Mathematica数学软件系统使用入门
mathematica使用指南
mathematica使用指南Mathematica是一款功能强大的数学软件,具备广泛的应用领域,包括数学、统计学、物理学、工程学等等。
本文将为您提供一份Mathematica的使用指南,帮助您快速入门并提高使用效率。
1. Mathematica简介Mathematica是由Wolfram Research公司开发的一款通用计算软件,它具备数值计算、符号计算、图形绘制等多种功能。
Mathematica基于Wolfram Language语言,用户可以直接在其中编写代码进行计算和分析。
2. 安装与启动首先您需要从Wolfram Research公司官方网站下载Mathematica安装文件,并按照安装向导完成安装过程。
安装完成后,您可以在计算机上找到Mathematica的启动图标,点击即可启动该软件。
3. Mathematica界面介绍Mathematica的主界面由菜单栏、工具栏、输入区域和输出区域组成。
菜单栏提供了各种功能选项,工具栏包含常用工具按钮,输入区域用于输入代码,而输出区域用于显示计算结果。
4. 基本计算在输入区域中,您可以直接输入数学表达式进行计算。
例如,输入"2 + 3",然后按下Enter键即可得到计算结果"5"。
Mathematica支持基本的算术运算、三角函数、指数函数等数学操作。
5. 变量与函数您可以使用Mathematica定义变量并进行计算。
例如,输入"x = 2",然后再输入"y = x^2",按下Enter键后,变量y会被赋值为2的平方,即4。
定义的变量可以在后续计算中使用。
6. 图形绘制Mathematica提供了丰富的图形绘制功能。
您可以使用Plot函数绘制函数曲线,使用ListPlot函数绘制离散数据点,还可以绘制3D图形等等。
通过调整参数和选项,您可以自定义图形的样式和外观。
mathematic使用指南
第一章Mathematica的启动的运行Mathematica是美国Wolfram公司生产的一种数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能。
目前最新版本是Mathematica4.0,本附录仅介绍Mathematica4.0的一些常用功能,须深入掌握Mathematica的读者可查阅相关书籍。
在Windows环境下安装好Mathematica4.0,用鼠标双击Mathematica图标(刺球状),在显示器上显示如图1-1的工作窗口,这时可以键入你想计算的东西,比如键入1+1,然后同时按下Shift键和Enter键(数字键盘上只要按Enter键),这时Mathematica开始工作,计算出结果后,窗口变为图1-2。
图1-1 Mathematica的工作窗口Mathematica第一次计算时因为要启动核(kernel),所需时间要长一些,也可以在Mathematica 启动后第一次计算之前,手工启动核,方法是用鼠标点击:Kernel->Start Kernel->Local.这样第一次计算就很快了。
图1-2 完成运算后的Mathematica的窗口图1-2中的“In[1]:=”表示第一个输入;“Out[1]=”表示第一个输出结果。
接下来可键入第二个输入,按这样的方式可利用Mathematica进行“会话式”计算。
要注意的是:“In[1]:= ”和“Out[1]=”是系统自动添加的,不需用户键入。
Mathematica还提供“批处理”运行方式,即可以将Mathematica作为一种算法语言,编写程序,让计算机执行,这在第七章将会作简要介绍。
第二章 Mathematica的基本运算功能2.1 算术运算Mathematica最基本的功能是进行算术运算,包括加(+),减(-),乘(*),除(/),乘方(^),阶乘(!)等。
注意:1 在Mathematica中,也可用空格代表乘号;数字和字母相乘,乘号可以省去,例如:3*2可写成3 2,2*x可写成2x,但字母和字母相乘,乘号不能省去。
Mathematica入门(一)
NUDT
Mathematica入门 入门
表的操作 Join[ t1 , t2] Union[ t1 , t2] 将表 t1 和表 t2连接成一个表 将表 t1 和表 t2 的并集组成一个表
某些特殊属性表的建立 Table[ f , {i,imin , imax , stepi} , { j , jmin , jmax , stepj}]
t1 = 1, 2, 4 t2 = 1, 3, Sin x , Cos x
8 8@ @ <D D 8 <
表元素的操作 t[[n]] 表示表 t 的第 n 个元素(同Part[t , n]的意义 个元素( 的意义) 的意义 t[[i , j]] 表示表 t 中第 i 个子表的第 j 个元素 Length[ t ] 表示表 t 的元素个数
p = x + 2 x y+ y p . x® 1
2
p = x2 + 2 x y + y2 p . x ® 1, y ® 2
8 <
NUDT
Mathematica入门 入门
(5)表 表是存贮多个数、变量或算式等对象的一种数据结构, 表是存贮多个数、变量或算式等对象的一种数据结构,一 个表用一对花括号表示,其成员(元素) 个表用一对花括号表示,其成员(元素)在括号内用逗号 隔开,同一个表的成员可以是不同的数据类型, 隔开,同一个表的成员可以是不同的数据类型,表的成员 还可以是一个表(子表)。 还可以是一个表(子表)。
1
-1.5
-1
-0.5 -0.5
0.5
1
1.5
-2
-1
1
2
-1
-1
-2
NUDT
Mathematica入门 入门
mathematica简明使用教程
mathematica简明使用教程Mathematica是一种强大的数学软件,广泛应用于科学研究、工程计算和数据分析等领域。
本文将简要介绍Mathematica的使用方法,帮助读者快速上手。
一、安装和启动Mathematica我们需要下载并安装Mathematica软件。
在安装完成后,可以通过桌面图标或开始菜单中的快捷方式来启动Mathematica。
二、界面介绍Mathematica的界面分为菜单栏、工具栏、输入区域和输出区域四部分。
菜单栏提供了各种功能选项,工具栏包含了常用的工具按钮,输入区域用于输入代码或表达式,而输出区域则显示执行结果。
三、基本操作1. 输入和输出在输入区域输入代码或表达式后,按下Shift+Enter键即可执行,并在输出区域显示结果。
Mathematica会自动对输入进行求解或计算,并返回相应的输出结果。
2. 变量定义可以使用等号“=”来定义变量。
例如,输入“a = 3”,然后执行,就会将3赋值给变量a。
定义的变量可以在后续的计算中使用。
3. 函数调用Mathematica内置了许多常用的数学函数,可以直接调用使用。
例如,输入“Sin[π/2]”,然后执行,就会返回正弦函数在π/2处的值。
4. 注释和注解在代码中添加注释可以提高代码的可读性。
在Mathematica中,可以使用“(*注释内容*)”的格式来添加注释。
四、数学运算Mathematica支持各种数学运算,包括基本的加减乘除,以及更复杂的求导、积分、矩阵运算等。
下面简要介绍几个常用的数学运算:1. 求导可以使用D函数来求导。
例如,输入“D[Sin[x], x]”,然后执行,就会返回正弦函数的导数。
2. 积分可以使用Integrate函数来进行积分运算。
例如,输入“Integrate[x^2, x]”,然后执行,就会返回x的平方的不定积分。
3. 矩阵运算Mathematica提供了丰富的矩阵运算函数,可以进行矩阵的加减乘除、转置、求逆等操作。
第1讲 Mathematica入门
1. 集合的定义 直接定义: 直接定义 直接用{}将相关元素放在一起就得到一个集 合.例如: 例22 In[1]:= t1={1,2,3,4,5,6} In[2]:= t2={Sin[x],Cos[x]} 语句定义: 可用Range与Table语句来定义集合. 语句定义 Range[imin,imax,di]给出的是一个数的集合,第一项为 imin,最后一项不超过imax,步长为di. 例如: 例23 In[3]:= t3=Range[1,30,3] Out[3]= {1,4,7,10,13,16,19,22,25,28}
除了上面的这种赋值形式(称为即时赋值)以外,还有 一种延迟赋值。 例10 In[4]:= t:=4 延迟赋值并不显示结果,只有调用变量时,才进行计 算并赋值。下面的例子可以看出即时赋值与延迟赋值的 区别。 例11 In[5]:= r=Random[ ]; s={r,r} Out[6]= {0.455181, 0.455181} In[7]:= r:=Random[ ]; s={r,r} Out[8]= {0.967234, 0.526599}
这些常数可以参与运算。
例6 In[1]:= 2*E Out[1]= 2E In[2]:= N[Pi,30] Out[2]= 3.14159265358979323846264338328 函数N[x,n]给出x的n位有效数字。 Mathematica提供了许多数学上的函数,表3给出了 一些常用的数学函数。
例15 In[15]:= x=2.0; u[x_]:=Sin[x]; v[x_]=Sin[x] Out[15]= 0.909297 In[16]:= ?u Global`u u[x_]=Sin[x] In[17]:= ?v Global`v v[x_]=0.909297 可以看出,上例中函数u[x]被定义为Sin[x],而v[x]被 定义为常函数0.909297(=sin2.0).
Mathematica基础教程
Mathematica基础Mathematica自1988年由美国的Wolfram Research公司首次推出,是一个功能强大的常用数学软件, 不但可以解决数学中的数值计算问题, 还可以解决符号演算问题, 并且能够方便地绘出各种函数图形。
常用数学软件之比较,Matlab Mathematica MathCAD Maple:1. Mathematica基本使用(1)在工作区(软件打开初始时,左侧的窗口,上方有untitled-1*)输入命令,按Shift+Enter组合键执行命令;如输入“2+3”,按Shift+Enter执行后,窗口显示In[1]:= 2 + 3Out[1]= 5其中“In[1]:=,Out[1]=”为系统自动添加(不必管),In[1]括号内数字1表示第1次输入。
如果不想显示此次输入的结果,只要在所输入命令的后面再加上一个分号便可。
(2)软件打开初始时,右侧有一个运算符号面板,可以更方便命令输入,如级数,积分,数学符号等。
(3)除可以用直接键盘输入的方法进行输入外, 还可以用打开的方式从磁盘中调入一个已经存在的文件来进行操作。
2. Mathematica的基本语法特征(1)Mathematica中区分大、小写,如Name、name、NAME等是不同的变量名或函数名。
(2)系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[2]等。
(3)乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^,Tan[x]^y。
(4)自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。
(5)当赋予变量任何一个值,除非明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,否则它将始终保持原值不变。
(6)一定要注意四种括号的用法:()圆括号表示运算项的结合顺序,如(x+(y^x+1/(2x)));[]方括号表示函数,如Log[x], BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如{2x,Sin[12 Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[[1]]=1。
mathematica教程
M athematica是美国Wolfram研究公司生产的一种数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能。
假设在Windows环境下已安装好Mathematica4.0,启动Windows后,在“开始”菜单的“程序”中单击,就启动了Mathematica4.0,在屏幕上显示如图的Notebook窗口,系统暂时取名Untitled-1,直到用户保存时重新命名为止输入1+1,然后按下Shif+Enter键,这时系统开始计算并输出计算结果,并给输入和输出附上次序标识In[1]和Out[1],注意In[1]是计算后才出现的;再输入第二个表达式,要求系统将一个二项式展开,按Shift+Enter输出计算结果后,系统分别将其标识为In[2]和Out[2].如图在Mathematica的Notebook界面下,可以用这种交互方式完成各种运算,如函数作图,求极限、解方程等,也可以用它编写像C那样的结构化程序。
在Mathematica系统中定义了许多功能强大的函数,我们称之为内建函数(built-in function), 直接调用这些函数可以取到事半功倍的效果。
这些函数分为两类,一类是数学意义上的函数,如:绝对值函数Abs[x],正弦函数Sin[x],余弦函数Cos[x],以e为底的对数函数Log[x],以a为底的对数函数Log[a,x]等;第二类是命令意义上的函数,如作函数图形的函数Plot[f[x],{x,xmin,xmax}],解方程函数Solve[eqn,x],求导函数D[f[x],x]等。
必须注意的是:如果输入了不合语法规则的表达式,系统会显示出错信息,并且不给出计算结果,例如:要画正弦函数在区间[-10,10]上的图形,输入plot[Sin[x],{x,-10,10}],则系统提示“可能有拼写错误,新符号‘plot’ 很像已经存在的符号‘Plot’”,实际上,系统作图命令“Plot”第一个字母必须大写,一般地,系统内建函数首写字母都要大写。
Mathematica数学软件操作技巧及界面详解
Mathematica数学软件操作技巧及界面详解Mathematica是一款十分强大的数学计算软件,它可以广泛应用于科学、工程和教育等领域。
本文将介绍一些Mathematica的操作技巧,并详细解析其界面设计。
一、Mathematica的基本操作技巧1. 输入和计算Mathematica的主界面提供了一个输入框,我们可以在其中输入各种数学表达式和计算公式。
输入时需要遵循一定的语法规则,比如使用^表示乘方,使用*表示乘法,使用/表示除法等。
在输入完毕后,按下Enter键即可进行计算。
2. 变量定义和赋值在Mathematica中,我们可以使用等号(=)来定义和赋值变量。
比如,我们可以输入"radius = 5"来定义一个名为radius的变量,并将其赋值为5。
之后,我们可以直接使用radius来进行计算。
3. 函数调用Mathematica内置了许多数学函数,比如sin、cos、log等。
我们可以使用这些函数来进行各种数学运算。
调用函数时需要在函数名后加上待计算的参数,比如"sin(0.5)"可以计算出0.5的正弦值。
二、Mathematica的界面详解1. 顶部菜单栏Mathematica的顶部菜单栏包含了许多功能按钮,我们可以通过点击这些按钮来执行相应的操作,比如打开文件、保存文件、进行图像绘制等。
2. 工具栏在Mathematica的工具栏上,我们可以找到常用的绘图工具、格式调整工具和计算选项卡等。
这些工具可以帮助我们更加方便地进行数学计算和图形绘制。
3. 文档窗口Mathematica的文档窗口是我们进行数学计算和编写代码的主要区域。
我们可以在文档窗口中输入数学表达式、编写代码,并且可以将计算结果直接显示在文档窗口中。
4. 侧边栏在Mathematica的侧边栏上,我们可以找到各种各样的面板和选项卡。
这些面板和选项卡提供了对Mathematica的进一步设置和功能扩展,比如图形面板、数据面板和设置面板等。
Mathematica软件使用入门
Mathematica软件使用入门目录第一章基本知识与基本操作 (3)1.1 Mathematica的基本语法特征 (3)1.2 Mathematica的启动、基本操作 (5)1.3 操作小技巧 (7)1.4 数值计算 (8)1.5 赋值与替换 (9)1.6 自定义函数 (10)1.7 方程与方程组解 (11)1.8 解不等式与不等式组 (12)1.9 由递推式求数列的通项公式 (14)1.10 作函数图像 (15)页脚内容1第二章运用Mathematica实现高等数学中的基本运算 (17)2.1 求极限运算 (17)2.2 求导数与微分 (20)2.3 求不定积分 (28)2.4 求定积分 (29)第三章实验练习题 (32)Mathematica是当今世界上最为流行的计算机代数系统之一.Mathematica系统是美国物理学家Stephen.Wolfram领导的一个小组开发的,后来他们成立了Wolfram研究公司.1987年推出了系统的1.0版;现在的最新版本是8.0版.页脚内容2Mathematica可以做:符号计算和数值计算问题,如:能做多项式的计算、因式分解和展开等;做各种有理式计算,求多项式、有理式方程和超越方程的精确解和近似解;做向量、矩阵的各种计算;求极限、导数、积分,做幂级数展开,求解某些微分方程等;做任意位数的整数或分子分母为任意大整数的有理数的精确计算,做具有任意位精度的数值(实、复数值)的计算.可以很方便地画出用各种方式表示的一元和二元函数的图形,通过图形,可以立即形象地掌握函数的某些特性,而这些特性一般是很难从函数的符号表达式中看清楚.第一章基本知识与基本操作1.1 Mathematica的基本语法特征使用Mathematica,一定要牢牢记住:Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名;系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Cos[z]等;页脚内容3页脚内容4乘法即可以用*,又可以用空格表示,如 2 3=2*3=6 , 2 Sin[x]=2* Sin[x]乘幂可以用“^”表示,如x^0.5 表示: Tan[x]^y 表示:自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头.当你赋予变量任何一个值,除非你: 明显地改变该值或 使用Clear[变量名] 或 使用“变量名=.”取消该值,否则它将始终保持原值不变.一定要注意四种括号的用法:( ): 表示项的结合顺序,如: (x+(y^x+1/(2x))); [ ]: 表示函数,如:Log[x], Sin[x];{ }: 表示一个“表”(即是一组数字、或任意表达式、或函数等的一个有序集合),如:{2x,Sin[12 Pi],A ,1}, {1+A,y*x ,1,2};[[ ]]: 双方括号表示“表”或“表达式”的下标,如: a[[2,3]]表示:23a ; {3,5,7}[[2]]=5.Mathematica 的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔).当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果.0.5xyTan[x]Mathematica命令中的标点符号必须是英文的.1.2 Mathematica的启动、基本操作1.2.1 启动“Mathematica”:在windows操作系统中安装了Mathematica后,与其他的常用软件一样,可从“开始”→“程序”→“Mathematica5”Mathematica的主窗口并出现第一个notebook窗口(Untitled-1):1.2.2 简单使用:例1.1 计算+33的值①在“Untitled-1”窗口中输入:329/412+3^3②按下“Shift+Enter”(或数字键盘上的Enter键),就得到计算结果:页脚内容5其中“In[1]:=”是Mathematica自动加上的,表示第一个输入;“Out[1]:=”表示第一个输出.一般地:In[n]:= 表示第n个输入Out[n]:=表示第n个输出.注意:“In[n]:=”自动加上的,不能人工输入!1.2.3 保存结果:保存方法同一般的Windows软件:“文件”→“保存”“另存为”窗口→在“查找范围”内找到目标文件夹→输入文件名(比如输入“1”)→“”.Mathematica 4或Mathematica 5的文件的后缀是“nb”,当输入“1”时,即产生文件“1.nb”.1.2.4打开文件1.nb启动Mathematica →“文件”→“打开”打开”窗口:→在“查找范围”内找到文件“1.nb”→“”即可.页脚内容61.2.5 退出Mathematica:与一般应用软件一样,单击右上方的“”按钮(或用菜单:“文件”→“退出”).1.3 操作小技巧1.3.1Ctrl+K的用途如果只知道命令的首写字母,可在输入该首写字母(要大写),再按下“Ctrl+K”组合键,则所有以该字母为首的命令都列出来,只要用鼠标双击命令名就输入了该命令.1.3.2使用前面已有的结果举例如下:例1.2 做如下操作:①输入:Integrate[x^2*(11-Sin[x]),{x,-1,1}]按:“Shift+Enter”;②输入:%+1,按:“Shift+Enter”;③输入:%+1,按:“Shift+Enter”;④输入:%1+1,按:“Shift+Enter”;Integrate[f,x]是求:()f x dxIntegrate[f,{x,xmin,xmax}]是求:页脚内容7⑤输入:%3+1,按:“Shift+Enter”,计算结果如下:可见,“%”表示前一个计算结果;“%n”表示第n个计算结果.1.3.3 删除行:见下图示1.4 数值计算请看下例:只要选定且删1.5 赋值与替换X=. 或Clear[x] 清除赋给x的值expr/.{x->xval,y->yval} 用xval、yval分别替换expr中的x、y.例1.3输入:x=3;y=4;w=x+y 计算清除变量的定义和值输入:Clear[x,y];计算输入:z=(x+y)^2 计算将(x+y)^2赋给z页脚内容9页脚内容10输入:z/.x->5 计算输入:Clear[x,y]; 计算 输入:u=x+y 计算 输入:u/.{x->5,y->6} 计算 计算结果如下:1.6 自定义函数用户可以自行定义函数,一个函数一旦被定义好之后就可以象系的内部函数一样使用. 例1.4 如要定义函数 f(x)=x 2+3x-2变量替换:变量替换:分别用5、6代替表达式u 中的“:=”是定义符.左边f 是函数名,方括号内x 是自变量,其页脚内容11只要键入: f[x_]:=x^2+3x-2即可.又如要定义分段函数2+1 < 0()= 2sin 0x x g x x x ⎧⎨≥⎩可键入:g[x_]:= Which[x<0,x^2+1,x>=0,2Sin[x]] 或g[x_]:=If[x<0,x^2+1,2Sin[x]] 请见以下计算结果:1.7 方程与方程组解 例1.5 ① 解方程:0652=+-x x输入:Solve[x^2-5x+6==0,x]Solve 是解方程或方程组的函数.其格式为:Solve[eqns,vars] 其中方程用exp==0的形式(其中页脚内容12即可.② 解方程组输入:Solve[{x+y==1,3x^2-y^2==0},{x,y}] 即可(结果见下图).1.8 解不等式与不等式组 例1.6 ① 解不等式组2213x y x y +=⎧⎨-=⎩加载解不等式的程序包,这是必须的,可谓是固定的格式, “< ”为键盘上的小于号, “`”为数字键1的左侧的 Algebra —— 代数类页脚内容13⎪⎩⎪⎨⎧>-<--0101222x x x输入: <<Algebra`InequalitySolve` InequalitySolve[{x^2-5x-6<0,x^2-1>0}, x] 即可. ② 解不等式3)3(12>--x x输入: <<Algebra`InequalitySolve` InequalitySolve[Abs[x-1](x^2-3) > 3, x] 即可(结果见下图)注: Mathematica 系统有内部函数.还有一些系统扩展的功能但不是作为内部函数的、以文件的形式存页脚内容14储在磁盘上的文件,要使用它们,必须用一定的方式来调用这些文件,这些文件我们称之为程序包. 调用方式之一如上所述: <<Algebra`InequalitySolve` 或用:Needs["Algebra`InequalitySolve`"] 1.9 由递推式求数列的通项公式例1.7 设 求数列的通项公式 只要输入:<<DiscreteMath`RSolve`RSolve[{a[n]==n *a[n-1], a[1]==1}, a[n], n] 即可(结果见下图)11,1,nn a na a -==1.10 作函数图像例1.8在同一坐标系中作出2-1y x 和y=sinx在[-2,2]内的图像.输入:Plot[{x^2-1,Sin[x]},{x,-2,2}]结果见下图例1.9作出sinxcosy的三维图形输入:Plot3D[Sin[x]*Cos[y],{x,-2Pi,2Pi},{y,-2Pi,2Pi},PlotPoints->100]即可(结果见下图)增加取样点提高光滑度页脚内容15页脚内容16页脚内容17第二章 运用Mathematica 实现高等数学中的基本运算极限、导数和积分是高等数学中的主要概念和基本运算,如果你在科研中遇到较复杂的求极限、求导数或求积分问题,Mathematica 可以帮你快速解决这些问题。
mathmatic教程-入门级别-一看就会Word版
Mathematica5教程第1章Mathematica概述1.1 运行和启动:介绍如何启动Mathematica软件,如何输入并运行命令1.2 表达式的输入:介绍如何使用表达式1.3 帮助的使用:如何在mathematica中寻求帮助第2章Mathematica的基本量2.1 数据类型和常量:mathematica中的数据类型和基本常量2.2 变量:变量的定义,变量的替换,变量的清除等2.3 函数:函数的概念,系统函数,自定义函数的方法2.4 表:表的创建,表元素的操作,表的应用2.5 表达式:表达式的操作2.6 常用符号:经常使用的一些符号的意义第3章Mathematica的基本运算3.1 多项式运算:多项的四则运算,多项式的化简等3.2 方程求解:求解一般方程,条件方程,方程数值解以及方程组的求解3.3 求积求和:求积与求和第4章函数作图4.1 二维函数作图:一般函数的作图,参数方程的绘图4.2 二维图形元素:点,线等图形元素的使用4.3 图形样式:图形的样式,对图形进行设置4.4 图形的重绘和组合:重新显示所绘图形,将多个图形组合在一起4.5 三维图形的绘制:三维图形的绘制,三维参数方程的图形,三维图形的设置第5章微积分的基本操作5.1 函数的极限:如何求函数的极限5.2 导数与微分:如何求函数的导数,微分5.3 定积分与不定积分:如何求函数的不定积分和定积分,以及数值积分5.4 多变量函数的微分:如何求多元函数的偏导数,微分5.5 多变量函数的积分:如何计算重积分5.6 无穷级数:无穷级数的计算,敛散性的判断第6章微分方程的求解6.1 微分方程的解:微分方程的求解6.2 微分方程的数值解:如何求微分方程的数值解第7章Mathematica程序设计7.1 模块:模块的概念和定义方法7.2 条件结构:条件结构的使用和定义方法7.3 循环结构:循环结构的使用7.4 流程控制第8章Mathematica中的常用函数8.1 运算符和一些特殊符号:常用的和不常用一些运算符号8.2 系统常数:系统定义的一些常量及其意义8.3 代数运算:表达式相关的一些运算函数8.4 解方程:和方程求解有关的一些操作8.5 微积分相关函数:关于求导,积分,泰勒展开等相关的函数8.6 多项式函数:多项式的相关函数8.7 随机函数:能产生随机数的函数函数8.8 数值函数:和数值处理相关的函数,包括一些常用的数值算法8.9 表相关函数:创建表,表元素的操作,表的操作函数8.10 绘图函数:二维绘图,三维绘图,绘图设置,密度图,图元,着色,图形显示等函数8.11 流程控制函数第1章Mathematica概述1.1 Mathematica的启动和运行Mathematica是美国Wolfram研究公司生产的一种数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能。
Mathematica使用入门数学软件Mathematica课件
16
内置函数
Mathematica 具有超过 3000 个内置函数,具体见 “帮助” “参考资料中心” 的左下角处的 “函数索引”
Mathematica 函数命名规则 ① 第一个字母大写,后面跟小写字母,如 Sin[x], Log[x] ② 大多数函数名与数学中的名称相同 ③ 当函数名分为几段时,每一段的头一个字母大写,后面 的用小写字母,如:ArcSin[x]
In[1]:= Clear[x,y]; In[2]:= f=2*x+y; In[3]:= f./{x->2,y->3} (* f(2,3) 的值 *) In[3]:= f./{2->5} (*把 2 替换成 5*)
14
数的基本运算
Mathematica 中的实数分精确数和双精度数
N[x,n] N[x] IntegerPart[x]
可以运行单个命令或语句 也可以运行多个语句:输入全部语句后再按执行键 命令(语句)分隔符:回车或分号 如果不需要显示运行结果:在语句后面加分号
输入和输出标识符:In[n]: 和 Out[n]
In[1]:= Sin[Pi/4]+Cos[Pi/4]
Out[1]= 2
8
数学公式的输入
数学公式的输入
lim(1 1
n
2
黄金分割数:1 1 5 2
虚部单位
1 ln n) 0.577215 n
无穷大
圆周率
11
基本运算符
基本运算:
算术运算 +-*/ ^ !
加减乘除 幂 阶乘(运算级别比加减乘除和幂运算高)
比较运算与逻辑运算 == > < >= <= != && || ! Xor
mathematica使用指南
Mathematica使用指南1.简介M a th em at ic a是一种功能强大的数学软件,它提供了广泛的数学计算和数据分析功能。
本文档将介绍M at he ma t ic a的基础知识和使用方法,帮助初学者快速上手。
2.安装与配置2.1下载与安装在官方网站上下载Ma t he ma ti ca的安装包,并按照提示完成安装过程。
2.2授权与激活通过输入许可证密钥进行授权和激活,确保软件的正常运行。
3.基本功能3.1符号计算M a th em at ic a可以进行符号计算,包括基本的代数运算、微积分、线性代数等。
使用各种符号和函数进行数学表达式的简化和求解。
3.2图形与可视化M a th em at ic a提供了强大的图形和可视化功能,可以绘制各种二维和三维图形,包括函数图像、曲线、散点图等。
还可以添加标签、注释、图例等增强图形的可读性。
3.3数据分析与统计M a th em at ic a支持数据分析和统计操作,可以导入和处理各种数据格式,并进行数据可视化、分布拟合、假设检验等统计分析。
3.4编程与脚本M a th em at ic a具有强大的编程功能,支持多种编程范式,包括函数式编程、面向对象编程等。
用户可以编写自定义函数和脚本,实现复杂的算法和任务。
4.实例演示为了更好地理解M ath e ma ti ca的使用,本节将介绍几个常见的实例演示,展示其在数学、物理、工程等领域的应用。
4.1解方程使用Ma th em at ic a求解方程是其常见的使用方式之一。
通过给定方程和初始条件,演示如何使用M at he ma ti ca快速求解方程并绘制解的图像。
4.2数据分析以一个实际的数据分析问题为例,展示如何使用M at he ma ti ca导入数据、进行数据清洗和预处理,并通过统计分析和可视化揭示数据的规律。
4.3拟合曲线通过生成一些带有噪声的数据点,并使用M at he ma ti c a进行曲线拟合,展示如何选择合适的拟合模型,并评估拟合的效果。
第零讲 Mathematica软件使用简介
第零讲Mathematica软件使用简介一、系统概述Mathematica是美国Wolfram研究公司开发的一个功能强大的计算机数学软件系统,也称为符号计算系统。
Mathematica提供了范围广泛的数学计算功能,支持在各个领域的人们所需要的各种计算。
它是从事各种理论工作(数学、物理、……)的科学工作者、从事实际工作的工程技术人员、以及学校教师和学生的首选计算平台。
Mathematica的主要功能包括三个方面:符号演算、数值计算和图形技术。
例如,它可以做多项式的各种计算(四则计算、展开、因式分解等);求整式方程、有理式方程和的等的精确解和近似解;数值的或一般表达式的向量和矩阵的各种计算;求一般函数表达式的极限、导函数、积分、幂级数展开、求解某些微分方程等;任意位的整数的精确计算、分子分母为任意非零整数的有理数的精确计算(四则计算、乘方等)以及任意位精确度的数值(实数值或复数值)计算。
使用Mathematica还可以非常方便地作出以各种方式表示的一元和二元函数的图形,可以根据需要自由选择画图的范围和精确度。
因此,Mathematica的出现所带来的思维和解题工具的革新必将对各种需要数学计算和绘制函数图形的工作领域产生深远的影响。
Wolfram研究公司自从1988年推出Mathematica系统的1.0 DOS版本以来,历经多次升级和改版,目前已发出For Windows的 5.0版本。
本精品课程主要以Mathematica4.2 for Microsoft Windows版本为例简要介绍该系统的功能及其应用。
1.Mathematica的工作环境Mathematica的运行环境要成功安装并稳定地运行Mathematica for Windows4.2,用户的计算机必须满足以下基本配置条件:·P3或更高型号处理器的个人或多媒体计算机;·Microsoft Windows98、Windows2000、Windows XP或以上版本;·硬盘空间至少200MB,建议1GB以上Mathematica的工作窗口及使用运行Mathematica系统后,将出现下图所示的主窗口:Mathematica4.2的工作窗口有两种类型:笔记本(Notebook)工作窗口和基于文本(Text Based)的工作窗口,这两个工作窗口分别由Mathematica提供的两个基本组成系统――输入输出控制系统(Front End系统)和内核系统(Kernel系统)所包含的交互接口来实现。
Mathematica使用教程
Mathematica使⽤教程Mathematica 使⽤教程⼀、要点Mathematica 是⼀个敏感的软件. 所有的Mathematica 函数都以⼤写字母开头; 圆括号( ),花括号{ },⽅括号[ ]都有特殊⽤途, 应特别注意; 句号“.”,分号“;”,逗号“,”感叹号“!”等都有特殊⽤途, 应特别注意; ⽤主键盘区的组合键Shfit+Enter 或数字键盘中的Enter键执⾏命令.⼆、介绍案例1. 输⼊与输出例1 计算 1+1:在打开的命令窗⼝中输⼊1+2+3并按组合键Shfit+Enter 执⾏上述命令,则屏幕上将显⽰:In[1] : =1+2+3 Out[1] =6这⾥In[1] : = 表⽰第⼀个输⼊,Out[1]= 表⽰第⼀个输出,即计算结果.2. 数学常数Pi 表⽰圆周率π; E 表⽰⽆理数e; I 表⽰虚数单位i ; Degree 表⽰π/180; Infinity 表⽰⽆穷⼤.注:Pi,Degree,Infinity 的第⼀个字母必须⼤写,其后⾯的字母必须⼩写.3. 算术运算Mathematica 中⽤“+”、“-”、“*”、“/” 和“^”分别表⽰算术运算中的加、减、乘、除和乘⽅.例2 计算π+ --213121494891100.输⼊ 100^(1/4)*(1/9)^(-1/2)+8^(-1/3)*(4/9)^(1/2)*Pi则输出 3103π+这是准确值. 如果要求近似值,再输⼊N[%] 则输出这⾥%表⽰上⼀次输出的结果,命令N[%]表⽰对上⼀次的结果取近似值. 还⽤ %% 表⽰上上次输出的结果,⽤ %6表⽰Out[6]的输出结果.注:关于乘号*,Mathematica 常⽤空格来代替. 例如,x y z 则表⽰x*y*z,⽽xyz 表⽰字符串,Mathematica 将它理解为⼀个变量名. 常数与字符之间的乘号或空格可以省略.4. 代数运算例3 分解因式 232++x x输⼊ Factor[x^2+3x+2] 输出 )x 2)(x 1(++ 例4 展开因式 )2)(1(x x ++输⼊ Expand[(1+x)(2+x)] 输出 2x x 32++例5 通分 3122+++x x 输⼊ Together[1/(x+3)+2/(x+2)]输出 )x 3)(x 2(x38+++例6 将表达式)3)(2(38x x x+++ 展开成部分分式输⼊ Apart[(8+3x)/((2+x)(3+x))]输出 3x 12x 2+++ 例7 化简表达式 )3)(1()2)(1(x x x x +++++输⼊ Simplify[(1+x)(2+x)+(1+x)(3+x)]输出 2x 2x 75++三、部分函数1. 内部函数Mathematica 系统内部定义了许多函数,并且常⽤英⽂全名作为函数名,所有函数名的第⼀个字母都必须⼤写,后⾯的字母必须⼩写. 当函数名是由两个单词组成时,每个单词的第⼀个字母都必须⼤写,其余的字母必须⼩写. Mathematica 函数(命令)的基本格式为函数名[表达式,选项] 下⾯列举了⼀些常⽤函数:算术平⽅根x Sqrt[x] 指数函数x e Exp[x]对数函数x a log Log[a,x]对数函数x ln Log[x]三⾓函数 Sin[x], Cos[x], Tan[x], Cot[x], Sec[x], Csc[x] 反三⾓函数ArcSin[x], ArcCos[x], ArcTan[x], ArcCot[x], AsrcSec[x], ArcCsc[x]双曲函数 Sinh[x], Cosh[x], Tanh[x], 反双曲函数 ArcSinh[x], ArcCosh[x], ArcTanh[x] 四舍五⼊函数 Round[x] (*取最接近x 的整数*) 取整函数 Floor[x] (*取不超过x 的最⼤整数*) 取模 Mod[m,n] (*求m/n 的模*) 取绝对值函数 Abs[x] n 的阶乘 n! 符号函数Sign[x] 取近似值 N[x,n] (*取x 的有n 位有效数字的近似值,当n 缺省时,n 的默认值为6*)例8 求π的有6位和20位有效数字的近似值.输⼊ N[Pi] 输出输⼊ N[Pi, 20] 输出注:第⼀个输⼊语句也常⽤另⼀种形式:输⼊ Pi235] 输出 (3) 输⼊ Round[] 输出 -2 例10 计算表达式)6.0arctan(226sin 2ln 1132+-+-e π的值输⼊ 1/(1+Log[2])*Sin[Pi/6]-Exp[-2]/(2+2^(2/3))*ArcTan[.6] 输出2. ⾃定义函数在Mathematica 系统内,由字母开头的字母数字串都可⽤作变量名,但要注意其中不能包含空格或标点符号.变量的赋值有两种⽅式. ⽴即赋值运算符是“=”,延迟赋值运算符是“: =”. 定义函数使⽤的符号是延迟赋值运算符“: =”.例11 定义函数 12)(23++=x x x f ,并计算)2(f ,)4(f ,)6(f . 输⼊Clear[f,x]; (*清除对变量f 原先的赋值*) f[x_]:=x^3+2*x^2+1; (*定义函数的表达式*) f[2] (*求)2(f 的值*)f[x]/.{x->4} (*求)4(f 的值,另⼀种⽅法*)x=6; (*给变量x ⽴即赋值6*)f[x] (*求)6(f 的值,⼜⼀种⽅法*)输出17 97 289注:本例1、2、5⾏的结尾有“;”,它表⽰这些语句的输出结果不在屏幕上显⽰.四、解⽅程在Mathematica 系统内,⽅程中的等号⽤符号“==”表⽰. 最基本的求解⽅程的命令为 Solve[eqns, vars]它表⽰对系数按常规约定求出⽅程(组)的全部解,其中eqns 表⽰⽅程(组),vars 表⽰所求未知变量. 例12 解⽅程0232=++x x 输⼊Solve[x^2+3x+2==0, x] 输出 }}1x {},2x {{-→-→例13 解⽅程组 =+=+1dy cx by ax输⼊ Solve[{a x + b y == 0,c x + d y ==1}, {x,y}]输出+-→-→ad bc a y ,ad bc b x例14 解⽆理⽅程a x x =++-11输⼊ Solve[Sqrt[x-1]+ Sqrt[x+1] == a, x]输出 ??+→24a 4a 4x 很多⽅程是根本不能求出准确解的,此时应转⽽求其近似解. 求⽅程的近似解的⽅法有两种,⼀种是在⽅程组的系数中使⽤⼩数,这样所求的解即为⽅程的近似解;另⼀种是利⽤下列专门⽤于求⽅程(组)数值解的命令: NSolve[eqns, vars] (*求代数⽅程(组)的全部数值解*)FindRoot[eqns, {x, x0}, {y, y0} ,]后⼀个命令表⽰从点),,(00 y x 出发找⽅程(组)的⼀个近似解,这时常常需要利⽤图像法先⼤致确定所求根的范围,是⼤致在什么点的附近.例15 求⽅程013=-x 的近似解输⼊ NSolve[x^3-1== 0, x]输出 {{→x →x →x 输⼊ FindRoot[x^3-1==0,{x, .5}] 输出 {→x 1.}下⾯再介绍⼀个很有⽤的命令:Eliminate[eqns, elims] (*从⼀组等式中消去变量(组)elims*) 例16从⽅程组 ??=+=-+-+=++11)1()1(1222222y x z y x z y x 消去未知数y 、z .输⼊Eliminate[{x^2+y^2+z^2 ==1,x^2+(y-1)^2 + (z-1)^2 ==1, x + y== 1},{y, z}]输出 0x 3x 22==+-注:上⾯这个输⼊语句为多⾏语句,它可以像上⾯例⼦中那样在⾏尾处有逗号的地⽅将⾏与⾏隔开, 来迫使Mathematica 从前⼀⾏继续到下⼀⾏在执⾏该语句. 有时候多⾏语句的意义不太明确,通常发⽣在其中有⼀⾏本⾝就是可执⾏的语句的情形,此时可在该⾏尾放⼀个继续的记号“\”, 来迫使Mathematica 继续到下⼀⾏再执⾏该语句.五、保存与退出Mathematica 很容易保存Notebook 中显⽰的内容,打开位于窗⼝第⼀⾏的File 菜单,点击Save 后得到保存⽂件时的对话框,按要求操作后即可把所要的内容存为 *.nb ⽂件. 如果只想保存全部输⼊的命令,⽽不想保存全部输出结果,则可以打开下拉式菜单Kernel,选中Delete All Output,然后再执⾏保存命令. ⽽退出Mathematica 与退出Word 的操作是⼀样的.六、查询与帮助查询某个函数(命令)的基本功能,键⼊“函数名”,想要了解更多⼀些,键⼊“函数名”,例如,输⼊Plot则输出Plot[f,{x,xmin,xmax}] generates a plot of f as a functionof x from xmin to xmax. Plot[{f1,f2,…},{x,xmin,xmax}] plots several functions fi 它告诉了我们关于绘图命令“Plot”的基本使⽤⽅法.例17 在区间]1,1y=的图形.[-上作出抛物线2x输⼊ Plot[x^2,{x,-1,1}]则输出例18 .输⼊ Plot[{Sin[x],Cos[x]},{x,0,2Pi}]则输出Plot则Mathematica会输出关于这个命令的选项的详细说明,请读者试之.此外,Mathematica的Help菜单中提供了⼤量的帮助信息,其中Help菜单中的第⼀项Help Browser(帮助游览器)是常⽤的查询⼯具,读者若想了解更多的使⽤信息,则应⾃⼰通过Help菜单去学习.编辑本段Mathematica 基本运算a+mathematica数学实验(第2版) b+c 加a-b 减a b c 或 a*b*c 乘a/b 除-a 负号a^b 次⽅Mathematica 数字的形式256 整数实数11/35 分数2+6I 复数常⽤的数学常数Pi 圆周率,π=…E 尤拉常数,e=2.…Degree ⾓度转换弧度的常数,Pi/180I 虚数,其值为√-1Infinity ⽆限⼤指定之前计算结果的⽅法% 前⼀个运算结果%% 前⼆个运算结果%%…%(n个%) 前n个运算结果%n 或 Out[n] 前n个运算结果复数的运算指令a+bI 复数Conjugate[a+bI] 共轭复数Re[z], Im[z] 复数z的实数/虚数部分Abs[z] 复数z的⼤⼩或模数(Modulus)Arg[z] 复数z的幅⾓(Argument)Mathematica 输出的控制指令expr1; expr2; expr3 做数个运算,但只印出最後⼀个运算的结果expr1; expr2; expr3; 做数个运算,但都不印出结果expr; 做运算,但不印出结果编辑本段常⽤数学函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三⾓函数,其引数的单位为弪度Sinh[x],Cosh[x],Tanh[x],… 双曲函数ArcSin[x],ArcCos[x],ArcTan[x] 反三⾓函数ArcCot[x],ArcSec[x],ArcCsc[x]ArcSinh[x],ArcCosh[x],ArcTanh[x],… 反双曲函数Sqrt[x] 根号Exp[x] 指数Log[x] ⾃然对数Log[a,x] 以a为底的对数Abs[x] 绝对值Round[x] 最接近x的整数Floor[x] ⼩於或等於x的最⼤整数Ceiling[x] ⼤於或等於x的最⼩整数Mod[a,b] a/b所得的馀数n! 阶乘Random[] 0⾄1之间的随机数(最新版本已经不⽤这个函数,改为使⽤RandomReal[])Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的极⼤/极⼩值编辑本段数之设定x=a 将变数x的值设为ax=y=b 将变数x和y的值均设为bx=. 或 Clear[x] 除去变数x所存的值变数使⽤的⼀些法则xy 中间没有空格,视为变数xyx y x乘上y3x 3乘上xx3 变数x3x^2y 为 x^2 y次⽅运算⼦⽐乘法的运算⼦有较⾼的处理顺序编辑本段四个常⽤处理代数的指令Expand[expr] 将 expr展开Factor[expr] 将 expr因式分解Simplify[expr] 将 expr化简成精简的式⼦FullSimplify[expr] Mathematica 会尝试更多的化简公式,将 expr化成更精简的式⼦编辑本段多项式/分式转换的函数ExpandAll[expr] 把算是全部展开Together[expr] 将 expr各项通分在并成⼀项Apart[expr] 把分式拆开成数项分式的和Apart[expr,var] 视var以外的变数为常数,将 expr拆成数项的和Cancel[expr] 把分⼦和分母共同的因⼦消去编辑本段分母/分⼦的运算Denominator[expr] 取出expr的分母Numerator[expr] 取出expr的分⼦ExpandDenominator[expr] 展开expr的分母ExpandNumerator[expr] 展开expr的分⼦编辑本段多项式的另⼆种转换函数Collect[expr,x] 将 expr表⽰成x的多项式,如Collect[expr,{x,y,…}] 将 expr分别表⽰成 x,y,…的多项式FactorTerms[expr] 将 expr的数值因⼦提出,如 4x+2=2(2x+1)FactorTerms[expr,x] 将 expr中把所有不包含x项的因⼦提出FactorTerms[expr,{x,y,…}] 将 expr中把所有不包含{x,y,...}项的因⼦提出编辑本段三⾓函数、双曲函数和指数的运算TrigExpand[expr] 将三⾓函数展开TrigFactor[expr] 将三⾓函数所组成的数学式因式分解TrigReduce[expr] 将相乘或次⽅的三⾓函数化成⼀次⽅的基本三⾓函数之组合ExpToTrig[expr] 将指数函数化成三⾓函数或双曲函数TrigToExp[expr] 将三⾓函数或双曲函数化成指数函数复数、次⽅乘积之展开ComplexExpand[expr] 假设所有的变数都是实数来对 expr展开ComplexExpand[expr,{x,y,…}] 假设x,y,..等变数均为复数来对 expr展开PowerExpand[expr] 将多项式项次、系数与最⾼次⽅之取得Coefficient[expr,form] 於 expr中form的系数Exponent[expr,form] 於 expr中form的最⾼次⽅Part[expr,n] 或 expr[[n]] 在 expr项中第n个项代换运算⼦expr/.x->value 将 expr⾥所有的x均代换成valueexpr/.{x->value1,y->value2,…} 执⾏数个不同变数的代换expr/.{{x->value1},{x->value2},…} 将 expr代⼊不同的x值expr清除f的定义Remove[f] 将f⾃系统中清除掉含有预设值的Patterna_+b_. b的预设值为0,即若b从缺,则b以0代替x_ y_ y的预设值为1x_^y_ y的预设值为1条件式的⾃订函数lhs:=rhs/;condition 当condition成⽴时,lhs才会定义成rhsIf指令If[test,then,else] 若test为真,则回应then,否则回应elseIf[test,then,else,unknow] 同上,若test⽆法判定真或假时,则回应unknow 极限Limit[expr,x->c] 当x趋近c时,求expr的极限Limit[expr,x->c,Direction->1]Limit[expr,x->c,Direction->-1]微分D[f,x] 函数f对x作微分D[f,x1,x2,…] 函数f对x1,x2,…作微分D[f,{x,n}] 函数f对x微分n次D[f,x,NonConstants->{y,z,…}] 函数f对x作微分,将y,z,…视为x的函数全微分Dt[f] 全微分dfDt[f,x] 全微分Dt[f,x1,x2,…] 全微分Dt[f,x,Constants->{c1,c2,…}] 全微分,视c1,c2,…为常数不定积分Integrate[f,x] 不定积分∫f dx定积分Integrate[f,{x,xmin,xmax}] 定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定积分数列之和与积Sum[f,{i,imin,imax}] 求和Sum[f,{i,imin,imax,di}] 求数列和,引数i以di递增Sum[f,{i,imin,imax},{j,jmin,jmax}]Product[f,{i,imin,imax}] 求积Product[f,{i,imin,imax,di}] 求数列之积,引数i以di递增Product[f,{i,imin,imax},{j,jmin,jmax}]函数之泰勒展开式Series[expr,{x,x0,n}] 对 expr於x0点作泰勒级数展开⾄(x-x0)n项Series[expr,{x,x0,m},{y,y0,n}] 对x0和y0展开关系运算⼦a==b 等於a>b ⼤於a>=b ⼤於等於aa<=b ⼩於等於a!=b 不等於逻辑运算⼦!p notp||q||… orp&&q&&… andXor[p,q,…] exclusive orLogicalExpand[expr] 将逻辑表⽰式展开基本⼆维绘图指令Plot[f,{x,xmin,xmax}]画出f在xmin到xmax之间的图形Plot[{f1,f2,…},{x,xmin,xmax}]同时画出数个函数图形Plot[f,{x,xmin,xmax},option->value]指定特殊的绘图选项,画出函数f的图形Plot[]⼏种常⽤选项的指令选项预设值说明AspectRatio 1/GoldenRatio 图形⾼和宽之⽐例,⾼/宽Axes True 是否把坐标轴画出AxesLabel Automatic 为坐标轴贴上标记,若设定为AxesLabel->{ylabel},则为y轴之标记。
01第一篇Mathematica入门
01第⼀篇Mathematica⼊门第⼀篇Mathematica⼊门⼀、MathematicaMathematica是集⽂本编辑、数值计算、逻辑分析、图形、声⾳、动画于⼀体的⾼度优化的专家系统.它是⽬前⽐较流⾏的数学软件之⼀.Mathematica最显著的特点是⾼精度的运算功能、强⼤的作图功能以及逻辑编程功能.Mathematica是美国WolframResearch公司开发的⼀套专门⽤于进⾏数学计算的软件.从1988年问世⾄今,已⼴泛运⽤到⼯程技术、应⽤数学、计算机科学、财经、⽣物、⽣命科学、以及太空等领域,数以万计的论⽂、科学报告、计算机绘图等都是Mathematica的杰作. 1995年发表的Mathematica3.0版是数学软件史的⼀⼤创新,⽽现在的Mathematica4.1版,则达到了这类软件的顶峰. Mathematica除了提供数值处理与绘图的功能外,还具有符号计算以及处理多项式的各种运算、函数的微分、积分、解微分⽅程、统计、编程,甚⾄可以制作电脑动画及⾳效等等.Mathematica的基本系统是使⽤C语⾔编写的,因此能⽅便地移植到各种计算机系统上.尽管Mathematica有各种各样的版本,但它们有⼀个共同的内核,Mathematica的各种运算都是由内核来完成的.给内核配置不同的前端处理器,就成为适⽤于各种环境的版本.它的DOS版本的特点是运算速度快,对系统的配置要求较低;它在Windows环境下的特点是图⽂并茂,操作⽅便.这⾥介绍的是在Windows环境下的Mathematica4.1版本.Mathematica4.1对计算机的硬件要求如下:1.操作系统:Windows95以上.2.CPU:Inter586级以上的中央处理器.3.硬盘空间:除了要具备120MB的硬盘空间安装Mathematica4.1外,还需具有100MB左右的剩余硬盘空间⽤于进⾏交换⽂件和复杂的运算.4.内存:64MB以上.⼆、Mathematica界⾯简介双击Mathematica的图标即可运⾏Mathematica的主程序.主程序会同时打开⼀个新的⼯作窗⼝和⼀个基本输⼊模板(Basic Input palette).每⼀个⼯作窗⼝代表⼀个⽂件,⽂件名显⽰在⼯作窗⼝的标题栏上,默认的⽂件名为Untitled-1.nb.位于标题栏下的是菜单栏,包括(File,Edit,Cell,Format,Input,Kernel,Find,Window,Help项). ⽤户可以同时打开多个⼯作区,并且可以对每⼀个⼯作区使⽤不同的名字保存.Mathematica将它们分别命名为Untitled-1;Untitled-2;Untitled-3;….1.⼯作区窗⼝⼯作区是显⽰⼀切输⼊、输出窗⼝.⽆论直接输⼊各种算式或命令,还是已经编好的程序,所有的操作都在这个窗⼝运⾏.⼯作区窗⼝也称作Notebook.2.基本输⼊模板基本输⼊模板由⼀系列按钮组成,⽤以输⼊特殊符号、运算符号、常⽤表达式等.⽤⿏标左键单击⼀个按钮,就可以将它所表⽰的符号输⼊到当前的⼯作区窗⼝中.当启动Mathematica4.1之后,基本输⼊模板会显⽰在屏幕的右边,如果没有,则选择File 下拉菜单中的palette -Basic Input命令激活它.3.主菜单Mathematica的菜单项很多,以下只介绍⼀些最实⽤的菜单项.(1)File菜单File下拉菜单项中的New,Open,Close及Save命令⽤于新建、打开、关闭及保存⽤户的⽂件,这些选项与Word相同.另外有⼏个选项是Mathematica特有的,其中最有⽤的是:●Palettes⽤于打开各种模板;●Generate Palette from Selection⽤于⽣成⽤户⾃制的模板;●Notebooks记录最近使⽤过的⽂件.●模板单击Palettes项,会弹出7个英⽂选项,其中第三项BasicInput(基本输⼊模板)就是启动时已经显⽰在屏幕上的模板.其余最有⽤的选项是第⼆项BasicCalculations(基本计算模板).这个模板分类给出了各种基本计算的按钮.单击各项前⾯的⼩三⾓,会⽴即显⽰该项所包含的⼦项.再次单击各⼦项前⾯的⼩三⾓,则显⽰出⼦项中的各种按钮.若单击其中的某个按钮就可以把该运算命令(函数)输⼊到⼯作区窗⼝中,然后在各个⼩⽅块中键⼊数学表达式,就可以让Mathematica进⾏计算了.有了这两个模板,使得⽤户⽆须死记⼤量的命令和相关的参数,便于查询和输⼊.(2) cell(单元)●单元的样式Mathematica4.1的⼯作窗⼝由不同的单元(cell)组成.例如,输⼊表达式的单元称为输⼊单元(input cell),输出表达式的单元称为输出单元(output cell).每⼀个单元都有其特定的样式(style). 输⼊单元默认的样式名称为input,输出单元默认的样式名称为output.注:在新建⼀个单元时,默认为input.●单元的打开与关闭双击最外层单元的括号,即可关闭该单元,只显⽰最外层.同样只要双击已关闭单元的括号,即可打开该单元.●单元的删除选中所要删除单元的括号,按Delete键即可删除所选单元的内容.(3)Help(帮助)在Mathematica4.1中增加了Help Browser帮助系统.在Help Browser中不但汇集了Mathematica4.1的所有命令和使⽤⽅法,⽽且包含了其完整的使⽤⼿册及各种⼯具栏的使⽤⽅法.单击Help菜单中的Help命令,即可激活Help Browser帮助系统.Help Browser共分六⼤帮助信息:1.Built-in Functions 查询Mathematica4.1的所有内部命令与函数的使⽤⽅法.2.Add-ons 查询Mathematica4.1所带的函数库(packages)命令与函数的⽤法.3.The Mathematica Book Mathematica的完整⼿册.4.Getting Started/Demos初学者使⽤说明与范例.5.Other Information 其他信息,如数学表达式的⼆维格式的输⼊⽅法等.6.Master Index⽤索引的⽅法查询Mathematica的关键词.选择搜索主题的类别之后,输⼊关键词,单击Go To按钮开始搜索主题,或者在最左边的选择列表中选择搜索主题的类别之后,再逐渐缩⼩查询范围.例如:要查询Limit命令的使⽤⽅法,可以直接在Help Browser中输⼊Limit再单击Go To按钮,或选择Algebraic Computation-Calculus-Limit找到有关Limit命令的说明.4.退出Mathematica当结束⼯作时,可以选择“File”菜单中的“Exit”选项或单击关闭按纽. Mathematica 会询问是否保存对打开⼯作区内容的修改,选择“Yes”,系统要求指定⽂件名,⽤户可以任意给定⼀个⽂件名并指定位置,确认后系统将该⽂件保存在⽤户所指定的位置,再次打开该⽂件可以继续上次的运算;选择“Don’t Save”放弃保存;选择“Cancel”取消这次操作并返回Mathematica.三、⾃制模板由于BasicCalculations(基本计算模板)的内容太多,查找不⽅便,因此⾃制模板是⼀个⾮常重要的内容.⾃制模板的步骤如下:1.单击主菜单的input项,弹出⼦菜单.选中⼦菜单中的CreateTabel/Matrix/Palette(建⽴表、矩阵、模板)选项出现对话框.2.在对话框中,选中Make: Palette,在键⼊⾏数和列数,则在窗⼝⽣成⼀个可编辑的原始模板.3.⽤⿏标左键单击原始模板中的第⼀个⼩⽅块,然后在打开的BasicCalculations模板中单击⼀个今后经常使⽤的按钮,就可以将它复制到原始模板中.如此循环往复直⾄全部输⼊完成.4.单击File菜单中的Generate Palette from Selection项,就可以建⽴⼀个⾃⼰的模板了.5.单击⾃制模板右上⾓的关闭按钮,Mathematica将询问是否保存⾃制模板,若保存,则出现对话框,将对话框中显⽰的⽂件名“Untitled-1.nb”改成“⾃定义模板.nb”保存到存放Mathematica模板的⽬录D:\Mathematica\4.1\SystemFiles\FrontEnd\Palettes 下,再次启动时,这个模板的名字就会出现在File菜单的Palette选项中,可与Mathematica的模板⼀样使⽤.四、Mathematica 的常⽤语法1.Mathematica 的基本运算Mathematica 的基本运算包括加(+) ;减(-) ;乘(*) 、除(/) 、乘⽅(?) 等.我们可以按照⼀般数学表达式的⼿写格式输⼊这些基本运算,然后按下Shift+Enter 组合键得到输出结果.例如:In[1]:=Out[1]:= 6 In[2]:= 3^2 Out[2]:= 9说明:(1)Mathematica 将输⼊的指令⽤标题“In[n]:=”标识,输出结果⽤“Out[n]:=”标识,其中“n ”表⽰已经输⼊的指令数.(2)Shift+Enter 在Mathematica 中是执⾏运算的命令.2.输⼊和计算数学表达式(1)键盘直接输⼊和运⾏expr : 直接输⼊表达式.例如:在⼯作窗中输⼊,再按Shift+Enter 组合键,执⾏运算.这时,⼯作32)63(2-+?窗会显⽰如下运算:In[1]:=-??3Out[1]:= ??N[expr] 计算表达式的近似数值,Mathematica 默认的有效数字位数为16位,但按标准输出只显⽰前6位有效数字,若要全部显⽰,则⽤N[expr]//InputForm 命令.N[expr ,n] 计算表达式的具有任意指定数字位数的近似值(指定的数字位数n 应该⼤于16),结果在末位是四舍五⼊的. NumberForm[expr , n] 将表达式⽤n 个有效数字表⽰.例1 求的近似值,有效数字分别为6位、8位、16位、32位.e 解: In[1]:= N ??Out[1]:= 2.71828In[2]:= N u m b e r F o r m ?N ,8?Out[2]:= 2.7182818 In[3]:= N[ ]//InputForm Out[3]:= 2.718281828459045 In[4]:= N[ ,32]Out[4]:= 2.7182818284590452353602874713527(2)利⽤基本输⼊模板直接输⼊我们可以利⽤基本输⼊模板所提供的⼀些特殊符号、运算符号、常⽤表达式来输⼊表达式.3.简单的调⽤⽅式有时在后⾯的计算要调⽤到前⾯已经计算过的结果,这时Mathematica 提供了⼀种简单的调⽤⽅式:命令意义%%%%%…% (个%),或 %n n读取前⼀个输出结果.读取前第⼆个输出结果.读取前第个输出结果.n 例如 In[1]:= 3^4Out[1]:= 81 In[2]:= %?5 Out[2]:= 405 In[3]:= %1?%2Out[3]:= 4864.长表达式的输⼊Mathematica 是允许⼀个表达式占⽤多个输⼊⾏的,但需注意的是:必须在指令或语法告⼀段落⽽⼜不完整的地⽅使⽤Enter 键进⾏换⾏.5.有关代数式的⼏个命令(1)多项式的展开与因式分解命令意义[多项式]Expand 对多项式进⾏展开运算.[多项式]Factor 对多项式进⾏因式分解.例2 将多项式展开5)1(y x ++解 In[1]:= Expand[(1+x+y)^5]Out[1]:= 1?5x ?10x 2?10x 3?5x 4?x 55y 20xy例3 将多项式分解因式2223-+-x x x 通过管线不仅可以解路须同时切断习题电源,线缆敷设完毕,要进⾏检查和检测处理。
Mathematica 软件使用简介
Mathematica 软件使用简介Mathematica 是一个功能强大的常用数学软件, 它是由美国物理学家Stephen Wolfram领导的Wolfram Research公司用C语言开发的数学系统软件。
不但可以解决数学中的数值计算问题, 还可以解决符号演算问题, 并且能够方便地绘出各种函数图形。
这里介绍的命令可以适用于Windows操作系统的Mathematica2.2以上版本运行。
一、Mathematica 的进入/退出如果你的计算机已经安装了Mathematica 软件, 系统会在Windows【开始】菜单的【程序】子菜单中加入启动Mathematica命令的图标:图1.1 启动Mathematica用鼠标单击它就可以启动Mathematica系统进入Mathematica系统工作界面:图1.2 Mathematica2.2工作界面图图1.3 Mathematica4.0工作界面图Mathematica系统工作界面是基于Windows 环境下的Mathematica 函数或程序运行与结果显示的图形用户接口, 是Mathematica的工作屏幕。
界面上方的主菜单和工具条的功能类似于Windows中的Word软件。
其中的空白位置称为Notebook用户区, 在这里可以输入文本、实际的Mathematica命令和程序等来达到使用Mathematica的目的。
在用户区输入的内容被 Mathematica用一个具有扩展名为“.ma”(Mathematica2.2)或“.mb”(Mathematica4.0)在的文件名来纪录,该文件名是退出Mathematica时保存在用户区输入内容的默认文件名,一般是文件名:“Newn b-1.ma”或“Newnb-1.mb”。
退出Mathematica系统像关闭一个Word文件一样, 只要用鼠标点击Mathematica系统集成界面右上角的关闭按钮即可。
关闭前, 屏幕会出现一个对话框, 询问是否保存用户区的内容, 如果单击对话框的“否(N)”按钮, 则关闭Notebook窗口, 退出Mathematica系统; 如果单击对话框的“是(Y)”按钮, 则先提示你用一个具有扩展名为 .ma或.mb的文件名来保存用户区内的内容, 再退出Mathematica系统。
Mathematica入门教程
Mathematica入门教程Mathematica入门教程Mathematica入门教程Mathematica的基本语法特征如果你是第一次使用Mathematica,那么以下几点请你一定牢牢记住:Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名。
系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Conjugate[z]等。
乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,Tan[x]^y。
自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。
当你赋予变量任何一个值,除非你明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,它将始终保持原值不变。
一定要注意四种括号的用法:()圆括号表示项的结合顺序,如(x+(y^x+1/(2x)));[]方括号表示函数,如Log[x],BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如{2x,Sin[12 Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[]=1。
Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔)。
当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果。
一、数的表示及计算1.在Mathematica中你不必考虑数的精确度,因为除非你指定输出精度,Mathematica总会以绝对精确的形式输出结果。
例如:你输入In:=378/123,系统会输出Out:=126/41,如果想得到近似解,则应输入In:=N[378/123,5],即求其5位有效数字的数值解,系统会输出Out:=3.073 2,另外Mathematica还可以根据你前面使用的数字的精度自动地设定精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ch1. a Mathematic 概述1.1a Mathematic 的工作环境a Mathematic 的基本系统是用C 语言编写的,因此能够方便的移植到各种计算机系统上。
打开a Mathematic ,可以看到它是一个窗口软件,包括一个执行各种功能的工作条(屏幕顶端)和一个工作区窗口。
激活工作区窗口,输入希望的计算式(如:“3+8-4”),同时按下“Shift ”和“Enter ”键便可执行计算。
使用a Mathematic 的几个注意点:1. 每次使用a Mathematic ,第一次计算时间较长,这是系统在进行初始化工作,从第二次计算开始就很快了。
2. 输入计算公式和普通文本输入一样,系统将把每次输入记录在案,并自动给每个输入记录用“In[n]”编号,计算结果用“Out[n]”编号。
“%”表示上一次计算结果,“%n ”表示“Out[n]”的内容,这样可以减少重复输入。
3. 输完计算式后,同时按下“Shift ”和“Enter ”键,a Mathematic 将完成计算。
4. 必须严格按照系统所规定的格式输入算式,否则将无法完成计算任务,通常给出一段文字,告诉你出错的(可能)原因。
1.2a Mathematic 的基本功能1.基本计算功能,如: In[1]:= 3+8-4 Out[1]= 7In[2]:= 12.5^3 (*即12.53*) Out[2]= 1953.132.强大的符号计算功能a Mathematic 的最大特点是能进行符号计算。
如: (1) 解方程x a x 2=+ In[3]:= Out[3]=I注意,方程的解用“ ”代替了“=”。
(2) 求不定积分dx x e x ⎰sin In[4]:= Out[4]= 注意,不定积分的任意常数C 均省略。
3.绘图功能a Mathematic 有强大的图形功能,可作各种二维、三维图形。
如: (1) 作函数x x y 6.1sin sin +=的二维图形--Graphics (2) 作函数)sin(xy z =的三维图形In[6]:=--phics SurfaceGra1.3从a Mathematic 中获得帮助信息1. 点击工作条中的Help 可获得帮助信息。
特别是下拉菜单“Help Browser ”中的“Mathematica Book ”系统而完整地介绍了本软件的使用方法。
2. 用“?”可获得帮助信息(常用信息)。
如: In[7]:= ?SinSin @z D gives the sine of z.3. 用“??”可获得帮助信息(详细信息)。
如: In[8]:= ??SinSin @z D gives the sine of z.Attributes @S in D =8L istable,NumericFunction,Protected <花括号内的多项内容可到“Help Browser ”中查询,只要在“Go To ”右面的对话框中输入想查询信息的名称后打回车键即可找到相应的信息了。
Ch2. aMathematic的基本命令2.1算术运算1.算术运算用aMathematic运算与用计算器一样简单。
如:In[1]:= 3.55+12.879/(4.33-1.203)^2.3Out[1]=4.4856aMathematic有强大的计算功能,总可以得到精确值。
如:In[2]:= (30000*12345)^9Out[2]=1310723665724312245850482517300821679687500000000000000/ 0000000000000000000000如果想得到近似值,可在输入结尾加上“//N”。
如:In[3]:= (30000*12345)^9//NOut[3]=7731072.1⨯10用“N[ ]”也有相同效果。
如:In[4]:=N[Pi,50] (*表示π的近似值,取50位有效数字*)Out[4]= 3.1415926535897932384626433832795028841971693993751 输入整数时,aMathematic认为是精确值;输入小数时,aMathematic认为是近似值。
如:In[5]:=(30000*12345)^9.0Out[5]=7710.1⨯31072In[6]:= 3/8+2/67217Out[6]=5362.2 常用函数与常数1.2. Pi(圆周率π) E(自然对数的底e) I(虚数单位i) Infinity(+∞) -Infinity(-∞) Degree(π/180)角度 注意,1.a Mathematic 中内部函数和常数须用大写字母开头; 2.函数的自变量应放在方括号内。
例如; In[7]:= Sin[Pi/3]Out[7]=23 (*这是符号解,即3sin的精确解*) In[8]:= N[%,6] (*上述23的近似值,取6位有效数字*)Out[8]= 866025.03.复数 “I ”表示虚数单位i ,如: In[9]:= Log[-737.3]Out[9]= 6.60299+3.14159äa Mathematic 1.赋值与消除赋值有时某些变量(或函数)在计算中重复出现,为避免重复输入,可以先给它们赋值。
如果要对变量赋值可用以下方法: (1)在变量计算前先赋值。
如: In[1]:= x=3; (*分号表示不立即输出*)这时变量x 就已赋值为3,以后遇到x 时,a Mathematic 就认为是3了。
In[2]:= x+x Out[2]= 6(2)在变量计算后赋值。
如:In[3]:= y+2y/.y->3 (*这时y 已赋值为3*) Out[3]= 9In[4]:= x^2+2y Out[4]= 15(3) 定义函数(对函数赋值)a Mathematic 中有很多内部函数,如:Log[x],Sin[x],Abs[x]等;用户也可以自己定义函数,如定义32)(2++=x x x f In[5]:= f[x_]:=x^2+2 x+3这样函数f(x)就定义好了,在定义函数时,等号一般用“:=”,方括号内自变量右边必须有下划线“_”。
下面就可以使用此函数了。
In[6]:= f[2] Out[6]= 7In[7]:= f[t+1]Out[7]= 3+2 (1+t)+(1+t)2In[8]:= Integrate[f[x],{x,0,1}] Out[8]= 313定义分段函数可用Which(或If)命令来完成,如:⎪⎩⎪⎨⎧>≤≤--<-=121112)(x x xx x f In[9]:= f[x_]:=Which[x<-1,-2, x<=1,x,x>1,2]同样可定义多元函数 In[10]:= g[x_,y_,z_]:=Sin[x]+y-zIn[11]:= g[Pi/2,1/2,3] Out[11]= 23-要消除赋值,可用以下方法: (1)赋值x=. 如: In[12]:= x=. In[13]:= x^2+2y Out[13]= x 2+6(2)用函数“Clear ”。
如: In[14]:= Clear[y] In[15]:= x^2+2y Out[15]= x 2+2y清除定义的函数也用 Clear[f]。
In[16]:= Clear[f]2.常用的初等代数符号计算 (1)展开多项式 ExpandIn[17]:= Expand[(x+1)(x^2+2x+2)+2x+5] Out[17]= 7+6x+3x 2+x 3 (2)因式分解 Factor In[18]:= Factor[x^2+2x+1] Out[18]= (1+x)2(3)通分 TogetherIn[19]:= Together[2/(3+x)^2+3x/(3+x)^2+x^2/(3+x)^2]Out[19]= 22x)(3x x 32+++ (4)拆分(把有理分式分解为部分分式之和) Apart In[20]:= Apart[(2-3x+x^3)/(9+3x-5x^2+x^3)] Out[20]= ()()()x 141x 3419x 3512+++-++-+(5)约分 CancelIn[21]:= Cancel[(1+2x+x^2)/(x^2-x-2)] Out[21]=x2x1+-+3.解代数方程a Mathematic 中的方程的等号以双等号“= =”表示。
In[22]:= Solve [x^2+3x-8==0,x]Out[22]= ()()⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+-→⎭⎬⎫⎩⎨⎧--→41321x ,41321xIn[23]:= N[%]Out[23]= {}{}{}1.70156x ,4.70156x →-→ In[24]:= Solve[{x+y-1==0,x-y==0},{x,y}]Out[24]= ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧→→21y ,21x要求5次以上的高次方程,Solve 就无能为力了,可用NSolve 求多项式方程的近似解。
In[25]:= NSolve[x^3-2x^2-4x-7==0,x]Out[25]=8x ®-0.81599-1.12316ä<,8x ®-0.81599+1.12316ä<,8x ®3.63198<也可用命令FindRootIn[26]:= FindRoot[x^3-2x^2-4x-7==0,{x,4}] Out[26]= 8x ®3.63198<其中4表示方程在从4出发求解。
2.4微积分的符号计算与数值计算 1.微分(导数)运算(1)D[f,x] 求导数或偏导数 In[1]:= D[Sin[x],x] Out[1]= Cos[x]In[2]:= D[y+Sin[x](x+y),y]Out[2]= 1+Sin[x](2)D[f,{x,n}] 求n 次(偏)导数 In[3]:= D[x^3+x^2+1,{x,2}] Out[3]= 2+6x(3)D[f,x1,x2] 求混合偏导数 In[4]:= D[(x^2)Sin[y],x,y] Out[4]= 2xCos[y]In[5]:= D[f[x^2,x y],x]Out[5]=y f H 0,1L @x 2,x y D +2x f H 1,0L @x 2,x y D2.积分运算(1)不定积分 ⎰fdx In[6]:= Integrate[x^2,x]Out[6]= 33xa Mathematic 可做几乎所有标准函数的不定积分,但对于“积不出”的可积函数a Mathematic 也不能求。