC 中,DC 2+DF 2=FC 2,42+(4-x )2=(4+x )2,解得:x =1∴AF =1三、解答题(共8题,共72分) 17.解:∵a =1,b =-3,c =-1∴22=4(3)41(1)94130b ac ∆-=--⨯⨯-=+=> ∴x ==∴1x =2x =B A18.证明:∵AD =CB∴»»AD CB= ∴»»»»AD BD CB BD +=+ 即¼¼ADB CBD= ∴AB =CD19. 解:由树状图可知,小李和小王选择美食共有16种情况,且每种情况出现的可能性相等,同时都是甲类食品的情况共4种.∴P (两种都是甲类食品)=416=1420. 解:(画法如下)(2)情况一:作AD 和BC 的垂直平分线,交点即为旋转中心(6,6) 情况二:作AC 和BD 的垂直平分线,交点即为旋转中心(3,3)21(1)如图所示:连OC ,OB ,连AO 延长交BC 于点H ∵AB =AC ,∴点A 在BC 的垂直平分线上 又∵OB =OC , ∴O 在BC 的垂直平分线上∴AO 垂直平分BC , ∴AO ⊥BC ,CH =BH , ∴∠AHC =90° 又∵AD ∥BC , ∴∠OAD =90°, ∴AD 为O e 的切线 (2)如图所示:①法一:由(1)可知AH ⊥BC ,∴∠HAB +∠ABH =90° ∵AG ⊥BE ,∴∠F AB +∠ABF =90° ∵AO =BO ,∴∠HAB =∠FBA ∴∠ABH =∠F AB ,∴AG =BG法二:8字倒角可得:∠F AO =∠HBO ,又∵∠OAB =∠OBA ∴∠GAB =∠GBA ,∴AG =BG ②由(1)可知四边形ADCH 为矩形. ∴AH =CD =3,CH =HB =AD =2 ∴Rt ABH ∆中 AB=在AGH ∆和BGF ∆中90AHG BFG AGH BGFAG BG ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()AGH BGF AAS ∆∆≌ ∴GF GH =设GH =x ,∴AG =BG =2+x∴在Rt AGH ∆中:()22232x x +=+, 22944x x x +=++,∴54x =,∴54FG GH ==22. 解:(1)设y kx b =+将(25,550)和(30,500)代入可得: 550 =2550030k b k b +⎧⎨=+⎩ 解得:10800k b =-⎧⎨=⎩∴y 与x 的函数关系式为:10800y x =-+ (2)设利润为w 元.()()2010800w x x =--+ 21080020016000w x x x =-++- 210100016000w x x =-+-∴2800010100016000x x =-+- 即210024000x x -+= ∴()()40600x x --=解得:140x =,260x =,∵该商品的销售单价不能超过48元/件.∴x =40答:当销售单价定为40元时,商家销售该商品每天获得的利润是8000元. (3)8960元 23.(1)解:AD =2PD (2)仍然成立。
湖北省武汉市2019年九年级调考数学复习试卷(包含答案)

2019年湖北省武汉市九年级调考数学复习试卷一.选择题(满分24分,每小题3分)1.将关于x的一元二次方程x(x+2)=5化成一般式后,a、b、c的值分别是()A.1,2,5 B.1,﹣2,﹣5 C.1,﹣2,5 D.1,2,﹣5 2.下列银行标志图案中,是中心对称的是()A.B.C.D.3.抛物线y=3(x﹣4)2+5的顶点坐标为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(4,5)4.桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是()A.B.C.D.5.AB是⊙O的弦,∠AOB=80°,则弦AB所对的圆周角是()A.40°B.140°或40°C.20°D.20°或160°6.已知⊙O的半径为10cm,OP=8cm,则点P和⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.无法判断7.一件产品原来每件的成本是1000元,在市场售价不变的情况下,由于连续两次降低成本,现在利润每件增加了190元,则平均每次降低成本的()A.10% B.9.5% C.9% D.8.5%8.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.2二.填空题(满分15分,每小题3分)9.在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣4,3),C(﹣1,1).写出各点关于原点的对称点的坐标,,.10.如图,AB是⊙O的直径,点C是⊙O外的一点,CB与⊙O相切于点B,AC交⊙O于点D,点E是上的一点(不与点A,B,D重合),若∠C=48°,则∠AED的度数为.11.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为x,根据题意列出方程为.12.抛物线y=﹣x2向上平移2个单位后所得的抛物线表达式是.13.如图.在Rt△ABC中,AC=6cm,BC=8cm,以BC边所在的直线为轴,将△ABC旋转一周,则所得到的几何体的表面积cm2(结果保留π).三.解答题14.已知m是方程x2﹣3x+1=0的一个根,求(m﹣3)2+(m+2)(m﹣2)的值.15.如图1,骰子有六个面并分别标有数1,2,3,4,5,6,如图2,正六边形ABCDEF顶点处各有一个圈,跳圈游戏的规则为:游戏者掷一次骰子,骰子向上的一面上的数字是几,就沿正六边形的边顺时针方向连续跳几个边长.如:若从圈A 起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D ;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈F ;…… 设游戏者从圈A 起跳.(1)小明随机掷一次骰子,求落回到圈A 的概率P 1;(2)小亮随机掷两次骰子,用列表法或画树状图法求最后落回到圈A 的概率P 2,并指出他与小明落回到圈A 的可能性一样吗?16.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣4,3)、B (﹣3,1)、C (﹣1,3).请按下列要求画图:(1)将△ABC 绕点O 逆时针旋转90°得到△A 1B 1C 1,画出△A 1B 1C 1; (2)△A 2B 2C 2与△ABC 关于原点O 成中心对称,画出△A 2B 2C 2.17.如图,在正方形ABCD 中,点E 在边AB 上,将点E 绕点D 逆时针旋转得到点F ,若点F 恰好落在边BC 的延长线上,连接DE ,DF ,EF . (1)判断△DEF 的形状,并说明理由; (2)若EF =4,则△DEF 的面积为 .18.如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)若CE=2,BE=1,求B D长.参考答案一.选择题1.解:方程整理得:x2+2x﹣5=0,则a,b,c的值分别是1,2,﹣5,故选:D.2.解:A、不是中心对称图形,本选项不符合题意;B、是中心对称图形,本选项符合题意;C、不是中心对称图形,本选项不符合题意;D、不是中心对称图形,本选项不符合题意.故选:B.3.解:∵二次函数的解析式为y=3(x﹣4)2+5,∴其顶点坐标为:(4,5).故选:D.4.解:∵桌面上放有6张卡片,卡片正面的颜色3张是绿色,2张是红色,1张是黑色,∴抽出的卡片正面颜色是绿色的概率是:=.故选:A.5.解:当圆周角的顶点在优弧上时,根据圆周角定理,得圆周角:∠ACB=∠AOB=×80°=40°;当圆周角的顶点在劣弧上时,根据圆内接四边形的性质,得此圆周角:∠ADB=180°﹣∠ACB=180°﹣40°=140°;所以弦AB所对的圆周角是40°或140°.故选:B.6.解:∵点P到圆心的距离OP=8cm,小于⊙O的半径10cm,∴点P在圆内.故选:A.7.解:设平均每次降低成本的x,根据题意得:1000﹣1000(1﹣x)2=190,=1.9(舍去),解得:x1=0.1=10%,x2则平均每次降低成本的10%,故选:A.8.解:∵一元二次方程mx2+mx﹣=0有两个相等实数根,∴△=m2﹣4m×(﹣)=m2+2m=0,解得:m=0或m=﹣2,经检验m=0不合题意,则m=﹣2.故选:C.二.填空题9.解:∵两个点关于原点对称时,它们的坐标符号相反,∴A(﹣3,5)关于原点对称的点的坐标为:(3,﹣5);B(﹣4,3)关于原点对称的点的坐标为(4,﹣3),C(﹣1,1)关于原点对称的点的坐标为(1,﹣1).故答案为:(3,﹣5)、(4,﹣3)、(1,﹣1).10.解:∵CB与⊙O相切于点B,∴AB⊥BC,∴∠ABC=90°,∵∠C=48°,∴∠CAB=90°﹣48°=42°,连接OD,∵OA=OD,∴∠CAB=∠ADO=42°∴∠AOD=96°,当点E在上时,∠AED=,当点E在上时,∠AED=180°﹣48°=132°,故答案为:48°或132°.11.解:设平均每次降低的百分率为x,根据题意得:40(1﹣x)2=25.6.故答案是:40(1﹣x)2=25.6.12.解:∵抛物线y=﹣x2向上平移2个单位后的顶点坐标为(0,2),∴所得抛物线的解析式为y=﹣x2+2.故答案为:y=﹣x2+2.13.解:∵Rt△ABC中,AC=6cm,BC=8cm,∴AB=10cm,∴OC=6×8÷10=4.8cm,∴所得到的几何体的表面积为π×4.8×6+π×4.8×8=67.2πcm2,故答案为67.2π.三.解答题14.解:∵m是方程x2﹣3x+1=0的一个根,∴m2﹣3m+1=0,即m2﹣3m=﹣1,∴(m﹣3)2+(m+2)(m﹣2)=m2﹣6m+9+m2﹣4=2(m2﹣3m)+5=3.15.解:(1)∵共有6种等可能结果,其中落回到圈A的只有1种情况,=;∴落回到圈A的概率P1(2)列表如下:1 2 3 4 5 61 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5)(3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5) (6,6)由上表可知,一共有36种等可能的结果,落回到圈A 的有(1,5),(2,4),(3,3),(4,2),(5,1),(6,6), ∴最后落回到圈A 的概率P 2==,∴小亮与小明落回到圈A 的可能性一样. 16.解:(1)如图,将△A 1B 1C 1为所作; (2)如图,△A 2B 2C 2为所作.17.解:(1)△DEF 是等腰直角三角形.理由如下:在正方形ABCD 中,DA =DC ,∠ADC =∠DAB =∠DCB =90°. ∵F 落在边BC 的延长线上, ∴∠DCF =∠DAB =90°.∵将点E 绕点D 逆时针旋转得到点F , ∴DE =DF .∴Rt △ADE ≌Rt △CDF (HL ). ∴∠ADE =∠CDF .∵∠ADC =∠ADE +∠EDC =90°,∴∠CDF+∠EDC=90°,即∠EDF=90°.∴△DEF是等腰直角三角形;(2)∵△DEF是等腰直角三角形,∴DE=DF=EF=×4=4,∴△DEF的面积=×4×4=8.故答案为8.18.证明:(1)如图:连结OC,∵OA=OC,∴∠A=∠OCA,∴∠BOC=∠A+∠OCA=2∠A,∵∠ABD=2∠BAC,∴∠ABD=∠BOC,∴OC∥BD,∵CE⊥BD,∴OC⊥CE,∴CF为⊙O的切线;(2)如图:过点O作OG⊥DE,垂足为G∵OG⊥DE,OC⊥CE,DE⊥CE∴四边形OCEG是矩形∴OG=CE=2,OC=GE=1+GB 在Rt△OGB中,OB2=OG2+GB2.∴(1+GB)2=4+GB2.∴GB=∵OG⊥DB∴BD=2GB=3。
2019年武汉市九年级元调数学模拟试卷

2019年武汉市九年级元调数学模拟试卷时间:60分钟 满分100分一.选择题(每小题3分,共9小题,共27分)1.方程2x 2+3x=3的一次项系数、常数项分别为( )A .3和-3B .3和3C .-3和2D .3和22.在下列四个图案中,不是中心对称图形的是( )A .B .C .D .3.下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上B .某彩票中奖率为36%,说明买100张彩票,一定有36张中奖C .从1、2、3、4、5中随机取一个数,取得奇数的可能性较大D .打开电视,中央一套正在播放新闻联播4.抛物线y=2(x+3)2+5的对称轴和顶点坐标分别为( )A .x=3B .x=-5C .x=5D .x=-35.在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( )A .B .C .D .6.如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,∠BOD=48°,则∠BAC 的大小是( )A .60°B .48°C .30°D .24°7.圆的直径为12cm ,如果圆心与直线的距离是d ,则( )A .当d=8cm 时,直线与圆相交B .当d=4.5cm 时,直线与圆相离C .当d=6cm 时,直线与圆相切D .当d=10cm 时,直线与圆相切8.一个凸多边形共有20条对角线,则这个多边形的边数是( )A .6B .7C .8D .99.关于x 的一元二次方程210kx =+有两个不相等的实数根,则k 的取值范围是()A.-1≤k<1B.K>-1且k≠0C.K<1且k≠0D.-1≤k<1且k≠0且k≠0二.填空题(共5小题,每小题3分,共15分)11.平面直角坐标系内与点P(2,-1)关于原点的对称点的坐标是.12.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是.13.某村种的水稻前年平均每公顷产7300千克,今年平均每公顷产8500千克,设这两年该村每公顷产量的年平均增长率为x,根据题意,所列方程为14.在平面直角坐标系中,将抛物线y=-2x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是.15.半径为6cm的圆内接正八边形的面积为.三.解答题(共9小题)17.已知2是关于x的方程x2-3x+a=0的一个根,求a的值及方程的另一根.18.不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.(1)随机摸出两个小球,直接写出用列表或画村状图的方法求出”两球颜色不一样”的概率.(2)随机摸出一个小球后,放回并摇匀,再随机摸出一个,直接写出“两球都是绿色”的概率;19.已知△ABC的外心为O,△ABC的内心为I.(1)如图所示,若B、O、I、C四点在同一个圆上,求∠BIC的度数;(2)若∠BOC=110°,求∠BIC的度数.20.如图,已知正方形ABCD中,E、F分别是AD、DC边上的点,且AE=DF,△ADF可看作是由△BAE绕着某一点旋转而来的.(1)请画出旋转中心,并简要说明理由;(2)设AF与BE交于点K,连接CK,若AE=2,AB=6,求CK的长.21(本题8分)已知PA、PB分别与相切于A、B,连接OP.(1)如图1,AB交OP与点C,D为PB的中点,求证:CD∥PA,1CD=PA2;(2)如图1,OP交圆O与点E,EF⊥PB于点F,若PA=圆O的半径为求EF的长。
2019学年湖北省武汉市元月九年级调考数学试卷【含答案及解析】

2019学年湖北省武汉市元月九年级调考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.5和4B.5和﹣4C.5和﹣1D.5和12. 桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大3. 抛物线y=x2向下平移一个单位得到抛物线()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1D.y=x2﹣14. 用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次硬币,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.55. 如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD为()A.正方形B.菱形C.矩形D.直角梯形6. 在平面直角坐标系中,点A(﹣4,1)关于原点的对称点的坐标为()A.(4,1)B.(4,﹣1)C.(﹣4,﹣1)D.(﹣1,4)7. 圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切8. 用配方法解方程x2+10x+9=0,配方正确的是()A.(x+5)2=16B.(x+5)2=34C.(x﹣5)2=16D.(x+5)2=259. 如图,在平面直角坐标系中,抛物线y=ax2+bx+5经过A(2,5),B(﹣1,2)两点,若点C在该抛物线上,则C点的坐标可能是()A.(﹣2,0)B.(0.5,6.5)C.(3,2)D.(2,2)10. 如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣B.﹣1C.2D.+1二、填空题11. 经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为.12. 方程x2﹣x﹣=0的判别式的值等于.13. 抛物线y=﹣x2+4x﹣1的顶点坐标为.14. 某村的人均收入前年为12 000元,今年的人均收入为14 520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为.15. 半径为3的圆内接正方形的边心距等于.16. 圆锥的底面直径是8cm,母线长9cm,则它的侧面展开图的圆心角的度数为.三、计算题17. 解方程:x2+2x﹣3=0.四、解答题18. 不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画村状图的方法求出“两球都是绿色”的概率;(2)随机摸出两个小球,直接写出两次都是绿球的概率.19. 如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.(1)若∠AOB=56°,求∠ADC的度数;(2)若BC=6,AE=1,求⊙O的半径.20. 如图,E是正方形ABCD中CD边上任意一点.(1)以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形;(2)在BC边上画一点F,使△CFE的周长等于正方形ABCD的周长的一半,请简要说明你取该点的理由.21. 如图,某建筑物的截面可以视作由两条线段AB,BC和一条曲线围成的封闭的平面图形.已知AB⊥BC,曲线是以点D为顶点的抛物线的一部分,BC=6m,点D到BC,AB的距离分别为4m和2m.(1)请以BC所在直线为x轴(射线BC的方向为正方向),AB所在直线为y轴建立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;(2)求AB的长.22. 某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件.设这段时间内售出该商品的利润为y元.(1)直接写出利润y与售价x之间的函数关系式;(2)当售价为多少元时,利润可达1000元;(3)应如何定价才能使利润最大?23. 如图,△ABC为等边三角形.O为BC的中垂线AH上的动点,⊙O经过B,C两点,D为弧上一点,D,A两点在BC边异侧,连接AD,BD,CD.(1)如图1,若⊙O经过点A,求证:BD+CD=AD;(2)如图2,圆心O在BD上,若∠BAD=45°;求∠ADB的度数;(3)如图3,若AH=OH,求证:BD2+CD2=AD2.24. 如图,抛物线y=(x+m)2+m,与直线y=﹣x相交于E,C两点(点E在点C的左边),抛物线与x轴交于A,B两点(点A在点B的左边).△ABC的外接圆⊙H与直线y=﹣x相交于点D.(1)若抛物线与y轴的交点坐标为(0,2),求m的值;(2)求证:⊙H与直线y=1相切;(3)若DE=2EC,求⊙H的半径.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
2018-2019学年度武汉市九年级元月调考数学试卷(含答案)

2018~2019学年度武汉市九年级调研测试数学试卷考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为 ⊙O 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61B .83 C .85 D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形 面积是( )A .63π-B .623π- C .823π-D .33π- 9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a,则该方程的一个 正根是( ) A .AC 的长B .BC 的长 C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇 匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸 到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm ,宽为20 cm ,他 想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41. 为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、 “面窝”、“生煎包”、“锅贴饺”(分别记为A ,B ,C ,D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A,B,E,F)这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C,D,G,H)这四种美食中选择一种,用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,点A的坐标为(1,7),点B的坐标为(5,5),点C的坐标为(7,5),点D的坐标为(5,1)(1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标第20题图21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,2,连接BE,P为BE的中点,连接PD、ADAB=CE=6(1) 小亮为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△P AD的面积24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A,B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A,B,C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P,Q两点,连接AP,AQ,分别交y轴于M,N两点,求证:OM·ON是一个定值。
2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)

2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题;每小题3分;共30分)1.将下列一元二次方程化成一般形式后;其中二次项系数是3;一次项系数是-6;常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中;是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度;再向上平移2个单位长度;就得到抛物线( )A .y =(x -1)2+2 B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子;骰子的六个面上分别刻有1到6的点数;则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ;圆心O 到直线l 的距离为9 cm ;则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图;“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材;埋在壁中;不知大小;以锯锯之;深一寸;锯道长一尺;问径几何”用几何语言可表述为:CD 为 ⊙O 的直径;弦AB 垂直CD 于点E ;CE =1寸;AB =10寸;则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后;雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化;那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61B .83 C .85 D .32 8.如图;将半径为1;圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度;使点O 的对应点D 落在弧AB 上;点B 的对应点为C ;连接BC ;则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载;形如x 2+ax =b 2的方程的图解法是:如图;画Rt △ABC ;∠ACB =90°;BC =2a ;AC =b ;再在斜边AB 上截取BD =2a;则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1;与x 轴的一个交点为(2;0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根;则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题;每小题3分;共18分)11.已知3是一元二次方程x 2=p 的一个根;则另一根是___________12.在平面直角坐标系中;点P 的坐标是(-1;-2);则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球;在不允许将球倒出来数的前提下;小刚为估计其中的白球数;采用了如下的方法:从口袋中随机摸出一球;记下颜色;然后把它放回口袋中;摇 匀后再随机摸出一球;记下颜色……;不断重复上述过程;小刚共摸了100次;其中20次摸 到黑球;根据上述数据;小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行;小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图;该照片(中间的矩形)长29 cm ;宽为20 cm ;他 想为此照片配一个四条边宽度相等的镜框(阴影部分);且镜框所占面积为照片面积的41. 为求镜框的宽度;他设镜框的宽度为x cm ;依题意列方程;化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥;当拱顶离水面2 m 时;水面宽4 m .水面下降2.5 m ;水面宽度增加___________m16.如图;正方形ABCD 的边长为4;点E 是CD 边上一点;连接AE ;过点B 作BG ⊥AE 于点G ;连接CG 并延长交AD 于点F ;则AF 的最大值是___________三、解答题(共8题;共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图;A 、B 、C 、D 是⊙O 上四点;且AD =CB ;求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富;品种繁多;某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A;B;C;D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H);共八种美食.小李和小王同时去品尝美食;小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A;B;E;F)这四种美食中选择一种;小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C;D;G;H)这四种美食中选择一种;用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图;在边长为1的正方形网格中;点A的坐标为(1;7);点B的坐标为(5;5);点C的坐标为(7;5);点D的坐标为(5;1)(1) 将线段AB绕点B逆时针旋转;得到对应线段BE.当BE与CD第一次平行时;画出点A运动的路径;并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系;即其中一条线段绕着某点旋转一个角度可以得到另一条线段;直接写出这个旋转中心的坐标第20题图21.(本题8分)如图;在四边形ABCD中;AD∥BC;AD⊥CD;AC=AB;⊙O为△ABC的外接圆(1) 如图1;求证:AD是⊙O的切线(2) 如图2;CD交⊙O于点E;过点A作AG⊥BE;垂足为F;交BC于点G①求证:AG=BG②若AD=2;CD=3;求FG的长22.(本题10分)某商家销售一种成本为20元的商品;销售一段时间后发现;每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系;并且当x=25时;y=550;当x=30时;y=500.物价部门规定;该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时;商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图;等边△ABC与等腰三角形△EDC有公共顶点C;其中∠EDC=120°;AB=CE=62;连接BE;P为BE的中点;连接PD、AD(1) 小亮为了研究线段AD与PD的数量关系;将图1中的△EDC绕点C旋转一个适当的角度;使CE与CA重合;如图2;请直接写出AD与PD的数量关系(2) 如图1;(1)中的结论是否仍然成立?若成立;请给出证明;若不成立;请说明理由(3) 如图3;若∠ACD=45°;求△PAD的面积24.(本题12分)如图;在平面直角坐标系中;抛物线y=x2+(1-m)x-m交x轴于A;B两点(点A在点B的左边);交y轴负半轴于点C(1) 如图1;m=3①直接写出A;B;C三点的坐标②若抛物线上有一点D;∠ACD=45°;求点D的坐标(2) 如图2;过点E(m;2)作一直线交抛物线于P;Q两点;连接AP;AQ;分别交y轴于M;N两点;求证:OM·ON是一个定值。
2019年武汉市九年级数学元调模拟卷

态度决定一切2019 年武汉市九年级数学元调模拟卷一、选择题(共 10 小题,每小题 3 分,共 30 分)1.将方程 x 2-5=3x 化为一元一次方程的一般形式,其中二次项系数为 1,一次项系数,常 数项分别是( ) A .3、-5 B .- 3、- 5 C .3、5 D .-3、5.抛物线y =- (x +1) 2-1 的顶点坐标是()2A .(1,1)B .(-1,1)C .(1,- 1)D .(-1,- 1)3.下列图形中既是中心对称图形又是轴对称图形的是()A.B. C. D.4.已知地球的表面陆地与海洋面积的比约为3∶7,如果宇宙中飞来一块陨石落在地球上, 则( )A .落在陆地上的可能性大B .落在陆地和海洋的可能性大小一样C .落在海洋的可能性大D .这种事件不能判定 5.装有 7 张颜色、材料、大小、形状完全一样的卡片,上面分别标有 1 到 7 的不同数字,从 中随机抽取一张,数字是奇数的概率是( )A . 1B . 1C . 3D . 4347 76.对于任意的非零实数 m ,关于 x 的一元二次方程 x 2- 4x -m 2=0 根的情况是( )A .有两个正实数根B .有两个负实数根C .有一个正实数根,一个负实数根D .没有实数根 7.AB 为⊙ O 的直径,AB = 9 cm ,圆所在的平面内有一点 P ,记∠ APB =α,则( ) A .当 α< 90°时,点 P 在⊙O 上 B .当 α= 90°时,点 P 在⊙ O 上C .当 α>90°时,点 P 在⊙O 上D .当 α≤ 90°时,点 P 在⊙ O 上 O8.如图,点 A ,C 和 B 都在半径为 3 的⊙ O 上,且四边形 ACBO 为菱形.则 A劣弧 AC 长为()BCA . πB .2C . 1πD . 3π3329.如图,四边形 ABCD 是圆内接四边形, C 是劣弧 BD 的中点,延长 DA 到 E 点.已知∠ COD =70°,则∠ BAE 的度数是( ) A .100°B . 110°C .120°D .140°10.已知函数 y=x 2-2x+3 在 0≤x ≤m 时,有最大值 3 和最小值 2,则 m 的取值范围为( )A .m ≥1B . 0≤m ≤2C .1≤m ≤2D .m ≤2 二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) 11.若方程 x 2-4x + m =0 的一个根为- 2,另一个根的值为 ___________12.将二次函数 y=-x 2+6x 先左移 3 个单位,再上移 2 个单位后解析式为 _________________ 13.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有 2 个,黑球 有 n 个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出白球的频率稳定在 0.4 附近,则 n 的值为 ________14.某种品牌运动服经过两次降价,每件零售价由560 元降为 315 元.已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,依据题意,所列的方程为_____________。