高中数学解题基本方法
高中数学解题技巧方法总结(必备19篇)
高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
高中数学19种答题方法+6种解题思想
高中数学19种答题方法 6种解题思想1.函数函数题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用三合一定理。
2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀左加右减,上加下减只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高中数学50个解题小技巧
高中数学50个解题小技巧1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高中数学解题的12种方法与思路
高中数学解题的12种方法与思路于数学这门功课,如果能够掌握正确有效的解题方法和技巧,不仅可以帮助我们培养良好的数学素养,而且也能提升学生数学解题效率,下面将给大家分享高中数学高分做题解题的12种方法和思路,希望对大家学好数学有所帮助!考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。
应该说,审题要慢,解答要快。
审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。
而思路一旦形成,则可尽量快速完成。
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
高中数学解题思路方法与技巧分析
高中数学解题思路方法与技巧分析高中数学是学生们学习过程中的一门重要学科,数学不仅是一门学科,更是一种思维方式和解决问题的方法。
掌握高中数学解题的思路、方法和技巧对学生们来说至关重要。
本文将从解题的一般思路入手,分析高中数学解题的方法与技巧,希望能为学生们提供一些解题的帮助。
一、数学解题的一般思路1. 理清题意。
在解题之前,首先要仔细阅读题目,理解题目所描述的情境或问题,找出题目中涉及的数学概念和知识点。
只有理清题意,才能正确地解答问题。
2. 探索问题,分析问题。
在理清题意的基础上,要对问题进行分析,弄清问题所涉及的数学原理和解决方法。
这个阶段通常需要考虑问题的各种可能性,进一步理解问题。
要灵活地运用各种数学思维方法,进行深入探讨,挖掘问题的本质。
3. 创立解决问题的数学模型。
在理解和分析问题后,要根据题目中的信息,建立问题的数学模型,将问题转化为数学形式,从而更好地解决问题。
4. 运用数学工具解决问题。
在建立了数学模型之后,就可以运用相应的数学原理、定理和方法,来解决问题。
这一步可能涉及到代数运算、几何推理、函数分析等等,需要根据具体情况进行灵活运用。
5. 检验与分析解答结果。
在解答问题之后,要对解答结果进行检验和分析,确认解答是否符合题目的要求,是否存在逻辑和数学上的错误,并且可以从解答结果中得出一些结论或启示。
二、高中数学解题的方法与技巧1. 掌握基本概念和定理。
在解题过程中,必须熟练掌握基本的数学概念和定理,比如三角函数、数列、导数积分等等,只有掌握了这些基本知识,才能更好地解决问题。
2. 善于画图。
在解决几何题目时,可以通过画图的方式,更好地理解题目并得出解答,画图是解决几何问题的有效方法,可以帮助我们看清问题的本质。
3. 灵活运用公式和定理。
在解题过程中,灵活运用各种数学公式和定理,可以帮助我们更快地解决问题,但也要注意不要机械应用,要结合具体情况适当变形或组合使用。
4. 善于进行逻辑推理。
高一数学解题技巧有哪些
高一数学解题技巧有哪些高一数学解题技巧有哪些11、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
2、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的`心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
3、寻求中间环节,挖掘隐含条件:在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。
因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。
高一数学解题技巧有哪些2代入法这列方法往往是给定了一些条件,比如a大于等于0,小于等于1。
b大于等于1,小于等于2.这些给定了一些特殊的条件,然后让你求一个ab组合在一起的一些式子,可能会很复杂。
但是如果是选择题,你可以取a=0.5,b=1.5试一试。
还有就是可以把选项里的答案带到题目中的式子来计算。
倒推法!区间法这类方法也称为排除法,在答高考考数学选择题是,靠着大概计算出的数据或者猜一些数据。
比如一个题目里给了几个角度,30°,90°。
很明显,答案里就肯定是90±30度,120加减30度。
或者一些与30,60,90度有关的答案。
坐标法如果做的一些高考数学图形题完全找不到思路,第一可以用比例法,第二可以用坐标法,不用管什么三角函数,直接找到两点坐标,直接带入高中函数求角度(cos公式)求垂直,求长度,相切相离公式。
高中数学解题方法与技巧 必背公式总结
高中数学解题方法与技巧必背公式总结高中数学解题方法与技巧1、不等式、方程或函数的题型,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.在学习带参数的初等函数时,要抓住无论参数如何变化,有些性质不变的特点。
如函数的不动点,二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4.在常数建立问题中,利用二次函数的图像性质,灵活运用函数闭区间上的最大值和分类讨论的思想(分类讨论中要注意不要重复或遗漏),可以转化为极大值问题或二次函数的常数建立问题。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
7.求参数的值域,要建立关于参数的不等式或方程,利用函数的值域或定义或求解不等式。
在转换公式的过程中,应优先考虑分离参数的方法。
8、在解三角形的题目中,已知三个条件一定能求出其他未知的条件,简称“知三求一“。
9、求双曲线或者椭圆的离心率时,建立关于a、b、c之间的关系等式即可。
10、解三角形时,首先确认所求边角所在的三角形及已知边角所在的三角形,从而选择合适的三角形及定理。
11、在数列的五个量中:中,只要知道三个量就可以求出另外两个量,简称“知三求二”。
12.圆锥曲线的题目应优先考虑它们的定义。
如果直线与圆锥曲线相交的问题与弦的中点有关,则选择设定而不是求点差的方法,维耶塔定理公式的方法与弦的中点无关。
(使用维耶塔定理时,首先要考虑二次函数方程是否有根,即二次函数的判别式。
).13.解曲线方程的问题,如果知道曲线的形状,可以选择待定系数法。
如果不知道曲线的形状,采用的步骤是建立系统,设置点,列表化简。
14、在求离心率时关键是从题目条件中找到关于a、b、c的两个方程或由题目得到的图形中找到a、b、c的关系式,从而求离心率或离心率的取值范围。
高中数学解题的七种常用方法
高中数学解题的 七种常用方法
张晓娇
高中数学相对于初中数学,不仅要学习 掌握的内容数量增加了许多,而且内容难度 也加大了,所以学生需要掌握更多的数学思 想以及常见的解题方法。对于高中生而言,掌 握并熟练运用这些数学方法,可以在解题过 程中快速解决问题,得出正确答案。
一、配方法 在高中数学的学习中,学生首先掌握的 数学方法就是配方法。这是一种广泛运用的 数学方法,主要运用在已知或者未知中存在 二次方程、二次函数,或者二次不等式等,还 有在曲线平移等问题中被作为基础方法运 用。配方法是对数学式子进行定向变形,找到 已知与未知数量关系的联系,最终达到化繁 为简的目的。在配方过程中运用裂项和添项, 巧凑和巧拼,实现配方,所以也被称为“凑配 法”。例如已知 sinα+cosα=2,则 sinαcosα 的 值为 ______。这道题就需要通过配方法进行 解答,将 sinα+cosα=2 进行配方,最终得到(sinα+ cosα)2-2sinαcosα,最终得到 sinαcosα 的值。 二、换元法 换元法也是比较常用的数学解题方法, 就是通过将一个式子看作一个整体,用另一 个变量进行替换,使问题得以简化,快速找到 解答方法。其实,换元从本质上讲就是转化, 通过造元和设元,进行等量代换,将问题转移 到熟悉的环境下进行解决。从复杂到简单,由 非标准变成标准。这种方法主要运用于高次 降为低次,分式变成整式,将无理变成有理, 将复杂变成简单,适用函数、三角、不等式和 数列等问题中。例如,设实数 x、y 满足 x+xy- 3=0,则 x+y 的取值范围是多少。运用换元法, 将 x+y 设置成“k”,然后运用“△”进行求解, 最终得出 k 的取值范围,从而得到 x+y 的取 值范围。
六、参数法 数学参数法就是在解题过程中引入一些 与题目相关联的新变量。通过该变量进行分 析和解答,最终消除参数,得出答案。这种方 数 法在直线与二次曲线之间的关系中比较常 学 用。参数法充分体现出事物普遍的联系,而通 篇 过参数法就能找出联系,从而找出事物的本 质。参数法体现出运动与变化的思想,其观点 42 被运用在数学的各个方面。运用参数法时需
高一数学九大解题技巧
高一数学九大解题技巧高一数学并不是简简单单就能学好,升入高中以后,高中数学变得更抽象了,很多知识同学们理解起来开始有困难了。
下面给大家分享一些关于高一数学九大解题技巧,希望对大家有所帮助。
高一数学九大解题技巧1、配法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程a某2b某c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
高中数学考试的答题技巧
高中数学考试的答题技巧(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中数学考试的答题技巧不同高考数学题型,我们应该有不同的答题策略,高中数学考试的答题技巧有哪些你知道吗?下面是本店铺为大家整理的高中数学考试的答题技巧,仅供参考,喜欢可以收藏分享一下哟!数学解题方法1、剔除法利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。
高中数学21种解题方法及例题
高中数学21种解题方法及例题在高中数学学习中,解题方法的灵活运用是学生们提高解题能力的关键。
掌握不同的解题思路和方法,能够使学生更加深入地理解数学知识,提高问题解决的效率。
本文将介绍21种高中数学解题方法,并通过例题进行详细说明,以帮助学生更好地应用这些方法。
【一、代数运算类解题方法】1. 一元一次方程求解法例题:已知方程2x + 3 = 7,求解x的值。
2. 一次函数的图像法例题:给定函数y = 3x + 2,绘制出其图像,并解析求解函数的相关特征。
3. 因式分解法例题:将方程x² - 4x + 4 = 0进行因式分解,并求解方程。
【二、几何推理类解题方法】4. 同位角性质运用法例题:已知两条平行线被一条截线所交,求解各个角的度数。
5. 对称性运用法例题:已知某几何图形具有对称性,利用对称性进行证明或求解问题。
6. 三角函数运用法例题:利用正弦定理求解三角形的未知边长或角度。
【三、数列与数数法】7. 等差数列求和法例题:已知等差数列的首项为2,公差为3,求解前10项的和。
8. 递推数列求通项法例题:已知数列的前两项为1和2,公差为3,求解数列的通项公式。
9. 迭代运算法例题:已知数列递推式为an+1 = 2an - 1, a1 = 1,求解前10项的数值。
【四、概率统计类解题方法】10. 样本空间与事件法例题:已知一枚骰子,求解投掷两次,求得的点数和为9的概率。
11. 求解总数法例题:已知有5个红球和3个蓝球,从中随机抽取2个球,求解两球不同色的概率。
12. 排列组合法例题:有8个人参加篮球比赛,其中3人为前锋,4人为后卫,求解一种排列和组合的方式。
【五、解析几何类解题方法】13. 直线与圆的位置关系法例题:已知直线方程为y = 2x + 1,圆的标准方程为(x-2)² + (y-3)² = 4,求解两者的位置关系。
14. 曲线与切线法例题:已知曲线方程为y = x²,求曲线上某一点的切线斜率。
高中数学学不好总丢分,来看看这十五个答题技巧及五个学习方法
高中数学学不好总丢分,来看看这十五个答题技巧及五个学习方法一、高中数学该如何分阶段学习第一阶段基础差的同学们可以看过来了,只看课本,认真的看课本,掌握每一个公式定理。
(库库说:基础差的同学们不要盲目问我买什么参考资料好啦,书本先看起来)怎么掌握呢?去了解它的推理过程,最后做到自己能够推出这个公式,别以为这一项没用,要知道近几年的题都考到了公式证明。
当掌握了公式定理之后,开始做课本的例题。
课本的例题的思路比较简单,其知识点也是单一不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了一定的理解力。
把课本的例题刷完,感觉积累了一些信心,前面的题是和课本例题一个级别的,如果课本上所有的题都会做了,那么基础夯实可以告一段落。
第二阶段高中数学,大抵是划分为三角函数、立体几何、数列、统计、导数和圆锥曲线等。
专题怎么练呢,认真研究例题,然后先尝试自己重做例题(一定要理解了解题过程和原理再去做),再做资料书上专题章节后面的题。
做数学只会套公式可以解出简单的题目,数学题有很多解题技巧,一般大题也有固定的解题思路,库库下面会一一说明。
二、高中数学15个偷分技巧1、圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式。
2、空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。
如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!3、立体几何中,求二面角B-OA-C的新方法。
利用三面角余弦定理,设二面角B-OA-C是∠OA,∠AOB是α,∠BOC是β,∠AOC是γ,这个定理就是:cos∠OA=(cosβ-cosαcosγ)/sinαsinγ。
知道这个定理,如果考试中遇到立体几何求二面角的题,套一下公式就出来了,还来得及,试试?4、超越函数的导数选择题,可以用满足条件常函数代替,不用一次函数。
高考数学21种解题方法与技巧汇总
高考数学21种解题方法与技巧汇总今天,特地为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦!解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
马心同-高中数学解题基本方法
高中数学解题基本方法一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。
有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。
它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:a2+b2=(a+b)2-2ab=(a-b)2+2ab;a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b2)2+(32b)2;a2+b2+c2+ab+bc+ca=12[(a+b)2+(b+c)2+(c+a)2]a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sinαcosα=(sinα+cosα)2;x2+12x=(x+1x)2-2=(x-1x)2+2 ;……等等。
Ⅰ、再现性题组:1. 在正项等比数列{a}中,a♦a+2a♦a+a∙a=25,则 a+a=_______。
2. 方程x+y-4kx-2y+5k=0表示圆的充要条件是_____。
A. 14<k<1B. k<14或k>1C. k∈RD. k=14或k=13. 已知sinα+cosα=1,则sinα+cosα的值为______。
A. 1B. -1C. 1或-1D. 04. 函数y=log12(-2x+5x+3)的单调递增区间是_____。
A. (-∞, 54]B. [54,+∞)C. (-12,54]D. [54,3)5. 已知方程x+(a-2)x+a-1=0的两根x、x2,则点P(x,x2)在圆x+y=4上,则实数a=_____。
高中数学解题方法
高中数学解题方法高中数学解题方法大全第一部分:高中数学解题的技巧数学解题的思维过程数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。
对于数学解题思维过程,G . 波利亚提出了四个阶段,即弄清问题、拟定计划、实现计划和回顾。
这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。
第一阶段:理解问题是解题思维活动的开始。
第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。
第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。
第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。
一、数学解题的技巧为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。
一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。
基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。
一、熟悉化策略所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。
从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。
因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。
常用的途径有:(一)、充分联想回忆基本知识和题型:按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
高考12种非常实用的数学解题方法
2019高考12种非常实用的数学解题方法掌握正确有效的解题方法和解题技巧,不仅可以帮助同学们培养好的数学素养,也是提升学生数学解题效率的关键。
那么高中的数学有哪些解题方法呢,下面为大家分享高种数学高分做题解题的12种方法和思路,希望对大家学习数学有所帮助!解题方法1:调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
解题方法2:沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
解题方法3:“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
解题方法4:一“慢”一“快”,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。
应该说,审题要慢,解答要快。
审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。
而思路一旦形成,则可尽量快速完成。
高中数学解题技巧归纳总结大全
高中数学解题技巧归纳总结大全1高中数学解题技巧特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2高一数学解题技巧学会画图画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。
有些题目,只要分析图一画出来,其中的关系就变得一目了然。
尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
先易后难,逐步增加习题的难度人们认识事物的过程都是从简单到复杂。
简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。
我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。
随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
限时答题,先提速后纠正错误很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。
所以,提高解题速度就要先解决“拖延症”。
比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。
这个过程对提高书写速度和思考效率都有较好的作用。
你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解题基本方法换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:局部换元、三角换元、均值换元等。
局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。
例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。
三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。
如求函数y=x+1-x的值域时,易发现x∈[0,1],设x=sin2α,α∈[0,π2],问题变成了熟悉的求三角函数值域。
为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。
如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。
均值换元,如遇到x+y=S形式时,设x=S2+t,y=S2-t等等。
我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。
如上几例中的t>0和α∈[0,π2 ]。
Ⅰ、再现性题组:1.y=sinx²cosx+sinx+cosx的最大值是_________。
2.设f(x2+1)=loga(4-x4) (a>1),则f(x)的值域是_______________。
3.已知数列{an }中,a1=-1,an+1²an=an+1-an,则数列通项an=___________。
4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。
5.方程1313++-xx=3的解是_______________。
6.不等式log2(2x-1) ²log2(2x+1-2)〈2的解集是_______________。
【简解】1小题:设sinx+cosx =t ∈[-2,2],则y =t22+t -12,对称轴t =-1,当t =2,y m ax =12+2;2小题:设x 2+1=t (t ≥1),则f(t)=log a [-(t-1)2+4],所以值域为(-∞,log a 4]; 3小题:已知变形为11a n +-1a n=-1,设b n =1a n,则b 1=-1,b n =-1+(n -1)(-1)=-n ,所以a n =-1n;4小题:设x +y =k ,则x 2-2kx +1=0, △=4k 2-4≥0,所以k ≥1或k ≤-1; 5小题:设3x =y ,则3y 2+2y -1=0,解得y =13,所以x =-1;6小题:设log 2(2x -1)=y ,则y(y +1)<2,解得-2<y<1,所以x ∈(log 254,log 23)。
Ⅱ、示范性题组:例1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求1S m ax+1S m in的值。
(93年全国高中数学联赛题)【分析】 由S =x 2+y 2联想到cos 2α+sin 2α=1,于是进行三角换元,设x S y S ==⎧⎨⎪⎩⎪cos sin αα代入①式求S m ax 和S min 的值。
【解】设x S y S ==⎧⎨⎪⎩⎪cos sin αα代入①式得: 4S -5S ²sin αcos α=5解得 S =10852-sin α;∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴1013≤1085-sin α≤103∴ 1S m ax+1S m in=310+1310=1610=85此种解法后面求S 最大值和最小值,还可由sin2α=810S S-的有界性而求,即解不等式:|810S S-|≤1。
这种方法是求函数值域时经常用到的“有界法”。
【另解】 由S =x 2+y 2,设x 2=S 2+t ,y 2=S 2-t ,t ∈[-S 2,S 2],则xy =±St224-代入①式得:4S ±5St224-=5,移项平方整理得 100t 2+39S 2-160S +100=0 。
∴ 39S 2-160S +100≤0 解得:1013≤S ≤103∴ 1S m ax+1S m in=310+1310=1610=85【注】 此题第一种解法属于“三角换元法”,主要是利用已知条件S =x 2+y 2与三角公式cos 2α+sin 2α=1的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问题。
第二种解法属于“均值换元法”,主要是由等式S =x 2+y 2而按照均值换元的思路,设x 2=S 2+t 、y 2=S 2-t ,减少了元的个数,问题且容易求解。
另外,还用到了求值域的几种方法:有界法、不等式性质法、分离参数法。
和“均值换元法”类似,我们还有一种换元法,即在题中有两个变量x 、y 时,可以设x =a +b ,y =a -b ,这称为“和差换元法”,换元后有可能简化代数式。
本题设x =a +b ,y =a -b ,代入①式整理得3a 2+13b 2=5 ,求得a 2∈[0,53],所以S =(a -b)2+(a +b)2=2(a 2+b 2)=1013+2013a 2∈[1013,103],再求1S m ax+1S m in的值。
例2. △ABC 的三个内角A 、B 、C 满足:A +C =2B ,1cos A+1cos C=-2cos B,求cos A C -2的值。
(96年全国理)【分析】 由已知“A +C =2B ”和“三角形内角和等于180°”的性质,可得A CB +=⎧⎨⎩12060°=°;由“A +C =120°”进行均值换元,则设A C =°α=°-α6060+⎧⎨⎩ ,再代入可求cos α即cosA C -2。
【解】由△ABC 中已知A +C =2B ,可得 A C B +=⎧⎨⎩12060°=°,由A+C=120°,设AC=°α=°-α6060+⎧⎨⎩,代入已知等式得:1 cos A +1cos C=160cos()︒+α+160cos()︒-α=11232cos sinαα-+11 232cos sinαα+=coscos sinααα143422-=coscosαα234-=-22,解得:cosα=22,即:cosA C-2=22。
【另解】由A+C=2B,得A+C=120°,B=60°。
所以1cos A+1cos C=-2cos B=-22,设1cos A=-2+m,1cos C=-2-m ,所以cosAcosA+cosC222m-cosA-cosC=-2sin A C+2sinA C-2=-3sinA C-2=222mm-,即:sin A C-2=-2322mm()-,=-2222m-,代入sin2A C-2+cos2A C-2=1整理得:3m4-16m-12=0,解出m2=6,代入cos A C-2=2222m-=22。
【注】本题两种解法由“A+C=120°”、“1cos A+1cos C=-22”分别进行均值换元,随后结合三角形角的关系与三角公式进行运算,除由已知想到均值换元外,还要求对三角公式的运用相当熟练。
假如未想到进行均值换元,也可由三角运算直接解出:由A+C=2B,得A+C=120°,B=60°。
所以1cos A+1cos C=-2cos B=-22,即cosA+cosC=-22cosAcosC,和积互化得:2cos A C+2cosA C-2=-2[cos(A+C)+cos(A-C),即cosA C-2=22-2cos(A-C)=22-2(2cos2A C-2-1),整理得:42cos2A C-2+2cosA C-2-32=0,解得:cos A C-2=22例3. 设a>0,求f(x)=2a(sinx+cosx)-sinx²cosx-2a2的最大值和最小值。
【解】设sinx+cosx=t,则t∈[-2,2],由(sinx+cosx)2=1+2sinx²cosx得:sinx²cosx=t21 2-∴f(x)=g(t)=-12(t-2a)2+12(a>0),t∈[-2,2]t=-2时,取最小值:-2a2-22a-1 2当2a≥t,取最大值:-2a2+当12。
∴f(x)的最小值为-2a2-22a-12,最大值为122222212222()()<<-+-≥⎧⎨⎪⎪⎩⎪⎪aa a a。
【注】此题属于局部换元法,设sinx+cosx=t后,抓住sinx+cosx与sinx²cosx的内在联系,将三角函数的值域问题转化为二次函数在闭区间上的值域问题,使得容易求解。
换元过程中一定要注意新的参数的范围(t∈[-2,2])与sinx+cosx对应,否则将会出错。
本题解法中还包含了含参问题时分类讨论的数学思想方法,即由对称轴与闭区间的位置关系而确定参数分两种情况进行讨论。
一般地,在遇到题目已知和未知中含有sinx与cosx的和、差、积等而求三角式的最大值和最小值的题型时,即函数为f(sinx±cosx,sinxcsox),经常用到这样设元的换元法,转化为在闭区间上的二次函数或一次函数的研究。
例4. 设对所于有实数x,不等式x2log241()aa++2x log221aa++log2()aa+1422>0恒成立,求a的取值范围。
(87年全国理)y【分析】不等式中log 241()a a+、 log 221a a +、log 2()a a+1422三项有何联系?进行对数式的有关变形后不难发现,再实施换元法。
【解】 设log 221a a +=t ,则log 241()a a +=log 2812()a a +=3+log 2a a +12=3-log 221a a +=3-t ,log 2()a a+1422=2log 2a a+12=-2t ,代入后原不等式简化为(3-t )x 2+2tx -2t>0,它对一切实数x 恒成立,所以: 3048302->=+-<⎧⎨⎩t t t t ∆(),解得t t t <<>⎧⎨⎩306或 ∴ t<0即log 221aa +<0 0<21a a +<1,解得0<a<1。