九年级数学培优讲义例题精讲测试
最新初三上数学培优专题讲义九AB------相似三角形
初三上数学培优专题讲义九AB 相似三角形提高训练一.相似三角形中的几个基本图形:两个三角形相似,一般说来必须具备下列六种图形之一:二、典例分析:考点(一)-------有关三角形的内接矩形或正方形的计算问题例题1、已知:如图,正方形DEFG 内接于△ABC ,AM ⊥BC 于M 交DG 于N ,BC=18,AM=12。
求正方形边长.变式:如图,在△ABC 中,∠ACB=90°,AC=3,BC=4,试比较图中正方形CDEF 和正方形PQRS 的面积的大小考点(二)------ 两个三角形相似的判定 例题2.如图,四边形ABCD 是平行四边形,AE ⊥BC 于E ,AF ⊥CD 于F.(1)ΔABE 与ΔADF 相似吗?说明理由.(2)ΔAEF 与ΔABC 相似吗?说说你的理由.变式:如图,⊿ABC 是等边三角形,点D,E 分别在BC,AC 上,且BD=CE,AD 与BE 相交于点F.(1)试说明⊿ABD≌⊿BCE。
(2)⊿AEF 与⊿ABE 相似吗?说说你的理由。
(3)BD 2=AD·DF 吗?请说明理由。
考点(三)------相似三角形中的面积问题EF AFFC FD +例题3. 如图,在□ABCD 中,E 为CD 中点,AE 与BD 相交于点O ,S △DOE =12cm 2,求S △AOD 、 S △AOB .变式:(2011•丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,求S △DPQ :S △ABC .考点(四)------作平行线构造相似三角形例题4.如图,E 是ABC ∆中线AD 上的一点,CE 交AB 于F ,已知AE :ED=1:2,求AF :BF 的值。
变式:如图,已知△ABC 中,AE:EB=1:4,BD:DC=2:1,AD 与CE 相交于F.求: 的值.考点(5)------利用相似三角形测高例5. 某测量工作人员眼睛A 与标杆顶端F 、电视塔顶端E 在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED 。
九年级数学上册 第9讲 比例线段培优 试题
第9讲 比例线段制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日姓名:___________一、 知识点与典型例题1、线段的比:一般地,假如选用同一长度单位量得两条线段AB ,CD 的长度分别为m ,n ,那么它们的长度比m n 叫作这两条线段的比,记作AB m CD n =,或者::AB CD m n =,假如m n 的比值为k ,那么上述式子也可写成AB k CD=或者AB kCD =.2、成比例线段:在四条线段中,假如其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段,简称为比例线段.注意:比例线段具有顺序性.【例1】以下a 、b 、c 、d 四条线段,不成比例线段的是〔 〕A. a=2cm b=5cm c=5cm d=B. a=5cm b=3cm c=5mm d=3mmb= c=C. a=30mm b=2cm c=59cm d=12mm D. a=5cm 【例2】两直角边为3和4的直角三角形的斜边和斜边上高线的比是〔 〕A. 5:3B. 5:4C. 5:12D. 25:12变式1:如图,在Rt△ABC 中,CD 是斜边AB 上的高线,那么以下各式能成立的是〔 〕A.AC AB =BC CD B.CD AB =AC BCC.AC AB =CD BDD.AC CD =AB BC变式2:如图,在菱形ABCD 中,AE ⊥BC ,对角线BD 与AC 交于点O ,试判断线段AE ,AO ,BD ,BC 是否成比例,并说明理由.变式3:如图,∠D =∠ACB =90°,∠CAB =30°,AD =CD ,求AB ∶AD 的值.3、比例的性质:〔1〕根本性质:假如a c b d =,那么ad bc =.〔2〕反比性质:假如ac bd =,那么b d ac =. 〔3〕更比性质:假如ac bd =,那么a b c d =或者d c b a =.〔4〕合比性质:假如ac bd =,那么a b c d b d ±±=〔5〕等比性质:假如ac m bd n ==⋅⋅⋅=,那么+c+...+m +...+n 0...a ab d b d n b=+≠+++(). 【例3】0543≠==zy x ,那么z y x z y x +++-= 。
初三数学培优试题(含答案)
初三数学培优试题一学校: 班级: 姓名: 分数:一.选择题1、下列函数:① 3y x =-,②21y x =-,③()10y x x=-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( )(A )4个 (B )3个 (C )2个 (D )1个2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)xy–1–2–3–412341234567BCA A'C 'B'O3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )(A )2个 (B )3个 (C )4个 (D )5个4、已知关于x 的不等式组12x a x a ->-⎧⎨-<⎩的解集中任意一个x 的值均不..在04x ≤≤的范围内,则a 的取值范围是( )(A )5a >或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或2a ≤-5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。
若O 的半径长为,则AP BP +的最小值为( )(A )2 (B )3 (C )2 (D )6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .P B A二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)7.已知一组数据:12.10.8.15.6.8.则这组数据的中位数是。
九年级上下册数学培优系统讲义
九年级上下册数学培优系统讲义第1讲 一元二次方程㈠★知识点精讲1.一元二次方程的概念⑴ 只含有 个未知数,未知数的最高次数是 且二次项系为_____的整式方程叫一元二次方程.⑴一元二次方程的一般形式()002≠=++a c bx ax ,其中二次项系数为 ,一次项系数为 ,常数项为 .2.一元二次方程的解法⑴直接开平方法:针对()()02≥=+an n a m x⑴配方法:针对()002≠=++a c bx ax ,再通过配方转化成())0(2≥=+n n m x a注:① 配方法的目的是将方程左边化成含未知数的完全平方,右边是一个非负 常数的形式;②配方法常用于证明一个式子恒大于0或恒小于0,或者求二次函数的最值.⑶ 公式法:当0≥∆时(=∆ ),用求根公式 ,求一元二次方程()002≠=++a c bx ax 根的方法.⑶ 因式分解法:通过因式分解,把方程变形为()()0=--n x m x a ,则有m x =或n x =.注:⑴ 因式分解的常用方法(提公因式、公式法、十字相乘法)在这里均可使用,其中十字相乘法是最方便、快捷的方法.⑵ 此法可拓展应用于求解高次方程.典型例题讲解及思维拓展●例1 ⑴方程()0132=+++mx x m m 是关于x 的一元二次方程,则m = .⑴关于x 的一元二次方程()01122=-++-a x x a 有一个根是0,则a = .拓展变式练习11.关于x 的方程03)3(72=+---x x m m 是一元二次方程,则m =__________.2.已知方程012=-+mx x 的一个根121-=x ,则m 的值为 .●例2 解下列方程:⑶0182=+-x x ⑵()()2221239x x -=-拓展变式练习2解下列方程:⑶8632+-=x x⑵()()2221239x x -=-⑶()()1232=--x x⑶()222596x x x -=+-⑸04)32(5)23(2=+-+-x x⑹()()02123122=++-+x x⑺()2223n n m x m x =+--⑻a x a ax x -=+-222●例3 已知0132=-+x x ,求⎪⎭⎫ ⎝⎛--+÷--2526332x x x x x 的值.拓展变式练习3 1.已知0200052=--x x ,求()()211223-+---x x x 的值.2.已知0132=+-a a ,求2219294a a a ++--的值.■ 巩固训练题一、填空题1.若方程()()053222=-++--x m x m m 是一元二次方程,则m 的值为 . 2.已知方程()()08=-+x a x 的解与方程0872=--x x 的解完全相同,则a = .3.如果二次三项式226m x x +-是一个完全平方式,那么m 的值是___________.4.若412+-mx x 是一个完全平方式,则m 的值是___________.5.已知06522=--y xy x ,则yx 的值是 . 6.已知7532=++x x ,则代数式2932-+x x 的值为________________.二、解答题1. 解下列方程:⑴ 04052=-x ⑴ ()0644292=-+x⑶20x x -= ⑶ 0813642=+-x x⑶ 22)52()2(+=-x x (6)()x x 210532-=-2. 某商店如果将进价为8元的商品按10元销售,每天可售出200件,通过一段时间的摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件,每降价0.5元,其销售量就增加10件.(1)你能帮店主设计一种方案,使每天的利润达到700元吗?(2)当售价是多少元时,能使一天的利润最大?最大利润是多少?■思维与能力提升1. 设a 、b 为实数,求542222+-++b b ab a 的最小值,并求此时a 、b 的值.2.设a 、b 、c 为实数,求1984254222+--+++c b c b ab a 的最小值,并求此时c b a ++的值.3.已知()012009200720082=-⨯-x x 的较大根为a ,020*******=--x x 的较小根为b ,求()2003b a +.4.如图,锐角∆ABC 中,PQRS 是∆ABC 的内接矩形,且S S PQRS ABC n 矩形=∆,其中n 为不小于3的自然数,求证:AB BS为无理数.DS 金牌数学专题二 一元二次方程㈡★知识点精讲1.一元二次方程根的判别式⑴ 根的判别式:一元二次方程()002≠=++a c bx ax 是否有实根,由 的符号确定,因此我们把 叫做一元二次方程的根的判别式,并用∆表示,即 .⑵ 一元二次方程根的情况与判别式的关系:⇔>∆0方程有 的实数根;⇔=∆0方程有 的实数根;⇔<∆0方程 实数根;⇔≥∆0方程 实数根.2.根系关系(韦达定理)⑴ 对于一元二次方程()002≠=++a c bx ax 的两根21x x ,,有ab x x -=+21,ac x x =⋅21 ⑵ 推论:如果方程02=++q px x 的两个根是21,x x ,那么p x x -=+21,q x x =⋅21. ⑶ 常用变形:()2122122212x x x x x x -+=+ ()()212212214x x x x x x -+=- 3.列方程解应用题的一般步骤:⑴______,⑵______,⑶______⑷______,⑸______,⑹______.4.常见题型⑴ 面积问题;⑵ 平均增长(降低)率问题;⑶ 销售问题;⑷ 储蓄问题.典型例题讲解及思维拓展●例1. 若关于x 的方程()()0122122=++--x m x m 有实根,求m 的取值范围.拓展变式练习11.若关于x 的方程032)1(22=-+++-m m x x m 有实数根,求m 的值.2.是否存在这样的非负整数m ,使得关于x 的一元二次方程()0191322=-+--m x m mx 有两个不相等的实数根,若存在,请求出m 的值,若不存在,请说明理由.●例2 已知21x x ,是方程03622=++x x 的两根,不解方程,求下列代数式的值: ⑶2112x x x x + ⑶ ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+122111x x x x ⑶ ()221x x -拓展变式练习21. 已知21x x ,是方程03622=++x x 的两根,不解方程,,求下列各式的值:⑶ 321231x x x x + ⑶ 112112+++x x x x ⑶ 21x x -2.已知关于x 的方程()024122=+--m x m x ,是否存在正数m ,使方程的两实根的平方和等于224?若存在,则求出来;若不存在,说明理由.●例3 某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A 市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A 市三年共投资“改水工程”多少万元?拓展变式练习31. 市政府为解决市民看病贵的问题,决定下调一些药品的价格.某种药品的售价为125元/盒,连续两次降价后的售价为80元/盒,假设每次降价的百分率相同,求这种药品每次降价的百分率.2. 王洪将100元暑期勤工俭学所得的100元,按一年期定期存入少儿银行,到期后取出本息和,其中的50元捐给希望工程,余下的部分又按一年定期存入,这时存款利率已下调到第一年的一半,这样到期后得本息和共63元,求第一年的存款利率.3.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出).⑴求y与x的函数关系式;(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?■巩固训练题一、填空题1.已知方程022=+-m x x 的一个根是51-,则另一根为 ,m = . 2.如果21x x ,是两个不相等的实数,且12121=-x x ,12222=-x x ,则=21x x .3.若a 、b 是方程0532=--x x 的两个实数根,则b b a 3222-+= .4.以2与-6为根的一元二次方程是 .5. 一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,则平均每次降价的百分比率是____________.6.巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x ,则可列方程为 .二、解答题1.已知a 、b 是方程042=+-m x x 的两个根,b 、c 是方程0582=+-m x x 的两个根,求m 的值.2.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委 州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量W(克)与销售价x (元/千克)有如下关系:W=-2x +80.设这种产品每天的销售利润y (元).(1)求y 与x 之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?■思维与能力提升1.当k 是什么整数时,方程()()072136122=+---x k x k 有两个不相等的正 整数根?2.已知关于x 的方程()0321222=--++-m m x m x 的两个不相等实数根中 有一根为0.是否存在实数k ,使关于x 的方程()02522=-+----m m k x m k x 的两个实根21x x ,之差的绝对值为1?若存在,求出k 的值;若不存在,请说明理由.3.已知21x x ,是关于x 的方程()002≠=++p q px x 的两个实数根,且13222121=++x x x x ,()()0211211=+++x x xx ,求q p +的值.4.已知实数a 、b 、c 满足2=++c b a ,4=abc ,求a 、b 、c 中最大者的 最小值.■补充讲解■反思与归纳DS 金牌数学专题三反比例函数★知识点精讲1.反比例函数⑴ 概念:一般地,如果两个变量x ,y 之间的关系可以表示成x k y =(k 为常数,0≠k )的形式,那么称y 是x 的反比例函数,其中自变量x 不能为零. ⑵ 常见形式:x k y =(k 为常数,0≠k ),1-=kx y (k 为常数,0≠k ), k xy =(k 为常数,0≠k ) 2.反比例函数的图象 ⑴ 反比例函数x k y =(k 为常数,0≠k )的图象是由两条曲线组成的,叫 做 ,因为0≠k 、0≠x ,所以函数图象与x 、y 轴均无交点,而且它是一个以原点为对称中心的中心对称图形. ⑵ 图象基本性质0>k 0<k反 比 例 函 数 图 象性 质两分支位于 象限, 在每一象限内,y 随x 的增大 而两分支位于 象限, 在每一象限内,y 随x 的增大 而⑶ k 的几何意义=AOBP S 矩形_________.=∆AOP S Rt __________.3.直线1y k x m =+和双曲线x k y 2=的交点⑴求直线1y k x m =+和双曲线x k y 2=的交点就是求方程组 的解.反之,交点坐标同时满足两个函数的解析式,可利用待定系数法求解. ⑵ 交点个数由两方程组成的方程组转化得到的一元二次方程20(0)ax bx c a ++=≠的解的情况决定.①当 时,直线与双曲线有两个交点. ②当 时,直线与双曲线有一个交点.y P(m,n) AoxB③当 时,直线与双曲线没有交点. 4.反比例函数和一次函数的综合应用① 交点与解析式相互转化 ② 求三角形、四边形面积 ③ 特殊三角形、四边形的存在性问题 ④ 其它综合典型例题讲解及思维拓展 ● 例1 若反比列函数1232)12(---=k kx k y 的图像经过二、四象限.⑴求k 的值.⑵ 若点()1,2y A -,()2,1y B -,()3,3y C 都在其图象上,比较,,的大小关系.拓展变式练习11.若反比例函数22)12(--=m x m y 的图像在第一、三象限,则m 的值是 .2.在函数(为常数)的图象上有三个点(-2,),(-1,),(,),函数值,,的大小为 . 3.设有反比例函数,、为其图象上的两点,若时,,则的取值范围是___________.1y 2y 3y x k y 22--=k 1y 2y 213y 1y 2y 3y●例2 如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标; (2)求出两函数解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值拓展变式练习21. 如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)ky k x=>的图象于Q ,32OQC S ∆=,求k 的值和Q 点的坐标.2. 已知21y y y -=,1y 与x 成反比例,2y 与2x 成正比例,且当1-=x 时,5-=y ;1=x 时,1=y .求y 与x 之间的函数关系式.x yO A P C QBOxyBA D C 3.已知函数221y y y +=,1y 与2x 成正比例,2y 与x 2成反比例,且当1-=x 时,1=y ;当2=x 时,437=y .求y 关于x 的函数关系式.●例3 如图,已知反比例函数()0<=k y x k 的图象经过点A (3)m -,,过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为3. ①求k 和m 的值;②若一次函数1y ax =+的图象经过点A ,并且与x 轴相交于点C ,求∠ACO 的度数和AO :AC 的值.拓展变式练习31.已知点A 是直线)1(++-=k x y 和双曲线x k y =在第四象限的交点,AB⊥x 轴于点B ,且S 5.1=∆ABO .(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A 、C 的坐标和△AOC 的面积;(3)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.2.如图,一次函数y kx b =+的图象经过第一、二、三象限,且与反比例函数图象相交于A B ,两点,与y 轴交于点C ,与x 轴交于点D ,5OB =.且点B 横坐标是点B 纵坐标的2倍. (1)求反比例函数的解析式;(2)设点A 横坐标为m ,ABO △面积为S ,求S 与m 的函数关系式,并求出自变量m 的取值范围.3.如图所示,点A 、B 在反比例函数()0≠=k y xk 的图象上,且点A 、B•的横坐标分别为a 、2a (a >0),AC⊥x 轴于点C ,且△AOC 的面积为2. (1)求该反比例函数的解析式. (2)若点(-a ,1y )、(-2a ,2y )在该函数的图象上,试比较1y 与2y 的大小. (3)求△AOB 的面积.O xyA C DB●例4 若一次函数12-=x y 和反比例函数x k y 2=的图象都经过点(1,1).⑴求反比例函数的解析式;⑵已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; ⑶利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.拓展变式练习41.已知反比例函数x k y 2=和一次函数12-=x y ,其中一次函数图像经过(a ,b )(a +1,k b +)两点.(1)求反比例函数的解析式;(2)如图,已知点A 在第一象限,且同时在上述两个函数的图像上,求A 点坐标;(3)利用(2)的结论,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,所符合条件的P 点坐标都求出来;若不存在,请说明理由.2. C 、D 是双曲线x my =在第一象限内的点,直线CD 分别交x 轴、y 轴于 A 、B 两点,设C 、D 坐标分别是(1x ,y 1)、(2x ,y 2),连结OC 、OD.∠AOD=∠BOC=α,作CE⊥y 轴 ,DF⊥x 轴,且31==OF DFOE CE ,10=OC . ⑴求C 、D 的坐标和m 的值.⑵求OCD S ∆.⑶双曲线上是否存在一点P ,使得POD POC S S ∆∆= 若存在,请给出证明;若不存在,请说明理由.3.已知双曲线()0163>=x y x,与经过点A(1,0)、B(0,1)的直线交于点P 、Q ,连结OP 、OQ.⑴求证:ΔOAQ≌ΔOBP⑵若C 是OA 上不与O 、A 重合的任意一点,CA=a ,(0<a <1),CD⊥AB 于D ,DE⊥OB 于E.①a 为何值时,CE=AC ?②在线段OA 上是否存在点C ,使点CE∥AB?若存在这样的点,则请写出点C 的坐标,若不存在,请说明理由.xyCDA B EF OA . x y OB . x y OC .x y O D . x y O■巩固训练题一、选择题 1.函数x k y =的图象经过点(-4,6),则下列各点中在xk y =图象上的是( ) A.(3,8) B.(3,-8) C.(-8,-3) D.(-4,-6) 2.已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A.正数B.负数C.非正数D.不能确定 3.已知点P 是反比例函数()0≠=k y xk 的图像上任一点,过P•点分别作x 轴,y 轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k 的值为( )A .2B .-2C .±2 D.44.如图,已知函数ky x=-中,0x >时,y 随x 的增大而增大,则y kx k =-的大致图象为( )5.已知关于x 的函数()1-=x k y 和y=-kx(k ≠0),它们在同一坐标系内的图像大致是下图中的( )二、解答题1.如图,正比例函数()0>=k kx y 与反比例函数xk y =的图象交于A 、C 两点,过A 点作x 轴的垂线,垂足为B ,过C 点作x 轴的垂线,垂足为D ,求S 四边形ABCD .2.制作一种产品,需先将材料加热到60C ︒后,再进行操作,设刻材料温度为y C ︒,从开始加热计算的时间为x 分钟,据了解,该材料加热后,温度y 与时间成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图),已知该材料在操作加工前的温度为15C ︒,加热5分钟后温度达到60C ︒. ⑴分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系;⑵拫据工艺要求,当材料的温度低于15C ︒时,须停止操作,那么从开始加热到停止操作,共经历了多长时间?3.等腰三角形OAB 在直角坐标系中的位置如图,点A 的坐标为(33,3-), 点B 的坐标为(-6,0).(1)若三角形OAB 关于y 轴的轴对称图形是三角形O A B '',请直接写出A 、B 的对称点A 'B '、的坐标;(2)若将三角形OAB 沿x 轴向右平移a 个单位,此时点A 恰好落在反比例函数x y 36=的图像上,求a 的值;(3)若三角形OAB 绕点O 按逆时针方向旋转α度(090α<<). ①当α=30时点B 恰好落在反比例函数x k y =的图像上,求k 的值. ②问点A 、B 能否同时落在①中的反比例函数的图像上,若能,求出α的值;若不能,请说明理由.y xO56015■思维与能力提升1、如图,在直角坐标平面内,函数x my =(0x >,m 是常数)的图象经过(14)A ,,()B a b ,,其中1a >.过点A 作x 轴的垂线,垂足为C ,过点B 作y 轴的垂线,垂足为D ,连结AD 、DC 、CB .(1)若ABD △的面积为4,求点B 的坐标;(2)求证:DC AB ∥;(3)当AD BC =时,求直线AB 的函数解析式.2.如图,将一块直角三角形纸板的直角顶点放在()5.01,C 处,两直角边分别与y x ,轴平行,纸板的另两个顶点恰好是直线29+=kx y 与双曲线)0(>=m y x m的交点.(1)求m 和k 的值;(2)设双曲线)0(>=m y xm 在B A ,之间的部分为L ,让一把三角尺的直角顶点P 在L 上滑动,两直角边始终与坐标轴平行,且与线段AB 交于N M ,两点,请探究是否存在点P 使得AB MN 21=,写出你的探究过程和结论.B A ,yONM CP3.如图,已知直线AB 交两坐标于A 、B 两点,且OA=OB=1,点P (a 、b )是双曲线x y 21=上在第一象内的点过点P 作PM⊥x 轴于M 、PN⊥y 轴于N .两垂线与直线AB 交于E 、F .(1)写出点E 、F 的坐标(分别用a 或b 表示) (2)求△OEF 的面积(结果用a 、b 表示); (3)△AOF 与△BOE 是否相似?请说明理由;(4)当P 在双曲线x y 21=上移动时,△OEF 随之变动,观察变化过程,△OEF 三内角中有无大小始终保持不变的内角?若有,请指出它的大小,并说明理由.■补充讲解■反思与归纳DS 金牌数学专题四直角三角形的边角关系㈠★知识点精讲1.在ABC Rt ∆中,锐角A 的对边与邻边的比叫做A ∠的_________,记做_______,即_______tan =A ;锐角A 的邻边与对边的比叫做A ∠的_________,记做_______,即_______cot =A .2.坡比、坡角①坡面的铅直高度h 与水平宽度l 的比叫做________,用字母i 表示,即________=i ,坡面与水平面的夹角α叫________,即_______tan =α. ②工程上斜坡的倾斜程度通常用坡度来表示,坡面的_______和________的比称为坡度或坡比,坡度是坡角的_______,坡度______,坡面越陡. 3.在ABC Rt ∆中,锐角A 的对边与斜边的比叫做A ∠的_________,记做_______,即_______sin =A ;锐角A 的邻边与斜边的比叫做A ∠的_________,记做_______,即_______cos =A .4.在ABC Rt ∆中,若︒=∠+∠90B A ,则A sin 与A cos 的关系是_______,由此可得()_______90sin =-︒A ,()_______90cos =-︒A .典型例题讲解及思维拓展● 例1. 在ABC Rt ∆中,︒=∠90C ,如果125tan =A ,且24=AC ,求:⑴BC 和AB 的长;⑵A sin 和A cos 的值.拓展变式练习11. 在ABC Rt ∆中,︒=∠90C ,如果135tan =A ,且26=AC ,求:⑴BC 和AB 的长; ⑵A sin 和A cos 的值.2.在ABC Rt ∆中,︒=∠90C ,D 是BC 上的一点,34tan =∠ADC ,21tan =B ,BD=5,求AD 的长.3.在ABC Rt ∆中,︒=∠90C ,D 是AC 的中点,且BC=AC ,求CDA ∠tan 和DAC ∠sin 的值.●例2.如图,某县为了增强防洪能力,加固长90米,高5米,坝顶宽为4米,迎水坡和背水坡的坡度都是1:1的横断面是梯形的防洪大坝.要讲大坝加高1米,背水坡的坡度改为1:1.5,已知坝顶宽不变,问大坝的横截面积增加了多少平方米?增加了多少立方米土方?拓展变式练习21. 如图,拦水坝的横截面为梯形ABCD,AD∥BC,AB=DC,AD=6,BC=14,梯形ABCD的面积是40,求斜坡AB的坡度.2. 如图,水库大坝的横断面为梯形,坝顶宽6m,坝高23m,斜坡AB的坡度3:1i,斜坡CD的坡度为c,求斜坡AB的坡角(精确到'1),坝底宽AD和斜坡AB的长.(精确到1.0m)3. 泸杭甬高速公路拓宽宁波段工程进入全面施工阶段,在现有双向四车道的高速公路两侧经加宽形成双向八车道.如图,路基原横断面为等腰梯形ABCD ,AD ∥BC ,斜坡DC 的坡度为i 1,在其一侧加宽DF=7.75米,点E 、F 分别在BC 、AD 的延长线上,斜坡FE 的坡度为i 2(i 1<i 2).设路基的高DM=h 米,拓宽后横断面一侧增加的四边形DCEF 的面积为s 米2. (1)已知i 2=1:1.7,h=3米,求ME 的长.(2)不同路段的i 1、i 2、、、h 是不同的,请你设计一个求面积S 的公式(用含i 1、i 2的代数式表示).● 例3. 计算︒+︒-︒-︒︒30tan 345sin 260cos 45cos 30sin拓展变式练习3 1.计算下列各题:⑴()()2121145sin 260tan 130sin 2-︒+︒---︒-; ⑵()212321+-+÷-x x x ,其中︒-︒=60cos 245sin 4x .2. 在ABC ∆中,若()0cos 1tan 223=-+-B A ,其中A ∠、B ∠均为锐角,求C ∠的度数.3. 已知31tan =α且α为锐角,求ααααcos sin 2cos 2sin 3+-的值.■巩固训练题1.已知211(sin )sin 22αα-=-,则锐角α的取值范围是 .2.在△ABC 中,90C ∠=︒且两直角边a b 、满足22560a ab b -+=,则sin A = .3.如图,已知AD 为等腰△ABC 底边上的高,且4tan 3B =,AC 上有一点E ,满足2:3AE EC =:,那么tan ADE ∠= .二.解答题1.如图,在四边形ABCD 中,60DAB ∠=︒,90ABC CDA ∠=∠=︒,2CD =,3BC =,求AB 的长.2. 两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1. 固定△ABC 不动,将△DEF 进行如下操作:(1) 如图 (1),△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图 (2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图 (3),△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转 △DEF ,使DF 落在AB 边上,此时F 点恰好与B 点重合,连结AE ,请你求出sinα 的值.A B E FC D 图 (1)A B E F CD 图 (2)A B() (F )C D 图 (3) Eα■ 思维与能力提升在ABC Rt ∆中,︒=∠90C ,若A ∠、B ∠、C ∠的对边分别是a 、b 、c . ⑴若()A A 22sin sin =,()A A 22cos cos =,请根据三角形函数的定义证明:①1cos sin 22=+A A ; ②BBB cos sin tan =.⑵根据上面的两个结论解答:①若2cos sin =+A A ,求A A cos sin -的值;②若2tan =B ,求B B BB sin cos 2sin cos 4+-的值.■ 补充讲解■反思与归纳DS金牌数学专题五直角三角形的边角关系㈡★知识点精讲1.仰角、俯角:①当从低处观测高处的目标时,视线与水平线所成的角叫;②当从高处观测低处的目标时,视线与水平线所成的角叫.2.方位角:指北或指南方向与_____________所成的夹角叫方位角.典型例题讲解及思维拓展●例1.如图,小唐同学正在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B之间的距离;(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少?(结果可保留根号)拓展变式练习11.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30︒,B村的俯角为60︒(如图7).求A、B两个村庄间的距离.(结果精确到米,参考数据2 1.4143 1.732==,)QB C PA450 60︒30︒图72.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC ,小丽同学在点A 处,测得条幅顶端D 的仰角为30°,再向条幅方向前进10米后, 又在点B 处测得条幅顶端D 的仰角为45°,已知测点A 、B 和C 离地面高度都为1.44米,求条幅顶端D 点距离地面的高度.(计算结果精确到0.1米,参考数据.)3.在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°; (2)在点A 和大树之间选择一点B (A 、B 、D 在同一直线上),测得由点B 看大树顶端C 的仰角恰好为45°;(3)量出A 、B 两点间的距离为4.5米.请你根据以上数据求出大树CD 的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)23 1.732≈≈60o4.如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离. 结果保留根号,参考数据:42615sin -=︒,42615cos +=︒,3215tan -=︒,3215cot +=︒.● 例2. 如图,在某海域内有三个港口A 、D 、C .港口C 在港口A 北偏东60方向上,港口D 在港口A 北偏西60方向上.一艘船以每小时25海里的速度沿北偏东30的方向驶离A 港口3小时后到达B 点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B 处测得港口C 在B 处的南偏东75方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B 处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.拓展变式练习21.根据“十一五”规划,元双(双柏—元谋)高速工路即将动工.工程需要测量某一条河的宽度.如图,一测量员在河岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得 68=∠ACB .求所测之处河AB 的宽度.(o o o sin68≈0.93,cos68≈0.37,tan68≈2.48)2.载着“点燃激情,传递梦想”的使用,6月2日奥运圣火在古城荆州传递, 途经A 、B 、C 、D 四地,其中A 、B 、C 三地在同一直线上,D 地在A 地北偏东45º方向,在B 地正北方向,在C 地北偏西60º方向.C 地在A 地北偏东75º方向.B 、D 两地相距2km .问奥运圣火从A 地传到D 地的路程大约是多少?(最后结果....保留整数,参考数据:2 1.4,3 1.7≈≈)A CB3.如图,A 、B 、C 三个粮仓的位置如图所示,A 粮仓在B 粮仓北偏东26,180千米处;C 粮仓在B 粮仓的正东方,A 粮仓的正南方.已知A 、B 两个粮仓原有存粮共450吨,根据灾情需要,现从A 粮仓运出该粮仓存粮的53支援C粮仓,从B 粮仓运出该粮仓存粮的52支援C 粮仓,这时A 、B 两处粮仓的存粮吨数相等.(sin 260.44=,cos 260.90=,tan 260.49=) (1)A 、B 两处粮仓原有存粮各多少吨? (2)C 粮仓至少需要支援200吨粮食,问此调拨计划能满足C 粮仓的需求吗? (3)由于气象条件恶劣,从B 处出发到C 处的车队来回都限速以每小时35公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶4小时,那么小王在途中是否需要加油才能安全的回到B 地?请你说明理由.■巩固训练题 一、选择题1. 已知α为锐角,且cot (90°-α)=3,则α的度数为( ) A .30° B .60° C .45° D .75°北南 西东CB A262.如图,在Rt △ABC中,∠C=900,∠A=300,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连结FB,则tan ∠CFB 的值等于( )32353A 53333、 B、 C、 D、3.已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( )A .sin 40mB .cos 40mC .tan 40mD .tan 40m4.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( ) A .154B .14C .15D .45.已知α为锐角,则ααcos sin +=m 的值( ) A .1>m B .1=m C .1<m D .1≥m6. 如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半 圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为( )A .43B .34C .45D .357.在Rt △ABC 中,∠C=90°,若AC=2BC,则tanA 的值是( )A.21B. 2C. 55D. 258.已知ABC ∆中,AC=4,BC=3,AB=5,则sin A =( ) A. 35B. 45C. 53D. 349. 如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.5的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离约为( )A .4.5mB .4.6mC .6mD .8m10.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是( ).A.250m B.2503m C.50033m D.2502m.A O B东北A DB E 图6 i =1:C 二.解答题1. 如图,港口B 位于港口O 正西方向120海里处,小岛C 位于港口O 北 偏西60°方向.一艘科学考察船从港口O 出发,沿北偏西30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°方向以60海里/小时的速度驶向小岛C ,在小岛C 用一小时装补给物资后,立即按原来的速度给考察船送.⑴快艇从港口B 到小岛C 需要多少时间?⑵快艇从小岛C 出发后最少需要多少时间才能和考察船相遇?2. 如图6,梯形ABCD 是拦水坝的横断面图,(图中3:1 i 是指坡面的铅 直高度DE 与水平宽度CE 的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字.参考数据:3≈1.732,2≈1.414)。
9年级下册数学培优讲义北师版(格式完整,其他年级看我个人发布)
九年级下册数学培优专题01 求直角三角形锐角三角函数的方法 (2)专题02 解直角三角形的应用 (10)专题03 以特殊四边形为背景的三角函数 (18)专题04 三角函数与相似 (22)专题05 二次函数的图象与性质 (28)专题06 二次函数的图象与系数的关系 (32)专题07 二次函数与线段、周长的最值 (40)专题08 二次函数与面积 (47)专题09 二次函数与角度 (57)专题10 二次函数与特殊三角形 (67)专题11 二次函数与四边形 (77)专题12 二次函数与相似 (87)专题13 与圆的基本性质有关的计算与证明 (97)专题14 与切线相关的证明与计算 (106)专题15 圆与相似 (115)专题16 圆与三角函数 (127)专题17 与弧长和扇形面积有关的计算 (132)九年级数学下册解法技巧思维培优专题01 求直角三角形锐角三角函数的方法题型一 直接运用定义求锐角三角函数值【典例1】(2019•金堂校级期末)如图,Rt △ABC 中,∠C =90°,且AC =1,BC =2,则sin ∠A = .【典例2】(2019•镇海区一模)如图,直线y =34x +3与x 、y 轴分别交于A 、B 两点,则cos ∠BAO 的值是( )A .45B .35C .43D .54【典例3】(2019•咸宁模拟)如图,P (12,a )在反比例函数y =60x图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为 .【典例4】(2019•成都月考)如图,在正方形ABCD 中,M 是AD 的中点,BE =3AE ,试求sin ∠ECM 的值.题型二 利用等角转换求锐角三角函数值【典例5】(2019•雁塔区校级月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,BC =3,AC =4,则cos ∠DCB 的值为( )A .35B .45C .34D .43【典例6】(2019•兰州模拟)如图,CD 是平面镜,光线从A 点出发经过CD 上点E 反射后照到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D ,且AC =3,BD =4,CD =11,则tan α的值为( )A .311B .711C .113D .117【典例7】(2019•太仓市期末)如图,在△ABC 中,AB =AC =5,BC =8.若∠BPC =12∠BAC ,则sin ∠BPC = .【典例8】(2019•望江校级月考)如图,在Rt △ABC 中,∠C =90°,M 是直角边AC 上一点,MN ⊥AB 于点N ,AN =3,AM =4,求cos B 的值.题型三 设参数求锐角三角函数值【典例9】(2019•沙坪坝区校级月考)如图,在菱形ABCD 中,DE ⊥AB 于点E ,cos A =35,BE =4,则tan ∠DBE 的值是( )A .43B .34C .2D .12【典例10】(2019•湘西州)如图,在△ABC 中,∠C =90°,AC =12,AB 的垂直平分线EF 交AC 于点D ,连接BD ,若cos ∠BDC =57,则BC 的长是( )A .10B .8C .4√3D .2√6【典例11】(2019•南山区一模)如图,延长Rt △ABC 的斜边AB 到点D ,使BD =AB ,连接CD ,若tan ∠BCD =13,则tan ∠A 的值是( )A .1B .23C .9D .32【典例12】(2019•杨浦区模拟)如图,在Rt △ABC 中,∠C =90°,点D 在BC 边上,∠ADC=45°,BD=2,tan B=3 4(1)求AC和AB的长;(2)求sin∠BAD的值.题型四构造直角三角形求锐角三角函数值【典例13】(2019•玉环模拟)如图,△ABC的各个顶点都在正方形的格点上,则sin A的值为.【典例14】(2019•吴江区期末)如图,在锐角△ABC中,AB=10,BC=11,S△ABC=33,求tan C的值.【典例15】(2019•京山期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,连CE,求:(1)线段BE的长;(2)线段CE的长.巩固练习1.(2019•雁塔区校级模拟)直线y =3x 与x 轴正半轴的夹角的锐角为α,那么下列结论正确的是( ) A .tan α=3B .tan α=13C .sin α=3D .cos α=32.(2019•雁塔区校级模拟)如图,在菱形ABCD 中,DE ⊥AB ,cos A =35,BE =2,则BD 的值( )A .2B .√5C .2√5D .53.(2019•儋州期末)已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC 的高为1.6m ,并测得BC =2.2m ,CA =0.8m ,那么树DB 的高度是( )A .6mB .5.6mC .5.4mD .4.4m4.(2019•富平期末)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,BC =3,AC =4,tan ∠BCD 的值为( )A .34B .43C .45D .545.(2019•宽城区期末)如图,点A 、B 、C 均在小正方形的顶点上,且每个小正方形的边长均为1,则cos ∠BAC 的值为( )A .12B .√22C .1D .√26.(2019•西湖区校级月考)如图所示,在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,作CD 的中垂线与CD 交于点E ,与BC 交于点F .若CF =x ,tan A =y ,则x 与y 之间满足( )A .4y +4=x 2B .4y −4=x 2C .8y −8=x 2D .8y +8=x 27.(2020•闵行区一模)在△ABC 中,若∠C =90°,AB =10,sin A =25,则BC = 8.(2019•黄浦区一模)在等腰△ABC 中,AB =AC ,如果cos C =14,那么tan A = . 9.(2019•百色期末)在△ABC 中,∠C =90°,AB =10,BC =8,则cos A = . 10.(2019•宽城区校级月考)如图,△ABC 的顶点在正方形网格的格点处,则tan B 的值为 .11.(2019•相山区四模)如图,在△ABC 中,∠B 为锐角,AB =3√2,AC =5,sin C =35,求BC 的长.12.(2019•奉化市模拟)2019年3月29日,宁波市第十二届山地户外运动挑战赛在奉化市大堰镇举行,比赛全程42公里,共有20支队伍参加,其中三支外国队.划皮艇横渡柏坑水库是其中一个项目,横渡直线距离900米.在实际比赛中,甲队皮艇的划行路线偏离了最短路线约5°,但甲队还是以15分钟12秒的成绩摘得冠军.问:(1)在这次比赛中,甲队皮艇的平均速度为多少?(精确到0.01米/秒)(2)若甲队划皮艇的平均速度不变且在比赛中沿最短路线划行,则可比实际比赛提前几秒到达终点?(精确到0.1秒)(参考数据:sin5°=0.0872;cos5°=0.9962;tan5°=0.0875)13.(2019•芙蓉区校级期末)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3√2,点D 在边AC上,且AD=2CD,DE⊥AB,垂足为点E.求:线段BE的长.14.(2019•宁夏)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.15.(2019•崇明期中)如图,在△ABC中,∠C=90°,点D在BC上,AD=BC=5,cos∠ADC=35,求:sin B的值.九年级数学下册解法技巧思维培优专题02 解直角三角形的应用题型一“共边”型【典例1】(2019•沙坪坝区校级月考)位千重庆市汇北区的照母山森林公园乘承“近自然”生态理念营造森林风景,“虽由人作,宛自天开“,凸显自然风骨与原生野趣.山中最为瞩目的经典当属揽星塔.登临塔顶,可上九天邀月揽星,可鸟瞰新区,领略附近楼宇的壮美;亦可远眺两江胜景.登临此塔,让你有飘然若仙的联想又有登高远眺,“一览众山小“的震撼,我校某数学兴趣小组的同学准备利用所学的三角函数知识估测该塔的高度,已知揽星塔AB位于坡度l=√3:1的斜坡BC上,测量员从斜坡底端C处往前沿水平方向走了120m达到地面D处,此时测得揽星塔AB顶端A的仰角为37°,揽星塔底端B 的仰角为30°,已知A、B、C、D在同一平面内,则该塔AB的高度为()米,(结果保留整数,参考数据;sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)A.31 B.40 C.60 D.136【典例2】(2019•随州)在一次海上救援中,两艘专业救助船A,B同时收到某事故渔船的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距120海里.(1)求收到求救讯息时事故渔船P与救助船B之间的距离;(2)若救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达.题型二“母子”型【典例3】(2020•青羊区模拟)如图,一航船在A处测到北偏东60°的方向有一灯塔B,航船向东以每小时20海里的速度航行2小时到达C处,又测到灯塔B在北偏东15°的方向上.求此时航船与灯塔相距多少海里?(结果保留根号)【典例4】(2019•许昌一模)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走9米到达B处,又测得教学楼顶端G的仰角∠GEF为68°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,√2≈1.41).题型三“怀抱”型【典例5】(2019•秦淮区一模)一铁棒欲通过一个直角走廊.如图,是该铁棒紧挨着墙角E通过时的两个特殊位置:当铁棒位于AB位置时,它与墙面OG所成的角∠ABO=51°18′;当铁棒底端B向上滑动1m(即BD=1m)到达CD位置时,它与墙面OG所成的角∠CDO=60°,求铁棒的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈0.248)题型四题型类【典例6】(2019•连云港)如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC =3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈35,cos37°≈45,tan37°≈3 4)题型五综合类【典例7】(2019•官渡区二模)如图,防洪大堤的横截面ABGH是梯形,背水坡AB的坡度i=1:√3(垂直高度AE与水平宽度BE的比),AB=20米,BC=30米,身高为1.7米的小明(AM=1.7米)站在大堤A点(M,A,E三点在同一条直线上),测得电线杆顶端D的仰角∠a=20°.(1)求背水坡AB的坡角;(2)求电线杆CD的高度.(结果精确到个位,参考数据sin20°≈0.3,cos20°≈0.9,tan20°≈0.4,√3≈1.7)【典例8】(2019•娄底)如图,某建筑物CD高96米,它的前面有一座小山,其斜坡AB 的坡度为i=1:1.为了测量山顶A的高度,在建筑物顶端D处测得山顶A和坡底B的俯角分别为α、β.已知tanα=2,tanβ=4,求山顶A的高度AE(C、B、E在同一水平面上).巩固练习1.(2019•九龙坡区校级三模)我校兴趣小组同学为测量校外“御墅临枫”的一栋电梯高层AB的楼高,从校前广场的C处测得该座建筑物顶点A的仰角为45°,沿着C向上走到30√5米处的D点.再测得顶点A的仰角为22°,已知CD的坡度:i=1:2,A、B、C、D在同一平面内,则高楼AB的高度为()(参考数据;sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)A.60 B.70 C.80 D.90 2.(2019•邓州市期末)如图①,在我国古建筑的大门上常常悬挂着巨大的匾额,图②中的线段BC就是悬挂在墙壁AM上的某块匾额的截面示意图.已知BC=1米,∠MBC=37°.从水平地面点D处看点C,仰角∠ADC=45°,从点E处看点B,仰角∠AEB=53°,且DE=2.4米,求匾额悬挂的高度AB的长.(参考数据:sin37°≈35,cos37°≈45,tan37°≈3 4).3.(2019•儋州期末)如图,同学们利用所学知识去测量海平面上一个浮标到海岸线的距离.在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,小宇同学在A处观测得浮标在北偏西60°的方向,小英同学在距点A处60米远的B点测得浮标在北偏西45°的方向,求浮标C到海岸线l的距离(结果精确到0.01m).4.(2019•肥城市期末)如图,一艘船由A港沿北偏东65°方向航行30√2km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求(1)∠C的度数.(2)A,C两港之间的距离为多少km.5.(2020•河南一模)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A 点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)6.(2019•宿迁模拟)如图,MN为一电视塔,AB是坡角为30°的小山坡(电视塔的底部N 与山坡的坡脚A在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A处测得塔顶M的仰角为45°;沿着山坡向上行走40m到达C处,此时测得塔顶M的仰角为30°,请求出电视塔MN的高度.(参考数据:≈1.41,≈1.73,结果保留整数)7.(2019•河南二模)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:√2≈1.41,√3≈1.73,√10≈3.16)九年级数学下册解法技巧思维培优专题03 以特殊四边形为背景的三角函数【典例1】(2019•义乌市一模)如图,已知点E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G 、H 都在边AD 上,若AB =3,BC =4,则tan ∠AFE 的值( )A .等于√33B .等于37C .等于34 D .随点E 位置变化而变化【典例2】(2019•南海区三模)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则cos ∠BDE 的值是( )A .2√23B .14C .13D .√24【典例3】(2019•铁西区期中)已知菱形ABCD ,对角线AC ,BD 相交于点O ,若OB :AB【典例4】(2019•临沂模拟)如图,在平行四边形ABCD 中,点E 是BC 的中点,∠BOE =30°,OD =2,cos ∠ADB =√32.则CD = .【典例5】(2019•泰安)如图,在矩形ABCD 中,AB =6,BC =10,将矩形ABCD 沿BE 折【典例6】(2019•宝山区一模)如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=.【典例7】(2019•平阳校级月考)如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=45,反比例函数y=kx(k>0)在第一象限内的图象经过点A,与BC交于点F.若点F为BC的中点,且△AOF的面积S=12,则点C的坐标为.【典例8】(2019•南岸区校级月考)如图1,在菱形ABCD中,点E是AB上一点,连接DE,过C作CF⊥DE于点F.(1)若AE=DE=11,CF=12,且cos A=1322,求EF的长;(2)如图2,若DF=EF﹣EB,求证:AE=2DF.巩固练习1.(2019•庐阳区二模)在矩形ABCD 中,E 是BC 边的中点,AE ⊥BD ,垂足为点F ,则tan∠AED 的值是( )A .√63B .2√63C .2√3D .2√22.(2019•渝中区校级期中)如图,平行四边形ABCD 中,AD =4,∠A =60°,E ,F 分别是AD ,CD 边上的中点,且EF =√19,连接EB 并延长至H ,使BE =BH ,连接HC 并延长与EF 延长线交于G ,N 是线段EG 上一动点,以EH 为对角线的所有平行四边形ENHM3.(2019•柳州期末)如图,在菱形ABCD 中,AB =2,∠C =120°,点P 是平面内一点,4.(2019•泰安)如图,在矩形ABCD 中,AB =6,BC =10,将矩形ABCD 沿BE 折叠,点A5.(2020•虹口区一模)如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2,点D 为边AB6.(2019•德城区期末)如图,四边形OACB为平行四边形,B在x轴上,且∠AOB=60°,反比例函数y=kx(k>0)在第一象限内过点A,且与BC交于点F.当F为BC的中点,7.(2019•南岸区校级月考)如图1,在菱形ABCD中,点E是AB上一点,连接DE,过C 作CF⊥DE于点F.(1)若AE=DE=11,CF=12,且cos A=1322,求EF的长;(2)如图2,若DF=EF﹣EB,求证:AE=2DF.九年级数学下册解法技巧思维培优专题04 三角函数与相似【典例1】(2019•南岸区校级月考)如图,点A 是双曲线y =kx 上一点,过A 作AB ∥x 轴,交直线y =﹣x 于点B ,点D 是x 轴上一点,连接BD 交双曲线于点C ,连接AD ,若BC :CD =3:2,△ABD 的面积为114,tan ∠ABD =95,则k 的值为( )A .﹣2B .﹣3C .−34D .34【典例2】(2019•潍坊期末)如图,反比例函数y =2x 的图象上有一动点A ,连接AO 并延长交图象的另一支于点B ,在第二象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数y =kx 的图象上运动,tan ∠CAB =2,则k = .【典例3】(2019•大兴区期末)如图,在平面直角坐标系xOy 中,直角三角形的直角顶点与原点O 重合,顶点A ,B 恰好分别落在函数y =−1x(x <0),y =4x(x >0)的图象上,则tan ∠ABO 的值为 .【典例4】(2019•广州)如图,在平面直角坐标系xOy 中,菱形ABCD 的对角线AC 与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=n−3 x的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.【典例5】(2019•肥城市模拟)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上是否存在点E,使|AE﹣BE|有最大值?如果存在,请求出点E坐标;若不存在,请说明理由.【典例6】(2019•南岸区校级期末)如图,已知一次函数y1=k1x+6与反比例函数y2=k2x相交于A、B,与x轴交于点C,过点B作BD⊥x轴于点D,已知sin∠DBC=√55,OC:CD=3:1.(1)求y1和y2的解析式;(2)连接OA,OB,求△AOB的面积.【典例7】(2019•长寿区模拟)已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=ax交于一象限内的P(12,n),Q(4,m)两点,且tan∠BOP=18.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>ax时,请根据图象直接写出x的取值范围.巩固练习1.(2019•永春县校级自主招生)如图,点A、B是反比例函数y=kx(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12 B.﹣10 C.﹣9 D.﹣62.(2019•渭滨区期末)如图,已知点A,B分别是反比例函数y=kx(x<0),y=1x(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=12,则k的值为.3.(2019•东城区校级期中)如图,反比例函数y=3x的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=kx的图象上运动,tan∠CAB=2,则k=.4.(2019•罗湖区期末)如图,在矩形OABC中,OA=3,OC=4,分别以OA、OC所在直线为x 轴、y 轴,建立平面直角坐标系,D 是边CB 上的一个动点(不与C 、B 重合),反比例函数y =kx(k >0)的图象经过点D 且与边BA 交于点E ,作直线DE .(1)当点D 运动到BC 中点时,求k 的值; (2)求BD BE的值;(3)连接DA ,当△DAE 的面积为43时,求k 值.5.(2019•郫都区模拟)如图,直线AB :y =kx +b 与x 轴、y 轴分别相交于点A (1,0)和点B (0,2),以线段AB 为边在第一象限作正方形ABCD . (1)求直线AB 的解析式; (2)求点D 的坐标;(3)若双曲线y =kx(k >0)与正方形的边CD 始终有一个交点,求k 的取值范围.6.(2019•沙坪坝区校级二模)如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=k x(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=√10,tan AOC=13,点B的坐标为(32,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.7.(2019•重庆)如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4√5,cos∠ACH=√55,点B的坐标为(4,n).(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.九年级数学下册解法技巧思维培优专题05 二次函数的图象与性质【典例1】(2019•浦东新区一模)如果二次函数y=ax2+bx+c的图象全部在x轴的下方,那么下列判断中正确的是()A.a<0,b<0 B.a>0,b<0 C.a<0,c>0 D.a<0,c<0 【典例2】(2019•和平区校级月考)抛物线y=2x2﹣3x+5的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【典例3】(2019•锦州一模)若关于x的一元二次方程2x2﹣x﹣n=0没有实数根,则二次函数y=2x2﹣x﹣n的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【典例4】(2019•郫都区模拟)在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b 的大致图象为()A.B.C.D.【典例5】(2019•大同二模)将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4 【典例6】(2019•兰州模拟)若二次函数y=﹣x2+2ax+5的图象关于直线x=4对称,则y 的最值是()A.最小值21 B.最小值24 C.最大值21 D.最大值24【典例7】(2019•雨花区期中)如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为()A.(﹣1,0)B.(﹣2,0)C.(﹣3,0)D.(﹣4,0)【典例8】(2019•金牛区期末)对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4【典例9】(2019•黄浦区一模)如果点A(﹣1,m)、B(12,n)是抛物线y=﹣(x﹣1)2+3上的两个点,那么m和n的大小关系是m n(填“>”或“<”或“=”).【典例10】(2019•瑶海区校级期中)已知二次函数y=(x﹣h)2+3,当自变量x满足1≤x≤3时,函数有最小值2h,则h的值为.【典例11】(2020•杨浦区一模)已知点A(x1,y1)、B(x2,y2)为抛物线y=(x﹣2)2上的两点,如果x1<x2<2,那么y1y2.(填“>”“<”或“=”)【典例12】(2019•徐汇区一模)已知抛物线C的顶点坐标为(1,3),如果平移后能与抛物线y=12x2+2x+3重合,那么抛物线C的表达式是.【典例13】(2019•西湖区校级月考)对于二次函数y=mx2﹣(m+2)x+3,有下列说法:①如果m=2,则y有最小值3;②如果当x=1时的函数值与x=2016时的函数值相等,则当x=2017时的函数值为3;③如果m>1,当x≤1时y随x的增大而减小,则1<m≤2;④如果用该二次函数有最小值T,则T的最大值为1.其中正确的说法是.(把你认为正确的结论的序号都填上)巩固练习1.(2019•惠城区期末)抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)2.(2019•门头沟区期末)二次函数y=x2的对称轴是()A.直线y=1 B.直线x=1 C.y轴D.x轴3.(2019•沧州期末)二次函数与y=kx2﹣8x+8的图象与x轴有交点,则k的取值范围是()A.k<2 B.k<2且k≠0 C.k≤2 D.k≤2且k≠0 4.(2019•泗阳县期末)二次函数y=ax2+bx+c与一次函数y=ax+c在同一直角坐标系内的大致图象是()A.B.C.D.5.(2019•和平区期末)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为4,则a的值为()A.﹣2 B.4 C.4或3 D.﹣2或3 6.(2019•潮阳区期末)若点M在抛物线y=(x+3)2﹣4的对称轴上,则点M的坐标可能是()A.(3,﹣4)B.(﹣3,0)C.(3,0)D.(0,﹣4)7.(2019•婺城区模拟)如图所示,抛物线y=23(x−72)2−256与x、y轴分别交于A、B、C三点,连结AC和BC,将△ABC沿与坐标轴平行的方向平移,若边BC的中点M落在抛物线上时,则符合条件的平移距离的值有()A.1个B.2个C.3个D.4个8.(2019•大东区期末)已知二次函数y=54(x−13)2+1,则下列说法:①其图象的开口向上;②其图象的对称轴为直线x=−13;③其图象顶点坐标为(13,﹣1);④当x<13时,y随x的增大而减小,其中说法正确的有()A.1个B.2个C.3个D.4个9.(2019•滨海县期末)点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣x上,则y1y2.(填“>”,“<”或“=”之一)10.(2019•丹江口市期中)二次函数y=2(x+1)2﹣4,当x=时,y的最小值是.11.(2020•武汉模拟)若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,m)、B(x1+x2,n)、C(x2,m),则n的值为.12.(2019•华蓥市模拟)将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是.13.(2019•江汉区模拟)已知二次函数y=12x2+bx+c经过点(0,32),当0≤x≤1,抛物线上的点到x轴距离的最大值为3时,b的值为.九年级数学下册解法技巧思维培优专题06 二次函数的图象与系数的关系【典例1】(2019•德州)若函数y=k x与y=ax2+bx+c的图象如图所示,则函数y=kx+b的大致图象为()A.B.C.D.【典例2】(2019•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=a+b+cx在同一平面直角坐标系中的图象大致是()A.B.C.D.【典例3】(2019•本溪)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),其对称轴为直线x=1,下面结论中正确的是()A.abc>0 B.2a﹣b=0 C.4a+2b+c<0 D.9a+3b+c=0 【典例4】(2019•东坡区模拟)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.①②④C.①④⑤D.③④⑤【典例5】(2019•会昌期中)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为x=1,经过点(﹣1,0),有下列结论:①abc<0;②a+c>b;③3a+c=0;④a+b>m(am+b)(其中m≠1)其中正确的结论有()A.1个B.2个C.3个D.4个【典例6】(2019•巴彦淖尔模拟)如图,二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(3,0),对称轴为直线x=1,下列结论:①abc>0;②2a+b=0;③4a﹣2b+c >0;④当y>0时,﹣1<x<3;⑤b<c.其中正确的个数是()A.2 B.3 C.4 D.5【典例7】(2019秋•淮南期中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax﹣2b(a≠0)与反比例函数y=cx(c≠0)在同一平面直角坐标系中的图象大致是()\A.B.C.D.【典例8】(2019•通辽)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【典例9】(2019•凉山州)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a ﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1 B.2 C.3 D.4【典例10】(2019•建阳区模拟)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c 交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论:①a﹣b+c<0;②2a+b+c >0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个【典例11】(2019•东营区校级期中)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是.(填写正确结论的序号)巩固练习1.(2019•成都模拟)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+c和反比例函数y=b2−4acx的图象可能是()A.B.C.D.2.(2019•香坊区期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③4a﹣2b+c<0;④a+b+2c>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个3.(2020•长葛市一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①c<0;②2a+b=0;③a+b+c<0;④b2﹣4ac<0,其中正确的有()A.1个B.2个C.3个D.4个4.(2019•河东区期末)若二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系的图象可能是()A.B.C.D.5.(2019•岐山期末)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(实数m≠1).其中正确的结论有()A.2个B.3个C.4个D.5个6.(2019•鄂州)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个7.(2019•柯桥区模拟)已知二次函数y=x2+bx+c的图象与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,﹣3).将该二次函数的图象水平向右平移,可使得平移后所得图象经过坐标原点,直接写出平移后所得图象与x轴的另一个交点的坐标.九年级数学下册解法技巧思维培优专题07 二次函数与线段、周长的最值【典例1】(2019•永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标;如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.【典例2】(2019•福田区期末)如图,抛物线y=ax2+bx+c(a≠0),经过点A(﹣1,0),B(3,0),C(0,﹣3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第一象限,当S△NBC=S△ABC时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,﹣3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出PM+PQ+QN和的最小值.【典例3】(2019•霍林郭勒市期末)如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN 长度的最大值.【典例4】(2019•孝义市期末)综合与探究如图,在平面直角坐标系中,直线y=x﹣4分别与x轴,y轴交于点A和点C,抛物线y =ax2﹣3x+c经过A,C两点,并且与x轴交于另一点B.点D为第四象限抛物线上一动点(不与点A,C重合),过点D作DF⊥x轴,垂足为F,交直线AC于点E,连接BE.设点D的横坐标为m.(1)求抛物线的解析式;(2)当∠ECD=∠EDC时,求出此时m的值;(3)点D在运动的过程中,△EBF的周长是否存在最小值?若存在,求出此时m的值;若不存在,请说明理由.巩固练习1.(2019•葫芦岛模拟)如图1,在平面直角坐标系xOy中,直线l:y=34x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=12x2+bx+c经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F 在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.。
九年级数学培优题含详细答案
九年级培优竞赛1.在如图的直角坐标系中,已知点A(2,0)、B(0,-4),将线段AB 绕点A 按逆时针方向旋转90°至AC .(1)求点C 的坐标;(2)若抛物线y =-14x 2+ax +4经过点C . ①求抛物线的解析式;②在抛物线上是否存在点P(点C 除外)使△ABP 是以AB 为直角边的等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.【答案】C 的坐标为(3,﹣1);(2)①抛物线的解析式为y=﹣12x 2+12x+2; ②存在点P ,△ABP 是以AB 为直角边的等腰直角三角形,符合条件的点有P 1(﹣1,1),P 2(﹣2,﹣1)两点.【解析】试题分析:(1)过点C 作CD 垂直于x 轴,由线段AB 绕点A 按逆时针方向旋转90°至AC ,根据旋转的旋转得到AB=AC ,且∠BAC 为直角,可得∠OAB 与∠CAD 互余,由∠AOB 为直角,可得∠OAB 与∠ABO 互余,根据同角的余角相等可得一对角相等,再加上一对直角相等,利用ASA 可证明三角形ACD 与三角形AOB 全等,根据全等三角形的对应边相等可得AD=OB ,CD=OA ,由A 和B 的坐标及位置特点求出OA 及OB 的长,可得出OD 及CD 的长,根据C 在第四象限得出C 的坐标;(2)①由已知的抛物线经过点C ,把第一问求出C 的坐标代入抛物线解析式,列出关于a 的方程,求出方程的解得到a 的值,确定出抛物线的解析式;②假设存在点P 使△ABP 是以AB 为直角边的等腰直角三角形,分三种情况考虑:(i )A 为直角顶点,过A 作AP 1垂直于AB ,且AP 1=AB ,过P 1作P 1M 垂直于x 轴,如图所示,根据一对对顶角相等,一对直角相等,AB=AP 1,利用AAS 可证明三角形AP 1M 与三角形ACD 全等,得出AP 1与P 1M 的长,再由P 1为第二象限的点,得出此时P 1的坐标,代入抛物线解析式中检验满足;(ii )当B 为直角顶点,过B 作BP 2垂直于BA ,且BP 2=BA ,过P 2作P 2N 垂直于y 轴,如图所示,同理证明三角形BP 2N 与三角形AOB 全等,得出P 2N 与BN 的长,由P 2为第三象限的点,写出P 2的坐标,代入抛物线解析式中检验满足;(iii )当B 为直角顶点,过B 作BP 3垂直于BA ,且BP 3=BA ,如图所示,过P 3作P 3H 垂直于y 轴,同理可证明三角形P 3BH 全等于三角形AOB ,可得出P 3H 与BH 的长,由P 3为第四象限的点,写出P 3的坐标,代入抛物线解析式检验,不满足,综上,得到所有满足题意的P 的坐标. 试题解析:(1)过C 作CD ⊥x 轴,垂足为D ,∵BA⊥AC,∴∠OAB+∠CAD=90°,又∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,∴△AOB≌△CDA,又A(1,0),B(0,﹣2),∴OA=CD=1,OB=AD=2,∴OD=OA+AD=3,又C为第四象限的点,∴C的坐标为(3,﹣1);(2)①∵抛物线y=﹣12x2+ax+2经过点C,且C(3,﹣1),∴把C的坐标代入得:﹣1=﹣92+3a+2,解得:a=12,则抛物线的解析式为y=﹣12x2+12x+2;②存在点P,△ABP是以AB为直角边的等腰直角三角形,(i)若以AB为直角边,点A为直角顶点,则延长CA至点P1使得P1A=CA,得到等腰直角三角形ABP1,过点P1作P1M⊥x轴,如图所示,∵AP1=CA,∠MAP1=∠CAD,∠P1MA=∠CDA=90°,∴△AMP1≌△ADC,∴AM=AD=2,P1M=CD=1,∴P1(﹣1,1),经检验点P1在抛物线y=﹣12x2+12x+2上;(ii)若以AB为直角边,点B为直角顶点,则过点B作BP2⊥BA,且使得BP2=AB,得到等腰直角三角形ABP2,过点P2作P2N⊥y轴,如图,同理可证△BP2N≌△ABO,∴NP2=OB=2,BN=OA=1,∴P2(﹣2,﹣1),经检验P2(﹣2,﹣1)也在抛物线y=﹣12x2+12x+2上;(iii)若以AB为直角边,点B为直角顶点,则过点B作BP3⊥BA,且使得BP3=AB,得到等腰直角三角形ABP3,过点P3作P3H⊥y轴,如图,同理可证△BP3H≌△BAO,∴HP3=OB=2,BH=OA=1,∴P3(2,﹣3),经检验P3(2,﹣3)不在抛物线y=﹣12x2+12x+2上;则符合条件的点有P1(﹣1,1),P2(﹣2,﹣1)两点.考点:1.二次函数综合题2.点的坐标3.等腰直角三角形.2.在Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,点P为BC边上一点,把△PBD 沿PD翻拆,点B落在点E处,设PE交AC于F,连接CD(1)求证:△PCF的周长=2CD;(2)设DE交AC于G,若53PEEF=,CD=6,求FG的长【答案】(1)证明见解析;(2)FG的长为152 14.【解析】试题分析:.(1)连接CE,根据三角形的角边关系可以得到∠FCE=∠FEC,从而FC=FE,△PCF的周长=2CD;(2) 由.(1)结论CP+PF+CF=2CD,和PF5EF3=,CD=6,求出CF=EF=322,作GK⊥EF于点K,易得FG的长为152 14.试题解析:.(1)连接CE,∵CA=CB,D 为AB 中点,∴∠BCD=∠ACD=45°,由翻折可知∠B=∠DEP=45°,∴∠DCF=∠DEF=45°,CD=BD=DE ,∴∠DCE=∠DEC ,∴∠DCE-∠DCA=∠DEC-∠DEF ,即∠FCE=∠FEC ,∴FC=FE ,∴CF+PF=PE=BP ,∴,∴△PCF;(2)∴设PF=5x,EF=CF=3x ,在Rt △FCP 中,PF 2=CP 2+CF 2,∴CP=4x ,∵,∴作GK ⊥EF 于点K ,∵tan ∠GFE=tan ∠ 设GK=4a,FK=3a,EK=4a , G F D AB PC KFDAB PC∴EF=7a=322, a=3214, FG=5a=15214, ∴FG 的长为15214. 考点:三角形综合.3.如图,抛物线y=-x 2+4x+5交x 轴于A 、B (以A 左B 右)两点,交y 轴于点C.(1)求直线BC 的解析式;(2)点P 为抛物线第一象限函数图象上一点,设P 点的横坐标为m ,△PBC 的面积为S ,求S 与m 的函数关系式;(3)在(2)的条件下,连接AP ,抛物线上是否存在这样的点P ,使得线段PA 被BC 平分,如果不存在,请说明理由;如果存在,求点P 的坐标.【答案】(1) y=5x -+ (2) S=252522m m -+ (3)存在,P(2,9)或P(3,8) 【解析】试题分析:(1)令y=0,解关于x 的一元二次方程即可得到点A 、B 的坐标,再令x=0求出点C 的坐标,设直线BC 解析式为y=kx+b (k≠0),利用待定系数法求一次函数解析式解答;(2)过点P 作PH ⊥x 轴于H ,交BC 于F ,根据抛物线和直线BC 的解析式表示出PF ,再根据S △PBC =S △PCF +S △PBF 整理即可得解;(3)设AP 、BC 的交点为E ,过点E 作EG ⊥x 轴于G ,根据垂直于同一直线的两直线平行可得EG ∥PH ,然后判断出△AGE 和△AHP 相似,根据相似三角形对应边成比例可表示出EG 、HG ,然后表示出BG ,根据OB=OC 可得∠OCB=∠OBC=45°,再根据等角对等边可得EG=BG ,然后列出方程求出m 的值,再根据抛物线解析式求出点P 的纵坐标,即可得解.试题解析:(1)当y=0时,x 1=5,x 2=-1,∵A 左B 右,∴A(-1,0),B(5,O)当x=0时,y=5,∴C (0,5),设直线BC 解析式为y=kx+b,∴5005k b k b +=⎧⎨⨯+=⎩ ∴15k b =-⎧⎨=⎩∴直线BC 解析式为:y=5x -+;(2)作PH ⊥x 轴于H ,交BC 于点F ,P(m ,-m 2+4m+5),F(m,-m+5)PF=-m 2+5m ,S △PBC =S △PCF +S △PBF(3)存在点P ,作EG ⊥AB 于G,PH ⊥AB 于H ,∴EG ∥PH ,∴△AGE ∽△AHP ,∵P(m ,-m +4m+5),AH=m-(-1)=m+1,HB=5-m ,GB=152mm ++-,∵OC=OB=5,∴∠OCB=∠OBC=45°,∴EG=BG,∴2452m m-++=152mm++-,∴m1=2m2=3,当m=2时,P(2,9),当m=3时,P(3,8),∴存在这样的点P, 使得线段PA被BC平分,P(2,9)或P(3,8).考点:二次函数综合题.4.如图:在等腰△ABC中,AB=AC,AD上BC,垂足为D,以AD为直径作⊙0,⊙0分别交AB、AC于E、F.(1)求证:BE=CF;(2)设AD、EF相交于G,若EF=8,BC=10,求⊙0的半径.【答案】(1)证明见解析;(2)⊙O的半径为5.【解析】试题分析:(1)连接DE,DF,由AB=AC,且AD为BC边上的高,利用三线合一得到D为BC的中点,AD为顶角平分线,再由AD为圆O的直径,利用直角所对的角为直角得到一对直角相等,利用AAS得到三角形EBD与三角形FCD全等,由全等三角形的对应边相等得到BE=CF,得证;(2)由EB=CF,AB=AC,得出AE=AF,确定出AE:AB=AF:AC,且夹角相等,得到三角形AEF与三角形ABC相似,由相似三角形的对应边成比例得到AG:AD=8:10,设AG=8x,AD=10x,连接OE,在直角三角形OEG中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出圆O的半径.试题解析:(1)连接DE、DF,∵AB=AC,AD⊥BC,∴∠B=∠C,BD=CD,∵AD为⊙O的直径,∴∠DEA=∠DFA=90°,∴△DBE≌△DCF,∴BE=CF;(2)∵BE=CF,∴AE=AF,AE AFAB AC=且∠BAC=∠BAC,∴△AEF∽△ABC,∴设AG=8x,AD=10x,连接EO,在Rt△OEG中,∴OE2=OG2+EG2,∴(5x)2=(3x)2+42,x=1,∴5x=5,∴⊙O的半径为5.考点:1.相似三角形的判定与性质,2.全等三角形的判定与性质,3.勾股定理,4.圆周角定理.5.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.【答案】(1)见解析(2)见解析【解析】思路分析:(1)过点B作BG⊥OE于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;(2)选择图2,过点B作BG⊥OE交OE的延长线于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;选择图3同理可证.解:(1)证明:如图,过点B作BG⊥OE于G,则四边形BGEF是矩形,∴EF=BG,BF=GE,在正方形ABCD中,OA=OB,∠AOB=90°,∵BG⊥OE,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE-GE=OE-BF ,∴AF-OE=OE-BF ,∴AF+BF=2OE ;(2)图2结论:AF-BF=2OE ,图3结论:AF-BF=2OE .对图2证明:过点B 作BG ⊥OE 交OE 的延长线于G ,则四边形BGEF 是矩形,∴EF=BG ,BF=GE ,在正方形ABCD 中,OA=OB ,∠AOB=90°,∵BG ⊥OE ,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE+GE=OE+BF ,∴AF-OE=OE+BF ,∴AF-BF=2OE ;若选图3,其证明方法同上.点评:本题考查了正方形的性质,矩形的判定与性质,全等三角形的判定与性质,同角的余角相等的性质,作辅助线构造出全等三角形与矩形是解题的关键,也是本题的难点.6.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(0,4),点B 的坐标为(4,0),点C 的坐标为(-4,0),点P 在射线AB 上运动,连结CP 与y 轴交于点D ,连结BD .过P ,D ,B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF .90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.【答案】(1)y=-x+4 (2)①见解析x (3)存在,点P的坐标为(2,2)或(8,-4)【解析】解:(1)设直线AB的函数解析式为y=kx+4,代入(4,0)得:4k+4=0,解得:k=-1,则直线AB的函数解析式为y=-x+4;(2)①由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BDO≌△COD,∴∠BDO=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP,②如图,连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,第11页,总68页∵DF 是⊙Q 的直径, ∴∠DEF=90°,∴△DEF 是等腰直角三角形, ∴DE ,即x ; (3)当BD :BF=2:1时,如图,过点F 作FH ⊥OB 于点H ,∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°, ∴∠DBO=∠BFH ,又∵∠DOB=∠BHF=90°, ∴△BOD ∽△FHB , ∴=2, ∴FH=2,OD=2BH ,∵∠FHO=∠EOH=∠OEF=90°, ∴四边形OEFH 是矩形, ∴OE=FH=2, ∴EF=OH=4-OD , ∵DE=EF , ∴2+OD=4-OD , 解得:OD=,∴点D 的坐标为(0,), ∴直线CD 的解析式为y=x+, 由,得:, 则点P 的坐标为(2,2); 当时, 连结EB ,同(2)①可得:∠ADB=∠EDP ,OB OD BDHF HB FB==12124343134314334y x y x ⎧=+⎪⎨⎪=-+⎩22x y =⎧⎨=⎩12BD BF =试卷第12页,总68页而∠ADB=∠DEB+∠DBE ,∠EDP=∠DAP+∠DPA , ∵∠DEP=∠DPA ,∴∠DBE=∠DAP=45°,∴△DEF 是等腰直角三角形, 如图,过点F 作FG ⊥OB 于点G ,同理可得:△BOD ∽△FGB , ∴, ∴FG=8,OD=BG , ∵∠FGO=∠GOE=∠OEF=90°, ∴四边形OEFG 是矩形, ∴OE=FG=8, ∴EF=OG=4+2OD , ∵DE=EF ,∴8-OD=4+2OD , OD=, ∴点D 的坐标为(0,-), 直线CD 的解析式为:, 由,得:, ∴点P 的坐标为(8,-4),综上所述,点P 的坐标为(2,2)或(8,-4).7.如图,在Rt △ABC 中,∠ACB=90°,AC=6cm ,BC=8cm .点D 、E 、F 分别是边AB ,BC ,AC 的中点,连接DE ,DF ,动点P ,Q 分别从点A 、B 同时出发,运动速度均为1cm/s ,点P 沿AFD 的方向运动到点D 停止;点Q 沿BC 的方向运动,当点P 停止运动时,点Q 也停止运动.在运动过程中,过点Q 作BC 的垂线交AB 于点M ,以点P ,M ,Q 为顶点作12OB OD BD GF GB FB ===1243431433y x =--14334y x y x ⎧=--⎪⎨⎪=-+⎩84x y =⎧⎨=-⎩第13页,总68页平行四边形PMQN .设平行四边形边形PMQN 与矩形FDEC 重叠部分的面积为y (cm 2)(这里规定线段是面积为0有几何图形),点P 运动的时间为x (s )(1)当点P 运动到点F 时,CQ= cm ;(2)在点P 从点F 运动到点D 的过程中,某一时刻,点P 落在MQ 上,求此时BQ 的长度;(3)当点P 在线段FD 上运动时,求y 与x 之间的函数关系式. 【答案】(1)5 (2)(cm ) (3)当3≤x<4时,y=-x 2+x 当4≤x<时,y=-6x+33 当≤x≤7时,y=6x-33 【解析】 解:(1)当点P 运动到点F 时, ∵F 为AC 的中点,AC=6cm , ∴AF=FC=3cm ,∵P 和Q 的运动速度都是1cm/s , ∴BQ=AF=3cm ,∴CQ=8cm-3cm=5cm , 故答案为:5.(2)设在点P 从点F 运动到点D 的过程中,点P 落在MQ 上,如图1,则t+t-3=8, t=, 11234214112112112试卷第14页,总68页BQ 的长度为×1=(cm ); (3)∵D 、E 、F 分别是AB 、BC 、AC 的中点, ∴DE=AC=×6=3, DF=BC=×8=4, ∵MQ ⊥BC ,∴∠BQM=∠C=90°, ∵∠QBM=∠CBA , ∴△MBQ ∽△ABC , ∴, ∴, MQ=x , 分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,如图2,y=PN•PD =x (7-x ) 即y=-x 2+x ; ②当4≤x<时,重叠部分为矩形,如图3, 11211212121212BQ MQBC AC =86x MQ =343434214112第15页,总68页y=3[(8-X )-(X-3))] 即y=-6x+33; ③当≤x≤7时,重叠部分图形为矩形,如图4,y=3[(x-3)-(8-x )] 即y=6x-33.8.已知:如图①,在平行四边形ABCD 中,AB=12,BC=6,AD ⊥BD .以AD 为斜边在平行四边形ABCD 的内部作Rt △AED ,∠EAD=30°,∠AED=90°.(1)求△AED 的周长;(2)若△AED 以每秒2个单位长度的速度沿DC 向右平行移动,得到△A 0E 0D 0,当A 0D 0与BC 重合时停止移动,设运动时间为t 秒,△A 0E 0D 0与△BDC 重叠的面积为S ,请直接写出S 与t 之间的函数关系式,并写出t 的取值范围;(3)如图②,在(2)中,当△AED 停止移动后得到△BEC ,将△BEC 绕点C 按顺时针方向旋转α(0°<α<180°),在旋转过程中,B 的对应点为B 1,E 的对应点为E 1,设直线B 1E 1与直线BE 交于点P 、与直线CB 交于点Q .是否存在这样的α,使△BPQ 为等腰三角形?若存在,求出α的度数;若不存在,请说明理由. 【答案】(1)(2)S 与t 之间的函数关系式为:112试卷第16页,总68页S= (3)存在,α=75°【解析】 解:(1)∵四边形ABCD 是平行四边形, ∴AD=BC=6.在Rt △ADE 中,AD=6,∠EAD=30°,∴AE=AD•cos30°=3,DE=AD•sin30°=3, ∴△AED 的周长为:6+3+3=9+3.(2)在△AED 向右平移的过程中:(I )当0≤t≤1.5时,如答图1所示,此时重叠部分为△D 0NK .∵DD 0=2t ,∴ND 0=DD 0•sin30°=t,NK=ND 0•tan30°=t ,∴S=S △D0NK =ND 0•NK=t•t=t 2;(II )当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D 0E 0KN .∵AA 0=2t ,∴A 0B=AB-AA 0=12-2t , ∴A 0N=A 0B=6-t ,NK=A 06-t ).∴S=S 四边形D0E0KN =S △ADE -S △A0NK =×(6-t )×(6-t )=-t 2;(III )当4.5<t≤6时,如答图3所示,此时重叠部分为五边形D 0IJKN .222(0 1.5) 4.5)--6)6t S t t ≤≤⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩333312123321231231233363332第17页,总68页∵AA 0=2t ,∴A 0B=AB-AA 0=12-2t=D 0C , ∴A 0N=A 0B=6-t ,D 0N=6-(6-t )=t ,BN=A 0B•cos30°=(6-t ); 易知CI=BJ=A 0B=D 0C=12-2t ,∴BI=BC-CI=2t-6, S=S 梯形BND0I -S △BKJ =[t+(2t-6)]• (6-t )-•(12-2t )•(12-2t )=-t 2+20t-42.综上所述,S 与t 之间的函数关系式为:S=. (3)存在α,使△BPQ 为等腰三角形.理由如下:经探究,得△BPQ ∽△B 1QC ,故当△BPQ 为等腰三角形时,△B 1QC 也为等腰三角形. (I )当QB=QP 时(如答图4),则QB 1=QC ,∴∠B 1CQ=∠B 1=30°, 即∠BCB 1=30°, ∴α=30°;(II )当BQ=BP 时,则B 1Q=B 1C ,若点Q 在线段B 1E 1的延长线上时(如答图5),∵∠B 1=30°,∴∠B 1CQ=∠B 1QC=75°,12312312331336332223(0 1.5)2333-23-(1.5 4.5)62133-203-423(4.56)6t t S t t t t t t ⎧≤≤⎪⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩试卷第18页,总68页即∠BCB 1=75°, ∴α=75°.9.如图1,已知直线y=x+3与x 轴交于点A ,与y 轴交于点B ,抛物线y=-x 2+bx+c 经过A 、B 两点,与x 轴交于另一个点C ,对称轴与直线AB 交于点E ,抛物线顶点为D .(1)求抛物线的解析式;(2)在第三象限内,F 为抛物线上一点,以A 、E 、F 为顶点的三角形面积为3,求点F 的坐标;(3)点P 从点D 出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t 秒,当t 为何值时,以P 、B 、C 为顶点的三角形是直角三角形?直接写出所有符合条件的t 值.【答案】(1)y=-x 2-2x+3;(2)(3212--,3212--) (3)当t 为43秒或2秒或3秒或143秒时,以P 、B 、C 为顶点的三角形是直角三角形 【解析】 试题分析:(1)先由直线AB 的解析式为y=x+3,求出它与x 轴的交点A 、与y 轴的交点B 的坐标,再将A 、B 两点的坐标代入y=-x 2+bx+c ,运用待定系数法即可求出抛物线的解析式;(2)设第三象限内的点F 的坐标为(m ,-m 2-2m+3),运用配方法求出抛物线的对称轴及顶点D 的坐标,再设抛物线的对称轴与x 轴交于点G ,连接FG ,根据S △AEF =S △AEG +S △AFG -S △EFG =3,列出关于m 的方程,解方程求出m 的值,进而得出点F 的坐标;(3)设P 点坐标为(-1,n ).先由B 、C 两点坐标,运用勾股定理求出BC 2=10,再分三种情况进行讨论:①∠PBC=90°,先由勾股定理得出PB 2+BC 2=PC 2,据此列出关于n 的方程,求出n 的值,再计算出PD 的长度,然后根据时间=路程÷速度,即可求出此时对应的t 值;②∠BPC=90°,同①可求出对应的t 值;③∠BCP=90°,同①可求出对应的t 值.试题解析:(1)∵y=x+3与x 轴交于点A ,与y 轴交于点B , ∴当y=0时,x=-3,即A 点坐标为(-3,0), 当x=0时,y=3,即B 点坐标为(0,3),将A (-3,0),B (0,3)代入y=-x 2+bx+c ,得930c 3b c --+==⎧⎨⎩, 解得23b c =-⎧⎨=⎩, ∴抛物线的解析式为y=-x 2-2x+3; (2)如图1,设第三象限内的点F的坐标为(m,-m2-2m+3),则m<0,-m2-2m+3<0.∵y=-x2-2x+3=-(x+1)2+4,∴对称轴为直线x=-1,顶点D的坐标为(-1,4),设抛物线的对称轴与x轴交于点G,连接FG,则G(-1,0),AG=2.∵直线AB的解析式为y=x+3,∴当x=-1时,y=-1+3=2,∴E点坐标为(-1,2).∵S△AEF=S △AEG+S△AFG-S△EFG=12×2×2+12×2×(m2+2m-3)-12×2×(-1-m)=m2+3m,∴以A、E、F为顶点的三角形面积为3时,m2+3m=3,解得:1321 2m--=,23212m-+=(舍去),当3212m--=时,-m2-2m+3=-m2-3m+m+3=-3+m+3=m=3212--,∴点F的坐标为(3212--,3212--);(3)设P点坐标为(-1,n).∵B(0,3),C(1,0),∴BC2=12+32=10.分三种情况:①如图2,如果∠PBC=90°,那么PB2+BC2=PC2,即(0+1)2+(n-3)2+10=(1+1)2+(n-0)2,第19页,总68页化简整理得6n=16,解得n=83,∴P点坐标为(-1,83),∵顶点D的坐标为(-1,4),∴PD=4-83=43,∵点P的速度为每秒1个单位长度,∴t1=43;②如图3,如果∠BPC=90°,那么PB2+PC2=BC2,即(0+1)2+(n-3)2+(1+1)2+(n-0)2=10,化简整理得n2-3n+2=0,解得n=2或1,∴P点坐标为(-1,2)或(-1,1),∵顶点D的坐标为(-1,4),∴PD=4-2=2或PD=4-1=3,∵点P的速度为每秒1个单位长度,∴t2=2,t3=3;③如图4,如果∠BCP=90°,那么BC2+PC2=PB2,即10+(1+1)2+(n-0)2=(0+1)2+(n-3)2,化简整理得6n=-4,解得n=-23,∴P点坐标为(-1,-23),试卷第20页,总68页第21页,总68页 ∵顶点D 的坐标为(-1,4), ∴PD=4+23=143, ∵点P 的速度为每秒1个单位长度,∴t 4=143; 综上可知,当t 为43秒或2秒或3秒或143秒时,以P 、B 、C 为顶点的三角形是直角三角形.考点: 二次函数综合题.10.如图,在正方形ABCD 中,2AB =,点P 是边BC 上的任意一点,E 是BC 延长线上一点,联结AP ,作PF AP ⊥交DCE ∠的平分线CF 上一点F ,联结AF 交边CD 于点G .(1)求证:AP PF =;(2)设点P 到点B 的距离为x ,线段DG 的长为y ,试求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当点P 是线段BC 延长线上一动点,那么(2)式中y 与x 的函数关系式保持不变吗?如改变,试直接写出函数关系式.【答案】(1)证明见解析;(2)()42022x y x x -=≤≤+;(3)改变,()24>22x y x x -=+. 【解析】试题分析:(1)欲证AP PF =利用原图无法证明,需构建三角形且使之全等,因此在边AB 上截取线段AH ,使AH PC =,连接PH ,证明AHP ∆与PCF ∆全等即可.(2)由APM ∆∽GAN ∆列式化简即可得.(3)在AD 延长线上取点N ,令ND DG =,∴NDG ∆是等腰直角三角形.∴22,2NG DG y AN y ===+ .同理,2,2PM x AM x ==- ,∵45,45APM PAM NAG PMA ANG ∠=︒+∠=∠∠=∠=︒ ,∴APM ∆∽GAN ∆.∴AM NG PM AN =,即2222x y yx -=+. 整理,得()24>22x y x x -=+.试卷第22页,总68页 试题解析:(1)在边AB 上截取线段AH ,使AH PC =,连接PH ,由正方形ABCD ,得90B BCD D AB BC AD ∠=∠=∠=︒==,,∵90APF ∠=︒,∴APF B ∠=∠.∵APC B BAP APF FPC ∠=∠+∠=∠+∠,∴PAH FPC ∠=∠.又∵90BCD DCE ∠=∠=︒,CF 平分DCE ∠,∴45FCE ∠=︒.∴135PCF ∠=︒. 又∵AB BC AH PC ==,,∴BH BP =,即得45BPH BHP ∠=∠=︒.∴135AHP ∠=︒,即得AHP PCF ∠=∠.在AHP ∆和PCF ∆中,PAH FPC AH PC AHP PCF ∠=∠=∠=∠,,,∴AHP ∆≌PCF ∆,∴AP PF =.(2)在AD 上取点N ,令ND DG =,∴NDG ∆是等腰直角三角形.∴22,2NG DG y AN y ===- .同理,2,2PM x AM x ==- ,∵45,135APM PAM NAG PMA ANG ∠=︒-∠=∠∠=∠=︒ ,∴APM ∆∽GAN ∆.∴AM NG PM AN =,即2222x y y x-=-. 整理,得()42022x y x x -=≤≤+. (3)改变,()24>22x y x x -=+. 考点:1.正方形的性质;2. 等腰直角三角形的判定和性质;3.全等三角形的判定与性质;4.由实际问题列函数关系式.11.如图,已知直线y =-2x +4与x 轴、y 轴分别相交于A 、C 两点,抛物线y=-2x 2+bx+c(a ≠0)经过点A 、C.(1)求抛物线的解析式;(2)设抛物线的顶点为P,在抛物线上存在点Q,使△ABQ的面积等于△APC面积的4倍.求出点Q的坐标;(3)点M是直线y=-2x+4上的动点,过点M作ME垂直x轴于点E,在y轴(原点除外)上是否存在点F,使△MEF为等腰直角三角形? 若存在,求出点F的坐标及对应的点M的坐标;若不存在,请说明理由.【答案】(1)y=-2x2+2x+4;(2)Q(0,4)或(1,4)-4)或-4);(3)存在,点F坐标为(0M,点F坐标为(0,-4)时,点M的坐标为(4,-4);点F坐标为(0,1),点M的坐标为(1,2).【解析】试题分析:1)根据直线y=-2x+4求出点A、C的坐标,再利用待定系数法求二次函数解析式解答即可;(2)根据抛物线解析式求出点P的坐标,过点P作PD⊥y轴于D,根据点P、C的坐标求出PD、CD,然后根据S△APC=S梯形APDO-S△AOC-S△PCD,列式求出△APC的面积,再根据抛物线解析式求出点B的坐标,从而得到AB的长度,然后利用三角形的面积公式求出△ABQ 的点Q的纵坐标的值,然后代入抛物线求解即可得到点Q的坐标;(3)根据点E在x轴上,根据点M在直线y=-2x+4上,设点M的坐标为(a,-2a+4),然后分①∠EMF=90°时,利用点M到坐标轴的距离相等列式求解即可;②∠MFE=90°时,根据等腰直角三角形的性质,点M的横坐标的长度等于纵坐标长度的一半,然后列式进行计算即可得解.试题解析:(1)令x=0,则y=4,令y=0,则-2x+4=0,解得x=2,所以,点A(2,0),C(0,4),∵抛物线y=-2x2+bx+c经过点A、C,∴24204b cc-⨯++=⎧⎨⎩=,解得24bc=⎧⎨=⎩,∴抛物线的解析式为:y=-2x2+2x+4;(2)∵y=-2x2+2x+4=-2(2第23页,总68页∴点P的坐标为(12,92),如图,过点P作PD⊥y轴于D,又∵C(0,4),∴PD=12,CD=91422-=,∴S△APC=S梯形APDO-S△AOC-S△PCD,=12×(12+2)×92-12×2×4-12×12×12=4514 88--=32,令y=0,则-2x2+2x+4=0,解得x1=-1,x2=2,∴点B的坐标为(-1,0),∴AB=2-(-1)=3,设△ABQ的边AB上的高为h,∵△ABQ的面积等于△APC面积的4倍,∴12×3h=4×32,解得h=4,∵4<92,∴点Q可以在x轴的上方也可以在x轴的下方,即点Q的纵坐标为4或-4,当点Q的纵坐标为4时,-2x2+2x+4=4,解得x1=0,x2=1,此时,点Q的坐标为(0,4)或(1,4),当点Q的纵坐标为-4时,-2x2+2x+4=-4,解得x1=1172+,x2=1172-,试卷第24页,总68页此时点Q的坐标为(1172+,-4)或(1172-,-4)综上所述,存在点Q(0,4)或(1,4)或(1172+,-4)或(1172-,-4);(3)存在.理由如下:如图,∵点M在直线y=-2x+4上,∴设点M的坐标为(a,-2a+4),①∠EMF=90°时,∵△MEF是等腰直角三角形,∴|a|=|-2a+4|,即a=-2a+4或a=-(-2a+4),解得a=43或a=4,∴点F坐标为(0,43)时,点M的坐标为(43,43),点F坐标为(0,-4)时,点M的坐标为(4,-4);②∠MFE=90°时,∵△MEF是等腰直角三角形,∴|a|=12|-2a+4|,即a=12(-2a+4),解得a=1,-2a+4=2×1=2,此时,点F坐标为(0,1),点M的坐标为(1,2),或a=12-(-2a+4),此时无解,综上所述,点F坐标为(0,43)时,点M的坐标为(43,43),点F坐标为(0,-4)时,点M的坐标为(4,-4);点F坐标为(0,1),点M的坐标为(1,2).考点: 二次函数综合题.12.已知:在梯形ABCD中,CD∥AB,AD=DC=BC=2,AB=4.点M从A开始,以每秒1个第25页,总68页试卷第26页,总68页单位的速度向点B 运动;点N 从点C 出发,沿C →D →A 方向,以每秒1个单位的速度向点A 运动,若M 、N 同时出发,其中一点到达终点时,另一个点也停止运动.运动时间为t 秒,过点N 作NQ ⊥CD 交AC 于点Q . (1)设△AMQ 的面积为S ,求S 与t 的函数关系式,并写出t 的取值范围.(2)在梯形ABCD 的对称轴上是否存在点P ,使△PAD 为直角三角形?若存在,求点P 到AB 的距离;若不存在,说明理由.(3)在点M 、N 运动过程中,是否存在t 值,使△AMQ 为等腰三角形?若存在,求出t 值;若不存在,说明理由.【答案】(1)233=-62S t t +(0<t ≤2),233=-123S t t +(2≤t <4);(2)233;(3)t=65,12-63,2. 【解析】试题分析:(1)求出t 的临界点t=2,分别求出当0<t ≤2时和2≤t <4时,S 与t 的函数关系式即可,(2)作梯形对称轴交CD 于K ,交AB 于L ,分3种情况进行讨论,①取AD 的中点G ,②以D 为直角顶点,③以A 为直角顶点,(3)当0<t ≤2时,若△AMQ 为等腰三角形,则MA=MQ 或者AQ=AM ,分别求出t 的值,然后判断t 是否符合题意.试题解析:(1)当0<t ≤2时,如图:过点Q 作QF ⊥AB 于F ,过点C 作CE ⊥AB 于E ,∵AB ∥CD ,∴QF ⊥CD ,∵NQ ⊥CD ,∴N ,Q ,F 共线,∴△CQN ∽△AFQ ,∴ CN NQ AF QF=, ∵CN=t ,AF=AE-CN=3-t ,∵NF=3,∴QF=33t 3-,第27页,总68页 13(323t - 23362t + 当2≤t <4时,如图:△FQC ∽△PQA ,∵DN=t-2,∴FD=DN •cos ∠FDN=DN •t-2), ∴t-2) ∴FQ=FC •tan ∠FCQ=FC •tan30°=t+2), ∴ 13[326t -23=-123t + (2)作梯形对称轴交CD 于K ,交AB 于L ,情况一:取AD 的中点G ,GD=1,过G 作GH ⊥对称轴于H ,GH=1.5,∵1.5>1,∴以P 为直角顶点的Rt △PAD 不存在,情况二:以D 为直角顶点:KP1 ∴P 1情况三:以A 为直角顶点,LP 2综上:P 到AB PAD 为Rt △, (3)0<t ≤2时, 若MA=MQ ,∴试卷第28页,总68页若AQ=AM ,则t=23233t -, 解得t=12-63, 若QA=QM ,则∠QMA=30°而0<t ≤2时,∠QMA >90°,∴QA=QM 不存在;2≤t <4(图中)若QA=QM ,AP :AD=3:2,∴t=2,若AQ=AM ,23-33(t+2)=t , ∴t=23-2,∵23-2<2,∴此情况不存在若MA=MQ ,则∠AQM=30°,而∠AQM >60°不存在.综上:t=65,12-63,2时,△AMQ 是等腰三角形. 考点: 1.等腰梯形的性质;2.等腰三角形的判定;3.直角三角形的性质. 13.如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,3-)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP’C,那么是否存在点P ,使四边形POP’C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.【答案】(1)y=x 2﹣2x ﹣3;(2)存在,(2102+,32-);(3)(32,-154),758. 【解析】试题分析:(1)将B 、C 的坐标代入抛物线的解析式中即可求得待定系数的值;第29页,总68页(2)由于菱形的对角线互相垂直平分,若四边形POP′C 为菱形,那么P 点必在OC 的垂直平分线上,据此可求出P 点的纵坐标,代入抛物线的解析式中即可求出P 点的坐标;(3) 由于△ABC 的面积为定值,当四边形ABPC 的面积最大时,△BPC 的面积最大;过P 作y 轴的平行线,交直线BC 于Q ,交x 轴于F ,易求得直线BC 的解析 式,可设出P 点的横坐标,然后根据抛物线和直线BC 的解析式求出Q 、P 的纵坐标,即可得到PQ 的长,以PQ 为底,B 点横坐标的绝对值为高即可求得△BPC 的面积,由此可得到关于四边形ACPB 的面积与P 点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC 的最大面积及对应的P 点坐标.试题解析:(1)将B 、C 两点的坐标代入得 9303b c c ++=-⎧⎨⎩=解得:23b c =-⎧⎨=-⎩; 所以二次函数的表达式为:y=x 2﹣2x ﹣3.(2)存在点P ,使四边形POPC 为菱形;设P 点坐标为(x ,x 2﹣2x ﹣3),PP′交CO 于E若四边形POP′C 是菱形,则有PC=PO ;连接PP′,则PE ⊥CO 于E ,∴OE=EC=32∴y=32-; ∴x 2﹣2x ﹣3=32- 解得:12102x +=,22102x -=(不合题意,舍去) ∴P 点的坐标为(2102+,32-) (3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,x 2﹣2x ﹣3),易得,直线BC 的解析式为y=x ﹣3则Q 点的坐标为(x ,x ﹣3);S 四边形ABPC=S △ABC+S △BPQ+S △CPQ=12AB•OC+12QP•OF+12QP•BF 21143(3)322x x =⨯⨯+-+⨯试卷第30页,总68页 23375()228x =--+ 当32x =时,四边形ABPC 的面积最大 此时P 点坐标为(32,-154)四边形ABPC 的面积的最大值为758. 考点: 二次函数综合题.14.如图,直角坐标系中Rt △ABO ,其顶点为A(0, 1)、B(2, 0)、O(0, 0),将此三角板绕原点O 逆时针旋转90°,得到Rt △A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.【答案】(1)y=-x 2+x+2;(2)P (1,2);(4)四边形PB′A′B 为等腰梯形,答案不唯一,①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等.【解析】试题分析:(1)利用旋转的性质得出A ′(-1,0),B ′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB ,再假设四边形PB′A′B 的面积是△A′B′O 面积的4倍,得出一元二次方程,得出P 点坐标即可;(3)利用P 点坐标以及B 点坐标即可得出四边形PB′A′B 为等腰梯形,利用等腰梯形性质得出答案即可.试题解析:(1)(1)△A′B′O 是由△ABO 绕原点O 逆时针旋转90°得到的, 又A (0,1),B (2,0),O (0,0),∴A′(-1,0),B′(0,2)设抛物线的解析式为:y=ax 2+bx+c (a≠0),∵抛物线经过点A′、B′、B ,∴0=2=c 042a b c a b c ⎧-+=++⎪⎨⎪⎩,解得:112a b c =-⎧⎪=⎨⎪=⎩,∴满足条件的抛物线的解析式为y=-x 2+x+2.(2)∵P 为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=-x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,12×1×2+1212-x2+x+2)+1=-x2+2x+3.∵A′O=1,B′O=2,∴△A′B′O面积为:12×1×2=1,假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=-x2+2x+3,即x2-2x+1=0,解得:x1=x2=1,此时y=-12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一,①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.考点: 二次函数综合题.15.已知在平面直角坐标系xoy中,二次函数y=-2x²+bx+c的图像经过点A(-3,0)和点B(0,6)。
初中九年级数学竞赛培优讲义全套专题07 一元二次方程的应用-精选
专题07 一元二次方程的应用阅读与思考一元二次方程是解数学问题的有力工具,许多数学问题都可转化为解一元二次方程、研究一元二次方程根的性质等而获解. 现阶段,一元二次方程的应用主要有以下两方面: 1. 求代数式的值;2. 列二次方程解应用题.从本质上讲,列二次方程解应用题与前面我们已经学过的列一元二次方程解应用题没有区别,通常都要经过设、列、解、答等四个步骤,解题的关键是寻找实际问题中的等量关系. 特别需要注意的是,列出的一元二次方程一般会有两个不同的实数根,所以在检验时应特别注意,很可能其中有不符合实际问题的根,必须舍去.例题与求解【例1】 甲、乙两地分别在河的上、下游,每天各有一班船准点以匀速从两地对开,通常它们总在11时于途中相遇,一天乙地的船因故晚发了40分钟,结果两船在上午11时15分在途中相遇,已知甲地开出的船在静水中的速度数值为44千米/时,而乙地开出的船在静水中的速度为水流速度ν千米/时数值的平方,则ν的值为___________.(安徽省竞赛试题)解题思路:利用甲船15分钟所行路程是乙船(40-15)分钟所行路程建立方程.【例2】 自然数n 满足()()1616247222222-+--=--n n n n n n ,这样的n 的个数是( )A .1个B .2个C .3个D .4个 (江苏省竞赛试题) 解题思路:运用幂的性质,将问题转化为解方程.【例3】 如图,在平面直角坐标系中,直线1+=x y 与343+-=x y 交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点. (1) 求点A ,B ,C 的坐标;(2) 当△CBD 为等腰三角形时,求点D 的坐标.(太原市中考试题) 解题思路:对于(2),利用“腰相等”建立方程,解题的关键是分类讨论.yx BCAO【例4】如图,已知在Rt△ABC中,∠C=90°,AC=3,BC=4,点E在直角边AC上(点E与A,C两点均不重合).;(1)若点F在斜边AB上,且EF平分Rt△ABC的周长,设AE=x,试用x的代数式表示SAEF(2)若点F在折线ABC上移动,试问:是否存在直线EF将Rt△ABC的周长和面积同时平分?若存在直线EF,则求出AE的长;若不存在直线EF,请说明理由. (常州市中考试题)解题思路:几何计算问题代数化,通过定量分析回答是否存在这样的直线EF,将线段的计算转化为解方程.【例5】某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出. 每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?(绍兴市中考试题)解题思路:解题的关键是把复杂的数量关系分解成若干个小问题,再寻找各个小问题间量与量的关系.【例6】 已知:如图1,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由点B 出发沿BA 方向向点A 匀速运动,速度为1cm /s ;点Q 由点A 出发沿AC 方向向点C 匀速运动,速度为2 cm /s .连结PQ .若设运动的时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图2,连结PC ,并把△PQC 沿QC 翻折,得到四边形PQP ´C ,那么是否存在某一时刻t ,使四边形PQP ´C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由. (青岛市中考试题) 解题思路:对于(3),先求出PQ 平分Rt △ACB 周长时t 的值,再看求出t 的值是否满足由面积关系建立的方程.图2图1P'ACB B CAQ PQ P能力训练A 级1. 某工厂把500万元资金投入新产品生产,第一年获得了一定的利润,在不抽调资金和利润(即将第一年获得的利润也作为生产资金)的前提下,继续生产,第二年的利润率(即所获利润与投入生产资金的比)比第一年的利润率增加了8%.如果第二年的利润为112万元,为求第一年的利润率,可设它为x ,那么所列方程为_______________. (济南市中考试题)2. 如图,在长为10cm 、宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下阴影部分面积是原矩形面积的80%,则所截去的小正方形的边长是_________. (广东省中考试题)3. 有一旅客携带了30千克行李从南京禄口国际机场乘飞机去天津. 按民航规定,旅客最多可免费携带20千克行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客买了120元的行李票,则他的4. 已知实数x 、y 满足3,3243424=+=+y y xx ,则444y x +的值为( ) A.7 B.2131+ C.2137+ D. 5 5. 一个跳水运动员从10米高台上跳水,他每一时刻所在的高度(单位:米)与所用时间(单位:秒)的关系式是()()125+--=t t h ,则运动员起跳到入水所用的时间是( )A. -5秒B. 1秒 C . -1秒 D. 2秒6. 某种出租车的收费标准时:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的最大值是( ) A. 11 B. 8 C . 7 D.57. 如图,菱形ABCD 的边长为a ,O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a =( ) A .215+ B . 215- C . 1 D .2DCABO第2题图 第7题图8. 我市向民族地区的某县赠送一批计算机,首批270台将于近期起运. 经与某物流公司联系,得知用A 型汽车若干辆刚好装完;用B 型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满.(1)已知B 型汽车比A 型汽车每辆车可多装15台,则A ,B 两种型号的汽车各能装计算机多少台? (2)已知A 型汽车的运费是每辆350元,B 型汽车的运费是每辆400元。
(完整)初三数学培优讲义
初三数学 培优讲义例1、 若,28,1422=++=++x xy y y xy x 则=+y x ___________。
练习1、方程1)1(32=-++x x x 的所有整数解的个数是 ( )A 、2B 、3C 、4D 、5例2、已知实数x,y 满足3,3242424=+=-y y x x ,则444y y+的值为 ( ) A 、7 B 、2171+ C 、2137+ D 、5例3【实际背景】 预警方案确定:设克玉米价格当月的克猪肉价格当月的500500=W .如果当月W <6,则下个月...要采取措施防止“猪贱伤农”.(1)若今年3月的猪肉价格比上月下降的百分数与5月的猪肉价格比上月下降的百分数相等,求3月的猪肉价格m ;(2)若今年6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测7月时是否要采取措施防止“猪贱伤农”;(3)若今年6月及以后月份,每月玉米价格增长率是当月猪肉价格增长率的2倍,而每月的猪肉价格增长率都为a ,则到7月时只用5.5元就可以买到500克猪肉和500克玉米.请你预测8月时是否要采取措施防止“猪贱伤农”.例4、如图,已知点A 从(1,0)出发,以1个单位长度/秒的速度沿x 轴向正方向运动,以O 、A 为顶点在x 轴的上方作菱形OABC ,且∠AOC =60º;同时点G 从点D (8,0)出发,以2个单位长度/秒的速度沿x 轴向负方向运动,以D 、G 为顶点在x 轴的上方作正方形DEFG .设点A 运动了t 秒.求:(1)点B 的坐标(用含t 的代数式表示);(2)当点A 在运动的过程中,当t 为何值时,点O 、B 、E 在同一直线上;(3)当点A 在运动的过程中,是否存在t ,使得以点C 、G 、D 为顶点的三角形为等腰三角形?若存在,求出t的值;若不存在,请说明理由.练习:A B D CP QM N 1.受季节影响,某种商品每件按原售价降价10%后,又降价a 元,现在每件的售价为b 元,那么该商品每件的原价为( ) A.110%a b +-元 B.(1-10%)(a+b) C.110%b a --元 D.(1-10%)(a-b)2、一个跳水运动员从10米高台上跳水,他每一时刻所在的高度(单位:米)与所用时间(单位:秒)的关系式是)1)(2(5+--=t t h ,求运动员从起跳到入水所用的时间是 ( )A 、-5秒B 、1秒C 、-1秒D 、2秒3、设c b a 、、为互不相等的非零实数,求证:三个方程02,02,02222=++=++=++b ax cx a cx bx c bx ax 不可能都有两个相等的实数根。
北师版九年级数学上册同步培优讲义
第一节——全等三角形【知识要点】1.你能用数学符号叙述三角形全等的证明方法吗? 2.通过叙述你能总结出一些证明三角形全等的思路吗?3.通过证明三角形全等我们可以得到些什么?4.在遇到角平分线,高线,中线等时,你是如何构造辅助线得到三角形全等?【典型例题】# 例1 如图,已知正方形ABCD 中,E 为CD 上一点, F 为BC 延长线上一点,且CF CE =. (1)求证:BCE ∆≌DCF ∆(2)若 30=∠FDC ,求BEF ∠的度数.# 例2 如图,已知:BD ,CE 分别是ABC ∆的 边AC 和AB 上的高,点P 在BD 延长线上,BP=AC , 点Q 在CE 上,CQ=AB .求证:(1)AP=AQ ; (2)AQ AP ⊥例3.如图,ABC ∆是等腰直角三角形,AB=AC , D 是斜边BC 的中点,E ,F 分别是AB ,AC 边上的点, 且DF ED ⊥.若BE=12,CF=5,求DEF ∆的面积.ADFE CB例4 如图,在ABC ∆中,AC AB =,D ,E ,F 分别为AB ,BC ,CA 上的点,且,CE BD =B DEF ∠=∠.求证:DEF ∆是等腰三角形例5 如图,M 为BC 中点,BE ,CD 相交于点A ,43,21∠=∠∠=∠.求证:BMD ∆≌CME ∆例6 如图,已知:正ABC ∆ 的边长为a ,D 为 AC 边上的一个动点,延长AB 至E ,使BE=CD ,连 接DE ,交BC 于点P (1)求证:DP=EP .(2)若D 为AC 的中点,求BP 的长.例7 如图,在等腰直角ABC ∆中, 90=∠ACB , D 是斜边AB 上任一点,CD AE ⊥于E ,CD BF ⊥, 交CD 的延长线于F ,AB CH ⊥于H ,交AE 于G , 求证:BD=CG .ABEP F DC AEC DB3M 1 2 4ADEBF* 例8 A ,B ,C 三个村庄在一条东西走向的公路沿线 (如图),AB=2千米,BC=3千米,在B 村的正北方有 一个D 村,测得 45=∠ADC ,今将ACD ∆区域规 划为开发区,除其中4平方千米的水塘外,均作为建 筑或绿化用地,试求:这个开发区的建筑及绿化用地 的面积是多少平方千米?* 例9 如图,在等腰三角形ABC 中,延长边AB 到 点D ,延长边CA 到点E ,连接DE ,恰有AD=BC=CE=DE . 求证: 100=∠BAC* 例10 如图,在ABC ∆中, 100=∠BAC , AD=DC , 1021=∠=∠,AD EN ⊥于点N . 求4∠的度数.大展身手 一、选择题:# 1.如图,D 在AB 上,E 在AC 上,且C B ∠=∠,那么补充 下列一个条件后,仍无法判定ABE ∆≌ACD ∆的是( ) A .AE AD = B .ADC AEB ∠=∠ C .CD BE =D .AC AB =# 2.如图,ABC ∆≌AEF ∆,AE AB =,E B ∠=∠, 则对于结论:①AF AC =;②EAB FAB ∠=∠;③BC EF =;④FAC EAB ∠=∠,其中正确的个数是( ) A .1 B .2 C .3 D .4# 3.如图所示,BDC ∆是将矩形纸片ABCD 的沿对角线 BD 折叠得到的,图中(包括实线、虚线在内)共有全等 三角形( ) A .2对 B .3对 C .4对 D .5对# 4.如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O , 且AD=AE ,AB=AC .若B ∠= 20,则C ∠=5.如图,在一个房间内,有一个梯子斜靠在墙上, 梯子顶端距地面的垂直距离MA 为a 米,此时梯子的 倾斜角MCA ∠为75.如果梯子底端不动,顶端靠 在对面墙上,此时梯子顶端距地面的垂直距离NB 为 b 米,梯子的倾斜角NCB ∠为45.则这间房子的宽 AB 是 米.6.如图,以等腰ABC Rt ∆的斜边AB 为边向内作等 边ABD ∆,连接DC ,以DC 为边作等边DCE ∆, B 、E 在CD 的同侧,若2=AB ,则BE= .# 7.已知:ABC ∆(AC AB ≠)中,DE 在BC 上, 且DE=EC ,过D 作DF//AB 交AE 于点F ,DF=AC . 求证:AE 平分BAC ∠# 8.如图,在ABC ∆中,AB=AC ,AD 是中线,BE=CF . (1)求证:BDE ∆≌CDF ∆(2)当 60=∠B 时,过AB 中点G ,作AD GH ⊥, 求证:AB GH 41=# 9.将一个长方形纸片ABCD 如图所示沿对角线AC 折叠, 点B 落在E 点,AE 交DC 于F 点.已知AB=8cm, BC=4cm ,求:折叠后重合部分的面积.G E BDF H A BDFG CE10.如图,ABC ∆中,AB=AD ,AD 平分BAC ∠,CM 垂直AD 交AD 延长线于M .求证:)(21AC AB AM +=11.如图,已知ABC ∆为等边三角形,AE=CD ,AD ,BE 相交于点P ,AD BQ ⊥于Q ,求证:BP=2PQ12.如图,在四边形ABCD 中,AB=2AD ,AC 平分.,BC AC BAD =∠ 求证:AD CD ⊥* 13.如图,在四边形ABCD 中,AB=AD ,,60=∠BAD120=∠BCD ,求证:BC+CD=AC* 14.如图,在等边ABC ∆中,D ,E 分别在BC ,AC 边上,且AE=DC ,AD 与BE 相交于F ,.BE CF ⊥ 求AF :BF 的值.小试锋芒姓名: 成绩:# 1.如图,在ABC ∆中,D 是BC 的中点,AB DE ⊥,AC DF ⊥,垂足分别是E ,F ,且BE=CF .求证:AB=AC# 2.如图,AD 为ABC ∆的角平分线,M 为BC 中点, ME//DA ,交BA 的延长线于E . 求证:)(21AC AB CF BE +==3.如图,已知:ABC ∆中,90,=∠=ACB BC AC , D 是AC 上一点,BD AE ⊥,交BD 的延长线于E , 且BD AE 21=,求证:BD 是ABC ∠的角平分线.4.如图,在ABC ∆中,AD 为BAC ∠的平分线,AD BP ⊥,垂足为P ,已知AB=5,BP=2,AC=9,试证明C ABC ∠=∠3EADCBAE BDCF* 5.如图,在ABC ∆中,60=∠C ,AC >BC ,ABC ∆′, BCA ∆′, CAB ∆′都是ABC ∆形外的等边三角形,点D 在AC 上,且BC=DC . (1)证明∆C ′BD ≌∆B ′DC ; (2)证明∆AC ′D ≌∆DB ′A ;(3)对ABC ∆,ABC ∆′,BCA ∆′,CAB ∆′, 从面积大小关系上,你能得出什么结论?* 6.如图,在凸四边形ABCD 中, 30=∠ABC ,60=∠ADC ,AD=DC ,证明:222BC AB BD +=第二节——垂直平分线与角平分线 【知识要点】1.你知道线段的垂直平分线如何运用尺规作图吗?从做法上你得到什么启示? 2.你知道如何运用尺规作图做已知角的平分线吗?从做法上你得到什么启示? 3.你能说明为什么三角形的外心和内心相交于一点吗?4.你能举出一些运用三角形外心和内心来解决实际生活问题的例子吗?【典型例题】# 例1 如图,AB=AC ,DE 垂直平分AB 交AB 于D ,交AC 于E .若 ABC ∆的周长为28,BC=8,求BCE ∆的周长.ADEB# 例2 如图,AB >AC ,A ∠的平分线与BC 的 垂直平分线DM 相交于D ,自D 作AB DE ⊥于E ,AC DF ⊥于F .求证:BE=CF# 例3 如图,在ABC ∆中, 108=∠A , AB=AC ,21∠=∠.求证:BC=AC+CD# 例4 如图,AB=AC ,C B ∠=∠,BAC ∠的平分线AF 交DE 于F .求证:AF 为DE 的垂直平分线.例5 如图,P 为ABC ∆的BC 边的垂直平分线PG 上一点,且A PBC ∠=∠21.BP ,CP 的延长线分别交AC ,AB 于点D ,E .求证:BE=CD例6 如图,在ABC ∆中,C ABC ∠=∠3,21∠=∠,BD AD ⊥.求证:AC=AB+2BDCGAEBDP AE FBDC例7 如图,已知AD 是ABC ∆中A ∠的平分线,DE//AC 交AB 于E ,DF//AB 交AC 于F . 求证:点E ,F 关于直线AD 对称* 例8 如图,在ABC ∆中,AB >BC ,60=∠B ,BAC ∠,ACB ∠的平分线交于点G .(1)图中是否有相等的线段?若 有,请写出相等的线段,并证明.(2)图中线段AC 是否等于 其他两条线段的和?若有,请写出等式,并证明;若无,请 说明理由.* 例9 如图,ABC ∆是边长为1的正三角形,BDC ∆ 是顶角 120=∠BDC 的等腰三角形,以D 为顶点作一 个 60角,角的两边分别交AB 于M ,交AC 于N ,连接 MN ,形成AMN ∆.求证:AMN ∆的周长等于2* 例10 设ABC ∆的外心为O ,在其边AB 和BC 上分别 取点M 和点N ,使得AOC MON ∠=∠2. 求证:MBN ∆的周长不小于边AC 的长.AEBDCF大展身手姓名: 成绩:# 1.如图,已知AC 平分PAQ ∠,点B ,B ′分别在边 AP ,AQ 上,如果添加一个条件,即可推出AB=AB ′,那么 该条件可以是( ) A .B B ′⊥ACB .BC= B ′CC .ACB ∠=AC ∠ B ′D .ABC ∠=∠A B ′C# 2.M ,N ,A ,B 是同一平面上的四个点,如果MA=MB ,NA=NB , 则点 、 在线段 的垂直平分线上.# 3.设线段AB 的垂直平分线MN 交AB 于点C ,P 是MN 上不同 于点C 的一点,那么PAB ∆是 三角形,PC 是PAB ∆的 线、 线和 ..# 4.在ABC ∆中,E 为BC 中点,BC DE ⊥交AB 于点D , 若 25=∠B ,AD=CD ,则 25=∠B ,AD=CD ,则ADC ∠ ,ACB ∠= .# 5.在ABC ∆中,AB=AC ,DE 是AB 边的中垂线,垂足为E , 交AC 于D .若BDC ∆的周长为24,AB=14,则BC= ; 若 40=∠A ,则DBC ∠= .# 6.在ABC ∆中,120=∠BAC .PM 为AB 边的中垂线,垂足为M ,交BC 于P ;QN 为AC 边的中垂线,垂足为N ,交BC 于Q ,则PAQ ∠= ,或BC=9cm ,则APQ ∆的周长为 cm.# 7.在ABC ∆中,B ∠,C ∠的平分线交于D 点,已知100=∠BDC .则A ∠的度数为 .# 8.在ABC ∆中,B ∠,C ∠的平分线交于D 点,过D 作 EF ∥BC ,分别交AB ,AC 于E ,F 两点,若AB=6,AC=5,则AEF ∆ 的周长为 .# 9.如图,在ABC Rt ∆中, 90=∠C ,BE 平分ABC ∠,交AC 于E ,DE 是斜边AB 的垂直平分线,且DE=1cm ,则AC= cm.10.如图,P 为正方形外一点, 15=∠=∠PBC PAD , 求证:PDC ∆为等边三角形.11.在ABC ∆中,AC BC B C 2,2=∠=∠.求A ∠的度数.12.如图,在ABC ∆中,ABC ∠的平分线与ACB ∠ 的外角平分线相交于点D ,过D 作DE ∥BC ,分别交 AB ,AC 于E ,F .求证:EF=BE-CF13.如图,在ABC ∆中,AB=AC , 36=∠A ,21∠=∠,E 为AB 中点,ED 、BC 延长线交于点F .求证:AB=CF* 14.如图,ABC ∆中,21∠=∠,AB=2AC ,DA=DB . 求证:AC ⊥CD* 15.如图,在ABC ∆中,90=∠ABC ,60=∠ACB ,BAC ∠和ABC ∠的平分线AD ,BE 相交于点F .求证:EF=DF* 16.A ,B 两港在大湖南岸,C 港在大湖北岸.A ,B ,C 三港 恰为一等边三角形的三个顶点.A 港的甲船与B 港的乙船同时出 发都沿直线向C 港匀速行驶,当乙船行驶出40千米时,甲、乙 两船与C 港位置恰是一个直角三角形的三个顶点;而当甲船行 驶达C 港时,乙船尚距C 港20千米.问:A ,B 两港之间的距 离是多少千米?ABFE GCDH第二节——平行四边形和梯形【知识要点】1.你所了解的平行四边形的边线角具有怎样的性质吗?2.我们是否可以根据平行四边形的性质来判定四边形为□?你总结了一定的规律没有? 3.回想一下常见梯形的辅助线做法,你能说明每种辅助线的用处吗? 4.三角形,梯形的中位线告诉我们怎样的数量或位置关系? 5.与梯形有关的动点问题如何解决? 【典型例题】# 例1 如图,已知:梯形ABCD 中,AB ∥DC , E 是BC 中点,AE ,DC 的延长线相交于点F 。
初三数学培优试题及答案
初三数学培优试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 22/7答案:B2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 8答案:B3. 已知函数y=2x+3,当x=2时,y的值是多少?A. 7B. 5C. 4D. 3答案:A4. 一个圆的半径为4,那么这个圆的面积是多少?A. 16πB. 32πC. 64πD. 100π答案:C5. 下列哪个是二次函数的一般形式?A. y=ax^2+bx+cB. y=ax^3+bx^2+cx+dC. y=ax+bD. y=a(x-h)^2+k答案:A6. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A7. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 0D. 以上都有可能答案:D8. 一个数的立方根是2,那么这个数是多少?A. 8B. 2C. 4D. 1/8答案:A9. 一个数的平方根是3,那么这个数是多少?A. 9B. 3C. -3D. 6答案:A10. 一个数的倒数是1/3,那么这个数是多少?A. 3B. 1/3C. -3D. -1/3答案:A二、填空题(每题3分,共30分)1. 一个数的平方是25,那么这个数是______。
答案:±52. 一个数的立方是-8,那么这个数是______。
答案:-23. 一个角的补角是120°,那么这个角是______。
答案:60°4. 一个角的余角是30°,那么这个角是______。
答案:60°5. 一个等腰三角形的顶角是100°,那么它的底角是______。
答案:40°6. 一个直角三角形的两个锐角的度数之和是______。
答案:90°7. 一个等差数列的首项是3,公差是2,那么第5项是______。
九年级数学培优讲解及测试
第一讲 一次函数和反比例函数知识点、重点、难点函数(0)y kx b k =+≠称为一次函数,其函数图像是一条直线。
若0b =时,则称函数y kx =为正比例函数,故正比例函数是一次函数的特殊情况。
当0k >时,函数y kx b =+是单调递增函数,即函数值y 随x 增大(减小)而增大(减小);当0k <,y kx b =+是递减函数,即函数值y 随x 增大(减小)而减小(增大)。
函数(0)ky k x=≠称为反比例函数,其函数图像是双曲线。
当0k >且0x >时,函数值y 随x 增大(减小)而减小(增大);当0k >且0x <,函数值y 随x 增大(减小)而减小(增大),也就是说:当0k >时,反比例函数ky x=分别在第一或第三象限内是单调递减函数;当0k <时,函数ky x=分别在第二或第四象限内是单调递增函数。
若111222(0),(0).y k x b k y k x b k =+≠=+≠ 当12k k =时,12b b ≠时,两面直线平行。
当12k k =时,12b b =时,两面直线重合。
当12k k ≠时,两直线相交。
当121k k =-时,两直线互相垂直。
求一次函数、反比例函数解析式,关键是要待定解析式中的未知数的系数;其次,在解题过程中要重视数形相结合。
例题精讲例1:在直角坐标平面上有点(1,2)A --、(4,2)B 、(1,)C c ,求c 为何值时AC BC +取最小值。
解 显然,当点C 在线段AB 内时,AC BC +最短。
设直线AB 方程为y kx b =+,代入(1,2)A --、(4,2)B得242,k b k b -+=-⎧⎨+=⎩解得456,5k b ⎧=⎪⎪⎨⎪=-⎪⎩所以线段AB 为46(14),55y x x =--≤≤代入(1,)C c ,得4621.555c =⨯-=-例2:求证:一次函数211022k k y x k k --=-++的图像对一切有意义的k 恒过一定点,并求这个定点。
初中数学竞赛代数专题之一元二次方程培优讲义例题练习及解答
初中数学竞赛之一元二次方程培优讲义形如0=a 的方程叫做一元二次方程。
当240b ac -≥时,一元二次方程的两根为1242b x a-±=、一、专题知识1.直接开平方法、配方法、公式法、因式分解发是一元二次方程的四种基本解法。
2.公式法是解一元二次方程最一般地方法:(1)240b ac ->时,方程20(0)ax bx c a ++=≠有两个不相等的实数根122b x a-±=、(2)240b ac -=时,方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-(3)240b ac -<时,方程20(0)ax bx c a ++=≠无实数根二、经典例题例题1已知m n 、是有理数,方程20x mx n ++=2-,求m n +的值。
解:由题意得22)2)0m n ++=即(92)(0m n m -++-而m n 、是有理数,必有92040m n m -+=⎧⎨-=⎩,解得41m n =⎧⎨=-⎩,所以m n +的值为3.例题2求证:一元二次方程20(0)ax bx c a ++=≠至多有两个不相等的实数根。
证明:用反证发假设方程20(0)ax bx c a ++=≠有三个不同的实数根1x 、2x 和3x ,则有2110(0)ax bx c a ++=≠①2220(0)ax bx c a ++=≠②2330(0)ax bx c a ++=≠③①—②得22121212()()0,a x x b x x x x -+-=≠有12()0a x xb ++=④同理②—③有23()0a x xb ++=⑤④—⑤得1313()0()a x x x x -=≠必有0a =,与已知条件矛盾,所以一元二次方程20(0)ax bx c a ++=≠至多有两个不相等的实数根。
例题3已知首项系数不相等的两个一元二次方程222(1)(2)(2)0a x a a a --+++=及222(1)(+2)(+2)0(,)b x b x b b a b Z -++=∈有一个公共根,求a bb aa b a b --++的值。
人教版数学九年级上册第一单元培优讲义(附答案)
九年级上册数学培优讲义专题01 配方法的综合应用——完全平方式的非负性【专题解读】配方法的实质是利用完全平方公式a 2+2ab +b 2=(a +b)2或a 2−2ab +b 2=(a −b)2进行运算,主要考察如何把一个代数式转化为完全平方式,包括各项系数之间的关系。
同时,由于完全平方数的非负性,可以延展出求代数式最值或证明代数式的正负性等问题,甚至可以结合比较两个代数式的大小等知识点进行考察。
【例题讲解】例1. 求代数式5822+-x x 的最小值是__________.解:先把代数式进行变形,得 3)2(258222--=+-x x x当2=x 时,此代数式取得最小值3-.例2. 求证:无论a 取何值,代数式622---a a 的值恒为负数.证明:先把代数式进行变形,得 5)1(6)112(62222-+-=--++-=---a a a a a因为0)1(2≥+a ,所以0)1(2≤+-a ,则05)1(2<-+-a ,命题得证。
例3. 若962++=a a A ,642-+-=b b B ;求证:无论a ,b 为何值,总有A >B . 证明: 2)2()3(244)3()64(96222222+-++=++-++=-+--++=-b a b b a b b a a B A因为0)3(2≥+a ,0)2(2≥-b ,所以2)2()3(22+-++=-b a B A ,即B A >,命题得证。
例4. 若已知0102622=+-++b b a a ,则a 的值为________,b 的值为_________. 解:0)1()3(12961026222222=-++=+-+++=+-++b a b b a a b b a a因为0)3(2≥+a ,0)1(2≥-b ,所以0)3(2=+a ,0)1(2=-b ,解得3-=a ,1=b .【同步练习】1. 求代数式1062+-x x 的最小值是__________.2. 求代数式1422+--x x 的最大值是__________.3. 如果多项式122+-mx x 是完全平方式,则m 的值为_________.4. 若方程01)1(252=+--x k x 的左边可以写成一个完全平方式,则k 的值为_________.5. 已知0)1(222=+-++b a b a ,则b a +的值为_________.6. 已知054222=++-+y x y x ,则2021)(y x +的值为_________.7. 利用配方法解方程: 0342=-+x x01422=--x x01432=-+x x1)2)(1(=++x x8. 求证:无论x 取何值,代数式30102+-x x 的值恒为正数.9. 若22332b ab a M -+=,2422--+=b ab a N ;求证:无论a ,b 为何值,总有M >N .专题02 一元二次方程的解法——选择最优的解法【专题解读】解一元二次方程的方法主要包括:直接开平方法、配方法、公式法、因式分解法。
初中九年级数学竞赛培优讲义全套专题10最优化
专题10 最优化阅读与思考数学问题中常见的一类问题是:求某个变量的最大值或最小值;在现实生活中,我们经常碰到一些带有“最”字的问题,如投入最少、效益最大、材料最省、利润最高、路程最短等,这类问题我们称之为最值问题,解最值问题的常见方法有:1.配方法由非负数性质得02b a .2.不等分析法通过解不等式(组),在约束条件下求最值.3.运用函数性质对二次函数02a c bxax y ,若自变量为任意实数值,则取值情况为:(1)当0a ,abx 2时,a b ac y 442最小值;(2)当0a ,a bx 2时,a b ac y 442最大值;4.构造二次方程利用二次方程有解的条件,由判别式0确定变量的取值范围,进而确定变量的最值.例题与求解【例1】当x 变化时,分式12156322x xx x 的最小值是.(全国初中数学联赛试题)解题思路:因分式中分子、分母的次数相等,故可将原分式用整式、真分式的形式表示,通过配方确定最小值.【例2】已知1y ,且12y x ,则223162y x x 的最小值为()A. 719B. 3C. 727 D. 13 (太原市竞赛试题)解题思路:待求式求表示为关于x(或y)的二次函数,用二次函数的性质求出最小值,需注意的是变量x 、y 的隐含限制.【例3】21322x x f ,在b x a 的范围内最小值2a ,最大值2b ,求实数对(a ,b). 解题思路:本题通过讨论a ,b 与对称轴0x 的关系得出结论.【例4】(1)已知211x x y 的最大值为a ,最小值b ,求22b a 的值.(“《数学周报》杯”竞赛试题)(2)求使168422x x 取得最小值的实数x 的值.(全国初中数学联赛试题)(3)求使2016414129492222y y y xy x x 取得最小值时x ,y 的值.(“我爱数学”初中生夏令营数学竞赛试题)解题思路:解与二次根式相关的最值问题,除了利用函数增减性、配方法等基本方法外,还有下列常用方法:平方法、判别式法、运用根式的几何意义构造图形等.【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低?(河南省竞赛试题)解题思路:设铁路与公路的交点为C ,AC =x 千米,BC =y 千米,AD =n 千米,BD =m 千米,又设铁路每千米的运费为a 元,则从A 到B 的运费ay m y n a S 222,通过有理化,将式子整理为关于y 的方程.【例6】(1)设r x ,1rx ,…,k x (r k ),为k -r +1个互不相同的正整数,且x r +x r +1+…+x k =2003,求k 的最大可能值.(香港中学竞赛试题)(2)a ,b ,c 为正整数,且432c b a ,求c 的最小值.(全国初中数学联赛试题)解题思路:对于(1),因r =1,对k -r +1=k -1+1=k 个正整数x 1,x 2,…,x k ,不妨设x 1<x 2<…<x k =2013,可见,只有当各项x 1,x 2,…,x k 的值愈小时,才能使k 愈大(项数愈多),通过放缩求k 的最大值;对于(2),从222b a c a c 入手.能力训练A 级1.已知三个非负数a ,b ,c ,满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,则m 的最小值为___________,最大值为.2.多项式p =2x 2-4xy +5y 2-12y +13的最小值为.3.已知x ,y ,z 为实数,且x +2y -z =6,x -y +2z =3,那么x 2+y 2+z 2的最小值为.(“希望杯”邀请赛试题)4.若实数a ,b ,c ,满足a 2+b 2+c 2=9,则代数式(a -b)2+(b -c)2+(c -a)2的最大值为( ) (全国初中数学联赛试题)5.已知两点A(3,2)与B(1,-1),点P 在y 轴上且使P A +PB 最短,则P 的坐标是()A.(0,21) B.(0,0) C.(0,611) D.(0,41)(盐城市中考试题)6.正实数x ,y 满足1xy ,那么44411y x 的最小值为()A. 21B. 85C. 1D. 45E. 2(黄冈市竞赛试题)7.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数b kx y 的关系(如图所示). (1)根据图象,求一次函数b kx y 的解析式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元.①试用销售单价x 表示毛利润;②试问:销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销量是多少?(南通市中考试题)8.方程06122m x m x 有一根不大于1,另一根不小于1,(1)求m 的取值范围;(2)求方程两根平方和的最大值与最小值.(江苏省竞赛试题)9.已知实数a ,b 满足122b ab a ,求22b ab a 的最大值与最小值.(黄冈市竞赛试题)10.已知a ,b ,c 是正整数,且二次函数c bx ax y 2的图象与x 轴有两个不同的交点A ,B ,若点A ,B 到原点的距离都小于1,求a +b +c 的最小值.(天津市竞赛试题)11.某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示:该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x 天应付的养护与维修费为500141x 元.(1)如果将设备从开始投入使用到报废所需的养护与维修费及购买设备费用的总和均摊到每一天,叫作每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数.(2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问:该设备投入使用多少天应当报废?(河北省竞赛试题)B 级1.a ,b 是正数,并且抛物线b ax x y22和a bx x y 22都与x 轴有公共点,则22b a 的最小值是.2.设x ,y ,z 都是实数,且满足x +y +z =1,xyz =2,则z y x 的最小值为.3.如图,B 船在A 船的西偏北45°处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离为km .(全国初中数学竞赛试题)东北A B4.若a ,b ,c ,d 是乘积为1的四个正数,则代数式a 2+b 2+c 2+d 2+ab +bc +ac +ad +bd +cd 的最小值为()A. 0 B. 4 C. 8 D. 10(天津市竞赛试题)5.已知x ,y ,z 为三个非负实数,且满足3x +2y +z =5,x +y -z =2. 若s =2x +y -z ,则s 的最大值与最小值的和为()A. 5B. 423C. 427D. 435(天津市选拔赛试题)6.如果抛物线112k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值为()A.1 B.2 C.3D.4 7.某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销量就增加10个,为获得每日最大利润,此商品售价应定为每个多少元?(“祖冲之杯”邀请赛试题)8.有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p (万元)和q (万元),它们与投入资金x (万元)的关系有经验公式:x q x p 53,51.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润?(绍兴市竞赛试题)9.已知为x ,y ,z 为实数,且5z y x ,3zx yz xy ,试求z 的最大值与最小值.10.已知三个整数a ,b ,c 之和为13,且b c a b ,求a 的最大值和最小值,并求出此时相应的b 与c 值.(四川省竞赛试题)11.设x 1,x 2,…,x n 是整数,并且满足:①-1≤x i ≤2,i =1,2,…,n②x 1+x 2+…+x n =19③x 12+x 22+…+x n 2=99求x 13+x 23+…+x n 3的最大值和最小值.(国家理科实验班招生试题)12.已知x 1,x 2,…,x 40都是正整数,且x 1+x 2+…+x 40=58,若x 12+x 22+…+x 402的最大值为A ,最小值为B ,求A +B 的值.(全国初中数学竞赛试题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 一次函数和反比例函数知识点、重点、难点函数(0)y kx b k =+≠称为一次函数,其函数图像是一条直线。
若0b =时,则称函数y kx =为正比例函数,故正比例函数是一次函数的特殊情况。
当0k >时,函数y kx b =+是单调递增函数,即函数值y 随x 增大(减小)而增大(减小);当0k <,y kx b =+是递减函数,即函数值y 随x 增大(减小)而减小(增大)。
函数(0)ky k x=≠称为反比例函数,其函数图像是双曲线。
当0k >且0x >时,函数值y 随x 增大(减小)而减小(增大);当0k >且0x <,函数值y 随x 增大(减小)而减小(增大),也就是说:当0k >时,反比例函数ky x=分别在第一或第三象限内是单调递减函数;当0k <时,函数ky x=分别在第二或第四象限内是单调递增函数。
若111222(0),(0).y k x b k y k x b k =+≠=+≠ 当12k k =时,12b b ≠时,两面直线平行。
当12k k =时,12b b =时,两面直线重合。
当12k k ≠时,两直线相交。
当121k k =-时,两直线互相垂直。
求一次函数、反比例函数解析式,关键是要待定解析式中的未知数的系数;其次,在解题过程中要重视数形相结合。
例题精讲:例1:在直角坐标平面上有点(1,2)A --、(4,2)B 、(1,)C c ,求c 为何值时AC BC +取最小值。
解 显然,当点C 在线段AB 内时,AC BC +最短。
设直线AB 方程为y kx b =+,代入(1,2)A --、(4,2)B得242,k b k b -+=-⎧⎨+=⎩解得456,5k b ⎧=⎪⎪⎨⎪=-⎪⎩所以线段AB 为46(14),55y x x =--≤≤ 代入(1,)C c ,得4621.555c =⨯-=-例2:求证:一次函数211022k k y x k k --=-++的图像对一切有意义的k 恒过一定点,并求这个定点。
解 由一次函数得(2)(21)(10),k y k x k +=---整理得(21)2100x y k x y ----+=。
因为等式对一切有意义的k 成立,所以得2102100,x y x y --=⎧⎨+-=⎩解得12519,5x y ⎧=⎪⎪⎨⎪=⎪⎩当125x =,195y =时,一次函数解析式变为恒等式,所以函数图像过定点1219,55⎛⎫⎪⎝⎭.例3:已知m 、n 、c 为常数,220m n -≠,并且(1)(1),mf x nf x cx -+-=求()f x 。
解 用1x -代换原方程中的x ,得(1)()(1).mf x nf x c x -+=- ○1用1x +代换原方程中的x ,得()()(1).mf x nf x c x +-=+ ○2m ⨯○2n -⨯○1得22()().m f x n f x mcx ncx mc nc -=++-因为220m n -≠,所以()22()c m n x m n f x m n ++-⎡⎤⎣⎦=-,所以()c cf x x m n m n=+-+.例4:如图,设111()(1),f x mx x m x m m m ⎛⎫=+-=-+ ⎪⎝⎭因为当1m ≥时,10,()m f x m -≥为递增11(1).1.f m m m m ⎛⎫=-++ ⎪⎝⎭函数,()f x 在[]0,1上的最小值为所以1(0)(1).()(1)(01).f m g m mf m m ⎧=≥⎪=⎨⎪=<<⎩ 因此1()g m m=在[]1,+∞上为递减函数;()g m m =在()0,1上为递增函数,故()g m 的最大值为(1) 1.g =例5:画函数242x y x-=-的图像。
解 0x =,0x =,240x -=,2,x =±将整个数轴分为四段讨论(见图)并定义域为2x ≠±的一切实数。
2,2,2,2,x x y x x -⎧⎪-⎪=⎨+⎪⎪--⎩ 2;20;022x x x x <--<<≤<>例6:一次函数(1)y kx k k =->图像交x 轴于A 点,将此直线沿直线y x =翻折交y 轴于B 点,这两条直线相交于P 点,且四边形OAP B 的面积为3, 求k 的值。
解 设点P 坐标为'(,),t t 又OAP ∆与OBP ∆是翻折而等于32。
设0y =代入成,所以OAP S ∆面积是四边形OAPB 的一半,y kx k =-得1,x =点A 为(1,0).由1131,222OAP S OA PC t ∆=⨯=⨯⨯=得3,t =即点(3,3).p 因点P 在y kx k =-上,代入得33,k k =-3.2k =A 卷一、填空题1.设21(2)k y k x -=+是反比例函数,则k = ;其图像经过第 象限时;当0x >时,y 随x 增大而 。
2.两个一次函数312,y x =+33,2y x =-的图像与y 轴所围成的三角形面积是 。
3.等腰三角形一个底角的度数记作y ,顶角的度数记作x ,将y 表示成x 的函数是 ,其中x 的取值范围是 。
4.如果函数12ay =--的图像与直线32y x =-平行,则a = 。
5.已知四条直线3y mx =-、1y =-、3y =、1x =所围成的车边形的面积是12,则m = 。
6.一次函数y kx b =+的图像经过点(1,2)p 且与x 轴交于点A ,与y 轴交于点B 。
若sin 5PAO ∠=则线段OB 的长为 。
7.已知一次函数y kx b =+中,若x 的值每增加4,y 的值也相应增加8,则k = 。
8.如果把函数2y x =的图像向下平移两个单位,再向左平移一个单位,那么得到的是 的图像。
9.已知一次函数24(31)(21)3,n y n n x =-++则n 的值为 。
10.若直线(1)5y m x m =-+-不经过第二象限,则m 的取值范围是 。
二、解答题11.求证:不论k 为何值,一次函数(21)(3)(11)0k x k y k --+--=的图像恒过一定点。
12.某商人将进货单价为8元的商品按每件10元售出时,每天可以销售100件,现在他想采用提高售出价的办法来增加利润.已知这种商品每提高价1元(每件),日销售量就要减少10件,那么他要使每天获利最大.应把售出价定为多少元?B 卷一、填空题1.函数1(1)(0,01)y ax x a x a =+->≤≤的最小值为 。
2.如图,正比例函数y x =和(0)y ax a =>的图像与反比例函数(0)ky k x=>的图像分别交于A 点和C 点。
若直角三角形AOB 和直角三角形COD 的面积分别为1S 和2S ,则1S 与2S 的大小关系是 。
3.点(4,0)A -、(2,0)B 是平面直角坐标系中的两定点,C 是122y x =-+图像上的动点,则满足上述条件的直角三角形ABC 或画出 个。
4.直线0(0,0)ax by c ab ac ++=>>经过 象限。
5.一个三角形以(0,0)A =、(1,1)B 及(9,1)C 为三个顶点,一条与x 轴相垂直的直线将该三角形划分成面积相等的两部分,则此直线的解析式为 。
6.已知函数3y x=及4,y x =-+则以这两个函数图像的交点和坐标原点为顶点的三角形的面积为 。
7.双曲线ky x=与一次函数4,y kx =-+的图像有两个不同的交点,则k 的取值范围是 。
8.已知反比例函数(0)k y k x =≠,当0x >时y 随x 的增大而增大,则一次函数142y kx k =-的图像经过 ______ 象限。
9.已知实数x 、y 满足43120,x y +-=则22a x y =+的取值范围是 _____ 。
10.一次函数21544m y x +=-与233my x =-+的图像在第四象限内交于一点,则整数m = __ 。
二、解答题11.设直线2(1)y x =-与直线2(5)y x =--相交于点A ,它们与x 轴的交点为,B C ,求ABC ∆中BC 边上的中线所在的直线方程。
12.已知函数()(2)23f x m x m =-+-,(1) 求证:无论m 取何实数,此函数图像恒过某一定点;(2)当x 在12x ≤≤内变化时,y 在45y ≤≤内,求实数m 的值。
13.若对于满足02x ≤≤的一切实数x ,函数(2)37y k x k =-+的值恒大于0,求实数k 的取值范围。
14.A 、B 两厂生产某商品的产量分别为60吨与100吨,供应三个商店。
甲店需45吨,乙店需75吨,丙店需40吨。
从A 厂到三商店每吨运费分别为10元、5元、6元,从B 厂到三商店每吨运费分别为4元、8元、15元,如何分配使总运费最省?C 卷一、填空题1.函数3y x b =-与2y ax =+的图像关于直线y b =对称则a = ,b = 。
2.三个一次函数11y k x b =+、22y k x b =+、33y k x b =+在同一直角坐标系中的图像如图所示,分别为直线1l 、2l 、3l ,则1k 、2k 、3k 的大小关系是 。
3.已知函数(2)31,y a x a =---当自变量x 的取值范围为35x ≤≤时,有y 既能取到大于5的值,又能取到小于3的值,则实数a 的取值范围是 。
4.已知a b c <<,则函数y x a x b x c =-+-+-的最小值是 。
5.一次函数()y f x =满足[]{}()87f f f x x =+,则()f x = 。
6.已知0abc ≠并且,a b b c c ap c a b+++===则一次函数(1)y P x =+的图像一定通过 象限。
7.已知一次函数y ax b =+ (a 为整数)的图像经过点(98,19),它与x 轴的交点为(p ,0),与y 轴的交点为(0,q ).若P 为质数,q 为正整数,则适合上述条件的一次函数的个数是 个。
8.把函数1y x-=的图像沿x 轴向 平移 个单位,再沿y 轴向 平移个单位,得到12x y x-=-的图像。
9.方程224620x y x y --++=表示成两个一次函数是 。
10.一次函数y ax b =+的图像经过点(10,13),它在x 轴上的截距是一个质数,在y 轴上的截距是一个正整数,则这样的函数有 个。
二、解答题11.如图,设直线(1)10kx k y ++-=与坐标轴所构成的直角三角形的面积是k S ,求1231999.S S S S +++L L12.在直角坐标系中有一个矩形ABCD ,点B 与坐标原点重合,BA 在y 轴的正半轴上,BC 在x 轴的正半轴上,点P 在CD 边上,直线3y kx =-经过点P ,且与x 轴交于点Q 。