分子生物学终极复习资料汇总
分子生物学复习资料
![分子生物学复习资料](https://img.taocdn.com/s3/m/f111ad053868011ca300a6c30c2259010202f309.png)
分子生物学复习资料分子生物学是研究生命体内分子结构和功能的一门学科,其研究范围包括基因表达和调控、蛋白质结构和功能、DNA重复和修复、细胞信号传递等多个方面。
以下是分子生物学复习资料,帮助大家复习此学科。
DNA1. DNA是双螺旋结构,由磷酸、核糖和四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成。
2. DNA的复制包括三个步骤:解旋、合成和连接。
3. DNA合成是通过DNA聚合酶进行的,这些酶在模板链上添加互补碱基。
4. DNA可以通过DNA甲基化调节基因表达。
5. DNA可以被DNA锁蛋白等转录因子识别和结合。
RNA1. RNA是由核糖、磷酸和四种碱基 (腺嘌呤、尿嘧啶、胸腺嘧啶和鸟嘌呤)组成。
2. RNA主要分为三种类型:mRNA (信使RNA)、rRNA (核糖体RNA)和tRNA (转运RNA)。
3. 基因表达分为两个步骤:转录和翻译。
4. 转录过程分为三个步骤:启动、延伸和终止。
5. tRNA担任将氨基酸与相应的密码子匹配的角色。
蛋白质1. 蛋白质是由氨基酸组成的长链。
2. 氨基酸有20种类型,它们是由不同的侧链区分的。
3. 蛋白质折叠形态对其功能至关重要。
4. 蛋白质可以通过转录调节子的活性来控制基因表达。
5. 蛋白质可以通过磷酸化、甲基化和泛素化等方式进行修饰,从而调节其功能。
细胞信号传递1. 细胞信号传递是细胞中信号分子相互作用的过程。
2. 细胞信号分为内部信号和外部信号。
3. 细胞膜可以通过受体蛋白与外部信号相互作用。
4. 内部信号分子可以通过传递信号的级联反应来控制基因表达等生物过程。
5. 蛋白激酶和蛋白磷酸酶是关键的信号传递分子。
总结以上是分子生物学的复习资料,包括DNA、RNA、蛋白质和细胞信号传递等方面的知识点。
学习分子生物学需要积累大量的概念和实验技术,以便理解分子间相互作用和影响它们在细胞和生物中的功能。
希望此资料对大家的复习有所帮助。
分子生物学总复习
![分子生物学总复习](https://img.taocdn.com/s3/m/1f5bd2a7b0717fd5360cdca9.png)
分子生物学第1章绪论1、分子生物学发展史上的重大历史事件?①1859年达尔文的《物种起源》的发表;②沃森和克里克 DNA双螺旋结构的揭示;③遗传密码的破译;④信使RNA的发现;⑤操纵子模型的开创;第2章基因概念的演变与发展1、名词解释:断裂基因:真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因重叠基因:指基因组DNA中某些序列被两个或两个以上的基因所共用。
这些基因序列之间互相有重叠,所以称重叠基因(也称基因重叠)。
外显子:基因中编码蛋白质的序列内含子:基因中不编码蛋白质的序列。
变性:是指核酸双螺旋碱基对的氢键断裂,双链变成单链,从而使核酸的天然构象和性质发生改变。
复性:已变性的单链DNA在逐渐降温的条件下,单链的配对碱基由形成新的氢键,恢复到天然DNA的双螺旋结构的过程。
C值:是指某生物单倍体基因组DNA的核苷酸数。
C值矛盾:生物基因组的大小同生物在进化上所处地位的高低没有绝对的相关性的这种现象。
转座:一个转座子从基因组的一个位置转移到另一个位置的过程。
转座子:是基因组中可以转移的一段DNA序列。
自主性转座子:具有自我调控切换和转座的能力的转座因子。
非自主性转座子:只有在被给与转座酶的前提下才能进行被动转运等一系列活动的转座因子。
2、DNA双螺旋结构模型的要点及影响其稳定性的因素要点:1、A=T G=C A+G=T+C;2、DNA分子是由两条反向平行的多聚核苷酸组成的,且以磷酸二酯键连接而成的;3、一条核苷酸链绕纵轴旋转一周的螺距为3.4nm,其中包含10个碱基对,每对碱基对之间相距0.34nm。
影响其稳定性的因素:1、氢键;2、磷酸酯键;3、离子强度;4、碱基堆积力;5、碱基的分子内能。
3、碱基配对规则A=T G=C A+G=T+C4、DNA的多态性:A-DNA(右)、B-DNA(右)、Z-DNA(左)的手性(左手、右手螺旋)5、原核三种转座子:插入序列、复杂型转座子、复合型转座子的结构特点插入序列:(1)含短的末端方向重复序列,(2)含编码转座酶的基因,(3)靶位点存在5-9bp的端正向重复序列。
分子生物学总复习期末考试总复习
![分子生物学总复习期末考试总复习](https://img.taocdn.com/s3/m/c057cbe9988fcc22bcd126fff705cc1755275f29.png)
分子生物学课程重点,以及一份真题。
1、绪论(1)分子生物学的概念分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与蛋白质、蛋白质与核酸之间的互作及其基因表达调控机理的学科。
(3)经典历史事迹1928年格里菲斯证明了某种转化因子是遗传物质1944年艾弗里做了肺炎双球杆菌转换实验1953年沃森和克里克提出双螺旋结构桑格尔两次诺贝尔学奖2、染色体与 DNA(1)真核生物染色体具体组成成分为:组蛋白、非组蛋白和DNA。
在真核细胞染色体中,DNA与蛋白质完全融合在一起,其蛋白质与相应DNA的质量之比约为2:1。
这些蛋白质在维持染色体结构中起着重要作用。
(2)组蛋白组蛋白是染色体的结构蛋白,其与DNA组成核小体。
根据其凝胶电泳性质可将其分为H1、H2A、H2B、H3及H4。
组蛋白含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸。
H2A、H2B 介于两者之间。
H1易分离,不保守;组蛋白的特性:①进化上的极端保守,②无组织特异性;③肽链上分布的不对称性;组蛋白的修饰作用⑤富含赖氨酸的组蛋白H5(3)C值反常现象C值:一种生物单倍体基因组DNA的总量。
一般情况,真核生物C值是随着生物进化而增加,高等生物的C值一般大于低等生物。
(4)DNA的结构•DNA的一级结构即是指四种核苷酸的连接及排列顺序,表示该DNA分子的化学构成。
•DNA二级结构是指两条多核苷酸链反相平行盘绕所生成的双螺旋盘绕结构。
DNA的二级结构分两大类:一类是右手螺旋,如A-DNA和B-DNA;另一类是左手螺旋,即Z-DNA。
DNA三级结构:是双螺旋进一步缠绕,形成核小体,染色质,染色体等超螺旋结构,5、每轮碱基数10•DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。
超螺旋结构是DNA高级结构的主要形式(非唯一形式),可分为正超螺旋和负超螺旋两类,它们在不同类型的拓扑异构酶(通过催化DNA链的断裂和结合,从而影响DNA的拓扑状态。
终极版分子生物学考试知识点汇总
![终极版分子生物学考试知识点汇总](https://img.taocdn.com/s3/m/d471fe8e4a7302768f99390c.png)
1 细胞通讯(Cell Communication)细胞间的相互识别、相互作用和信息交流的现象称作细胞通讯。
2 信号转导(Signal Transduction)在细胞通讯中所发生各种分子的活性变化,而引起细胞功能改变的过程称为信号转导3 信息分子(signal molecule)在细胞间或细胞内进行信息传递的化学物质。
4细胞内信息分子细胞受第一信使刺激后产生的、在细胞内传递信息的化学分子,又称第二信使6 受体(Receptor):细胞中能识别信息分子,并与之特异结合、引起相应生物效应的蛋白质。
7 蛋白激酶(protein kinase):是指使蛋白质磷酸化的酶。
8.转基因:是指是借助基因工程将确定的外源基因导入动植物的染色体上,使其发生整合并遗传的过程。
9 转基因技术:指将提取特定生物体基因组中所需要的目的基因或人工合成指定序列的DNA片段转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体的生物技术手段。
10、瞬时转染(transient transfection)是将DNA导入真核细胞的方式之一。
在瞬时转染中,重组DNA导入感染性强的细胞系以获得目的基因暂时但高水平的表达。
转染的DNA不必整合到宿主染色体,可在比稳定转染较短时间内收获转染的细胞,并对溶解产物中目的基因的表达进行检测。
11 基因转染:即Gene transfection,是指将具生物功能的核酸转移或运送到细胞内并使核酸在细胞内维持其生物功能。
12 stable transfection:即稳定转染,是指外源基因转染真核细胞后整合入基因组DNA,能够长期存在于细胞中,随染色体复制而传给子代的转染方式。
11 基因组印记.Genomic imprinting:由于源自某一亲本的等位基因或它所在染色体发生了表观遗传修饰,导致不同亲本来源的两个等位基因在子代细胞中表达不同。
分子生物学复习资料精选全文
![分子生物学复习资料精选全文](https://img.taocdn.com/s3/m/5fccb562df80d4d8d15abe23482fb4daa58d1dad.png)
可编辑修改精选全文完整版分子生物学复习资料名词解释:复制叉:复制时,双链DNA要解开成两股链分别进行,所以,这个复制起点呈现叉子的形式,被称为复制叉。
复制子:单独复制的一个DNA单元被称为一个复制子,是一个可移动的单位。
一个复制子在任何一个细胞周期只复制一次。
Klenow片段:用枯草杆菌蛋白酶处理大肠杆菌DNA聚合酶而从全酶中除去5’-3’外切酶活性的肽段后的大片段肽段。
外切酶:是一类能从多核苷酸链的一端开始按序催化水解3、5-磷酸二酯键,降解核苷酸的酶。
内切酶:是一种能催化多核苷酸的链断裂的酶,只对脱氧核糖核酸内一定碱基序列中某一定位置发生作用,把这位置的链切开。
前导链:在DNA复制过程中,与复制叉运动方向相同,以5'-3'方向连续合成的链。
冈崎片段:在DNA复制过程中,前导链连续合成,而滞后链只能是断续的合成5’-3’的多个短片段,这些不连续的片段称为冈崎片段。
端粒:是真核生物线性基因组DNA末端的一种特殊结构,它是一段DNA序列和蛋白质形成的复合体。
端粒酶:是负责染色体末端(端粒)复制,是由 RNA 和蛋白质组成的核糖核蛋白.其中的 RNA 成分是端粒复制的模板.(因此端粒是逆转录酶) 作用:维持端粒长度.DNA复制参与的酶和蛋白:拓扑异构酶,解链酶,单链结合蛋白(SSB蛋白),引发酶,DNA聚合酶,DNA连接酶。
线性DNA末端复制方式:1)环化;2)末端形成发卡结构;3)某些蛋白质的启动。
DNA修复的方式:错配修复,切除修复,重组修复,DNA直接修复,SOS反应。
AP位点:所有细胞中都带有不同类型、能识别受损核酸位点的糖苷水解酶,它能特异性切除受损核苷酸上的N-β糖苷键,在DNA链上形成去嘌呤或去嘧啶位点,统称为AP位点。
AP修复:DNA分子中一旦产生了AP位点,AP核酸内切酶就会把受损核苷酸的糖苷-磷酸键切开,并移去包括AP位点核苷酸在内的小片段DNA,由DNA聚合酶Ⅰ合成新的片段,最终由DNA连接酶把两者连成新的被修复的DNA链。
分子生物学(全)
![分子生物学(全)](https://img.taocdn.com/s3/m/ed25222eb4daa58da0114a02.png)
第一章核酸的基本知识及核酸化学遗传物质必须具备的几个条件:(1)自我复制,代代相传。
(2)储备、传递信息的潜在能力。
(3)稳定性强,但能够变异。
(4)细胞分裂时把遗传信息有规律分配到子细胞中。
核酸的发现:1868年,瑞士青年科学家 F.Miescher核酸是遗传信息的载体证明试验:1944,O.Avery肺炎双球菌转化实验1952,A.D Hershey和M.Chase噬菌体感染实验DNA转化实验-DNA是遗传物质的证明结论是:S型菌的DNA将其遗传特性传给了R型菌,DNA就是遗传物质。
从此核酸是遗传物质的重要地位才被确立,人们把对遗传物质的注意力从蛋白质移到了核酸上。
噬菌体的侵染标记实验-DNA是遗传物质的证明烟草花叶病毒的感染和繁殖过程-证实RNA也是重要的遗传物质核酸是生命遗传信息的携带者和传递者核酸的元素组成:C H O N P核酸的元素组成有两个特点:1.一般不含S2.P含量较多,并且恒定(9%-10%)。
因此,实验室中用定磷法进行核酸的定量分析。
(DNA9.9%、RNA9.5%?)核酸(DNA和RNA)是一种线性多聚核苷酸,它的基本结构单元是核苷酸。
DNA A 核苷酸本身由核苷和磷酸组成,而核苷则由戊糖和碱基形成。
组成核酸的戊糖有两种。
DN 所含的戊糖为β-D-2-脱氧核糖;RNA所含的戊糖则为β-D-核糖。
核苷由戊糖和碱基缩合而成,嘌呤的N9或嘧啶的N1与戊糖C-1C-1’’-OH以C-N糖苷键相连接。
核苷酸是核苷的磷酸酯。
作为DNA或RNA结构单元的核苷酸分别是5′-磷酸-脱氧核糖核苷酸和5′-磷酸-核糖核苷酸。
核苷酸的衍生物ATP(腺嘌呤核糖核苷三磷酸)----最广泛;GTP(鸟嘌呤核糖核苷三磷酸);环化核苷酸cAMP 和cGMP主要功能是作为细胞之间传递信息的信使。
辅酶核苷酸:NAD+NADP+FMN FAD CoA生物化学上维生素与辅酶核苷酸的生物学作用(1)参与DNA、RNA的合成、蛋白质的合成、糖与磷脂的合成。
分子生物学复习资料全
![分子生物学复习资料全](https://img.taocdn.com/s3/m/b5e7c880d4bbfd0a79563c1ec5da50e2524dd135.png)
分子生物学复习资料全1. 概述- 分子生物学是研究生物体分子层面结构和功能的科学领域。
- 分子生物学主要关注DNA、RNA、蛋白质等生物分子的合成、结构和功能。
2. DNA- DNA是遗传物质,储存了生物体的遗传信息。
- DNA由核苷酸组成,包括脱氧核糖核苷酸和四种碱基:腺嘌呤、鸟嘌呤、胸腺嘧啶和鳕嘧啶。
- DNA的双螺旋结构由两条互补链以螺旋形式相互缠绕而成。
3. RNA- RNA在细胞中起着重要的生物学功能。
- RNA由核苷酸组成,包括核糖核苷酸和四种碱基:腺嘌呤、鸟嘌呤、尿嘧啶和胞嘧啶。
- RNA分为多种类型,包括mRNA、tRNA和rRNA等。
4. 蛋白质合成- 蛋白质合成是通过转录和翻译两个过程完成的。
- 转录是将DNA转录成mRNA的过程。
- 翻译是将mRNA翻译成蛋白质的过程。
5. 基因调控- 基因调控是控制基因表达水平的过程。
- 基因调控包括转录因子的结合、DNA甲基化和染色质重塑等。
6. 克隆技术- 克隆技术是复制生物体基因或DNA序列的方法。
- 主要克隆技术包括限制性内切酶切割、聚合酶链式反应和DNA串联。
7. PCR- PCR是一种通过体外扩增DNA片段的技术。
- PCR包括三个步骤:变性、退火和延伸。
8. 分子遗传学- 分子遗传学研究基因在遗传传递中的分子机制。
- 分子遗传学主要研究基因突变、基因重组和基因表达等。
9. DNA测序- DNA测序是确定DNA序列的方法。
- DNA测序技术包括Sanger测序和高通量测序等。
10. 基因工程- 基因工程是利用DNA技术修改或转移基因的技术。
- 基因工程在农业、医药和生物学研究等领域有着广泛的应用。
以上是关于分子生物学的简要复习资料,希望能对你的学习有所帮助。
分子生物学复习资料
![分子生物学复习资料](https://img.taocdn.com/s3/m/7ea11f3ab90d6c85ec3ac6b9.png)
名词解释1. DNA拓扑异构酶:能在闭环DNA 分子中改变两条链的环绕次数的酶,它的作用机制是首先切断DNA,让DNA绕过断裂点以后再封闭形成双螺旋或超螺旋DNA.2. 信号肽:在起始密码子后,有一段编码疏水性氨基酸序列的RNA区域,被称为信号肽序列,它负责把蛋白质引导到细胞内膜结构的亚细胞器内。
3. 启动子:与基因表达启动相关的顺式作用元件,是结构基因的重要成分。
它是一段位于转录起始位点5’端上游区大约100~200bp以内的具有独立功能的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合并具有转录起始的特异性。
4. 冈崎片段:是在DNA半不连续复制中产生的长度为1000~2000个碱基的短的DNA片段,能被连接成一条完整的DNA链。
5. 密码的简并性:由一种以上密码子编码同一个氨基酸的现象称为简并,对应于同一氨基酸的密码子称为同义密码子。
6. DNA重组体:根据人们的意愿利用限制性内切酶和DNA连接酶对不同生物的遗传基因进行切割、拼接或者重新组合,形成具有新的遗传性状的DNA 。
7. 信号转导:在细胞通讯系统中,细胞识别与之相接触的细胞,或者识别周围环境中存在的各种化学和物理信号,并将其转变为细胞内各种分子活性的变化,从而改变细胞的某些代谢过程,影响细胞的生长速度,甚至诱导细胞凋亡,这种针对外源信息所发生的细胞应答反应全过程称为信号转导。
8. 摆动假说:Crick为解释反密码子中某些稀有成分的配对以及许多氨基酸有2个以上密码子的问题而提出的假说。
9. C值反常现象:指C值往往与种系的进化复杂性不一致的现象。
10. 半不连续复制:DNA复制过程中前导链的复制时连续的,而另外一条链,即后随链的复制是中断的、不连续的。
11. 基因组:生物有机体的单倍体细胞中所有DNA,包括核中的染色体DNA和线粒体、叶绿体等亚细胞器中的DNA.12. 转录:是指拷贝出一条与DNA链序列完全相同(除了T——》U之外)的RNA单链的过程,是基因表达的核心步骤。
终极版分子生物学考试知识点汇总
![终极版分子生物学考试知识点汇总](https://img.taocdn.com/s3/m/d471fe8e4a7302768f99390c.png)
1 细胞通讯(Cell Communication)细胞间的相互识别、相互作用和信息交流的现象称作细胞通讯。
2 信号转导(Signal Transduction)在细胞通讯中所发生各种分子的活性变化,而引起细胞功能改变的过程称为信号转导3 信息分子(signal molecule)在细胞间或细胞内进行信息传递的化学物质。
4细胞内信息分子细胞受第一信使刺激后产生的、在细胞内传递信息的化学分子,又称第二信使6 受体(Receptor):细胞中能识别信息分子,并与之特异结合、引起相应生物效应的蛋白质。
7 蛋白激酶(protein kinase):是指使蛋白质磷酸化的酶。
8.转基因:是指是借助基因工程将确定的外源基因导入动植物的染色体上,使其发生整合并遗传的过程。
9 转基因技术:指将提取特定生物体基因组中所需要的目的基因或人工合成指定序列的DNA片段转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体的生物技术手段。
10、瞬时转染(transient transfection)是将DNA导入真核细胞的方式之一。
在瞬时转染中,重组DNA导入感染性强的细胞系以获得目的基因暂时但高水平的表达。
转染的DNA不必整合到宿主染色体,可在比稳定转染较短时间内收获转染的细胞,并对溶解产物中目的基因的表达进行检测。
11 基因转染:即Gene transfection,是指将具生物功能的核酸转移或运送到细胞内并使核酸在细胞内维持其生物功能。
12 stable transfection:即稳定转染,是指外源基因转染真核细胞后整合入基因组DNA,能够长期存在于细胞中,随染色体复制而传给子代的转染方式。
11 基因组印记.Genomic imprinting:由于源自某一亲本的等位基因或它所在染色体发生了表观遗传修饰,导致不同亲本来源的两个等位基因在子代细胞中表达不同。
分子生物学总复习
![分子生物学总复习](https://img.taocdn.com/s3/m/c786d8e09b89680203d82523.png)
分子生物学总复习一、名词解释1. 分子生物学(Molecular biology):I consider molecular biology to be the study of genes and their activities at the molecular level, including transcription, translation, DNA replication, recombination and translocation.分子生物学:分子生物学是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭示生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
2.中心法则(Central Dogma):染色体DNA是RNA分子的模板,合成后的RNA分子转运到细胞质中,在那里决定蛋白质中氨基酸的顺序。
1956年,Crick 提出将遗传信息的传递途径称为中心法则(Central dogma)。
转录翻译复制DNA RNA 蛋白质3. Base flipping:双螺旋的力能特征有助于使一条多核苷酸链上的一个碱基与另一条链上的互补碱基配对,然而,有时单个的碱基会从双螺旋中突出,这种现象称为碱基翻出,从而称为酶的作用位点。
4. Denaturation:变性,当DNA溶液温度高于生理温度(接近100℃)或者Ph较高时,互补的两条链就可以分开,这个过程称为变性。
5. Hybridization:杂交,由于变性的DNA分子具有复性的能力,因此来源不同的两条DNA 链通过缓慢降温,也可形成人工杂交DNA分子,同样互补的DNA和RNA链也可形成杂交分子。
6. Annealing/renature:复性,DNA双链完全分开的变性过程是可逆的,当变性DNA的热溶液缓慢降温DNA的互补链又可重新聚合形成规则双螺旋,这个过程称为复性。
分子生物学复习资料-绝对重点
![分子生物学复习资料-绝对重点](https://img.taocdn.com/s3/m/59650d0abf1e650e52ea551810a6f524ccbfcbe0.png)
分子生物学复习资料(第一版)一名词解释1 Southern blot / Northern blot—DNA斑迹法 / RNA转移吸印技术。
是为了检测待检基因或其表达产物的性质和数量(基因拷贝数)常用的核酸分子杂交技术。
二者均属于印迹转移杂交术,所不同的是前者用于检测DNA样品;后者用于检测RNA样品。
2 cis-acting element / trans-acting factor—顺式作用元件 / 反式作用因子。
均为真核生物基因中的转录调控序列。
顺式作用元件是与结构基因表达调控相关、能被基因调控蛋白特异性识别和结合的特定DNA序列,包括启动子和上游启动子元件、增强子、反应元件和poly(A)加尾信号。
反式作用因子是能与顺式作用元件特异性结合、对基因表达的转录起始过程有调控作用的蛋白质因子,如RNA 聚合酶、转录因子、转录激活因子、抑制因子。
3VNTR / STR—可变数目串联重复序列 / 短串联重复。
均为非编码区的串联重复序列。
前者也叫高度可变的小卫星DNA,重复单位约9~24bp,重复次数变化大,变化高度多态性;后者也叫微卫星DNA,重复单位约2~6 bp,重复次数约10~60次,总长度通常小于150bp 。
(参考第7题)4 viral oncogene / cellular oncogene—病毒癌基因 / 细胞癌基因。
病毒癌基因指存在于逆转录病毒中、体外能使细胞转化、体内能导致肿瘤发生的基因;细胞癌基因也叫原癌基因,指存在于细胞内,与病毒癌基因同源的基因序列。
正常情况下不激活,与细胞增殖相关,是维持机体正常生命活动所必须的,在进化上高等保守。
当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。
第1 页/共16 页5 ORF / UTR—展开阅读框 / 非翻译区。
均指在mRNA中的核苷酸序列。
前者是特定蛋白质多肽链的序列信息,从起始密码子开始到终止密码子结束,决定蛋白质分子的一级功能;后者是位于前者的5'端上游和3'端下游的、没有编码功能的序列,主要参加翻译起始调控,为前者的多肽链序列信息改变为多肽链所必须。
分子生物学复习资料
![分子生物学复习资料](https://img.taocdn.com/s3/m/b9435f8eec3a87c24028c45c.png)
第一章绪论一、三大发现:列文·虎克的细胞学说、焦耳用实验确立的能量守恒定律、达尔文的进化论。
二、分子生物学定义:从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。
三、分子生物学研究内容:1、DNA重组技术(基因工程) 2、基因的表达调控 3、生物大分子的结构和功能研究(结构分子生物学) 4、基因组、功能基因组与生物信息学研究四、DNA发现的几个实验:美国科学家AVERY用S型和R型致病菌侵染小鼠的实验、美国科学家HERSHEY在1952年从事的同位素分子标记法噬菌体侵染细菌的试验。
第二章染色体与DNA一、染色体的结构和组成原核生物:DNA形成一系列的环状附着在非组蛋白上形成类核。
真核生物染色体有蛋白质和DNA组成,蛋白质包括组蛋白(H1,H2A、H2B、H3、H4)和非组蛋白。
2、C值是一种生物的单倍体基因组DNA的总量。
C值往往与种系的进化的复杂程度不一致,某些低等生物却有较大的C值,这就是著名的“C值反常现象”。
3、DNA的一级结构:指4种脱氧核苷酸的连接及其排列顺序, DNA序列是这一概念的简称。
4、双螺旋的基本特点:双链反向平行配对而成;脱氧核糖和磷酸交替连接,构成DNA骨架,碱基排在内侧;内侧碱基通过氢键互补形成碱基对(A:T,C:G)。
5、DNA 的二级结构指两条多核苷酸链反向平行盘绕所产生的双螺旋结构。
是有Watson 和Crick在1953年共同发现的。
分类:右手螺旋(是其通常存在形式):A-DNA,B-DNA。
左手螺旋:Z-DNA。
6、超螺旋:DNA双螺旋结构中,一般每转一圈有十个核苷酸对,双螺旋总处于能量最低状态。
正常DNA双螺旋额外的多转或少转几圈,就会出现双螺旋空间结构改变,在DNA 分子中形成额外张力,若此时DNA分子的末端是固定的或是环状分子,双联不能自由转动,额外的张力就不能释放而导致DNA分子内部院子空间位置的重排,造成扭曲,即出现超螺旋结构。
分子生物学终极复习资料汇总
![分子生物学终极复习资料汇总](https://img.taocdn.com/s3/m/376bd3b370fe910ef12d2af90242a8956becaa64.png)
《分子生物学》复习题1、染色体:是指在细胞分裂期出现的一种能被碱性染料强烈染色,并具有一定形态、结构特征的物体。
携带很多基因的分离单位。
只有在细胞分裂中才可见的形态单位。
2、染色质:是指细胞周期间期细胞核内由DNA、组蛋白、非组蛋白和少量RNA组成的复合结构,因其易被碱性染料染色而得名。
3、核小体:染色质的基本结构亚基,由约200 bp的DNA和组蛋白八聚体所组成4、C值谬误:一个有机体的C值与它的编码能力缺乏相关性称为 C值矛盾5、半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自6、亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制6、DNA重组技术又称基因工程,目的是将不同的DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
7、半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链的合成是不连续的,故称半不连续复制。
8、引发酶:此酶以DNA为模板合成一段RNA,这段RNA作为合成DNA的引物(Primer)。
实质是以DNA为模板的RNA聚合酶。
9、转坐子:存在与染色体DNA上可自主复制和位移的基本单位。
10、多顺反子:一种能作为两种或多种多肽链翻译模板的信使RNA,由DNA链上的邻近顺反子所界定。
11、基因:产生一条多肽链或功能RNA所必需的全部核甘酸序列。
12、启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。
13、增强子:能强化转录起始的序列14、全酶:含有表达其基础酶活力所必需的5个亚基的酶蛋白复合物,拥有σ因子。
(即核心酶+σ因子)15、核心酶:仅含有表达其基础酶活力所必需亚基的酶蛋白复合物,没有σ因子。
16、核酶:是一类具有催化功能的RNA分子17、三元复合物:开放复合物与最初的两个NTP相结合,并在这两个核苷酸之间形成磷酸二酯键后,转变成包括RNA聚合酶,DNA和新生的RNA的三元复合物。
分子生物学复习资料
![分子生物学复习资料](https://img.taocdn.com/s3/m/209fa52342323968011ca300a6c30c225901f02a.png)
分⼦⽣物学复习资料第⼀章绪论1.经典的⽣物化学和遗传学(现代⽣物学的两⼤⽀柱)进化论和细胞学说相结合,产⽣了作为主要实验科学之⼀的现代⽣物学,⽽以研究动、植物遗传变异规律为⽬标的遗传学和以分离纯化、鉴定细胞内含物质为⽬标的⽣物化学则是这⼀学科的两⼤⽀柱。
2.孟德尔的遗传学规律最先使⼈们对性状遗传产⽣了理性认识,⽽Morgan的基因学说则进⼀步将“性状”与“基因”相耦联,成为分⼦遗传学的奠基⽯。
3.证明DNA是遗传物质的两个著名实验:1、Avery的肺炎链球菌转化实验——DNA是遗传信息的载体;2、Hershey和Chase的噬菌体侵染细菌实验—DNA是可以进⼊寄主细胞的转染因⼦。
4.分⼦⽣物学定义从分⼦⽔平研究⽣物⼤分⼦的结构与功能从⽽阐明⽣命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。
5.⼈类基因组计划牵头单位:美国能源部、美国国家卫⽣研究所参加国:美国、英国、德国、法国、⽇本、中国启动时间:1990年⼈类基因组计划最初的⽬标:价值达30亿美元的⼈类基因组计划。
要测定30亿个碱基对的排列顺序,确定基因在染⾊体上的位置,破译⼈类全部遗传信息。
⼈类基因组计划与曼哈顿原⼦弹计划和阿波罗计划并称为三⼤科学计划。
2001年中、美、⽇、德、法、英6国科学家联合公布了⼈类基因组图谱及初步分析结果。
2003年4⽉14⽇,美国联邦国家⼈类基因组研究项⽬负责⼈弗朗西斯·柯林斯博⼠在华盛顿宣布,美、英、⽇、法、德和中国科学家经过13年努⼒共同绘制完成了⼈类基因组序列图,⼈类基因组计划所有⽬标全部实现。
中国贡献:作为参与这⼀计划的唯⼀发展中国家,我国于1999年跻⾝⼈类基因组计划,承担了1%的测序任务。
6.DNA重组技术是20世纪70年代初兴起的技术科学,⽬的是将不同DNA⽚段(基因或基因的⼀部分)按照⼈们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产⽣影响受体细胞的新的遗传性状。
分子生物学总复习
![分子生物学总复习](https://img.taocdn.com/s3/m/e8309d70f46527d3240ce0e7.png)
绪论分子生物学:是研究核酸、蛋白质等生物大分子的形态、结构特征和功能及其重要性、规律性和相互关系的科学;第一章生物大分子的结构与功能主要分为三类:核酸、蛋白质和多糖,它们分别是核苷酸、氨基酸和单糖的多聚体。
Ⅱ脱氧核糖核酸(DNA)的结构与功能二、DNA的二级结构(1)反向重复序列(IR),又称回文序列:指两段同样的核苷酸序列同时存在于一个分子中,但具有相反的方向.DNA双螺旋结构特征:(1)主链:由两条反相平行的多核苷酸链围绕共中心轴构成的右手双螺旋构型。
由核糖和磷酸组成主链处于螺旋的外侧,多核苷酸链的方向由核苷酸间的磷酸二酯键的走向决定,一条从5‘-3’,另一条是从3‘-5’。
(2)碱基对:碱基以垂直于螺旋轴的取向通过糖苷键与主链糖基相连,两条链上的碱基之间以氢键连接,位于螺旋的内则,A与T配对,G与C配对。
碱基平面与纵轴垂直,螺旋的轴心穿过氢键的中点。
(3)大沟和小沟:双螺旋表面凹下去的较大沟槽和较小沟槽分别称为大沟和小沟。
小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。
(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。
2. 双螺旋结构的基本形式手性问题:左手性和右手性(组成地球生命体的几乎都是左旋氨基酸)右手螺旋DNA链:·B-DNA(来自相对湿度为92%所得到的DNA钠盐纤维)A-DNA·C-DNA D-DNA,E-DNA:共同点:右手双螺旋;两条反向平行的核苷酸链;链的重复单位是单核苷酸;这些螺旋中都有两个螺旋沟,分为大沟与小沟,只是它们的宽窄和深浅程度有所不同。
左手螺旋:Z-DNA形成条件:DNA单链上出现嘌呤与嘧啶交替排列所成的。
比如CGCGCGCG或者CACACACA。
特点:两条反向平行的多核苷酸互补链组成的螺旋呈锯齿形,其表面只有一条深沟,每旋转一周是12个碱基对。
生物体内的DNA分子中确实存在Z-DNA区域,其功能可能与基因表达的调控有关。
分子生物学复习资料终结版
![分子生物学复习资料终结版](https://img.taocdn.com/s3/m/a09d7296d4d8d15abe234eb0.png)
1.1 分子生物学的基本概念①分子生物学---广义:在分子水平上研究生命现象,或用分子的术语描述生物现象的学科。
狭义:核酸与蛋白质水平上研究基因的复制,基因的表达(包括RNA转录、蛋白质翻译),基因表达的调控以及基因的突变与交换的分子机制。
②序列假说:核酸片段的特异性,完全由其碱基序列决定,而且这种序列是一种蛋白质氨基酸的密码③中心法则:DNA的遗传信息经RNA一旦进入蛋白质,也就不可能再行输出。
④三大原则:Ⅰ、构成生物大分子的单体是相同的;Ⅱ、生物大分子单体的排列决定了不同生物性状的差异和个体特征;Ⅲ、所有生物遗传信息表达的中心法则是相同的⑤分子生物学是研究细胞内大分子的结构、功能和相互作用特点和规律,并通过这些规律认识生命现象的一门科学。
1.2 分子生物学的发展简史①细胞学说:(1)以下3点是必修一上的内容:a细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所组成。
b细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用。
c新细胞可以从老细胞中产生。
(2)以下7点是百度到的内容:a.细胞是有机体,一切动植物都是由单细胞发育而来,并由细胞和细胞产物所构成;b.所有细胞在结构和组成上基本相似;c.新细胞是由已存在的细胞分裂而来;d. 生物的疾病是因为其细胞机能失常;e. 细胞是生物体结构和功能的基本单位;f 生物体是通过细胞的活动来反映其功能的;g. 细胞是一个相对独立的单位,既有他自己的生命,又对于其他细胞共同组成的整体的生命起作用。
②正向遗传学:在不知道基因化学本质的前提下,仅依靠表型突变体在世代间的传递规律来研究基因的特征和染色体上的位置,描述基因突变和染色体的改变,分析它们对生物形态和生理特征所产生的效应。
③反向遗传学:通过转基因办法来确定某一基因的功能。
④George Beadle和Edward Tatum提出“一个基因一个酶”假说Avery围绕肺炎链球菌的成就第一个动摇了“基因是蛋白质”的理念,为“DNA是遗传物质”的理论建立奠定了基础Chargaff 法则:A+C=T+GNirenberg在一周内破解了第一个遗传密码:UUU——苯丙氨酸Jacob和Monod发现乳糖操纵子模型Pardee,Jacob,Monod命名的“Pa-Ja-Mo”实验结果证明:基因通过一种RNA严格地控制着蛋白质的合成。
分子生物学终极复习资料汇总
![分子生物学终极复习资料汇总](https://img.taocdn.com/s3/m/98efb67bf7ec4afe04a1df67.png)
分子生物学终极复习资料汇总③操纵基因是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。
④当阻遏物与操纵基因结合时,lac mRNA的转录起始受到抑制。
⑤诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结合,从而激发lac mRNA的合成。
当有诱导物存在时,操纵基因区没有被阻遏物占据,所以启动子能够顺利起始mRNA的合成。
2、比较PCR扩增和细胞内DNA复制的异同。
PCR技术DNA生物复制环境体外复制,加热,90摄氏度左右体内,温和的环境模板DNA单链DNA单链原料4种脱氧核糖核苷酸4种脱氧核糖核苷酸酶主要是DNA聚合酶DNA解旋酶,DNA聚合酶,DNA连接酶等各种酶引物需要人工合成的引物自己合成引物成分步骤变性--退火--延伸解旋-起始-延伸-结束原则碱基互补配对原则碱基互补配对原则3、细胞通过哪几种修复系统对DNA损伤进行修复?简述DNA错配修复的过程。
错配修复的过程:a、发现碱基错配;在水解ATP的作用下,b、MutS,MutL 与碱基错配位点的DNA双链结合;c、Muts-MutL在DNA双链上移动,发现甲基化DNA后由MutH切开非甲基化的子链;d、当错配碱基位于切口3'下游端时,在MutL-MutS、解链酶Ⅱ、DNA外切酶Ⅵ或RecJ核酸酶的作用下,从错配碱基3'下游端开始切除单链DNA直到原切口,并在Pol Ⅲ和SSB的作用下合成新的子链片段。
若错配碱基位于切口的5'上游端,则在DNA外切酶Ⅰ或Ⅹ的作用下,从错配碱基5'上游端开始切除单链DNA直到原切口,再合成新的子链片段。
4.图示简要说明真核生物启动子的结构。
5.说明DNA甲基化对基因转录活性的影响机理。
为什么说甲基化密度与启动子强度之间的平衡决定了该启动子是否具有转录活性(可用图示说明)?DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,抑制了转录因子与启动区DNA的结合效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分子生物学》复习题1、染色体:是指在细胞分裂期出现的一种能被碱性染料强烈染色,并具有一定形态、结构特征的物体。
携带很多基因的分离单位。
只有在细胞分裂中才可见的形态单位。
2、染色质:是指细胞周期间期细胞核内由DNA、组蛋白、非组蛋白和少量RNA组成的复合结构,因其易被碱性染料染色而得名。
3、核小体:染色质的基本结构亚基,由约200 bp的DNA和组蛋白八聚体所组成4、C值谬误:一个有机体的C值与它的编码能力缺乏相关性称为C值矛盾5、半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自6、亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制6、DNA重组技术又称基因工程,目的是将不同的DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
7、半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链的合成是不连续的,故称半不连续复制。
8、引发酶:此酶以DNA为模板合成一段RNA,这段RNA作为合成DNA的引物(Primer)。
实质是以DNA为模板的RNA聚合酶。
9、转坐子:存在与染色体DNA上可自主复制和位移的基本单位。
10、多顺反子:一种能作为两种或多种多肽链翻译模板的信使RNA,由DNA链上的邻近顺反子所界定。
11、基因:产生一条多肽链或功能RNA所必需的全部核甘酸序列。
12、启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。
13、增强子:能强化转录起始的序列14、全酶:含有表达其基础酶活力所必需的5个亚基的酶蛋白复合物,拥有σ因子。
(即核心酶+σ因子)15、核心酶:仅含有表达其基础酶活力所必需亚基的酶蛋白复合物,没有σ因子。
16、核酶:是一类具有催化功能的RNA分子17、三元复合物:开放复合物与最初的两个NTP相结合,并在这两个核苷酸之间形成磷酸二酯键后,转变成包括RNA聚合酶,DNA和新生的RNA的三元复合物。
18、SD序列:mRNA中用于结合原核生物核糖体的序列。
30S亚基通过其16SrRNADE 3'端与mRNA5’端起始密码子上游碱基配对结合。
这个富嘌呤区被命名为SD序列。
19、同工tRNA:代表同一种氨基酸的tRNA称为同工tRNA。
20、分子伴侣:它是细胞中一类能够识别并结合到不完全折叠或搭配的蛋白质上以帮助这些多肽正确折叠、转运或防止它们聚集的蛋白质,其本身不参与终产物的形成。
21、信号肽:常指新合成多肽链中用于指导蛋白质跨膜转移的N-末端氨基酸序列(有时不一定在N端)。
22、核定位序列:蛋白质中的一种常见的结构域,通常为一短的氨基酸序列,它能与入核载体相互作用,将蛋白质运进细胞核内。
23、操纵子:是基因表达的协调单位,由启动子、操纵基因及其所控制的一组功能上相关的结构基因所组成。
操纵基因受调节基因产物的控制。
24、弱化子:当操纵子被阻遏,RNA合成被终止时,起终止转录信号作用的那一段核苷酸被称为弱化子。
25、安慰诱导物:如果某种物质能够促使细菌产生酶而本身又不被分解,这种物质被称为安慰诱导物,如IPTG(异丙基- β–D-硫代半乳糖苷)。
26、葡萄糖效应(代谢物阻遏效应):有葡萄糖存在时,不论诱导物存在与否,操纵子都没有转录活性,结构基因都不表达。
27、顺式作用元件:影响自身基因表达活性的非编码DNA序列。
28、反式作用因子:能直接或间接地识别或结合在各类顺式作用元件核心序列上,参与调控靶基因转录效率的蛋白质。
29、基因家族:在基因组进化中,一个基因通过基因重复产生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物。
30、断裂基因:在一个结构基因中,编码某一蛋白质不同区域的各个外显子并不连续排列在一起,而是常常被长度不等的内含子所隔离,形成镶嵌排列的断裂方式。
所以真核基因被称为断裂基因。
1、乳糖操纵子的调控模型。
主要内容:①Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码②这个mRNA分子的启动子紧接着O区,而位于I与O之间的启动子区(P),不能单独起动合成β-半乳糖苷酶和透过酶的生理过程。
③操纵基因是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。
④当阻遏物与操纵基因结合时,lac mRNA的转录起始受到抑制。
⑤诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结合,从而激发lac mRNA的合成。
当有诱导物存在时,操纵基因区没有被阻遏物占据,所以启动子能够顺利起始mRNA的合成。
2、比较PCR扩增和细胞内DNA复制的异同。
PCR技术DNA生物复制环境体外复制,加热,90摄氏度左右体内,温和的环境模板DNA单链DNA单链原料4种脱氧核糖核苷酸4种脱氧核糖核苷酸酶主要是DNA聚合酶DNA解旋酶,DNA聚合酶,DNA连接酶等各种酶引物需要人工合成的引物自己合成引物成分步骤变性--退火--延伸解旋-起始-延伸-结束原则碱基互补配对原则碱基互补配对原则3、细胞通过哪几种修复系统对DNA损伤进行修复?简述DNA错配修复的过程。
错配修复的过程:a、发现碱基错配;在水解ATP的作用下,b、MutS,MutL 与碱基错配位点的DNA双链结合;c、Muts-MutL在DNA双链上移动,发现甲基化DNA后由MutH切开非甲基化的子链;d、当错配碱基位于切口3'下游端时,在MutL-MutS、解链酶Ⅱ、DNA外切酶Ⅵ或RecJ核酸酶的作用下,从错配碱基3'下游端开始切除单链DNA直到原切口,并在Pol Ⅲ和SSB的作用下合成新的子链片段。
若错配碱基位于切口的5'上游端,则在DNA外切酶Ⅰ或Ⅹ的作用下,从错配碱基5'上游端开始切除单链DNA直到原切口,再合成新的子链片段。
4.图示简要说明真核生物启动子的结构。
5.说明DNA甲基化对基因转录活性的影响机理。
为什么说甲基化密度与启动子强度之间的平衡决定了该启动子是否具有转录活性(可用图示说明)?DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,抑制了转录因子与启动区DNA的结合效率。
甲基的引入不利于模板与RNA 聚合酶的结合,降低了转录活性。
甲基化密度与启动子强度之间的平衡决定了该启动子是否具有转录活性。
6、举例说明蛋白质磷酸化如何影响基因表达。
①以络氨酸受体蛋白激酶磷酸化导致细胞癌变为例说明:络氨酸受体蛋白激酶与表皮生长因子(EGF)相结合后,刺激了该受体蛋白的激酶活性,引发一系列生理反应。
原癌蛋白ErbB虽然没有正常络氨酸受体蛋白激酶的胞外结构域,其胞内结构域却具有蛋白激酶活性,刺激细胞持久分裂,诱发癌变。
②以cAMP介导的蛋白质磷酸化为例说明许多转录因子都可以通过cAMP介导的蛋白质磷酸化过程而被激活这类基因5’区有一个或数个cAMP应答元件,基本序列为TGACGTCA膜上受体与配体结合引起受体构象变化,并与G结合,激活与膜相关的腺苷酸环化酶,导致胞内cAMP水平上升,活化A激酶,释放催化亚基入核内,实施底物磷酸化。
被磷酸化的底物可作为转录激活因子诱发基因转录。
7.如何克隆一个新基因(cDNA的中间片段)?在已知cDNA序列基础上克隆5’或3’端缺失序列的技术。
根据已知序列设计基因片段内部特异引物,由该片段向外侧进行PCR扩增得到目的序列。
此技术为RACE技术。
步骤:1.在反转录酶的作用下,以基因片段内部特异性引物(GSP1)启始cDNA第一条链合成。
2.RNase降解模板链mRNA,纯化第一链。
3.用末端转移酶在cDNA链3’端加入连续的dCTP,形成oligodc尾巴。
4.以连有oligo dC 的锚定引物和基因片段内部特异引物GSP2进行nest PCR扩增,得到目的基因5'端片段并检测。
8.肽链延伸由许多循环组成,每加一个氨基酸就是一个循环,每个循环包括哪些步骤?每个循环包括:AA-tRNA与核糖体结合、肽键的生成和移位。
1.AA-tRNA与核糖体结合需要消耗GTP,并需EF-Tu、EF-Ts两种延伸因子2.肽键的生成是由转肽酶/肽基转移酶催化3.移位,核糖体向mRNA3’端方向移动一个密码子。
4.需要消耗GTP,并需EF-G延伸因子9、比较原核生物和真核生物mRNA的特点。
原核生物mRNA的特征:(1)半衰期短(2)多以多顺反子的形式存在(3)5’端无“帽子”结构,3’端没有或只有较短的poly(A )结构。
(4)原核生物常以AUG(有时GUG,甚至UUG)作为起始密码子,而真核生物几乎永远以AUG作为起始密码子。
真核生物mRNA的特征:1、5’端存在“帽子”结构2、多数mRNA 3’端具有poly(A )尾巴(组蛋白除外)3、以单顺反子的形式存在10、真核生物的原始转录产物需要经过哪些加工才能成为成熟的mRNA?真核生物的原始转录产物需要经过的加工过程有:1、在5’端加帽。
5’端的一个核苷酸总是7-甲基鸟嘌呤核苷三磷酸(m7Gppp)。
mRNA5’端的这种结构称为帽子结构(cap)。
2、3’端加尾,多聚腺苷酸尾巴提高了mRNA在细胞质中的稳定性,由poly(A)聚合酶催化。
3、RNA的剪接。
参与RNA剪接的物质有snRNA(核内小分子RNA)、snRNP (与snRNA结合的核蛋白)4、RNA的编辑11、真核生物和原核生物在翻译的起始过程有哪些区别?真核生物:起始密码子AUG 所编码的氨基酸是Met,起始AA-tRNA为Met-tRNAMet。
原核生物:起始密码子AUG 所编码的氨基酸并不是甲硫氨酸本身, 而是甲酰甲硫氨酸(fMet),起始AA-tRNA为fMet-tRNAfMet12.SNP技术是指?SNP技术:是单核苷酸多态性,指基因组DNA序列中由于单个核苷酸(A,T,C和G)的突变而引起的多态性。
一个SNP表示在基因组某个位点上一个核苷酸的变化,这种变化可能是转换,也可能是颠换。
SNP技术即SNP检测技术,因为只有进行了DNA序列分析才能确认所发现的SNP,所以目前国际上最常见的仍然是通过DNA测序法获得新的SNP。
基因分型是其中最常见的,它是指利用数据库中已有的SNP进行特定人群的序列和发生频率的研究,主要包括基因芯片技术、Taqman技术、分子信标技术和焦磷酸测序法等。
13、基因敲除技术的基本原理。
基本原理:基因敲除又称基因打靶,该技术通过外源DNA与染色体DNA之间的同源重组,进行精确的定点修饰和基因改造,具有专一性强、染色体DNA可与目的片段共同稳定遗传等特点。
14.RNAi技术的基本原理。
基本原理:RNAi技术利用双链小RNA高效、特异性降解细胞内同源mRNA从而阻断靶基因表达,使细胞出现靶基因缺失的表型。