函数的声明与定义1

合集下载

专题03函数的概念与性质高一数学上学期期中考点(人教A版必修第一册)课件

专题03函数的概念与性质高一数学上学期期中考点(人教A版必修第一册)课件
奇函数
偶函数
2 知识回归
知识回顾 8:幂函数的图象与性质
8.1、五个幂函数的图象 (记忆五个幂函数的图象 )
当 1, 2,3, 1 , 1 时,我们得到五个幂函数: 2
f
(x)
x

f
(x)
x2

f
(x)
x3

f
(x)
1
x2

f
(x)
x 1
2 知识回归
知识回顾 8:幂函数的图象与性质 8.2、五个幂函数的性质
3 典型例题讲与练
考点二:函数的值域
【典例
5】(2023·全国·高一专题练习)函数
f
(x)
8x x2
15 3x
4
的值域为(

A.
1 7
,
1 3
B.
8 7
,
2
C.
16 7
,
4
D.以上答案都不对
【详解】设题中函数为 y f x ,则 yx2 (3y 8)x 4y 15 0 ,
当 y 0 时, x 15 ;
2 知识回归
知识回顾 3:求函数解析式
(1)待定系数法:若已知函数的类型(如一次函数、二次函数,反比例等),
可用待定系数法.
(2)换元法:主要用于解决已知 f g x 这类复合函数的解析式,求函数 f x
的解析式的问题,在使用换元法时特别注意,换元必换范围.
(3)配凑法:由已知条件 f g x F x ,可将F x 改写成关于 g x 的表达式,
特别地,当函数 f (x) 在它的定义域上单调递增时,称它是减函数(decreasing function).

高中数学新教材必修第一册第三章 函数的概念与性质基础知识

高中数学新教材必修第一册第三章 函数的概念与性质基础知识

第三章 函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的 x ,按照某种 f ,在集合B 中都有 y 与它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(,其中,x 叫做 ,x 的取值范围A 叫做函数的 ,与x 的值相对应的y 值叫做 ,函数值的集合}|)({A x x f ∈叫做函数的 ,值域是集合B 的子集.2函数的三要素: 、 、 . 求函数定义域的原则:(1)若()f x 为整式,则其定义域是 ;(2)若()f x 为分式,则其定义域是 ;(3)若()f x 是二次根式(偶次根式),则其定义域是 ;(4)若()0f x x =,则其定义域是 ;(5)若()()0,1x f x a a a =>≠,则其定义域是 ;(6)若()()log 0,1a f x x a a =>≠,则其定义域是 ;(7)若f (x )=sinx,g (x )=cosx ,则其定义域是 ;(8)若x x f tan )(=,则其定义域是 ;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.6函数的单调性:(1)单调递增:设任意 ,当 时,有 .特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意 ,当 时,有 特别的,当函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间.8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足: ,都有 ; 使得 ,那么称M 是函数的最大(小)值.10函数的奇偶性:偶函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;偶函数的图象关于 对称;奇函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;奇函数的图象关于 对称;若奇函数)(x f y =的定义域中有零,则其函数图象必过原点,即(0)0f =.11幂函数:一般地,函数 叫做幂函数,其中 是自变量, 是常数. 12幂函数()f x x α=的性质:①所有的幂函数在 都有定义,并且图象都通过点 ; ①如果0α>,则幂函数的图象过原点,并且在区间[)0,+∞上是 ; ①如果0α<,则幂函数的图象在区间()0,+∞上是 ,①幂函数图象不出现于第四象限.。

高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

A.11
B.12
C.13
D.10
【答案】C
【解析】f[f(1)]=f(3)=9+3+1=13.
4.下列各组函数中,表示同一个函数的是( )
A.y=x-1 和 y=xx2+-11
B.y=x0 和 y=1
C.f(x)=x2 和 g(x)=(x+1)2
D.f(x)=
xx2和 g(x)=
x x2
【答案】D
【答案】B 【解析】根据函数的存在性和唯一性(定义)可知,B不 正确.
2.函数 f(x)= xx--21的定义域为(
)
A.[1,2)∪(2,+∞) B.(1,+∞)
C.[1,2)
D.[1,+∞)
【答案】A 【解析】由题意可知,要使函数有意义,需满足xx--21≠≥00,,
即 x≥1 且 x≠2.
3.已知f(x)=x2+x+1,则f[f(1)]的值是( )
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
2.(1)y=x+x+120; (2)y= 2x+3- 21-x+1x. 【解析】(1)由于 00 无意义,故 x+1≠0,即 x≠-1. 又 x+2>0,x>-2,所以 x>-2 且 x≠-1. 所以函数 y=x+x+120的定义域为{x|x>-2 且 x≠-1}.
求函数的定义域
【例 2】求下列函数的定义域: (1)y=2x+3;(2)f(x)=x+1 1; (3)y= x-1+ 1-x;(4)y=xx2+-11. 【解题探究】求函数的定义域,即是求使函数有意义的那 些自变量 x 的取值集合.
【解析】(1)函数 y=2x+3 的定义域为{x|x∈R}. (2)要使函数有意义,即分式有意义,则 x+1≠0,x≠-1. 故函数的定义域为{x|x≠-1}. (3)要使函数有意义,则1x--1x≥≥00,, 即xx≥≤11,, 所以 x=1, 从而函数的定义域为{x|x=1}. (4)因为当 x2-1≠0,即 x≠±1 时,xx2+-11有意义,所以原函 数的定义域是{x|x≠±1}.

高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。

函数的声明和定义

函数的声明和定义

函数的声明和定义在编程中,函数是一种非常重要的概念。

函数可以将一段代码封装起来,使得代码更加模块化,易于维护和重用。

在使用函数时,我们需要先声明函数,然后再定义函数。

本文将详细介绍函数的声明和定义。

函数的声明函数的声明是指在代码中提前声明函数的名称、参数类型和返回值类型,以便在后面的代码中调用该函数。

函数的声明通常放在头文件中,以便在多个源文件中使用同一个函数。

函数的声明包括函数名、参数列表和返回值类型。

例如,下面是一个简单的函数声明:```int add(int a, int b);```这个函数的名称是add,它有两个参数a和b,它们的类型都是int,函数的返回值类型也是int。

函数的定义函数的定义是指实现函数的具体代码。

函数的定义通常放在源文件中,以便编译器将其编译成可执行文件。

函数的定义包括函数名、参数列表、返回值类型和函数体。

例如,下面是一个简单的函数定义:```int add(int a, int b){return a + b;}```这个函数的名称是add,它有两个参数a和b,它们的类型都是int,函数的返回值类型也是int。

函数体中的代码实现了将a和b相加的功能,并将结果返回。

函数的声明和定义的关系函数的声明和定义是紧密相关的。

在使用函数时,我们需要先声明函数,然后再定义函数。

这是因为编译器需要知道函数的名称、参数类型和返回值类型,以便在调用函数时进行类型检查和参数传递。

在声明函数时,我们只需要提供函数的名称、参数类型和返回值类型,而不需要提供函数体。

在定义函数时,我们需要提供函数的名称、参数类型、返回值类型和函数体。

在实际编程中,我们通常将函数的声明放在头文件中,将函数的定义放在源文件中。

这样可以使代码更加模块化,易于维护和重用。

总结函数的声明和定义是编程中非常重要的概念。

函数的声明是指提前声明函数的名称、参数类型和返回值类型,以便在后面的代码中调用该函数。

函数的定义是指实现函数的具体代码。

ts基础-函数定义

ts基础-函数定义

ts基础-函数定义⼆.ts函数定义1.函数声明法:funtion a():number{return123}funtion a():string{return'123'}funtion a():boolean{return true}funtion a():void{}funtion a():boolean{return 123 //报错类型和返回不⼀样}2.匿名函数法:var a = function():number{return123}3.定义⽅法传参function a(str:string,num:number):string{return `${str} --- ${num}`}a('我今年',20) //我今年 --- 204.可选参数法:参数可传可不传,注意可选参数最好放在最后⾯function a(str:string,num?:number):string{if(num){return `${str} --- ${num}`}else {return `${str} --- ⽆num`}}a('我今年',20) //我今年 --- 20a('我今年') //我今年 --- ⽆num5.默认参数function a(str:string,num:number = 20):string{return `${str} --- ${num}`}a('我今年') //我今年 --- 20a('我今年',30) //我今年 --- 306.剩余参数:不确定传多少个参数function sum1(a:number,b:number,c:number,c:number):number{return a+b+c+d}sum1(1,2,3,4) //10function sum(...all:number[]):number{let su = 0;for(let i = 0;a<all.length;a++){su+=all[i]}return su}function sum(a...all:number[]):number{let su = a;for(let i = 0;i<all.length;i++){su+=all[i]}return su}7.函数重载:通过为同⼀个函数提供多个函数类型定义来实现多个功能的⽬的function c(name:string):string;function c(age:number):number;function c(s:any):any{if(typeof s === string){return `1 --- ${s}`}else{return `2 --- ${s}`}};c(333) // 2 --- 333c('q') // 1 --- q c(true) // 报错说明:c函数虽然是any类型,但是上⾯c定义了string和number,就不能完全为any类型,只能是定义好的类型8.箭头函数: this指向上下⽂setTimeout(()=>{console.log('run')},1000)。

高考数学 专题二 函数的概念与基本初等函数 1 函数及其表示课件 理

高考数学 专题二 函数的概念与基本初等函数 1 函数及其表示课件 理

12/10/2021
解析 (1)解法一(换元法):设t= x+1(t≥1),则x=(t-1)2, ∴f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1, ∴f(x)=x2-1(x≥1). 解法二(配凑法):∵x+2 x=( )2x +2 +1x -1=( +1)x2-1,∴f( +1)=x ( + x 1)2-1, ∴f(x)=x2-1(x≥1). (2)(待定系数法):设f(x)=ax+b(a≠0),则 3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b =ax+b+5a=2x+17,
如果按照某一个确定的对应关系f,使对于集 合A中的⑤ 任意一个元素x ,在集合B中都
有唯一确定的元素y与之对应
称f:A→B为从集合A到集合B的一个函数
称对应关系f:A→B为从集合A到集合B的一个映射
记法
y=f(x),x∈A
对应关系f:A→B
12/10/2021
2.函数的有关概念 (1)函数的定义域、值域: 在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的⑥ 定义域 ,与 x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的 ⑦ 值域 . (2)函数的三要素:⑧ 定义域 、⑨ 值域 和⑩ 对应关系 . (3)相等函数:如果两个函数的 定义域 和 对应关系 完全一致,则这 两个函数相等. (4)函数的表示方法:表示函数的常用方法有 解析法 、 图象法 、
列表法 .
12/10/2021
考向突破
考向 求函数定义域
例 (1)(2017山西名校9月联考,5)设函数f(x)=lg(1-x),则函数f(f(x))的定

定义一个多参数函数

定义一个多参数函数

定义一个多参数函数
一个多参数函数有以下几个要素:
1. 函数声明:首先,我们需要定义函数所需要的参数,包括函数名称、参数类型和参数个数。

2. 函数体:接下来,定义函数体语句,也就是函数中包含形式参数的C语言代码。

3. 值返回:函数体语句执行完成后,返回函数执行结果,也就是函数的返回值,例如int类型的返回值等。

4. 函数调用:定义完函数之后,使用函数的时候需要进行调用,即从函数的调用处传递参数到函数体中使用,并通过返回值获取函数执行结果。

在使用多参数函数时,还需要注意一些细节。

首先,多参数函数的参数类型要确保接受正确的参数类型,例如int类型参数
不能接受字符串参数,这样会导致程序运行出错。

其次,多参数函数的参数个数要确保正确,不能传入过多或过少的参数,否则也会导致程序运行出错。

最后,多参数函数的返回值也必须正确,能够正确地返回函数的执行结果。

多参数函数可以在不同的情况下复用,能够帮助我们编写更高效的程序。

例如,我们可以编写一个函数,用于将两个数字相加,在调用函数时只需传入两个参数就可以实现相加的功能,
并通过返回值得到结果。

由此可见,多参数函数为程序设计提供了强大的功能,是程序开发的重要组成部分。

一函数与映射的基本概念

一函数与映射的基本概念

一、函数与映射的基本概念一、基本概念1.函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么就称这样的对应“f :A →B ”为从集合A 到B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合C={y|y = f (x ),x ∈A }叫做函数的值域)(B C ⊆. 函数符号y =f (x )表示“y 是x 的函数”,或简记为f (x ).这里的“f ”即对应法则,它确定了y 与x 的对应关系.从函数概念看,“定义域、值域和对应法则”是构成函数的三个要素,其中,“定义域和对应法则”是两个关键性要素,定义域和对应法则一旦确定,函数的值域也随之确定.2、对应法则是指y 与x 的对应关系,它含有两层意思,一是对应的过程(形式),即由x 求出y 的运算过程,一般体现在函数的解析表达式中;二是运算的结果(本质),即y 的值,两个对应法则是否相同,要看对于同一个自变量的值所得到的函数值是否相同,有时形式上不同的对应法则本质上是相同的。

例如:x x x y x y ++=+=22cos sin 1与的对应法则是相同的。

3、同一个函数两个函数当且仅当定义域和对应法则二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.4、变换字母在函数的定义域及对应法则不变的条件下,用不同的字母表示自变量及对应法则,这对于函数本身并无影响,比如f (x )=x 2+1,g (t )= t 2+1,都表示同一函数.5、区间及其表示方法.区间是数学中常用的表示数集的术语与符号.设b a R b a <∈,、,规定闭区间: [a ,b ]={}b x a x ≤≤|,开区间:(a ,b )={}b x a x <<|,半开半闭区间:(a ,b ]={}b x a x ≤<|,[a ,b )={}b x a x <≤|. 其中a 、b 分别为区间的左端点、右端点,b -a 为区间长度.符号+∞读作正无穷大,﹣∞读作负无穷大,它们都不是一个具体的数. 用+∞或-∞作为区间的端点,表示无穷区间,并且只能用开区间的形式. 如:{}a x x a >=+∞|),(,{}}|),(b x x b <=-∞,R =+∞-∞),(6.映射的概念:映射是两个集合间的一种特殊的对应关系,即若按照某种对应法则f ,对于集合A 中的任一元素,在集合B 中都有唯一的元素与之对应,那么这样的对应(包括集合A 、B 和对应法则f )就叫做集合A 到集合B 的映射,记作f :A →B .在映射f :A →B 中,若A 中元素a 与B 中元素b 对应,则b 叫做a 的象,a 叫做b 的原象.因而,映射可以理解为“使A 中任一元素在B 中都有唯一象”的特殊对应(即单值对应).如果映射f :A →B 满足①A 中不同元素在B 中有不同的象;②B 中任一元素均有原象,那么这个映射就是A 到B 上的一一映射.7、映射与函数的关系函数是映射,但映射不一定是函数。

高中数学必修一(人教版)《函数的概念与性质》课件

高中数学必修一(人教版)《函数的概念与性质》课件
提醒:要利用函数的单调性、奇偶性、对称性简化作图.
【集训冲关】 已知f(x)是R上的奇函数,且当x>0时,f(x)=-x2+2x+2. (1)求f(-1); (2)求f(x)的解析式; (3)画出f(x)的图象,并指出f(x)的单调区间. 解:(1)由于函数f(x)是R上的奇函数,所以对任意的x都有f(-x)=-f(x),所 以f(-1)=-f(1)=-(-1+2+2)=-3.
[方法技巧] 函数单调性与奇偶性应用的常见题型
(1)用定义判断或证明函数的单调性和奇偶性. (2)利用函数的单调性和奇偶性求单调区间. 3利用函数的单调性和奇偶性比较大小、解不等式. 4利用函数的单调性和奇偶性求参数的取值范围. 提醒:判断函数的奇偶性时要特别注意定义域是否关于原点对称.
【集训冲关】
(2)由(1)知 f(x)=2x32+x 2=23x+32x.任取 x1,x2∈[-2,-1],且 x1<x2,则 f(x1) -f(x2)=23(x1-x2)1-x11x2=23(x1-x2)·x1xx12x-2 1. ∵-2≤x1<x2≤-1,∴x1-x2<0,x1x2>1,x1x2-1>0, ∴f(x1)-f(x2)<0,即 f(x1)<f(x2). ∴函数 f(x)在[-2,-1]上为增函数, 因此 f(x)max=f(-1)=-43,f(x)min=f(-2)=-53.
2.已知函数 f(x)=m3xx+2+n2是奇函数,且 f(2)=53. (1)求实数 m 和 n 的值; (2)求函数 f(x)在区间[-2,-1]上的最值. 解:(1)∵f(x)是奇函数,∴f(-x)=-f(x), ∴-m3xx2++2n=-m3xx+2+n2=-m3xx2+-2n. 比较得 n=-n,n=0.又 f(2)=53,∴4m6+2=53,解得 m=2.因此,实数 m 和 n 的值分别是 2 和 0.

1.1 函数的定义

1.1 函数的定义

这两种方法各有所长,我们经常用描述法来表示一个集合,
即用 x p( x) 表示所有满足命题 p( x) 的实数x组成的集合。
例如 x x + 4 = 8 表示所有满足等式 x + 4 = 8 的实数 x 构
成的集合。
需要注意的是, 用描述法表示一个集合时, 定义该集合所用 的命题应当表达出一个清晰概念. 例如“个子较高的女学生” 不能形成一个集合, 因为“高个子”不是一个清晰明确的概念。 可以改为“身高在1米6和1米7之间的女学生”。
当 A B 且 A B 时,则称A是B的一个真子集, 记作 A B
如图所示:
AB
还有一种特殊的集合——空集, 空集是不包含任何元素的
集合, 空集的记号是 .
例如: 集合 x x2 + 1 = 0, x R 就是空集.
空集不含任何元素,因此空集是任何集合的子集。今后在 提到一个集合时, 如果不加特别声明, 一般都是非空集合.
“ ”表示“任取“, 或者“任意给定” 例如,a 0 表示任意取一个正数a, 或者任意给定一个正数a,
又如 f (x) 1,x a,b, 表示对于区间a,b中所有的 x 都有
f ( x) 1.
“ ”表示“存在”,“至少存在一个”,或者“能够 找到”
例如,考察下面这段话:“对于任意正数M,都能在

A B = (−1,1),(−1, 2),(−1, 3),(1,1),(1, 2),(1, 3)
如图
y
3
2
1
-1 O
1
x
1.1.2 区间 定义1 区间是指介于两个实数之间的全体实数构成的集合. 我们常见的有以下形式: (1)开区间: 表示所有满足不等式a<x<b的实数x构成的集合.

2第二章函数与极限(函数的定义)1

2第二章函数与极限(函数的定义)1

f
(x0 )
x0 x0
3 2
2)f (2a), f (b2 1) 解: f (2a) 2a 3
2a 2
f
(b2
1)
(b2 (b2
1) 1)
3 2
b2 b2
2 3
3) f [ f (1)], f [ f (x)]
解:f [ f (1)] f [ 1 3] f (4) 4 3 7
解得xx11
取其公共部分 x 1, x 1
所以定义域为[-1,1) ∪(1,+∞)
[B]. (3)y ln(x 3) (4) y lg 1 x 1 x
解 (3)要使函数有意义,必须有 x 3 0
解得 x 3
所以定义域为(-3,+∞)
(4)要使函数有意义,必须有 1 x 0 1 x
1 2
4 2 2
f[f
(x)]
f[ x3] x2
x3 3 x2 x3 2
2x 9. f (x) t 与g(x)
t2
相同,定义域和对应关系 都相同
▲函数的定义域
在实际问题中,函数的定义域由问题的实际意义确定。 用解析式表示的函数,其定义域是自变量所能取的 使解析式有意义的一切实数,通常要考虑以下几点:
(1)在分式中,分母不能为零;
(2)在根式中,负数不能开偶次方根;
(3)在对数式中,真数必须大于零;
1

(x 1)(x 4)
(2) y x 1 1 x 1
解:(1)要使函数有意义,必须有分母 (x 1)(x 4) 0
x 1 0
即 x 4 0
x 1
x
4
所以定义域为(-∞,-4) ∪(-4,1)∪(1,+ ∞)

河北省2020年新高一数学必修一第三章函数的概念与性质知识点总结(人教版)

河北省2020年新高一数学必修一第三章函数的概念与性质知识点总结(人教版)

2020年新高一数学必修一知识点总结第三章函数的概念与性质3.1函数的概念及其表示1.函数是刻画变量间对应关系的数学模型和工具。

2.函数问题的共同特征:①定义域、值域均为非空数集;②定义域和值域间有一个对应关系;③对于定义域中的任何一个自变量,在值域中都有唯一确定的数与之对应。

3.函数中的对应关系可用解析式、图象、表格等表示,为了表示方便,引进符号f 统一表示对应关系。

【注】函数符号()y f x =是由德国数学家莱布尼茨在18世纪引入的。

4.函数定义一般地,设,A B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈。

其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}f x x A ∈叫做函数的值域。

5.函数的三要素:①定义域;②对应关系;③值域。

6.(1)函数的定义域和对应关系可以确定出函数的值域,即一个函数的值域是由它的定义域和对应关系决定的。

(2)没有特别说明的情况下,函数的定义域默认是使其有意义的自变量取值范围。

如y =,则默认定义域是{}0x x ≠(3)实际问题中的函数定义域要根据实际情况定.如:匀速直线运动中位移、速度和时间的关系:()s t v t = ,隐含着0t ≥。

6.几个特殊函数的定义域和值域(1)正比例函数()0y kx k =≠,定义域和值域都为全体实数R。

(2)一次函数()0y kx b k =+≠,定义域和值域都为全体实数R。

(3)反比例函数()0k y k x=≠,定义域为{}0x x ≠,值域为{}0y y ≠。

(4)一元二次函数()20y ax bx c a =++≠,定义域为R。

①当0a >时,值域为244ac b y y a ⎧⎫-⎪⎪≥⎨⎬⎪⎪⎩⎭;②当0a <时,值域为244ac b y y a ⎧⎫-⎪⎪≤⎨⎬⎪⎪⎩⎭。

人教数学B版必修一《函数及其表示方法》函数的概念与性质PPT课件(第2课时函数的表示方法)

人教数学B版必修一《函数及其表示方法》函数的概念与性质PPT课件(第2课时函数的表示方法)

(4)函数 f(x)=x-+x1+,3,x≤x>1,1 是分段函数.(3)× (4)√
栏目导航
x2+1,x≤1,
2.设函数 f(x)=2x,x>1,
则 f(f(3))=( )
A.15
B.3
2
13
C.3
D. 9
D [∵f(3)=23≤1,
∴f(f(3))=232+1=193.]
栏目导航
20
1.若集合A={x|0≤x≤2},B={y|0≤y≤3},则给出的下列图形 表示为定义在A上的函数图像的是( )
A
B
C
D
栏目导航
21
(2)由下表给出函数y=f(x),则f(f(1))等于( )
x12345
y45321
A.1
B.2
C.4
D.5
(1)D (2)B [(1)A中的对应不满足函数的存在性,即存在x∈A,
44
栏目导航
45
1.函数有三种常用的表示方法,可以适时的选择,以最佳的方式 表示函数,解析式后不注明定义域即可视为该函数的定义域为使此解 析式有意义的实数集 R 或 R 的子集.
2.作函数图像必须要让作出的图像反映出图像的伸展方向,与 x 轴、y 轴有无交点,图像有无对称性,并标明特殊点.
栏目导航
栏目导航
37
[解] (1)列表
x2345 …
y
1
2 3
1 2
2 5

当 x∈[2,+∞)时,图像是反比例函数 y=2x的一部分,观察图像
可知其值域为(0,1].
栏目导航
(2)设票价为y元,里程为x公里,定义域为(0,20]. 由题意得函数的解析式如下:

函数的概念及定义

函数的概念及定义

作业:P129-130
return(表达式)
例:定义一个函数,求两整形参数之和, 并返回和值。
Int sum(int x,int y) {int z; Z=x+y; Retu中的最 大值,并返回该值。
Float max(float x1,float x2,float x3) { float m;
Void welc( ) {int I; For (I=1;I<=3;I++)
Printf(“welcome,my friends”); }
(2) 有参函数
一般形式:
类型标识符 函数名(形式参数说明列表)
说明:
{ 说明部分 执行部分
}
函数返回可以有值带出,也可以没有。如要 让函数返回一个确定的值,必须使用语句:
printf(“%d”,a); scanf(“%d”,&a); welco( );
3、函数参数 函数作为另一个函数调用的实际参数出 现,这种情况是把该函数的返回值作为 实际参数对待,因此要求该函数必须有 返回值。
例:printf(“%f”,max(a,b,c));
m=max(x,y,max(a,b,c));
2、函数的定义:
函数可分为:无叁函数和有叁函数。
(1)无叁函数
一般形式为:
类型标识符 函数名( ) { 说明部分 执行部分 }
例:定义一个函数,打印若干“*”号
Void print( ) { printf(“****************\n”); }
例:定义一个函数,打印3 行欢迎词 “welcome,my friends”.
1、函数表达式:
函数作为表达式中的一项出现在表达式中,以函数返回参数参 与表达式的 运算,这种方式要求表达式是有返回值的。 例: k=max(a,b,c);调用上例max 函数,求实际参数a,b,c中最大值,并将 该值赋予变量k.

函数的概述函数定义与声明函数的调用局部变量和全局变量

函数的概述函数定义与声明函数的调用局部变量和全局变量

函数的概述函数定义与声明函数的调用局部变量和全局变量函数是一种可重复使用的程序代码块,它接受输入参数并执行特定任务,然后返回一个结果。

函数的使用可以使程序更加模块化和可读性更高,同时减少代码的重复编写和维护的工作量。

函数的定义和声明是函数的基本组成部分。

函数的定义包括函数名、参数列表、函数体和返回类型。

函数的声明指定了函数的名称和参数列表,并定义了函数的返回类型,用于告诉编译器函数的存在和如何使用。

函数的定义和声明之间的关系是函数的声明告诉编译器函数的存在和如何使用,而函数的定义则提供了实现函数功能的代码。

函数的调用是使用函数的过程,通过函数名和参数列表将程序的控制权转移给函数,然后执行函数内部的代码。

函数的调用可以在程序的任何地方进行,只需使用函数名和参数列表即可。

在调用函数时,程序将按照函数定义的行为执行相应的代码,然后将结果返回给调用者。

局部变量是在函数内部定义的变量,其作用域限定在函数内部,只能在函数内部使用。

局部变量的生命周期与函数的生命周期一致,当函数执行结束时,局部变量将被销毁。

局部变量的作用是存储和处理函数运行过程中的临时数据,例如函数的参数值、中间计算结果等。

全局变量是在函数外部定义的变量,其作用域覆盖整个程序,可以在程序的任何地方使用。

全局变量的生命周期与程序的生命周期一致,当程序结束时,全局变量才会被销毁。

全局变量的作用是存储和处理程序中多个函数之间共享的数据,例如配置参数、计数器等。

局部变量和全局变量在使用上有一些区别。

首先,局部变量在函数内部定义和使用,具有更小的作用域,不会影响其他函数或全局作用域;而全局变量可以在整个程序中使用,对所有函数都可见。

其次,局部变量的生命周期与函数的生命周期一致,每次函数调用时都会重新创建和销毁;而全局变量的生命周期与程序的生命周期一致,只在程序开始执行时创建一次,直到程序结束才销毁。

最后,局部变量的命名可以与其他函数的局部变量重复,不会造成冲突;而全局变量的命名需要注意避免与其他全局变量或函数命名冲突。

《函数的概念及其表示》函数的概念与性质PPT(第一课时函数的概念)

《函数的概念及其表示》函数的概念与性质PPT(第一课时函数的概念)
栏目 导引
第三章 函数的概念与性质
(2)①定义域不同,f(x)的定义域为{x|x≠0},g(x)的定义域为 R. 不相等. ②对应关系不同,f(x)= 1x,g(x)= x.不是同一个函数. ③定义域、对应关系都相同.同一个函数. ④对应关系不同,f(x)=|x+3|,g(x)=x+3.不是同一个函数. 【答案】 (1)B (2)③
栏目 导引
第三章 函数的概念与性质
下列各组函数表示同一个函数的是( ) A.f(x)=x-,xx,≥x0<,0 与 g(x)=|x| B.f(x)=1 与 g(x)=(x+1)0 C.f(x)= x2与 g(x)=( x)2 D.f(x)=x+1 与 g(x)=xx2--11
栏目 导引
第三章 函数的概念与性质
栏目 导引
第三章 函数的概念与性质
判断两个函数为同一个函数应注意的三点 (1)定义域、对应关系两者中只要有一个不相同就不是同一个函 数,即使定义域与值域都相同,也不一定是同一个函数. (2)函数是两个非空数集之间的对应关系,所以用什么字母表示 自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.
(-∞,4).
栏目 导引
第三章 函数的概念与性质
已知全集 U=R,A={x|1<x≤3},则∁UA 用区间表示为 ________. 解析:∁UA={x|x≤1 或 x>3},用区间可表示为(-∞,1]∪(3, +∞). 答案:(-∞,1]∪(3,+∞)
栏目 导引
第三章 函数的概念与性质
下图中能表示函数关系的是________.
栏目 导引
第三章 函数的概念与性质
⑤若 f(x)是实际问题的解析式,则应符合实际问题,使实际问 题有意义. (2) 第 (1) 题 易 出 现 化 简 y = x + 1 - 1-x , 错 求 定 义 域 为 {x|x≤1},在求函数定义域时,不能盲目对函数式变形.

函数的概念与性质(5知识点+4重难点+5方法技巧+5易错易混)(解析版)2025高考数学一轮知识清单

函数的概念与性质(5知识点+4重难点+5方法技巧+5易错易混)(解析版)2025高考数学一轮知识清单

专题03函数的概念与性质(思维构建+知识盘点+重点突破+方法技巧+易混易错)知识点1函数的有关概念1、函数的概念:一般地,设,A B 是非空的数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈.2、函数的三要素:(1)在函数(),y f x x A =∈中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;(2)与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域。

显然,值域是集合B 的子集.(3)函数的对应关系:(),y f x x A =∈.3、相等函数与分段函数(1)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(2)分段函数:在函数定义域内,对于自变量x 取值的不同区间,有着不同的对应关系,这样的函数称为分段函数。

分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

分段函数虽然是由几个部分构成,但它表示的是一个函数,各部分函数定义域不可以相交。

知识点2函数的单调性1、单调函数的定义设函数f (x )的定义域为I.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数f(x)在区间D 上是单调递增函数。

当21x x <时,都有)()(21x f x f >,那么就说函数f(x)在区间D 上是单调递减函数。

单调性的图形趋势(从左往右)上升趋势下降趋势2、函数的单调区间若函数y =f(x)在区间D 上是增函数或减函数,则称函数y =f(x)在这一区间上具有(严格的)单调性,区间D 叫做y =f(x)的单调区间.【注意】(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,故单调区间的端点若属于定义域,则区间可开可闭,若区间端点不属于定义域则只能开.(2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大;(4)单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;3、函数单调性的性质若函数)(x f 与)(x g 在区间D 上具有单调性,则在区间D 上具有以下性质:(1))(x f 与C x f +)((C 为常数)具有相同的单调性.(2))(x f 与)(x f -的单调性相反.(3)当0>a 时,)(x af 与)(x f 单调性相同;当0<a 时,)(x af 与)(x f 单调性相反.(4)若)(x f ≥0,则)(x f 与)(x f 具有相同的单调性.(5)若)(x f 恒为正值或恒为负值,则当0>a 时,)(x f 与)(x f a具有相反的单调性;当0<a 时,)(x f 与)(x f a具有相同的单调性.(6))(x f 与)(x g 的和与差的单调性(相同区间上):简记为:↗+↗=↗;(2)↘+↘=↘;(3)↗﹣↘=↗;(4)↘﹣↗=↘.(7)复合函数的单调性:对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或(g (b ),g (a ))上是单调函数若t =g (x )与y =f (t )的单调性相同,则y =f [g (x )]为增函数若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.简称“同增异减”.知识点3函数的奇偶性1、函数的奇偶性奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 是奇函数关于原点对称2、函数奇偶性的几个重要结论(1)()f x 为奇函数⇔()f x 的图象关于原点对称;()f x 为偶函数⇔()f x 的图象关于y 轴对称.(2)如果函数()f x 是偶函数,那么()()f x f x =.(3)既是奇函数又是偶函数的函数只有一种类型,即()0f x =,x ∈D ,其中定义域D 是关于原点对称的非空数集.(4)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(5)偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.知识点4函数的周期性1、周期函数的定义对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有()()+=f x T f x ,那么就称函数()f x 为周期函数,称T 为这个函数的周期.2、最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么这个最小正数就叫做()f x 的最小正周期.知识点5函数的对称性1、关于线对称若函数()y f x =满足()()f a x f b x +=-,则函数()y f x =关于直线2a b x +=对称,特别地,当a =b =0时,函数()y f x =关于y 轴对称,此时函数()y f x =是偶函数.2、关于点对称若函数()y f x =满足()()22-=-f a x b f x ,则函数()y f x =关于点(a ,b )对称,特别地,当a =0,b =0时,()()f x f x =--,则函数()y f x =关于原点对称,此时函数()f x 是奇函数.重难点01求函数值域的七种方法法一、单调性法:如果一个函数为单调函数,则由定义域结合单调性可快速求出函数的最值(值域).(1)若函数y =f (x )在区间[a ,b ]上单调递增,则y max =f (b ),y min =f (a ).(2)若函数y =f (x )在区间[a ,b ]上单调递减,则y max =f (a ),y min =f (b ).(3)若函数y =f (x )有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.【典例1】(23-24高三·全国·专题)函数()221f x x =-([]2,6x ∈)的最大值为()A .2B .23C .25D .235【答案】B【解析】因为函数21y x =-在[]2,6上单调递增,所以根据单调性的性质知:函数()221f x x =-在[]2,6上单调递减,所以当2x =时,函数()221f x x =-取到最大值为()2222213f ==-.故选:B 【典例2】(23-24高三·全国·专题)函数()lg f x x x =+的定义域为1,1010⎡⎤⎢⎥⎣⎦,则值域为()A .9,1110⎡⎤-⎢⎥⎣⎦B .9,1110⎡⎤⎢⎥⎣⎦C .99,10⎡⎤-⎢⎥⎣⎦D .[]9,11-【答案】A【解析】因为函数()lg f x x x =+的定义域为1,1010⎡⎤⎢⎥⎣⎦,且lg ,y x y x ==在1,1010⎡⎤⎢⎥⎣⎦内单调递增,可知()f x 在1,1010⎡⎤⎢⎥⎣⎦内单调递增,可知()f x 在1,1010⎡⎤⎢⎥⎣⎦内的最小值为191010f ⎛⎫=- ⎪⎝⎭,最大值为()1011f =,所以值域为9,1110⎡⎤-⎢⎥⎣⎦.故选:A.法二、图象法:作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)()f x 的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x 函数的图象,从而利用图象求得函数的值域.【典例1】(23-24高三上·河南新乡·月考)对R x ∀∈,用()M x 表示()f x ,()g x 中的较大者,记为()()(){}max ,M x f x g x =,若函数()(){}2max 3,1M x x x =-+-,则()M x 的最小值为.【答案】1【解析】当()231x x -+≥-,即220x x --≤,即12x -≤≤时,()3M x x =-+,当()231x x -+<-,220x x -->,即2x >或1x <-时,()()21M x x =-,所以()[]()()()23,1,21,,12,x x M x x x ∞∞⎧-+∈-⎪=⎨-∈--⋃+⎪⎩,函数图象如图所示:由图可得,函数()M x 在(),1-∞-,()1,2上递减,在()2,+∞上递增,所以()()min 2231M x M ==-+=.【典例2】(23-24高三上·重庆北碚·月考)高斯是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:对于实数x ,符号[]x 表示不超过x 的最大整数,例如[e]3-=-,[2.1]2=,定义函数()[]f x x x =-,则函数()f x 的值域为.【答案】[0,1)【解析】由高斯函数的定义可得:当01x ≤<时,[]0x =,则[]x x x -=,当12x ≤<时,[]1x =,则[]1x x x -=-,当23x ≤<时,[]2x =,则[]2x x x -=-,当34x ≤<时,[]3x =,则[]3x x x -=-,易见该函数具有周期性,绘制函数图象如图所示,由图象知()f x 的值域为[0,1).法三、配方法:主要用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围.【典例1】(23-24高三上·全国·专题)函数()f x )A .[]0,2B .[)0,∞+C .[)2,+∞D .()()0,22,+∞U 【答案】A【解析】令2230x x --+≥得,31x -≤≤,故定义域为[]3,1-,()[]0,2f x ==.故选:A【典例2】(2023高三·江西萍乡·开学考)函数212y x x =-++的值域为.【答案】4(,0)[,)9-∞+∞ 【解析】由题得220,1x x x -++≠∴≠-且2x ≠.因为221992()244x x x -++=--+≤,且220x x -++≠.所以原函数的值域为4(,0)[,)9-∞+∞ .法四、换元法:换元法是将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出最值(值域).(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围.(2)换元的作用有两个:①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的.②可将不熟悉的函数转化为会求值域的函数进行处理【典例1】(2023高三上·广东河源·开学考试)函数()2f x x =的最大值为.【答案】178()0t t =≥,则21x t =-,所以()22117222048y t t t t ⎛⎫=-++=--+≥ ⎪⎝⎭,由二次函数的性质知,对称轴为14t =,开口向下,所以函数2117248y t ⎛⎫=--+ ⎪⎝⎭在10,4⎡⎤⎢⎣⎦单调递增,在1,4⎛⎫+∞ ⎪⎝⎭上单调递减.所以当14t ==,即1516x =时,()f x 取得最大值为max 151517()()1688f x f ===.【典例2】(23-24高三·全国·专题)函数1y x =-的值域为()A .1,2⎛⎤-∞ ⎥⎝⎦B .[)0+,∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,2⎛⎫+∞ ⎪⎝⎭【答案】Ct =,()0t ≥,则212t x -=,所以函数()22211112222t t t y t t +-=++=++=,函数在[)0,+∞上单调递增,0=t 时,y 有最小值12,所以函数1y x =-1,2⎡⎫+∞⎪⎢⎣⎭.故选:C法五、分离常数法:主要用于含有一次的分式函数,形如+=+ax by cx d或2++=+ax bx e y cx d (a ,c 至少有一个不为零)的函数,求其值域可用此法以+=+ax by cx d为例,解题步骤如下:第一步,用分子配凑出分母的形式,将函数变形成=++a ey c cx d的形式,第二步,求出函数=+e y cx d 在定义域范围内的值域,进而求出+=+ax by cx d的值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

被调函数的形参以及局部量开始起作用,然后执行 求两个数之和 函数体。
main( ) int add (int m,int n) { int a,b,c; { int d; int add(int m,int n); d=m+n; scanf(“%d%d”,&a,&b); return(d ); c = add(a,b); } printf(“%d”,c); }
main( ) 函数的声明 int add (int m,int n) { { int d; int add(int m,int n); d=m+n; return(d); c = add(a,调用
1
函数定义的内容为: 求两个数之和 自定义的一个函数add(); 函数类型 函数名 (类型 形参名称) main( ) int add (int m,int n) { int a,b,c; 1、自定义的函数只能写在 { int d; int add(int m,int n); main()之外 d=m+n; 函数体内容 scanf(“%d%d”,&a,&b); 2、在定义时后面不要加分 return(d); 号! add(a,b); c= } printf(“%d”,c); }
函数执行的最后一个操作是返回。返回的意义是:
(1)使流程返回主调函数,宣告函数的一次执行终结, 在调用期间所分配的变量单元被撤销。 (2)送函数值到调用表达式中。有些函数有返回值, 有些函数可以没有返回值。
void的函数类型
/*打印n个空格的函数*/ void spc(int n) 这个函数只执行打印n个空 C语言中,当不带表达式的 { return语句省去,用作函数 格的操作,不返回任何值到 int i ; 调用函数中,所以将用void 体结束的右花括号也会将 for( i=0; i<n; i++) 定义它。 流程返回调用函数。 printf(“ ”); 此语句可省略! return; }
模块化程序设计
模块化程序设计就是进行大程序 设计的一种有效措施。其基本思想 是将一个大程序按功能进行分割成 一些模块,使每一个模块都成为功 能单一、结构清晰、接口简单、容 易理解的小程序。
函数
无论涉及的问题是复杂还是简单,规模是 main( ) 大还是小,用C语言设计程序,任务只有一种, { int a,sum=0; 就是编写函数,至少也要写一个main()函数。 for(a=1;a<=10;a++) 执行C 程序就是执行相应的main( )函数,即 从它的 main()函数的第一个前花括号开始,依 sum=sum+a*a ; 次执行后面的语句,直到最后的后花括号为止。 printf(“%d”,sum); 其它函数只有在执行main( )函数的过程中被调 用时才执行。 }
C语言函数


一、数学函数 math.h 二、字符函数 ctype.h 三、字符串函数 string.h 四、输入输出函数 stdio.h 五、动态存储分配函数stdlib.h 六、其他函数
C语言中所有的函数都在其相应的库中。
一个完整的C源程序必须含有一个主函数 (即main函数)和若干个子函数。 main() { int a; scanf(“%d”,&a); printf(“%d”,a+3); }
形参 );
函数的一般调用
调用方法:
main( ) 主调函数调用被 调函数时,首先计 { int a,b,c; 算实参表中值, int add(int m,int n); scanf(“%d%d”,&a,&b); c = add(a,b); 函数名 (实参,实参 ); printf(“%d”,c); }
1
int add (int m,int n) { int d; d=m+n; return(d); }
函数的调用
main( ) { int add(int m,int n); c = add(a,b); }
1
int add (int m,int n) { int d; d=m+n; return(d); }
函数的一般调用
调用方法:
main( ) int add (int m,int n) 主调函数调用 { int a,b,c; {被调函数时,首先 int d; 计算实参表中值, int add(int m,int n); d=m+n; scanf(“%d%d”,&a,&b); 接着进行参数传递, return(d); 再将控制转移到被 c = add(a,b); }调函数, printf(“%d”,c); }
函数的定义
函数的调用
1
main( ) 函数的声明 int add (int m,int n) { { int d; int add(int m,int n); d=m+n; return(d); c = add(a,b); } }
函数的定义
函数的调用
1
函数的调用
main( ) { int add(int m,int n); c = add(a,b); }
输入-2,则: main() { float y ( float x) ; float n, m ; scanf(“%f”,&n); m=y(n); printf(“%f”,m); }
float y ( float x ) { if (x<0) return(x*x-x+1); else return(x*x*x+x+3); }
形参 );
函数声明的一般格式为: 函数声明的意义:
函数声明是对所用到的函数的特征进行 main( ) 必要的声明。编译系统以函数声明中给出的 { int a,b,c; 信息为依据,对调用表达式进行测试。 int add(int m,int n); scanf(“%d%d”,&a,&b); 类型标识符 函数名 (标识符 形参,标识符 c = add(a,b); int add (int m,int n); printf(“%d”,c); }
main( ) int add (int m,int n) { int a,b,c; { int d; int add(int m,int n); d=m+n; scanf(“%d%d”,&a,&b); return(d ); c = add(a,b); } printf(“%d”,c); }
函数的返回
函数声明的一般格式为:
main( ) { int a,b,c; int add(int m,int n); scanf(“%d%d”,&a,&b); 类型标识符 函数名 (标识符 形参,标识符 c = add(a,b); int add (int m,int n); printf(“%d”,c); }
main( ) 函数的声明 int add (int m,int n) { int a,b,c; { int d; int add(int m,int n); d=m+n; scanf(“%d%d”,&a,&b); return(d); c = add(a,b); 函数的调用 } printf(“%d”,c); }
求两个数之和 自定义的一个函数add();
main( ) int add (int m,int n) { int a,b,c; { int d; int add(int m,int n); d=m+n; scanf(“%d%d”,&a,&b); return(d); c = add(a,b); } printf(“%d”,c); }
当函数执行完毕时,控制返回到主调函数继续执行。
main( ) int add (int m,int n) { int a,b,c; { int d; int add(int m,int n); d=m+n; scanf(“%d%d”,&a,&b); return(d ); c = add(a,b); } printf(“%d”,c); }
main() { float y ( float x) ; float n, m ; scanf(“%f”,&n); m=y(n); printf(“%f”,m); }
float y ( float x ) { if (x<0) return(x*x-x+1); else return(x*x*x+x+3); }
函数的定义
main( ) 函数的声明 { int add(int m,int n); c = add(a,b); }
函数的定义
int add (int m,int n) { int d; d=m+n; return(d); }
函数的调用
函数的定义在main()之外,故不需加分号。
main( ) 函数的声明 int add (int m,int n) { { int d; int add(int m,int n); d=m+n; 函数的声明与函数的调用均是在main()函数中 return(d); c = add(a,b); } }
函数的定义 main( ) int add (int m,int n) { int a,b,c; { int d; int add(int m,int n); d=m+n; scanf(“%d%d”,&a,&b); return(d); c = add(a,b); } printf(“%d”,c); }
函数定义的内容为: 求两个数之和 自定义的一个函数add(); 函数类型 函数名 (类型 形参名称) main( ) int add (int m,int n) { int a,b,c; { int d; int add(int m,int n); d=m+n; 函数体内容 scanf(“%d%d”,&a,&b); return(d); c = add(a,b); } printf(“%d”,c); }
相关文档
最新文档