组合变形 习题及答案

合集下载

材料力学组合变形习题

材料力学组合变形习题

材料力学组合变形习题L1AL101ADB (3)偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点 到形心之距离e和中性轴到形心距离d之间的关系有四种答案:(A ) e=d; (B ) e>d;(C ) e越小,d越大; (D ) e越大,d越小。

正确答案是______。

答案(C )1BL102ADB (3)三种受压杆件如图。

设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,现有下列四种答案:(A )max1σ=max 2σ=max3σ; (B )max1σ>max 2σ=max3σ;(C )max 2σ>max1σ=max3σ; (D )max 2σ<max1σ=max3σ。

正确答案是______。

答案(C )1BL103ADD (1)在图示杆件中,最大压应力发生在截面上的哪一点,现有四种答案:(A )A点; (B )B点; (C )C点; (D )D点。

正确答案是______。

答案(C )1AL104ADC (2)一空心立柱,横截面外边界为正方形, 内边界为等边三角形(二图形形心重 合)。

当立柱受沿图示a-a线的压力时,此立柱变形形态有四种答案:(A )斜弯曲与中心压缩组合; (B )平面弯曲与中心压缩组合;(C )斜弯曲; (D )平面弯曲。

正确答案是______。

答案(B )1BL105ADC (2)铸铁构件受力如图所示,其危险点的位置有四种答案:(A )①点; (B )②点; (C )③点; (D )④点。

正确答案是______。

答案(D )1BL106ADC (2)图示矩形截面拉杆中间开一深度为h/2的缺口,与不开口的拉杆相比,开口处的最大应力的增大倍数有四种答案:(A )2倍; (B )4倍; (C )8倍; (D )16倍。

正确答案是______。

答案(C )1BL107ADB (3)三种受压杆件如图,设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,它们之间的关系有四种答案:(A )max1σ<max 2σ<max3σ; (B )max1σ<max 2σ=max3σ;(C )max1σ<max3σ<max 2σ; (D )max1σ=max3σ<max 2σ。

组合变形例题

组合变形例题


F A C b
h
0.5L
L0
d
D L
材料力学
本章结束
A
5 kN
C
B
D
2 kN 5 kN
300 500
2 kN
500
(a)
1.5 kN A m
7 kN
C
1.5 kN m
B
D
5 kN
12 kN
(b)
T
1.5 kN m
如图c、d、e、f 所示
x (c )
1.5 kN A m
7 kN
C
1.5 kN m
B
D
M C (1.5) 2 (2.1) 2 2.58 kNm
M
2.58 kNm 2.48 kNm
因此,得:
x (e)
d 72 mm
(f) x
直径为20mm的圆截面水平直角折杆,受垂直力P=0.2kN,已知[σ]=170MPa 试用第三强度理论确定a的许可值。
解:内力图: 危险截面:A
Tmax Pa 0.2a M max 2Pa 0.4a
所以起重机架的最大起重量取决于杆AC的强度,为
Fmax 26.7 kN
图示横梁AC~立柱CD结构,均由Q235钢制成,C、D两处均为球 铰。在跨度中点受竖向载荷F作用。已知: (1) 横梁AC的L=4000mm,b=60mm,h=120mm,材料许用应力 [ ]=160MPa。 (2) 立柱CD直径d=20mm, L0=500mm;材料参数为 E=200GPa, 许 用应力 [ ] 160MPa , p 100, s 60 , cr (3041.12 ) MPa,稳 定安全系数 nst 4 。 试确定此横梁~立柱结构的许用载荷。

最新9组合变形汇总

最新9组合变形汇总

例9-5:图示Z形截面杆,在自由端作用一集中力F,该杆的变 形设有四种答案:
(A)平面弯曲变形; (B)斜弯曲变形; (C)弯扭组合变形; (D)压弯组合变形。
F
F
例9-6:具有切槽的正方形木杆,受力如 图。求:
(1)m-m截面上的最大拉应力σt 和最 大压应力σc;
(2)此σt是截面削弱前的σt值的几倍?
大小有关,而与外力的大小无关;②一般情况下,I y I z 中性轴不与外力作用平面垂直;③对于圆形、正方形和正
多边形,通过形心的轴都是形心主轴,Iy Iz,
此时梁不会发生斜弯曲。
〈四〉强度校核:
对矩形截面,可以直接断定截面的 LmaxYmax必发生在
' '' 具有相同符号的截面角点处。
max
y
zP z iy2
0
根据该方程式可知中性轴是不过形心的直线。
现令:应力零线N-N,它在y、z轴上的截距分别为 a y a z 分别将
ay,0 0, az 代入 k 表达式得:
ay
iZ 2 yP
aZ
iy2 zP
由ay、az就可把应力零线的位置确定下来,应力零线就是该 截面的中性轴。上式表明ay、az 均与yp 、 zp符号相反,所以中性 轴与偏心压力分别在坐标原点的两侧,以中性轴为界,一侧受
曲。
思考题
正方形,圆形,当外力作用线通过截面形心时,为平面弯曲还 是斜弯曲?
目录
§9-3 拉伸(压缩)与弯曲的组合变形
例1:一折杆由两根圆杆焊接而成,已知 圆杆直径d=100mm,试求圆杆的最大拉应力σt 和最大压应力 σc 。
解: X A 3 kN
YA 4 kN
任 意 横 截 面 x上 的 内 力 :

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第10章 组合受力与变形杆件的强度计算

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第10章 组合受力与变形杆件的强度计算

解:危险截面在 A 处,其上之内力分量为: 弯矩: M y = FP1 a , M z = FP2 H 扭矩: M x = FP2 a 轴力: FNx = FP1 在截面上垂直与 M 方向的垂直线 ab 与圆环截 求得 M y 与 M z 的矢量和 M 过截面中心, 面边界交于 a、b 两点,这两点分别受最大拉应力和最大压应力。但由于轴向压力的作用,最 大压应力值大于最大拉应力值,故 b 点为危险点,其应力状态如图所示。 10-7 试求图 a 和 b 中所示之二杆横截面上最大正应力及其比值。 解: (a)为拉弯组合
7
y
y
A
O
0.795
B
14.526
+13.73MPa
z
(a)
O O
+14.43MPa
(b)
C
y
A
C
B B
y
A
O O
B
z
12.6mm
14.1mm
zC
−15.32MPa
16.55MPa
zC
z
(c)
(d)
习题 10-9 解图

+ σ max
= 14.526 − 0.795 = 13.73 MPa
− σ max = −14.526 − 0.795 = −15.32 MPa
Ebh
由此得
2 FP 6e
e=
10-9
ε1 − ε 2 h × ε1 + ε 2 6
图中所示为承受纵向荷载的人骨受力简图。试:
1.假定骨骼为实心圆截面,确定横截面 B-B 上的应力分布; 2.假定骨骼中心部分(其直径为骨骼外直径的一半)由海绵状骨质所组成,忽略海绵状承受 应力的能力,确定横截面 B-B 上的应力分布;

材料力学 组合变形完整版

材料力学  组合变形完整版

x
(竖直xz面My) C
B
D
A
材料力学
组合变形/扭转与弯曲的组合
根据内力图分析
可能的危险截面:B和D
思考
如何通过计算确定危险截面的位置?
y
M
My
z
Mz
由于圆形截面的特殊性, 可将弯矩平行四边形合成
危险截面为B
材料力学
组合变形/扭转与弯曲的组合
4.确定危险点及应力状态
危险点的位置
y
y
M
My
z
Mz
M
z
T
材料力学
组合变形/扭转与弯曲的组合
危险点的应力状态
y
M
z
T


二向应力状态
材料力学
组合变形/扭转与弯曲的组合
5.根据强度理论进行强度校核 要求回顾如何根据材料选择强度理论
钢属于塑性材料,按第三或第四强度理论校核
第三强度理论校核: 1 3 []
第四强度理论校核:
材料力学
组合变形/扭转与弯曲的组合
2FL
FL
材料力学
3. 根据弯矩图确定可能的危险截面
竖直xy面:
FL
水平xz面:
2FL
FL
结论: 危险截面可 能是中点或 固定端。
材料力学
4. 通过叠加求危险截面的最大正应力
z
z
y
y
Mxy Mxz Wz Wy

Mxy 2 Mxz 2
材料力学
W
y
竖直xy面:
FL
Z
水平xz面:
2FL
σmax=|σ’+σmax| σmax≤[σ]
②扭转与弯曲组合

材料力学习题组合变形#(精选.)

材料力学习题组合变形#(精选.)

组合变形基 本 概 念 题一、选择题1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。

A .e = dB .e >dC .e 越小,d 越大D .e 越大,d 越小2.三种受压杆件如图所示,设杆1、杆2和杆3中的最大压应力(绝对值)分别用1max σ、2max σ、3max σ表示,则( )。

A .1max σ=2max σ=3max σB .1max σ>2max σ=3max σC .2max σ>1max σ=3max σD .2max σ<1max σ=3max σ 题2图3.在图示杆件中,最大压应力发生在截面上的( )。

A .A 点B .B 点C .C 点D .D 点题3图 题4图4. 铸铁杆件受力如图4所示,危险点的位置是( )。

A .①点B .②点C .⑧点D .④点5. 图示正方形截面直柱,受纵向力P 的压缩作用。

则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。

A .1﹕2B .2﹕5C .4﹕7D .5﹕26. 图示矩形截面偏心受压杆件发生的变形为( )。

A .轴向压缩和平面弯曲组合B .轴向压缩,平面弯曲和扭转组合C .轴向压缩,斜弯曲和扭转组合D .轴向压缩和斜弯曲组合-41-题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴y 垂直,那么该梁所发生的变形是( )。

A .平面弯曲B .扭转和斜弯曲C .斜弯曲D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案,正确的是( )。

A .截面形心B .竖边中点A 点C .横边中点B 点D .横截面的角点D 点题8图 题9图9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。

组合变形习题及参考答案

组合变形习题及参考答案

组合变形一、判断题1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。

( )2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。

( )3.梁发生斜弯曲变形时,挠曲线不在外力作用面内。

( )4.正方形杆受力如图1所示,A点的正应力为拉应力。

( )图 15. 上图中,梁的最大拉应力发生在B点。

( )6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。

( )图 27.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。

( )8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。

( )图 39. 矩形截面的截面核心形状是矩形。

( )10.截面核心与截面的形状与尺寸及外力的大小有关。

( )11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。

( )12.计算组合变形的基本原理是叠加原理。

()二、选择题1.截面核心的形状与()有关。

A、外力的大小B、构件的受力情况C、构件的截面形状D、截面的形心2.圆截面梁受力如图4所示,此梁发生弯曲是()图 4A、斜弯曲B、纯弯曲C、弯扭组合D、平面弯曲三、计算题1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁内的最大拉应力,并在图中指明它的位置。

图 52.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。

3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为,试校核挡土墙的强度。

图 6 图 74.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。

第9章组合变形作业参考解答

第9章组合变形作业参考解答
由第三强度理论强度条件
s r3 = s 2 + 4t 2 = 160.86MPa<[s ] ,杆安全
9-23 圆轴受力如图所示。直径d=100mm,容许应力[ σ]=170MPa。 (1)绘出A、B、C、D 四点处单元体上的应力; (2)用第三强度理论对危险点进行强度校核。
解:(1)A、B、C、D 四点处所在截面内力(不考虑剪力):
电阻片,当梁在 F、M 共同作用时,测得两点的应变值分别为 e A 、e B 。设截面为正方形,边
长为 a,材料的 E、n 为已知,试求 F 和 M 的大小。
解:梁发生双向弯曲,
A、B 两点处于单向应力状态,
eA
=
sA E
,eB
=
sB E
而s A
=-M Wz
- Fl Wy
= - M + Fl a3 6
= 14.01MPa + 56.05MPa = 70.06MPa
4
32
(2)校核危险点:
M = M z 2 + M y 2 = 102 + 5.52 = 11.413kN × m
s = FN + M = 110kN + 11.413kN × m = 14.01MPa + 116.31MPa = 130.32MPa
sB
=M Wz
- Fl Wy
=
M - Fl a3 6

ìïïe A í ïïîe B
= =
- 6(M + Fl) Ea3
6(M - Fl) Ea3
,从而
ì ïïM í
ï ïî
F
= Ea3 (e B - e A 12
= - Ea3 (e B + e 12l

材料力学 第11章 组合变形习题集

材料力学 第11章  组合变形习题集

横截面m-m上任一点C(y,z)处由 弯矩Mz和My引起的正应力分别为
M z y M cos y M y z M sin z
Iz
Iz
Iy
Iy
38
C点的正应力
' ''
M
cos
Iz
y
sin
Iy
z
悬臂梁固定端截面A的弯矩Mz和My 均达到最大值,故该截
面是危险截面。设yo、zo为中性轴上任一点的坐标,并令σ
算 圆轴表面上与轴线成30°方位上的正应变。
32
解: (1)由内力图知,所有截面均为危险截面,危险点为靠近
轴表面的各点,应力状态如图。计算危险点的主应力。轴力
引起的正应力
FN 4F
A πd 2
扭矩引起的切应力
T M 8F
Wp Wp 5πd 2
危险点处的主应力为
1
2
(
)2
( )2
它在y、z两轴上的截距分别为
y* z* h / 2
该截面惯性半径的平方为
iy2
Iy A
h2 12
iz2
Iz A
b2 12
28
中性轴①对应的核心边界上点1的坐标为
ey1
iz2 y*
0
ez1
iy2 z*
h 6
按上述方法可求得与它们对应的截面核
心边界上的点2、3、4,其坐标依次为:
ey2
b 6
ez2 0
车臂的直径d。
18
解:两个缆车臂各承担缆车重量的一半,如 图。则缆车臂竖直段轴力为FN=W/2=3kN 弯矩为M=Wb/2=540N·m 危险截面发生在缆车臂竖直段左侧,由强度条件

结构力学 第八章

结构力学 第八章

wmax 0.0202 0.76 1 = = < l 4 150 150
解、将均布载荷分解为沿轴线方向和垂直于轴线方向的两个分力,可得: qx = q sin α ; 距离 B 端为 x 的截面上的轴力和弯矩分别为
q y = q cos α
M=
该截面的最大压应力为
q y lx 2

qy x2 2
=
q ( lx − x 2 ) cos α 2
σ
所以该点最大切应力为: τ max =
8-16、铁道路标圆信号板,装在外径 D=60mm 的空心圆柱上,所受的最大风载 p=2kN/m2,[σ]=60MPa。试 按第三强度理论选定空心柱的厚度。
解、结构的危险截面为空心柱的固定端,截面的弯矩和扭矩分别为
M = 2×
π × 0.52
4
× 0.8 = 0.314(kN .m);
当中性轴为①时,中性轴的截矩为: 偏心力作用点的位置为:
a y = −0.3; az → ∞ ;
z

iz2 0.019333 ey = − = − = 0.0644(m), ay −0.3
当中性轴为②时,中性轴的截矩为: 偏心力作用点的位置为:
iz2 ez = − = 0 az

a y = 0.4; az = −0.4 ;
解、将外载荷分解为沿 y 和 z 方向的力,可得
q y = q cos 300 = 2 × cos 300 = 1.732kN / m qz = q sin 300 = 2 × sin 300 = 1kN / m
梁的最大弯矩发生在梁的中间截面,值分别为
M zmax =
max My
1.732 × 42 = 3.464 ( kN .m ) 8 8 q z l 2 1× 4 2 = = = 2 ( kN .m ) 8 8 =

第八章_组合变形与连接件的实用计算

第八章_组合变形与连接件的实用计算

y
z
10
A bh 50106 m2
Wy

1 6
b2h

1 6
52
10 10 9

4.17 10 8 m3
Wz

1 6
bh2

1 6
510 2
10 9

8.33 10 8 m3
5
危险点在切槽截 max

FN A

My Wy

Mz Wz
面的左上角。

1000 5105
x
max

My Wy

Mz Wz
F1
6 F1 2L 6 F2L
hb2
bh2
L
L
y
1、内力分析 2、应力分析 3、强度计算
max
9.979MPa
max
9.979MPa
§8-3 拉伸(或压缩)与弯曲
Ⅰ.横向力与轴向力共同作用
一、受力特点
作用在杆件上的外力既有轴向拉( 压 )力,
还有横向力
F1
F1 产生弯曲变形 F2
F2
F2 产生拉伸变形
二、变形特点 杆件将发生拉伸 (压缩 ) 与弯曲组合变形
三、内力分析 横截面上内力
1、拉(压) :轴力 FN
2、弯曲
弯矩 MZ 剪力 FS
MZ z
0
x
FN
y
因为引起的剪应力较小,故一般不考虑。
四、应力分析
横截面上任意一点 ( z, y) 处的
正应力计算公式为
1 、拉伸正应力
' FN
A
2、弯曲正应力
'' Mz y

第8章组合变形及连接部分的计算(答案)

第8章组合变形及连接部分的计算(答案)

第8章组合变形及连接部分的计算(答案)8.1梁的截⾯为2100100mm ?的正⽅形,若kN P30=。

试作轴⼒解:求得约束反⼒24Ax F KN =,9Ay F KN =,9B F KN =为压弯组合变形,弯矩图、轴⼒图如右图所⽰可知危险截⾯为C 截⾯最⼤拉应⼒maxmax 67.5ZM MPa W σ== 最⼤压应⼒max max69.9N Z M FMPa W Aσ=+=8.2若轴向受压正⽅形截⾯短柱的中间开⼀切槽,其⾯积为原来⾯积的⼀半,问最⼤压应⼒增⼤⼏倍?解:如图,挖槽后为压弯组合变形挖槽前最⼤压应⼒挖槽后最⼤压应⼒22222286/)2/(4/2/a P a a Pa a P W M A N c =+=+=σ8//82212==a P a P c c σσ211a P A N c ==σ8.3外悬式起重机,由矩形梁AB (2=bh尺⼨。

解:吊车位于梁中部的时候最危险,受⼒如图解得BC F P =,2Ax F P =,2Ay P F =梁为压弯组合变形,危险截⾯为梁中N F =压),4PL M =(上压下拉)[]max4NZ F PL W A σσ=+≤,代⼊()226Z b b W =,A bh =,由2h b = 解得125b mm =, 250h mm =8.4图⽰为⼀⽪带轮轴(1T 、2T 与3T 相互垂直)。

已知1T 和2T 均为kN 5.1,1、2轮的直径均为mm 300,3轮的直径为mm 450,轴的直径为mm 60。

若M P a 80][=σ,试按第三强度理论校核该轴。

解:由已知条件解得32T KN = 内⼒图如右:最⼤弯矩所在截⾯可能为:1C M KN m ==?1.2D M KN m =?故危险截⾯为D 截⾯32T KN =由第三强度理论[]360r MPa σσ==故安全38.5铁道路标圆信号板装在外径mm D 60=的空⼼圆柱上,若信号板上所受的最⼤风载2/2m kN p =,MPa 60][=σ,试按第三强度理论选择空⼼柱的厚度。

第八章组合变形习题集

第八章组合变形习题集

8-2 人字架及承受的荷载如图所示。

试求m-m 截面上的最大正应力和A 点的正应力。

m解:(1)外力分析,判变形。

由对称性可知,A 、C 两处的约束反力为P/2 ,主动力、约束反力均在在纵向对称面内,简支折将发生压弯组合变形。

引起弯曲的分力沿y 轴,中性轴z 过形心与对称轴y 轴垂直。

截面关于y 轴对称,形心及惯性矩1122123122328444A A 20010050200100(100100)125A +A 200100+200100200100200100(12550)12100200100200(300125100)123.0810 3.0810C z zzy y y I I I -+⨯⨯+⨯⨯+===⨯⨯⨯=+=+⨯⨯-⨯++⨯⨯--=⨯=⨯mmmm m(2)内力分析,判危险面:沿距B 端300毫米的m-m 横截面将人字架切开,取由左边部分为研究对象,受力如图所示。

梁上各横截面上轴力为常数:,m-m 250(1.80.3sin )(1.80.3202.5(k 22250cos =100(k )22y N P M P F ϕϕ=⨯-=⨯-=⋅=⨯=N m)N(3)应力分析,判危险点,如右所示图①m-m 截面上边缘既有比下边缘较大的弯曲压应力,还有轴力应力的压应力,故该面上边缘是出现最大压应力。

m mmax33410010202.510(0.30.125)(Pa) 2.5115.06MPa 117.56MPa 2(0.20.1) 3.0810N zF M y A I σ---=+⋅-⨯⨯=-⨯-=--=-⨯⨯⨯上② A 点是压缩区的点,故m m33410010202.510(0.30.1250.1)(Pa) 2.549.31MPa 51.83MPa 2(0.20.1) 3.0810N a a zF M y A I σ--=+⋅-⨯⨯=-⨯--=--=-⨯⨯⨯注意:最大拉应力出现在下边缘m mmax33410010202.5100.125(Pa) 2.582.18MPa 79.68MPa2(0.20.1) 3.0810N zF M y A I σ---=+⋅-⨯⨯=+⨯=-+=⨯⨯⨯下8-3 图示起重机的最大起吊重量为W=35kN ,横梁AC 由两根NO.18槽钢组成。

材料力学习题解答(组合变形)

材料力学习题解答(组合变形)

N Mz
D C
D z 150 100
C z
My
Q
解:(1) 将力 P 和 H 向截面形心简化
M = 25 × 103 × 0.025 = 625 N .m
(2) 截面 ABCD 上的内力
N = − P = −25 kN M y = M = 625 N .m M z = H × 0.6 = 3 kN .m
N
如图作截面取上半部分,由静力平衡方程可得
N = P = 15kN
所以立柱发生拉弯变形。 (2) 强度计算 先考虑弯曲应力
上海理工大学 力学教研室
M = 0.4 P = 6kNm来自4σ t max =
d≥
M 32 M = ≤ [σ t ] πd3 W
3
π [σ t ]
32 M
=
3
32 × 6 × 103 = 120.4 mm π × 35 × 106
yc =
A1 y1c + A2 y2 c A
1.4 − 0.05 − 0.016 ⎞ ⎛ 1.204 × 0.7 + 1.105 × ⎜ 0.05 + ⎟ 2 ⎝ ⎠ = 0.51 m = 0.099
截面对形心轴的惯性矩
1 2 × 0.86 × 1.43 + ( 0.7 − 0.51) × 1.204 = 0.24 m 4 12 1 3 II I zc = × ( 0.86 − 2 × 0.016 ) × (1.4 − 0.05 − 0.016 ) 12
ZA YA P2
YC = P1a / 2 ZC = P2 a / 2
YA = P1a / 2 Z A = P2 a / 2
MzI
(2) 截开 I-I 截面,取左面部分 P1 QzI TI QyI MyI

建筑力学—组合变形及答案讲解

建筑力学—组合变形及答案讲解

建筑⼒学—组合变形及答案讲解第六章直梁弯曲弯曲变形是杆件⽐较常见的基本变形形式。

通常把以发⽣弯曲变形为主的杆件称为梁。

本章主要讨论直梁的平⾯弯曲问题,内容包括:弯曲概念和静定梁的⼒学简图;弯曲内⼒及内⼒图;弯曲应⼒和强度计算;弯曲变形和刚度计算。

其中,梁的内⼒分析和画弯矩图是本章的重点。

第⼀节平⾯弯曲的概念和⼒学简图⼀、弯曲概念和受⼒特点当杆件受到垂直于杆轴的外⼒作⽤或在纵向平⾯内受到⼒偶作⽤(图6-1)时,杆轴由直线弯成曲线,这种在外⼒作⽤下其轴线变成了⼀条曲线。

这种形式的变形称为弯曲变形。

⼯程上通常把以弯曲变形为主的杆件称为梁。

图 6-1 弯曲变形是⼯程中最常见的⼀种基本变形。

例如房屋建筑中的楼⾯梁和阳台挑梁,受到楼⾯荷载和梁⾃重的作⽤,将发⽣弯曲变形,如图6-2所⽰。

⼀些杆件在荷载作⽤下不仅发⽣弯曲变形,还发⽣扭转等变形,当讨论其弯曲变形时,仍然把这些杆件看做梁。

图6-2⼯程实际中常见到的直梁,其横截⾯⼤多有⼀根纵向对称轴,如图6-3所⽰。

梁的⽆数个横截⾯的纵向对称轴构成了梁的纵向对称平⾯,如图6-4所⽰。

图 6-3 图6-4若梁上的所有外⼒(包括⼒偶)作⽤在梁的纵向对称平⾯内,梁的轴线将在其纵向对称平⾯内弯成⼀条平⾯曲线,梁的这种弯曲称为平⾯弯曲,它是最常见、最基本的弯曲变形。

本章主要讨论直梁的平⾯弯曲变形。

从以上⼯程实例中可以得出,直梁平⾯弯曲的受⼒与变形特点是:外⼒作⽤于梁的纵向对称平⾯内,梁的轴线在此纵向对称⾯内弯成⼀条平⾯曲线。

⼆、梁的受⼒简图为了便于分析和计算直梁平⾯弯曲时的强度和刚度,需建⽴梁的⼒学简图。

梁的⼒学简图(⼒学模型)包括梁的简化、荷载的简化和⽀座的简化。

1、梁的简化由前述平⾯弯曲的概念可知,载荷作⽤在梁的纵向对称平⾯内,梁的轴线弯成⼀条平⾯曲线。

因此,⽆论梁的外形尺⼨如何复杂,⽤梁的轴线来代替梁可以使问题得到简化。

例如,图6-1a和图6-2a所⽰的⽕车轮轴和桥式起重机⼤梁,可分别⽤梁的轴线AB代替梁进⾏简化(图6-1b和图6-2b)。

组合变形(习题解答

组合变形(习题解答

10-3 试求图示[16a 简支梁由于自重作用所产生的最大正应力及同一截面上AB 两点的正应力。

q解:(1)查表可矩[16a 的理论重量为17.24kg/m ,故该梁重均布载荷的集度为172.4N/m 。

截面关于z 轴对称,而不关于y 轴称,查表可得:364640108cm 10810,73.3cm 0.73310m ,63mm =0.063m , 1.8cm =0.018mz y W I b z --==⨯==⨯==⑴外力分析:cos 172.4cos 20162.003/sin 172.4sin 2058.964/y z q q N m q q N mϕϕ======⑵内力分析:跨中为危险面。

32,max 32,max 11162.003 4.2357.217881158.964 4.2130.01688z y y z M q l N mM q l N m==⨯⨯=⋅==⨯⨯=⋅⑶应力分析:A 、B 点应力分析如图所示。

A 点具有最大正应力。

,max,max max 66,max,max max 066357.217130.016(0.0630.018)11.29MPa 108100.73310357.217130.0160.018 6.50MPa108100.73310y z A A z y y z B zyM M z W I M M z W I σσσσ---+--==--⋅=--⨯-=-⨯⨯==++⋅=+⨯=⨯⨯max 11.29MPa A σσ==-10-4 试求图示简支梁的最大正应力,及跨中的总挠度。

已知弹性模量100Pa E G =。

解:(1) 外力分析:由于集中力在横截面内与轴线垂直,故梁将发生斜弯曲。

cos 10cos159.66kN sin 10sin15 2.59kNy z P P P P ϕϕ======⑵内力分析:集中力作用在跨中,故跨中横截面为危险面。

,max ,max119.6637.245kN m 44112.593 1.943kN m 44z y y z M P l M P l ==⨯⨯=⋅==⨯⨯=⋅⑶应力分析:跨中横截面D 2、D 1点分别具有最大的拉压应力,应力分析如图所示。

09组合变形习题

09组合变形习题

第九章组合变形部分填空题01. ( 5 ) 偏心压缩实际不就是 ________________ 和 _____________ 的组合变形问题02. ( 5 ) 铸铁构件受力如图所示,其危险点的位置有四中种答案:(A )①点;(B)②点;(C )③点;(D ) ④点。

正确答案是 __________________ ■03.(5)图示矩形截面拉杆中间开一深度为 h/2的缺口,与不开口的拉杆相比,开中处的最大应力的增大倍数有四种答案:正确答案是 ___________________ 。

04.三种受压杆件如图,设杆1、2、和杆3中的最大压应力(绝对值)分别用二max1、二max2和匚max3表示,它们之间的关系有四种答案:(A )匚 maxi v ;「max2 v ;「max3 ;(B )匚 max1< 匚 max2 =匚 max3 ;(C ) maxi v max3 v max2 ;( D )"■ maxi =max 3 v max2 ;正确答案是 __________________ 。

(A) 2 倍; (B)4 倍; (C)8 倍; (D) 16 倍;05. 一空间折杆受力如图所示,则 AB 杆的变形有四种答案:(A)偏心拉伸;(B )纵横弯曲;(C )弯扭组合;(D )拉弯扭组合;正确答案是 ____________________06.图示正方形截面杆承受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案:(A) 截面形心;(B )竖边中点A 点;(C )横边中点B 点;(D )横截面的角点D 点;正确答案是_____________________07.折杆危险截面上危险点的应力状态,现有四种答案:正确答案是_____________________08用第三强度理论校核图示杆的强度时,有四种答案:2 2 1/2(A)P/A [(M /W z ) 4(T/W t )] 十];(B)P/A M /她 T/W t 订刁;(C)[(P/A M /W z)2 (T/W t )2]1/2汀刁;() () ()(D) [(P/A M /W z)24(T/W t)2]1/2十];正确答案是____________________09.按第三强度理论计算等截面直杆弯扭组合变形的强度问题时,应采用的强度公式有四种答案:(A) F =[(M2 T2)1/2/W t 汗打;(B) 63 二[(M 2 0.75T2) /W t 乞[匚];2 2 1/2(C) f 珂(M 4 ) /W t 叮刁;£)巧3 =[(M2 +3T2) /W t 兰闪];正确答案是____________________10.悬臂梁AB,A端固定,B端自由,在B端作用横向集中力P,横截面形状和P力作用线如图所示请回答将产生什么变形(a ) ____________________________ ; ( b ) ____________________________(c ) _____________________________ ; ( d ) ____________________________11.结构如图2 3 折杆AB与直杆BC的横截面面积为A二420cm ,W y二W z二420cm ,[二]=100MPa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合变形
一、判断题
1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。

( )
2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。

( )
3.梁发生斜弯曲变形时,挠曲线不在外力作用面内。

( )
4.正方形杆受力如图1所示,A点的正应力为拉应力。

( )
图 1
5. 上图中,梁的最大拉应力发生在B点。

( )
6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。

( )
图 2
7.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。

( )
8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。

( )
图 3
9. 矩形截面的截面核心形状是矩形。

( )
10.截面核心与截面的形状与尺寸及外力的大小有关。

( )
11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。

( )
12.计算组合变形的基本原理是叠加原理。

()
二、选择题
1.截面核心的形状与()有关。

A、外力的大小
B、构件的受力情况
C、构件的截面形状
D、截面的形心
2.圆截面梁受力如图4所示,此梁发生弯曲是()
图 4
A、斜弯曲
B、纯弯曲
C、弯扭组合
D、平面弯曲
三、计算题
1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁内的最大拉应力,并在图中指明它的位置。

图 5
2.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。

3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为
,试校核挡土墙的强度。

图 6 图 7
4.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。

5.如图8所示,短柱横截面为2a×2a的正方形,若在短柱中间开一槽,槽深为a,问最大应力将比不开槽时增大几倍?
图8
6.图9所示矩形截面柱,柱顶有屋架的压力F1=120KN,牛腿上承受吊车梁的压力F2, F2与柱轴有一偏心矩e=200mm,已知柱截面b=20mm,h=300mm,欲使柱内不产生拉应力,问F2的许可值是多少?
7.图10所示受拉木杆,偏心力F=160KN,e=5cm,[σ]=10Mpa矩形截面宽度
b=16cm,试确定木杆的截面高度h。

图 9 图10
8.图11所示一混凝土重力坝,坝高H=30m底高19m,受水压力和自重作用.已知坝前水深H=30m,坝底材料容重,许用应力[σ]ˉ=10Mpa,坝体底面不允许出现拉应力,试校核该截面正应力强度.
9.图12所示混凝土挡水坝,横断面为矩形,坝高H =32m,坝底宽度B =20m,坝前水深H1 =30m,混凝土容重。

在水压力()和坝体自重作用下,试求坝底面不现在拉应力时的最大压应力及其作用位置。

图 11 图 12
10.图13所示混凝土重力坝承受重力G作用,混,上游水深
H=30m,要求坝底不出现拉压力,试确定其坝底宽度B。

11.在图14所示两柱的A点分别作用压力F,问哪一根柱子B点有较大的应力?大多
少?
图 13 图14
13.已知牛腿柱受力如图15。

求A—B截面的最大拉应力和最大压应力及其作用位置。

14.重力坝如图16所示。

坝高H=7m,作用于一米坝段上的荷载如图所示,问基础面A—B上是否会出现拉应力。

图 15 图16
15.水塔连同基础共重G=4000困难,受水平风压力作用。

风压力的合力
P=60KN,作用在离地面15m的地方,基础入土3m深,设土的容许压应力
,圆形基础直径为,试校核土壤的承载能力。

16.图18所示柱的截面为的正方形,柱脚的截面为的矩形。

该柱承受的压力,试求柱脚的最大压应力。

图 17 图18
17.链环如图19所示,已知直径,拉力,试求链环的最大正应力。

(10分)
图19。

相关文档
最新文档