断面系数公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
断面图形
A:断面積(cm2)
e:到图心的距离(cm)
I:断面二次力矩(cm4)
Z:断面系数(cm3)→I/e
i:断面二次半径(cm)→ √(I/A)正方形 A = a2
e = a/2
I = a4 /12
Z = a3 /6
i = a / √12 =
正方形 A = a2
e = a / √2
I = a4 /12
Z = a3 / ( 6√2 )
i = a / √12 =
長方形斜着 A A = bh
e = bh / √( b2 + h2 )
I = b3 h3 / ( 6 ( b2 + h2 ) )
Z = b2 h2 /( 6 √( b2 + h2 ) )
i = b h /√( 6 ( b2 + h2 ) )
長方形斜着B
A = bh
e = ( h・cosθ + b・sinθ) / 2
I = b h ( h2・cos2θ + b2・sin2θ) /
12
Z = b h ( h2・cos2θ + b2・sin2θ) /
( 6 ( h・cosθ + b・sinθ ) )
i = √( ( h2・cos2θ + b2・sin2θ) /
12 )
正-角管状 A = a2 - a
12
e = a / 2
Z =( a4 - a14 ) / ( 6a )
i = √( ( a2 + a12 ) /12 )
長-角管状 A = bh - b
1h1
e = h / 2
I = ( bh3 - b1h13 ) / 12
Z = ( bh3 - b1h13 ) / ( 6h )
i = √(( bh3 - b1h13 )/ ( 12(bh -
b1h1 )))
圆 A = π d2/ 4 =πR2
e = d / 2
I = πd4 / 64 = πR4 / 4
Z = πd3/ 32 = πR3 / 4
i = d / 4 = R / 2
圆管状 A = π ( D2 - d2 ) / 4
e = D / 2
Z = π( D4 - d4 ) / 32D
i = √ ( D2 + d2 ) / 4
H ・ C
相同形状的断面-1
A = BH - bh
e = H / 2
I = ( BH3 - bh3 ) /12
Z = ( BH3 - bh3 ) / ( 6H )
i = √( ( BH3- bh3)/ ( 12( BH - bh )))
H ・ T
A = BH + bh
e = H / 2
I = ( BH3 + bh3 ) /12
Z = ( BH3 + bh3 ) / ( 6H )
i = √( ( BH3+ bh3 )/ ( 12( BH + bh)))
相同形状的断面-2
L ・ U
相同形状的断面-3
A = BH - b ( e2 + h )
e1 = (aH2 + bt2) / ( 2(aH + bt))
e2 = H - e1
I = ( Be13 - bh3 + ae23 ) / 3
Z = I / e1:Z = I / e2
i = √( I / A )
H
A = b1h1 + b2h2 + b3h3
e1 = h2 - e2
e2 = (b2h22 + b3h32 + b1h1( 2h2 - h1))
/ ( 2 (b1h1 + b2h2 + b3h3 ))
I = ( b4e13 - b1h53 + b5e23 - b3h43) / 3
Z = I / e1:Z = I / e2
i = √( I / A )
e1 = h-e i = √( I / A )
上下相同 A = b ( h - h
1 )
e = h / 2
I = b ( h3 - h13 ) / 12
Z = b ( h3 - h13 ) / ( 6h )
i = √(( h3 - h13 )/ ( 12(h - h1 )))
正六角形
A = 3/2 ・ h2tan30°
A = 3√3・R2 / 2
e = =R
I = 5√3・R4 /16
Z = 5√3・R3 /16
i = √(5/24)・R =
三角形
A = bh / 2
e = 2h / 3
I = b h3 / 36
Z = b h2 / 24
i = √( h / 18 ) = h
半圆-竖着
A = π R2 / 2
e = R
I = π R4 / 8
Z = π R3 / 8
i = R / 2
椭圆-实心
A = π b h / 4
e = h / 2
I = π b h3 / 64
Z = π b h2 / 32
i = h / 4
半圆-管状
A = π ( D2 - d2 ) / 8
e = 2 ( D3 - d3 )/(3π( D2 - d2 ))
I = (D4 - d4) /
- D2 d2 (D-d) /
( (D+d) )
Z = I / e
i = √ ( I/A )
椭圆-管状
A = π ( BH - bh ) / 4
e = H / 2
I = π( BH3 - bh3 ) / 64
Z = π( BH3 - bh3 ) / ( 32H )
i = √( (BH3- bh3 ) / (16( BH - bh) ) )