研究生作业_基于遗传算法优化多元多目标函数的MATLAB实现

合集下载

如何在Matlab中进行多目标优化问题求解

如何在Matlab中进行多目标优化问题求解

如何在Matlab中进行多目标优化问题求解如何在Matlab中进行多目标优化问题求解?多目标优化问题是指存在多个目标函数,且这些目标函数之间相互矛盾或者无法完全同时满足的问题。

在实际应用中,多目标优化问题非常常见,例如在工程设计中寻求最佳平衡点、在金融投资中追求高收益低风险等。

而Matlab作为一种强大的数值计算工具,提供了丰富的优化算法和工具箱,可以帮助我们解决多目标优化问题。

一、多目标优化问题数学建模在解决多目标优化问题之前,首先需要将实际问题转化为数学模型。

假设我们需要优化一个n维的向量x,使得目标函数f(x)同时最小化或最大化。

其中,n为自变量的个数,f(x)可以表示为多个目标函数f1(x)、f2(x)、...、fm(x)的向量形式:f(x) = [f1(x), f2(x), ..., fm(x)]其中,fi(x)(i=1,2,...,m)即为待优化的目标函数。

在多目标优化问题中,一般没有单一的最优解,而是存在一个解集,称为"帕累托前沿(Pareto Frontier)"。

该解集中的每个解被称为"非支配解(Non-Dominated Solution)",即不能被其他解所优化。

因此,多目标优化问题的目标就是找到帕累托前沿中的最佳解。

二、Matlab中的多目标优化算法Matlab提供了多种多目标优化算法和工具箱,包括paretosearch、gamultiobj、NSGA-II等等。

这些算法基于不同的思想和原理,可以根据问题的特点选择合适的算法进行求解。

1. paretosearch算法paretosearch算法采用遗传算法的思想,通过迭代更新种群来寻找非支配解。

该算法适用于求解中小规模的多目标优化问题。

使用paretosearch算法求解多目标优化问题可以按照以下步骤进行:(1)定义目标函数编写目标函数fi(x)(i=1,2,...,m)的代码。

使用Matlab进行遗传算法优化问题求解的方法

使用Matlab进行遗传算法优化问题求解的方法

使用Matlab进行遗传算法优化问题求解的方法引言在现代科技发展的背景下,优化算法成为解决各种问题的重要工具之一。

遗传算法作为一种生物启发式算法,具有全局寻优能力和适应性强的特点,在许多领域中被广泛应用。

本文将介绍如何使用Matlab进行遗传算法优化问题求解,包括问题建模、遗传算子设计、遗传算法编码、适应度评价和求解过程控制等方面。

一、问题建模在使用遗传算法求解优化问题之前,我们首先需要将问题定义为数学模型。

这包括确定问题的目标函数和约束条件。

例如,假设我们要最小化一个多变量函数f(x),其中x=(x1,x2,...,xn),同时还有一些约束条件g(x)<=0和h(x)=0。

在Matlab中,我们可通过定义一个函数来表示目标函数和约束条件。

具体实现时,我们需要在目标函数和约束函数中设置输入参数,通过调整这些参数进行优化。

二、遗传算子设计遗传算法的核心是遗传算子的设计,包括选择(Selection)、交叉(Crossover)、变异(Mutation)和替代(Replacement)等。

选择操作通过一定的策略从种群中选择出适应度较高的个体,作为进行交叉和变异的父代个体。

交叉操作通过将两个父代个体的基因片段进行交换,产生新的子代个体。

变异操作通过改变个体某些基因的值,引入新的基因信息。

替代操作通过选择适应度较低的个体将其替换为新产生的子代个体。

三、遗传算法编码在遗传算法中,个体的编码方式决定了问题的解空间。

常见的编码方式有二进制编码和实数编码等。

当问题的变量是二进制形式时,采用二进制编码。

当问题的变量是实数形式时,采用实数编码。

在Matlab中,我们可以使用矩阵或向量来表示个体的基因型,通过制定编码方式来实现遗传算法的编码过程。

四、适应度评价适应度评价是遗传算法中判断个体优劣的指标。

在适应度评价过程中,我们将问题的目标函数和约束条件应用于个体的解,计算得到一个适应度值。

适应度值越大表示个体越优。

MATLAB多目标优化计算

MATLAB多目标优化计算

MATLAB多目标优化计算多目标优化是指在一个优化问题中同时优化多个目标函数,这些目标函数往往存在冲突,不能同时达到最优。

MATLAB提供了许多工具和函数,可以帮助解决多目标优化问题。

在MATLAB中,多目标优化问题可以用以下形式表示:min f(x)s.t.g(x)≤0h(x)=0lb ≤ x ≤ ub其中,f(x)表示待优化的多个目标函数,g(x)和h(x)分别表示不等式约束和等式约束条件,lb和ub分别表示x的下界和上界。

1. paretofront函数:可以用来判断一组给定解的非支配解集合。

```index = paretofront(F)```其中,F是一个m×n矩阵,每一行表示一个解的m个目标函数值。

index是一个逻辑向量,长度为n,表明对应位置的解是否为非支配解。

2. paretofun函数:可以用来对非支配解集进行排序。

```rank = paretofun(F)```其中,F同样是一个m×n矩阵,每一行表示一个解的m个目标函数值。

rank表示对应位置的解在非支配解集中的排序。

3. gamultiobj函数:使用遗传算法进行多目标优化。

```[x, fval, exitflag, output, population] = gamultiobj(fun, nvars, A, b, Aeq, beq, lb, ub)```其中,fun是一个函数句柄,表示待优化的目标函数。

nvars表示决策变量的个数。

A、b、Aeq、beq、lb和ub分别表示不等式约束、等式约束、下界和上界。

x是优化后的决策变量值,fval是优化后的目标函数值。

exitflag是优化器的退出标志,output包含了优化算法的输出结果,population包含了所有迭代过程中的解集。

4.NSGA-II函数:使用非支配排序遗传算法进行多目标优化。

```[x, fval, exitflag, output, population] = nsga2(fun, nvars, A, b, Aeq, beq, lb, ub)```参数和返回结果的含义同gamultiobj函数相似。

使用Matlab进行多目标优化和约束优化

使用Matlab进行多目标优化和约束优化

使用Matlab进行多目标优化和约束优化引言:多目标优化和约束优化是现代科学和工程领域中的重要问题。

在很多实际应用中,我们常常面对的是多个目标参数之间存在冲突的情况,同时还需要满足一定的约束条件。

这就需要我们采用适当的方法和工具进行多目标优化和约束优化。

本文将介绍如何使用Matlab进行多目标优化和约束优化。

一、多目标优化多目标优化是指在优化问题中存在多个目标函数,我们的目标是同时优化这些目标函数。

在Matlab中,可以使用多种方法进行多目标优化,其中常用的方法包括遗传算法、粒子群算法和模拟退火等。

1.1 遗传算法遗传算法是一种模拟生物进化过程的优化算法。

它模拟了遗传的过程,通过交叉、变异和选择等操作,利用群体中不断进化的个体来搜索最优解。

在多目标优化中,遗传算法常用于生成一组非支配解,即没有解能同时优于其他解的情况。

Matlab中提供了相关的工具箱,如Global Optimization Toolbox和Multiobjective Optimization Toolbox,可以方便地进行多目标优化。

1.2 粒子群算法粒子群算法是一种基于群体行为的优化算法。

它通过模拟鸟群或鱼群等群体的行为,寻找最优解。

在多目标优化中,粒子群算法也可以生成一组非支配解。

Matlab中的Particle Swarm Optimization Toolbox提供了相关函数和工具,可以实现多目标优化。

1.3 模拟退火模拟退火是一种模拟金属冶炼过程的优化算法。

它通过模拟金属在高温下退火的过程,通过温度控制来逃离局部最优解,最终达到全局最优解。

在多目标优化中,模拟退火算法可以通过调整温度参数来生成一组非支配解。

Matlab中也提供了相关的函数和工具,可以进行多目标优化。

二、约束优化约束优化是指在优化问题中存在一定的约束条件,我们的目标是在满足这些约束条件的前提下,使目标函数达到最优。

在Matlab中,也有多种方法可以进行约束优化,其中常用的方法包括罚函数法、惩罚函数法和内点法等。

如何在MATLAB中进行多目标优化

如何在MATLAB中进行多目标优化

如何在MATLAB中进行多目标优化多目标优化问题是指在存在多个冲突目标的情况下,求解一个能够同时最小化或最大化多个目标函数的问题。

在实际应用中,多目标优化问题被广泛应用于工程优化、金融投资、交通规划等领域。

在MATLAB中,有多种方法可以用来解决多目标优化问题,本文将介绍其中的几种常用方法。

一、多目标优化问题的定义在开始使用MATLAB进行多目标优化之前,首先需要明确多目标优化问题的数学定义。

一般而言,多目标优化问题可以表示为:```minimize f(x) = [f1(x), f2(x), ..., fm(x)]subject to g(x) ≤ 0, h(x) = 0lb ≤ x ≤ ub```其中,f(x)为多个目标函数,g(x)和h(x)为约束条件,lb和ub分别为决策变量的下界和上界。

问题的目标是找到一组决策变量x,使得目标函数f(x)取得最小值。

二、多目标优化问题的解法在MATLAB中,有多种方法可以用来解决多目标优化问题。

下面将介绍其中的几种常见方法。

1. 非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm,NSGA)NSGA是一种经典的多目标优化算法,它将候选解集划分为多个等级或层次,从而使得每个解在候选解集内具备非劣势性。

在MATLAB中,可以使用多目标遗传算法工具箱(Multi-Objective Optimization Toolbox)中的`gamultiobj`函数来实现NSGA算法。

该函数可以通过指定目标函数、约束条件和决策变量范围等参数来求解多目标优化问题。

2. 多目标粒子群优化算法(Multi-objective Particle Swarm Optimization,MOPSO)MOPSO是一种基于群体智能的多目标优化算法,它模拟了粒子的行为,通过不断迭代寻找最优解。

在MATLAB中,可以使用多目标粒子群优化工具箱(Multi-Objective Particle Swarm Optimization Toolbox)中的`mopso`函数来实现MOPSO算法。

matlab多目标优化遗传算法

matlab多目标优化遗传算法

matlab多目标优化遗传算法Matlab多目标优化遗传算法引言:多目标优化是在现实问题中常见的一种情况,它涉及到在多个目标函数的约束下,寻找一组最优解,从而使得多个目标函数达到最优状态。

遗传算法是一种常用的优化方法,它模拟了自然界中的遗传和进化过程,通过不断迭代、选择和交叉变异等操作,逐步搜索最优解。

本文将介绍如何使用Matlab中的遗传算法工具箱来实现多目标优化。

多目标优化问题描述:在传统的单目标优化问题中,我们寻找的是一组参数,使得目标函数的值最小或最大。

而在多目标优化问题中,我们需要考虑多个目标函数的最优化。

具体来说,我们假设有m个目标函数,目标向量为f(x)=(f1(x), f2(x), ..., fm(x)),其中x是决策变量向量。

我们的目标是找到一组解x∗,使得f(x∗)在所有可行解中最优。

然而,由于多目标问题中的目标函数之间往往存在冲突,即改善一个目标函数的同时可能会导致其他目标函数的恶化,导致不存在一个唯一最优解。

因此,我们常常追求一组非劣解,即无法通过改变解的一个目标值而不改变其他目标值。

Matlab多目标优化遗传算法工具箱:Matlab提供了一个强大的工具箱,即Multiobjective Optimization Toolbox,可用于解决多目标优化问题。

该工具箱基于遗传算法,并结合了其他优化策略和算子,能够高效地搜索多目标优化问题的非劣解集合。

使用Matlab多目标优化遗传算法工具箱的步骤如下:1. 定义目标函数:根据具体问题,编写目标函数,输入为决策变量向量,输出为目标函数向量。

2. 设置优化参数:包括种群大小、迭代次数、交叉概率、变异概率等。

3. 定义决策变量的上下界:根据问题的约束条件,设置决策变量的取值范围。

4. 运行遗传算法:使用Matlab中的gamultiobj函数来运行多目标优化遗传算法,得到非劣解集合。

5. 分析结果:根据具体问题,分析非劣解集合,选择最优解。

遗传算法多目标优化matlab源代码

遗传算法多目标优化matlab源代码

遗传算法多目标优化matlab源代码遗传算法(Genetic Algorithm,GA)是一种基于自然选择和遗传学原理的优化算法。

它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。

在多目标优化问题中,GA也可以被应用。

本文将介绍如何使用Matlab实现遗传算法多目标优化,并提供源代码。

一、多目标优化1.1 多目标优化概述在实际问题中,往往存在多个冲突的目标函数需要同时优化。

这就是多目标优化(Multi-Objective Optimization, MOO)问题。

MOO不同于单一目标优化(Single Objective Optimization, SOO),因为在MOO中不存在一个全局最优解,而是存在一系列的Pareto最优解。

Pareto最优解指的是,在不降低任何一个目标函数的情况下,无法找到更好的解决方案。

因此,在MOO中我们需要寻找Pareto前沿(Pareto Front),即所有Pareto最优解组成的集合。

1.2 MOO方法常见的MOO方法有以下几种:(1)加权和法:将每个目标函数乘以一个权重系数,并将其加和作为综合评价指标。

(2)约束法:通过添加约束条件来限制可行域,并在可行域内寻找最优解。

(3)多目标遗传算法:通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。

1.3 MOO评价指标在MOO中,我们需要使用一些指标来评价算法的性能。

以下是常见的MOO评价指标:(1)Pareto前沿覆盖率:Pareto前沿中被算法找到的解占总解数的比例。

(2)Pareto前沿距离:所有被算法找到的解与真实Pareto前沿之间的平均距离。

(3)收敛性:算法是否能够快速收敛到Pareto前沿。

二、遗传算法2.1 遗传算法概述遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化算法。

它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。

Matlab中的多目标优化算法实现指南

Matlab中的多目标优化算法实现指南

Matlab中的多目标优化算法实现指南简介:多目标优化是在现实问题中常见的一种情况,例如在工程设计、金融投资和决策支持等领域。

Matlab作为一种强大的数值计算和工程仿真软件,提供了多种多目标优化算法的工具箱,如NSGA-II、MOGA等。

本文将介绍如何使用Matlab实现多目标优化算法,并给出一些应用示例。

一、多目标优化问题多目标优化问题是指在存在多个冲突的目标函数的情况下,找到一组最优解,使得这些目标函数能够达到最优。

在现实问题中,通常会涉及到多个目标,例如在工程设计中同时考虑成本和性能,或者在金融投资中同时考虑风险和收益等。

二、Matlab的多目标优化工具箱Matlab提供了多种多目标优化算法的工具箱,如Global Optimization Toolbox、Optimization Toolbox等。

这些工具箱可以帮助用户快速实现多目标优化算法,并且提供了丰富的优化函数和评价指标。

三、NSGA-II算法实现NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种常用的多目标优化算法,它通过遗传算法的方式来搜索最优解。

在Matlab中,我们可以使用NSGA-II工具箱来实现该算法。

1. 确定目标函数首先,我们需要确定待优化的问题中具体的目标函数,例如最小化成本和最大化性能等。

在Matlab中,我们可以使用函数句柄来定义这些目标函数。

2. 设定决策变量决策变量是影响目标函数的参数,我们需要确定这些变量的取值范围。

在Matlab中,可以使用函数句柄或者向量来定义这些变量。

3. 设定其他参数除了目标函数和决策变量,NSGA-II算法还需要其他一些参数,例如种群大小、迭代次数等。

在Matlab中,我们可以使用结构体来存储这些参数。

4. 运行算法将目标函数、决策变量和其他参数传递给NSGA-II工具箱,然后运行算法。

Matlab会自动进行优化计算,并给出一组最优解。

遗传算法的Matlab实现讲解

遗传算法的Matlab实现讲解
pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1);
x [0,10]
Matlab编程实现GA
pop=initpop(popsize,chromlength); %随机产生初始群体
主程序
%遗传算法主程序 function My_GA
for i=1:Gene %20为迭代次数 [objvalue]=calobjvalue(pop,chromlength,Xmax,Xmin); %计算目标函数 fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度 [newpop]=selection(pop,fitvalue); %复制 [newpop]=crossover(newpop,pc); %交叉 [newpop]=mutation(newpop,pm); %变异
Matlab编程实现GA
计算目标函数值
计算目标函数值 % calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示 例仿真,可根据不同优化问题予以修改。 %遗传算法子程序
%Name: calobjvalue.m
%实现目标函数的计算 function [objvalue]=calobjvalue(pop,chromlength,Xmax,Xmin)
Matlab编程实现GA
计算个体的适应值
function fitvalue=calfitvalue(objvalue) global Cmin; fitvalue=objvalue-Cmin;

使用Matlab进行多目标遗传算法优化问题求解的方法

使用Matlab进行多目标遗传算法优化问题求解的方法

使用Matlab进行多目标遗传算法优化问题求解的方法引言多目标优化问题是在现实生活中经常遇到的一种复杂的决策问题,其目标是寻找一个最优解来同时优化多个冲突的目标。

在实际应用中,往往难以找到一个能够满足所有目标的最优解,因此需要采取一种合理的方法来寻找一个最优的解集,这就是多目标优化问题。

多目标遗传算法是一种常用的方法之一,本文将介绍如何使用Matlab进行多目标遗传算法优化问题求解。

1. 问题的定义首先,我们需要明确多目标优化问题的定义和目标函数的形式。

多目标优化问题可以写成如下形式:minimize F(X) = [f1(X), f2(X), ..., fn(X)]subject to constraints(X)其中,X表示问题的决策变量,fi(X)表示问题的第i个目标函数(i=1,2,...,n),constraints(X)为问题的约束条件。

2. 遗传算法的基本原理遗传算法是一种模拟自然进化过程的优化方法,它模拟了遗传、交叉和突变等自然进化的过程。

遗传算法的基本原理包括:种群初始化、适应度评估、选择、交叉、变异和新种群更新等步骤。

3. 多目标遗传算法的改进传统的遗传算法只能求解单目标优化问题,对于多目标优化问题需要进行改进。

常用的改进方法有非支配排序、拥挤度距离以及遗传算子的设计等。

非支配排序:对于多目标优化问题,需要定义支配关系。

如果一个解在优化问题的所有目标上都比另一个解好,则称这个解支配另一个解。

非支配排序根据支配关系将解分为多个非支配层级,层级越高的解越优。

拥挤度距离:拥挤度距离用于衡量解的分布情况,越分散的解拥挤度越大。

拥挤度距离可以有效地保持种群的多样性,避免收敛到局部最优解。

遗传算子的设计:选择、交叉和变异是遗传算法中的三个重要操作。

在多目标遗传算法中,需要设计合适的遗传算子来保持种群的多样性,并尽可能地寻找高质量的解。

4. Matlab实现多目标遗传算法Matlab是一种功能强大的数学软件,它提供了丰富的工具箱和函数来实现多目标遗传算法。

基于Matlab遗传算法工具箱的优化计算实现

基于Matlab遗传算法工具箱的优化计算实现

基于Matlab遗传算法工具箱的优化计算实现一、概述随着科技的发展和社会的进步,优化问题在众多领域,如工程设计、经济管理、生物科学、交通运输等中扮演着越来越重要的角色。

优化计算的目标是在给定的约束条件下,寻找一组变量,使得某个或某些目标函数达到最优。

许多优化问题具有高度的复杂性,传统的数学方法往往难以有效求解。

寻求新的、高效的优化算法成为了科研人员的重要任务。

遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索算法,通过模拟自然界的进化过程,寻找问题的最优解。

自20世纪70年代初由美国密歇根大学的John Holland教授提出以来,遗传算法因其全局搜索能力强、鲁棒性好、易于与其他算法结合等优点,被广泛应用于各种优化问题中。

1. 遗传算法简介遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的优化搜索算法。

该算法起源于对生物进化过程中遗传机制的研究,通过模拟自然选择和遗传过程中的交叉、突变等操作,在搜索空间内寻找最优解。

自20世纪70年代初由John Holland教授提出以来,遗传算法已在多个领域取得了广泛的应用,包括函数优化、机器学习、模式识别、自适应控制等。

遗传算法的基本思想是将问题的解表示为“染色体”,这些染色体在算法中通过选择、交叉和突变等操作进行演化。

选择操作模仿了自然选择中“适者生存”的原则,根据适应度函数对染色体进行筛选交叉操作则模拟了生物进化中的基因重组过程,通过交换染色体中的部分基因,生成新的个体突变操作则是对染色体中的基因进行小概率的随机改变,以维持种群的多样性。

在遗传算法中,种群初始化是算法的起点,通过随机生成一组初始解作为初始种群。

根据适应度函数对种群中的个体进行评估,选择出适应度较高的个体进行交叉和突变操作,生成新的种群。

这个过程不断迭代进行,直到满足终止条件(如达到最大迭代次数或找到满足精度要求的最优解)为止。

遗传算法在matlab中的实现

遗传算法在matlab中的实现

遗传算法是一种模拟自然选择与遗传机制的优化算法,它模拟了生物进化的过程,通过优化个体的基因型来达到解决问题的目的。

在工程和科学领域,遗传算法被广泛应用于求解优化问题、寻找最优解、参数优化等领域。

而MATLAB作为一款强大的科学计算软件,拥有丰富的工具箱和编程接口,为实现遗传算法提供了便利。

下面将通过以下步骤介绍如何在MATLAB中实现遗传算法:1. 引入遗传算法工具箱需要在MATLAB环境中引入遗传算法工具箱。

在MATLAB命令窗口输入"ver",可以查看当前已安装的工具箱。

如果遗传算法工具箱未安装,可以使用MATLAB提供的工具箱管理界面进行安装。

2. 定义优化问题在实现遗传算法前,需要清楚地定义优化问题:包括问题的目标函数、约束条件等。

在MATLAB中,可以通过定义一个函数来表示目标函数,并且可以采用匿名函数的形式来灵活定义。

对于约束条件,也需要进行明确定义,以便在遗传算法中进行约束处理。

3. 设置遗传算法参数在实现遗传算法时,需要对遗传算法的参数进行设置,包括种群大小、交叉概率、变异概率、迭代次数等。

这些参数的设置将会直接影响遗传算法的收敛速度和优化效果。

在MATLAB中,可以通过设置遗传算法工具箱中的相关函数来完成参数的设置。

4. 编写遗传算法主程序编写遗传算法的主程序,主要包括对适应度函数的计算、选择、交叉、变异等操作。

在MATLAB中,可以利用遗传算法工具箱提供的相关函数来实现这些操作,简化了遗传算法的实现过程。

5. 运行遗传算法将编写好的遗传算法主程序在MATLAB环境中运行,并观察优化结果。

在运行过程中,可以对结果进行实时监测和分析,以便对遗传算法的参数进行调整和优化。

通过以上步骤,可以在MATLAB中实现遗传算法,并应用于实际的优化问题与工程应用中。

遗传算法的实现将大大提高问题的求解效率与精度,为工程领域带来更多的便利与可能性。

总结:遗传算法在MATLAB中的实现涉及到了引入遗传算法工具箱、定义优化问题、设置算法参数、编写主程序和运行算法等步骤。

Matlab中的多目标优化算法与应用

Matlab中的多目标优化算法与应用

Matlab中的多目标优化算法与应用Matlab 中的多目标优化算法与应用多目标优化问题是实际生活中普遍存在的一类问题,它们涉及到多个冲突的目标函数。

Matlab 作为一个功能强大的数学软件,提供了众多优化算法和工具箱,可以帮助我们解决多目标优化问题。

本文将介绍 Matlab 中的多目标优化算法以及它们在实际应用中的应用。

1. 多目标优化问题简介多目标优化问题是在给定约束下找到多个目标函数的最优解。

与单目标优化问题不同的是,在多目标优化问题中,不存在一个单一的最优解,而是存在一组解,其中没有一个解可以在所有目标函数上优于其他解。

2. Matlab 中的多目标优化算法在Matlab 中,有多种多目标优化算法可供选择。

以下是其中的几种常见算法。

(1) 遗传算法 (Genetic Algorithm)遗传算法是一种模拟自然优化过程的优化算法。

它通过模拟自然选择、交叉和变异的过程来搜索多目标优化问题的解空间。

在 Matlab 中,可以使用 "gamultiobj" 函数实现遗传算法。

(2) 粒子群算法 (Particle Swarm Optimization)粒子群算法是一种基于鸟群觅食行为的优化算法。

它通过模拟鸟群中个体之间的协作和信息共享来搜索多目标优化问题的解空间。

在 Matlab 中,可以使用"particleswarm" 函数实现粒子群算法。

(3) 差分进化算法 (Differential Evolution)差分进化算法是一种基于种群的优化算法。

它通过随机生成和演化种群中的个体来搜索多目标优化问题的解空间。

在 Matlab 中,可以使用 "multiobjective" 函数实现差分进化算法。

(4) NSGA-II 算法NSGA-II (Non-dominated Sorting Genetic Algorithm II) 是一种经典的多目标优化算法。

遗传算法求解函数优化问题的Matlab实现

遗传算法求解函数优化问题的Matlab实现




i =1
划 设计 和人 工生 命 等 领 域 . 2 是 1世 纪 有 关 智 能 计 算 中的 关 键技 并 以上 式 的 概 率 分 布 从 当 前 一 代 群 体 p p t 随 机 选 择 一 o,1 (中 术 之 一 Ma a t b语 言 是一 种 高 效 率 的 用 于 科 学 工 程 计 算 的 高 级 些染 色体 遗 传 到下 一 代 群 体 中构 成 一 个 新种 群 l 语 言 .它 的语 法 规 则 简 单 、 更 贴 近 人 的思 维 方 式 .通 俗 易 懂 。 nw o( 1= pp( J l …Ⅳ } eppt ) {oj)I=, + t 2 ; M t b语 言 有 着 丰 富 的各 种 工 具 箱 . t b的 优 化 工 具 箱 就 是 al a Ma a l
初始 种群 的主要参 数是数 据类 型( p l i p u t n£ o ao 变量 的维数 ( ̄ o ai l ) 种 群 的  ̄ Z (z p p U n, 始 种 群 取 值 s e fvr be 、 i a s bs eo o ̄ i )初 i f o
的范 围( ia n e等 。 其 中 , 群 的 大 小 会 影 响 的有 效 性 , i tl ag) ni r 种
5 交叉 操 作 .
以 概 率P交 配 .得 到 一个 有^ 染 色体 组 成 的 群 体 cos o T 个 r pp s { i £ ) + 6 变异 操 作 .
1 遗传 算 法 的 描 述 、 用 某 一 较 小 的概 率| 染 色 体 的 基 因 发 生 变 异 .形 成 新 的 P使 遗 传 算 法 提 供 了一 个 求 解 复 杂 系 统 优 化 问 题 的通 用 框 架 . 群体 m“ p7 该 新 的 群 体 即 为 完 成 一 次 遗 传 操 作 后 的 子代 巾o r + 它 以适 应 度 函数 为依 据 . 过 对 群 体 中的 个 体 施 加 遗 传 操 作 . 通 实  ̄ ?p pt m to( 1,  ̄ o (= u p t ) 同时 它 又 作 为 下 一 次 遗 传 操 作 的 父 代 , J ) p + 现 群体 内个 体 结 构 重组 的迭 代 处 理 过 程

MATLAB多目标优化计算方法

MATLAB多目标优化计算方法

MATLAB多目标优化计算方法多目标优化是指在优化问题中存在多个目标函数的情况下,通过寻找一组解来使这些目标函数达到最优或接近最优的过程。

MATLAB中提供了多种方法来进行多目标优化计算,下面将介绍几种常用的方法。

1. 非支配排序遗传算法(Non-dominted Sorting Genetic Algorithm,NSGA)NSGA是一种经典的多目标优化算法,其思想是通过遗传算法求解优化问题。

它采用非支配排序的方法,将种群中的个体按照支配关系划分为不同的层次,然后通过选择、交叉和变异等操作来生成新的个体,最终得到一组非支配解。

2. 多目标粒子群优化算法(Multi-objective Particle Swarm Optimization,MOPSO)MOPSO是一种基于粒子群优化的多目标优化算法,它将种群中的个体看作是粒子,在过程中通过更新速度和位置来寻找最优解。

MOPSO通过使用非支配排序和拥挤度计算来维护多个目标之间的均衡,从而产生一组近似最优的解。

3. 多目标差分进化算法(Multi-objective Differential Evolution,MODE)MODE是一种基于差分进化的多目标优化算法,它通过变异和交叉操作来生成新的个体,并通过比较个体的适应度来选择最优解。

MODE采用了非支配排序和拥挤度计算来维护种群的多样性,从而得到一组较好的近似最优解。

4. 遗传算法与模拟退火的组合算法(Genetic Algorithm with Simulated Annealing,GASA)GASA是一种结合了遗传算法和模拟退火算法的多目标优化算法。

它首先使用遗传算法生成一组候选解,然后使用模拟退火算法对候选解进行优化,从而得到一组更好的近似最优解。

5. 多目标优化的精英多免疫算法(Multi-objective Optimization based on the Elitism Multi-immune Algorithm,MOEMIA)MOEMIA是一种基于免疫算法的多目标优化算法,它通过模拟生物免疫系统的免疫策略来全局最优解。

基于Matlab的遗传算法程序设计及优化问题求解

基于Matlab的遗传算法程序设计及优化问题求解

曲靖师范学院学生毕业论文(设计)题目:基于Matlab的遗传算法程序设计及优化问题求解院(系):数学与信息科学学院专业:信息与计算科学班级:20051121班学号:2005112104论文作者:沈秀娟指导教师:刘俊指导教师职称:教授2009年 5月基于Matlab的遗传算法程序设计及优化问题求解摘要遗传算法作为一种新的优化方法,广泛地用于计算科学、模式识别和智能故障诊断等方面,它适用于解决复杂的非线性和多维空间寻优问题,近年来也得到了较为广阔的应用. 本文介绍了遗传算法的发展、原理、特点、应用和改进方法,以及基本操作和求解步骤,再基于Matlab编写程序实现遗传算法并求解函数的优化问题. 程序设计过程表明,用Matlab语言进行优化计算,具有编程语句简单,用法灵活,编程效率高等优点. 经仿真验证,该算法是正确可行的.关键词:遗传算法;Matlab;优化Matlab-based genetic algorithm design and optimization of procedures forproblem solvingAbstract:As a new optimizated method,genetic algorithm is widely used in co mputational science,pattern recognition,intelligent fault diagnosisandsoon. It is suitable to solve complex non-linear and multi-dimensionaloptimizatio n problem.And it has been more widely used in recentyears.This paper descri bes the development of genetic algorithms,principle,features,application an d improvement of methods.At the same time,it in-troduces basic operation and solution steps.And then,it achievesgeneticalgorithm on the matlab programmi ng andsolves the function optimization problem.The program design process sh ows that this optimization calculation has advantages of simple programming language,flexible usage and high efficiency in Matlab language.The algorith m iscorrect and feasible by simulated authentication.Keywords: Genetic algorithm; Matlab;Optimization目录1 引言 (1)2 文献综述 (1)2.1国内外研究现状及评价 (1)2.2提出问题 (2)3 遗传算法的理论研究 (2)3.1遗传算法的产生背景 (2)3.2遗传算法的起源与发展 (3)3.2.1 遗传算法的起源 (3)3.2.2 遗传算法的发展 (3)3.3遗传算法的数学基础研究 (4)3.4遗传算法的组成要素 (6)3.5遗传算法的基本原理 (7)3.6遗传算法在实际应用时采取的一般步骤 (8)3.7遗传算法的基本流程描述 (9)3.8遗传算法的特点 (10)3.9遗传算法的改进 (11)3.10遗传算法的应用领域 (12)4 基于MATLAB的遗传算法实现 (14)5 遗传算法的函数优化的应用举例 (17)6 结论 (18)6.1主要发现 (18)6.2启示 (18)6.3局限性 (19)6.4努力的方向 (19)参考文献 (20)致谢 (21)附录 (22)1引言遗传算法(Genetic Algorithm)是模拟自然界生物进化机制的一种算法即遵循适者生存、优胜劣汰的法则也就是寻优过程中有用的保留无用的则去除. 在科学和生产实践中表现为在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法即找出一个最优解. 这种算法是1960年由Holland提出来的其最初的目的是研究自然系统的自适应行为并设计具有自适应功能的软件系统. 它的特点是对参数进行编码运算不需要有关体系的任何先验知识沿多种路线进行平行搜索不会落入局部较优的陷阱,能在许多局部较优中找到全局最优点是一种全局最优化方法[1-3]. 近年来,遗传算法已经在国际上许多领域得到了应用. 该文将从遗传算法的理论和技术两方面概述目前的研究现状描述遗传算法的主要特点、基本原理以及改进算法,介绍遗传算法的应用领域,并用MATLAB 实现了遗传算法及最优解的求解.2文献综述2.1国内外研究现状及评价国内外有不少的专家和学者对遗传算法的进行研究与改进. 比如:1991年D.WHITEY 在他的论文中提出了基于领域交叉的交叉算子(ADJACENCY BASED CROSSOVER),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证. 2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题. 国内外很多文献都对遗传算法进行了研究. 现查阅到的国内参考文献[1-19]中, 周勇、周明分别在文献[1]、[2]中介绍了遗传算法的基本原理;徐宗本在文献[3]中探讨了包括遗传算法在内的解全局优化问题的各类算法,文本次论文写作提出了明确的思路;张文修、王小平、张铃分别在文献[4]、[5]、[6]从遗传算法的理论和技术两方面概述目前的研究现状;李敏强、吉根林、玄光南分别在文献[7]、[8]、[9]中都不同程度的介绍了遗传算法的特点以及改进算法但未进行深入研究;马玉明、张丽萍、戴晓辉、柴天佑分别在文献[10]、[11]、[12]、[13]中探讨了遗传算法产生的背景、起源和发展;李敏强、徐小龙、林丹、张文修分别在文献[14]、[15]、[16]、[17]探讨了遗传算法的发展现状及以后的发展动向;李敏强,寇纪凇,林丹,李书全在文献[18]中主要论述了遗传算法的具体的实施步1骤、应用领域及特点;孙祥,徐流美在文献[19]中主要介绍了Matlab的编程语句及基本用法.所有的参考文献都从不同角度不同程度的介绍了遗传算法但都不够系统化不够详细和深入.2.2提出问题随着研究的深入,人们逐渐认识到在很多复杂情况下要想完全精确地求出其最优解既不可能,也不现实,因而求出近似最优解或满意解是人们的主要着眼点之一. 很多人构造出了各种各样的复杂形式的测试函数,有连续函数,有离散函数,有凸函数,也有凹函数,人们用这些几何特性各异的函数来评价遗传算法的性能. 而对于一些非线性、多模型、多目标的函数优化问题用其他优化方法较难求解遗传算法却可以方便地得到较好的结果. 鉴于遗传算法在函数优化方面的重要性,该文在参考文献[1-19]的基础上,用Matlab语言编写了遗传算法程序, 并通过了调试用一个实际例子来对问题进行了验证,这对在Matlab环境下用遗传算法来解决优化问题有一定的意义.3遗传算法的理论研究3.1遗传算法的产生背景科学研究、工程实际与国民经济发展中的众多问题可归结作“极大化效益、极小化代价”这类典型模型. 求解这类模型导致寻求某个目标函数(有解析表达式或无解析表达式)在特定区域上的最优解. 而为解决最优化问题目标函数和约束条件种类繁多,有的是线性的,有的是非线性的;有的是连续的,有的是离散的;有的是单峰值的,有的是多峰值的. 随着研究的深入,人们逐渐认识到:在很多复杂情况下要想完全精确地求出其最优解既不可能,也不现实,因而求出近似最优解或满意解是人们的主要着眼点之一. 总的来说,求最优解或近似最优解的方法有三种: 枚举法、启发式算法和搜索算法.(1)枚举法. 枚举出可行解集合内的所有可行解以求出精确最优解. 对于连续函数,该方法要求先对其进行离散化处理,这样就有可能产生离散误差而永远达不到最优解. 另外,当枚举空间比较大时该方法的求解效率比较低,有时甚至在目前最先进的计算工具上都无法求解.(2)启发式算法. 寻求一种能产生可行解的启发式规则以找到一个最优解或近似最优解. 该方法的求解效率虽然比较高,但对每一个需要求解的问题都必须找出其特有的2启发式规则,这个启发式规则无通用性不适合于其它问题.(3)搜索算法. 寻求一种搜索算法,该算法在可行解集合的一个子集内进行搜索操作以找到问题的最优解或近似最优解. 该方法虽然保证了一定能够得到问题的最优解,但若适当地利用一些启发知识就可在近似解的质量和求解效率上达到一种较好的平衡.随着问题种类的不同以及问题规模的扩大,要寻求一种能以有限的代价来解决上述最优化问题的通用方法仍是一个难题. 而遗传算法却为我们解决这类问题提供了一个有效的途径和通用框架开创了一种新的全局优化搜索算法.3.2遗传算法的起源与发展3.2.1 遗传算法的起源50年代末到60年代初,自然界生物进化的理论被广泛接受生物学家Fraser,试图通过计算的方法来模拟生物界“遗传与选择”的进化过程,这是遗传算法的最早雏形. 受一些生物学家用计算机对生物系统进行模拟的启发,Holland开始应用模拟遗传算子研究适应性. 在1967年,Bagley关于自适应下棋程序的论文中,他应用遗传算法搜索下棋游戏评价函数的参数集并首次提出了遗传算法这一术语. 1975年,Holland出版了遗传算法历史上的经典著作《自然和人工系统中的适应性》,首次明确提出遗传算法的概念. 该著作中系统阐述了遗传算法的基本理论和方法,并提出了模式(schemat atheorem)[4],证明在遗传算子选择、交叉和变异的作用下具有低阶、短定义距以及平均适应度高于群体平均适应度的模式在子代中将以指数级增长. Holand创建的遗传算法,是基于二进制表达的概率搜索方法. 在种群中通过信息交换重新组合新串;根据评价条件概率选择适应性好的串进入下一代;经过多代进化种群最后稳定在适应性好的串上. Holand最初提出的遗传算法被认为是简单遗传算法的基础,也称为标准遗传算法.3.2.2 遗传算法的发展(1)20世纪60年代,John Holland教授和他的数位博士受到生物模拟技术的启发,认识到自然遗传可以转化为人工遗传算法. 1962年,John Holland提出了利用群体进化模拟适应性系统的思想,引进了群体、适应值、选择、变异、交叉等基本概念.(2)1967年,J.D.Bagely在其博士论文中首次提出了“遗传算法”的概念.(3)1975年,Holland出版了《自然与人工系统中的适应性行为》(Adaptation in Natural and Artificial System).该书系统地阐述了遗传算法的基本理论和方法,提出了遗传算法的基本定理—模式定理,从而奠定了遗传算法的理论基础. 同年De Jong3在其博士论文中,首次把遗传算法应用于函数优化问题对遗传算法的机理与参数进行了较为系统地研究并建立了著名的五函数测试平台.(4)20世纪80年代初,Holland教授实现了第一个基于遗传算法的机器学习系统—分类器系统(Classifier System简称CS),开创了基于遗传算法的机器学习的新概念.(5)1989年,David Goldberg出版了《搜索、优化和机器学习中的遗传算法》(Genetic Algorithms in Search Optimization and Machine Learning).该书全面系统地总结了当时关于遗传算法的研究成果,结合大量的实例完整的论述了遗传算法的基本原理及应用,奠定了现代遗传算法的基础.(6)1992年,John R.Koza出版了专著《遗传编程》(Genetic Programming)提出了遗传编程的概念,并成功地把遗传编程的方法应用于人工智能、机器学习、符号处理等方面. 随着遗传算法的不断深入和发展,关于遗传算法的国际学术活动越来越多,遗传算法已成为一个多学科、多领域的重要研究方向.今天遗传算法的研究已经成为国际学术界跨学科的热门话题之一. 遗传算法是一种有广泛应用前景的算法,但是它的研究和应用在国内尚处于起步阶段. 近年来遗传算法已被成功地应用于工业、经济管理、交通运输、工业设计等不同领域解决了许多问题.例如可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等.3.3 遗传算法的数学基础研究模式定理及隐含并行性原理被看作遗传算法的两大基石,后来又提出了建筑块假设,但是模式定理无法解释遗传算法实际操作中的许多现象,隐性并行性的论证存在严重漏洞,而建筑块假设却从未得到过证明. 对遗传算法的基础理论的研究主要分三个方面:模式定理的拓广和深入、遗传算法的新模型、遗传算法的收敛性理论.(1)模式定理的拓广和深入. Holland给出模式定理:具有短的定义长度、低阶、并且模式采样的平均适应值在种群平均适应值以上的模式在遗传迭代过程中将按指数增长率被采样模式定理可表达为:m(H,t+1)≥m(H,t).()fHf.()⎪⎭⎫⎝⎛---PHOlP mHc.1.1δ(1)其中m(Ht):在t代群体中存在模式H 的串的个数.4()Hf:在t 代群体中包含模式H 的串的平均适应值. f:t代群体中所有串的平均适应值.l表示串的长度pc 表示交换概率pm表示变异概率.Holland的模式定理奠定了遗传算法的数学基础根据隐性并行性得出每一代处理有效模式的下限值是()l c n2113.其中n是种群的大小c1是小整数. Bertoui和Dorigo进行了深入的研究获得当2βln=,β为任意值时处理多少有效模式的表达式. 上海交通大学的恽为民等获得每次至少产生()21-no数量级的结果. 模式定理中模式适应度难以计算和分析A.D.Berthke首次提出应用Walsh函数进行遗传算法的模式处理并引入模式变换的概念采用Walsh函数的离散形式有效地计算出模式的平均适应度并对遗传算法进行了有效的分析. 1972年Frantz首先发现一种常使GA从全局最优解发散出去的问题,称为GA-欺骗题[5]. Goldberg最早运用Walsh模式转换设计出最小的GA-欺骗问题并进行了详细分析.(2)遗传算法的新模型. 由于遗传算法中的模式定理和隐性并行性存在不足之处,为了搞清楚遗传算法的机理,近几年来人们建立了各种形式的新模型最为典型的是马氏链模型遗传算法的马氏链模型[6-7],主要由三种分别是种群马氏链模型、Vose模型和Cerf 扰动马氏链模型. 种群马氏链模型将遗传算法的种群迭代序列视为一个有限状态马氏链来加以研究,运用种群马氏链模型转移概率矩阵的某些一般性质分析遗传算法的极限行为,但转移概率的具体形式难以表达妨碍了对遗传算法的有限时间行为的研究;Vose 模型是在无限种群假设下利用相对频率导出,表示种群的概率的向量的迭代方程,通过这一迭代方程的研究,可以讨论种群概率的不动点及其稳定性,从而导致对遗传算法的极限行为的刻画,但对解释有限种群遗传算法的行为的能力相对差一些. Cerf扰动模型是法国学者Cerf将遗传算法看成一种特殊形式的广义模拟退火模型,利用了动力系统的随机扰动理论,对遗传算法的极限行为及收敛速度进行了研究. 还有其它改进模型,例如张铃、张钹等人提出的理想浓度模型,它首先引入浓度和家族的概念,通过浓度计算建立理想浓度模型[8-10],其浓度变化的规律为:5c(Hi,t +1)=c(H,t).()()()t ftOHfi,(2)c(Hi,t+1)表示模式Hi在t时刻的浓度,并对其进行分析,得出结论:遗传算法本质上是一个具有定向制导的随机搜索技术,其定向制导原则是导向适应度高的模式为祖先的染色体“家族”方向.(3)遗传算法的收敛性理论. 对于遗传算法的马氏链分析本身就是建立遗传算法的收敛性理论[11-12], Eiben等用马尔可夫链证明了保留最优个体的遗传算法的概率性全局收敛,Rudolph用齐次有限马尔可夫链证明了具有复制、交换、突变操作的标准遗传算法收敛不到全局最优解,不适合于静态函数的优化问题,建议改变复制策略以达到全局收敛,Back和Muhlenbein研究了达到全局最优解的算法的时间复杂性问题,近几年,徐宗本等人建立起鞅序列模型,利用鞅序列收敛定理证明了遗传算法的收敛性.3.4遗传算法的组成要素遗传算法所涉及的五大要素:参数编码、初始群体的设定、适应度函数的设计、遗传操作的设计和控制参数的设定,其具体内容如下:(1)参数编码. 遗传算法中常用的编码方法是二进制编码,它将问题空间的参数用字符集{0,1}构成染色体位串,符合最小字符集原则,操作简单,便于用模式定理分析.(2)适应度函数的设计. 适应度函数是评价个体适应环境的能力,使选择操作的依据,是由目标函数变换而成. 对适应度函数唯一的要求是其结果为非负值. 适应度的尺度变换是对目标函数值域的某种映射变换,可克服未成熟收敛和随机漫游现象. 常用的适应度函数尺度变化方法主要有线性变换、幂函数变换和指数变换.[13](3)遗传操作的设计. 包括选择、交叉、变异.①选择(Selection). 选择是用来确定交叉个体,以及被选个体将产生多少个子代个体. 其主要思想是个体的复制概率正比于其适应值,但按比例选择不一定能达到好的效果. 选择操作从早期的轮盘赌选择发展到现在最佳个体保存法、排序选择法、联赛选择法、随机遍历抽样法、局部选择法、柔性分段复制、稳态复制、最优串复制、最优串保留等.②交叉(Crossover). 交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作,其作用是组合出新的个体,在串空间进行有效搜索,同时降低对有效模式的破坏概率. 各种交叉算子均包含两个基本内容:确定交叉点的位置和进行部分基因的6交换. 常用的交叉操作方法有单点交叉、双点交叉、一致交叉、均匀交叉、算术交叉、二维交叉、树结构交叉、部分匹配交叉、顺序交叉和周期交叉等等.③变异(Mutation). 变异是指将个体编码串中的某些基因值用其它基因值来替换,形成一个新的个体. 遗传算法中的变异运算是产生新个体的辅助方法,其目的是使遗传算法具有局部的随机搜索能力和保持群体的多样性. 变异算法包括确定变异点的位置和进行基因值替换. 常见的变异算子有基本位变异、均匀变异、高斯变异、二元变异、逆转变异、自适应变异等.(4) 控制参数设定. 遗传算法中需要确定一些参数取值,主要有串长l,群体大小n,交叉概率pc、变异概率pm等,对遗传算法性能影响很大. 目前对参数根据情况进行调整变化研究比较多,而一般确定的参数范围是:n=20~200,pc = 015 ~110,pm =0~0105.3.5遗传算法的基本原理在自然界,由于组成生物群体中各个体之间的差异,对所处环境有不同的适应和生存能力,遵照自然界生物进化的基本原则,适者生存、优胜劣汰,将要淘汰那些最差个体,通过交配将父本优秀的染色体和基因遗传给子代,通过染色体核基因的重新组合产生生命力更强的新的个体与由它们组成的新群体. 在特定的条件下,基因会发生突变,产生新基因和生命力更强的新个体;但突变是非遗传的,随着个体不断更新,群体不断朝着最优方向进化,遗传算法是真实模拟自然界生物进化机制进行寻优的. 在此算法中,被研究的体系的响应曲面看作为一个群体,相应曲面上的每一个点作为群体中的一个个体,个体用多维向量或矩阵来描述,组成矩阵和向量的参数相应于生物种组成染色体的基因,染色体用固定长度的二进制串表述,通过交换、突变等遗传操作,在参数的一定范围内进行随机搜索,不断改善数据结构,构造出不同的向量,相当于得到了被研究的不同的解,目标函数值较优的点被保留,目标函数值较差的点被淘汰.[14]由于遗传操作可以越过位垒,能跳出局部较优点,到达全局最优点.遗传算法是一种迭代算法,它在每一次迭代时都拥有一组解,这组解最初是随机生成的,在每次迭代时又有一组新的解由模拟进化和继承的遗传操作生成,每个解都有一目标函数给与评判,一次迭代成为一代. 经典的遗传算法结构图如下:图1 遗传算法的结构图3.6遗传算法在实际应用时采取的一般步骤(1)根据求解精度的要求,确定使用二进制的长度. 设值域的取值范围为[a i ,b i ],若要求精确到小数点后6位,则由(b i -a i )×106<2m i -1求得m i 的最小长度,进而可求出位于区间的任一数:x i =a i +decimal(1001...0012)×12--m i a b i i [15] (3)其中,i=1,2, ..., Popsize ;Popsize 为种群中染色体的个数;(2)利用随机数发生器产生种群;(3)对种群中每一染色体v i ,计算其对应适应度eval(v i ),i=1,2,… ,Popsize ;(4)计算种群适应度之和F :F=()v eval iPopsizei ∑=1(4) (5)计算每个染色体选择概率Pi :()F v eval p i i =(5) i=1,2, ... ,Popsize ;(6)计算每个染色体的累加概率qi:q i =∑=ijjp1(6)i=1, 2, ...,Popsize ;(7)产生一个位于[0,1]区间的随机数序列,其长度为N,如果其中任意一数r<q1,则选择第一个染色体,若qi1-<r<qi,则选择第i个染色体,i=1,2, ... Popsize,这样可以获得新一代种群;(8)对新一代种群进行交叉运算:设交叉概率为pc,首先产生一个位于区间[0,1]内的随机数序列,其长度为N,如果其中任意一数r<pc,则对应染色体被选中(如果选中奇数个,则可以去掉一个),然后在[1,m-1]区间中产生随机数,个数为选中的染色体数的一半,然后根据随机数在对应位置进行交换操作,从而构成新的染色体;(9)变异操作:设变异概率为pm,产生m×N个位于区间[0,1]上的随机数.如果某一随机数r<pm,则选中对应位变异,构成新的种群;(10)第一代计算完毕,返回③继续计算,直到达到满意的结果为止.3.7遗传算法的基本流程描述随机初始化种群p(0)={x1,x2,...,xn};t=0;计算p(0)中个体的适应值;while(不满足终止条件){ 根据个体的适应值及选择策略从p(t)中选择下一代生成的父体p(t);执行交叉,变异和再生成新的种群p(t+1) ;计算p(t+1)中个体的适应值;t=t+1;}伪代码为:BEGIN:I=0;Initialize P(I);Fitness P(I);While (not Terminate2Condition){I++;GA2Operation P(I);Fitness P(I);}END.3.8遗传算法的特点遗传算法不同于传统的搜索和优化方法. 主要区别在于:(1)自组织、自适应和自学习性(智能性). 应用遗传算法求解问题时,在编码方案、适应度函数及遗传算子确定后,算法将利用进化过程中获得的信息自行组织搜索. 由于基于自然的选择策略“适者生存、不适者被淘汰”,因而适应度大的个体具有较高的生存概率. 通常适应度大的个体具有更适应环境的基因结构,再通过基因重组和基因突变等遗传操作,就可能产生更适应环境的后代. 进化算法的这种自组织、自适应特征,使它同时具有能根据环境变化来自动发现环境的特性和规律的能力. 自然选择消除了算法设计过程中的一个最大障碍,即需要事先描述问题的全部特点,并要说明针对问题的不同特点算法应采取的措施.因此,利用遗传算法,我们可以解决那些复杂的非结构化问题.(2)遗传算法的本质并行性. 遗传算法按并行方式搜索一个种群数目的点,而不是单点. 它的并行性表现在两个方面,一是遗传算法是内在并行的( inherent paralleli sm),即遗传算法本身非常适合大规模并行. 最简单的并行方式是让几百甚至数千台计算机各自进行独立种群的演化计算,运行过程中甚至不进行任何通信(独立的种群之间若有少量的通信一般会带来更好的结果),等到运算结束时才通信比较,选取最佳个体.这种并行处理方式对并行系统结构没有什么限制和要求,可以说,遗传算法适合在目前所有的并行机或分布式系统上进行并行处理,而且对并行效率没有太大影响. 二是遗传算法的内含并行性. 由于遗传算法采用种群的方式组织搜索,因而可同时搜索解空间内的多个区域,并相互交流信息. 使用这种搜索方式,虽然每次只执行与种群规模N成比例的计算,但实质上已进行了大约O(N3)次有效搜索,这就使遗传算法能以较少的计算。

Matlab中的多目标优化算法详解

Matlab中的多目标优化算法详解

Matlab中的多目标优化算法详解多目标优化是指在优化问题中同时考虑多个目标函数的最优解。

与单目标优化问题不同,多目标优化问题的解称为“帕累托最优解”。

Matlab提供了一些强大的多目标优化算法,本文将详细介绍这些算法的原理和应用。

一、多目标优化的基本概念多目标优化问题的目标函数通常是一组相互矛盾的指标,求解该问题即要在这些指标之间找到一个平衡点。

传统的单目标优化算法无法直接应用于多目标优化问题,因为它们只能找到单个最优解。

因此,需要借助多目标优化算法来解决这类问题。

多目标优化的基本概念可以用“帕累托最优解”来描述。

帕累托最优解是指在多个目标函数下,无法通过对一个目标函数的改进而不损害其他目标函数的值。

多目标优化问题的解集是所有帕累托最优解的集合,称为“帕累托前沿”。

二、多目标优化算法的分类在Matlab中,多目标优化算法可以分为以下几类:1. 基于加权的方法:将多个目标函数加权求和,然后将多目标优化问题转化为单目标优化问题。

这类方法的优点是简单有效,但是需要人工设定权重。

2. 遗传算法:通过模拟进化的过程,搜索出多目标优化问题的解集。

遗传算法具有全局搜索的能力,但是收敛速度较慢。

3. 粒子群优化算法:通过模拟鸟群觅食行为,搜索出多目标优化问题的解集。

粒子群优化算法具有较快的收敛速度和较强的全局搜索能力。

4. 差分进化算法:通过模拟物种进化的过程,搜索出多目标优化问题的解集。

差分进化算法具有较快的收敛速度和较强的全局搜索能力。

5. 支配排序算法:通过定义支配关系,将多目标优化问题的解集划分为不同的非支配解等级。

支配排序算法能够有效地寻找帕累托最优解。

三、多目标优化算法的应用多目标优化算法在实际应用中有着广泛的应用。

以下是几个常见的应用场景:1. 工程优化:在设计工程中,常常需要在多个目标之间进行权衡。

例如,在机械设计中,需要同时考虑产品的成本、质量和安全性等指标。

2. 金融投资:在金融投资领域,投资者通常需要考虑多个指标,如收益率、风险和流动性等。

基于遗传算法的多目标优化问题的研究与应用的开题报告

基于遗传算法的多目标优化问题的研究与应用的开题报告

基于遗传算法的多目标优化问题的研究与应用的开题报告题目:基于遗传算法的多目标优化问题的研究与应用论文类型:硕士学位论文研究领域:计算机科学与技术研究背景:现代科技的不断发展使得人们面临着越来越复杂的多目标优化问题,例如资源分配、路径规划、设计优化等。

因此,如何寻求多个目标之间的最优解成为了当前研究的热点问题之一。

传统的单目标优化算法已经不能满足实际需求,这时候就需要使用多目标优化算法。

遗传算法(Genetic Algorithm, GA)是一种基于生物进化原理的智能优化算法,因其全局寻优能力强、适应性强、易于实现等优点而被广泛应用于多目标优化问题中。

研究内容:本文将运用遗传算法解决多目标优化问题:首先,介绍多目标优化问题的基本概念和理论基础;其次,详细阐述遗传算法的原理、优缺点及其在多目标优化中的应用;然后,根据实际问题,设计多目标优化算法的框架,包括目标函数的构建、适应度的计算、选择算子、交叉算子、变异算子等;最后,实现并验证该算法的有效性和性能。

研究意义:本文的研究可以为实际问题的解决提供理论基础和方法支持,也可以为遗传算法的推广和应用提供借鉴和参考。

同时,该研究对于深入理解多目标优化问题和遗传算法在其中的应用也具有重要意义。

研究方法:本文主要采用文献综述和实验分析相结合的方法,即通过对前人研究的综述和分析,挖掘出该领域存在的问题和需求,然后设计实验来验证算法的可行性和性能。

预期成果:本文研究将得到一种可以解决多目标优化问题的遗传算法,并对其进行性能分析,通过结果对该算法进行改进并进一步提高算法的求解能力和效率。

同时,预期可以提交一篇高水平的硕士学位论文,并发表相关的学术论文。

遗传算法优化的matlab案例

遗传算法优化的matlab案例

遗传算法(Genetic Algorithm,GA)是一种模拟生物进化过程的搜索和优化算法,通过模拟生物的遗传、交叉和变异操作来寻找问题的最优解。

它以一种迭代的方式生成和改进解决方案,并通过评估每个解决方案的适应度来选择下一代解决方案。

在Matlab中,遗传算法优化工具箱提供了方便的函数和工具,可以帮助用户快速开发和实现遗传算法优化问题。

下面,我们以一个简单的最优化问题为例,演示在Matlab中如何使用遗传算法优化工具箱进行优化。

假设我们要优化一个简单的函数f(x),其中x是一个实数。

我们的目标是找到使得f(x)取得最小值的x值。

具体来说,我们将优化以下函数: f(x) = x² - 4x + 4首先,我们在Matlab中定义目标函数f(x)的句柄(用于计算函数值)和约束条件(如果有的话)。

代码如下:function y = testfunction(x)y = x^2 - 4*x + 4;end接下来,我们需要使用遗传算法优化工具箱的函数ga来进行优化。

我们需要指定目标函数的句柄、变量的取值范围和约束条件(如果有的话),以及其他一些可选参数。

以下是一个示例代码:options = gaoptimset('Display', 'iter'); % 设置显示迭代过程lb = -10; % 变量下界ub = 10; % 变量上界[x, fval] = ga(@testfunction, 1, [], [], [], [], lb, ub, [], options);在上面的代码中,gaoptimset函数用于设置遗传算法的参数。

在这里,我们使用了可选参数'Display',它的值设置为'iter',表示显示迭代过程。

变量lb和ub分别指定了变量的取值范围,我们在这里将其设置为-10到10之间的任意实数。

横线[]表示没有约束条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京航空航天大学
共 8 页第 1 页
学院:航空宇航学院姓名: 魏德宸
基于遗传算法优化多元多目标函数的MATLAB实现
0.引言
现实生活中的很多决策问题都要考虑同时优化若干个目标,而这些目标之间有时是彼此约束,甚至相互冲突,这样就需要从所有可能的方案中找到最合理、最可靠的解决方案。

而遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的一种新的迭代的全局优化搜索算法,它能够使群体进化并行搜寻多个目标,并逐渐找到问题的最优解。

1.问题描述
变量维数为5,含有2个优化目标的多目标优化问题表达式如下
对于该问题,利用权重系数变换法很容易求出最优解,本题中确定f1和f2的权重系数都为0.5。

2.遗传算法
2.1遗传算法简述
遗传算法的基本原理是通过作用于染色体上的基因寻找好的染色体来求解问题,它需要对算法所产生的每个染色体进行评价,并基于适应度值来选择染色体,使适应性好的染色体有更多的繁殖机会,在遗传算法中,通过随机方式产生若干个所求解问题的数字编码,即染色体,形成初始种群;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗产操作后的个体集合形成下一代新的种群,对这个新的种群进行下一轮的进化。

2.2遗传算法的过程
遗传算法的基本过程是:
1.初始化群体。

2.计算群体上每个个体的适应度值
3.由个体适应度值所决定的某个规则选择将进入下一代个体。

4.按概率Pc进行交叉操作。

5.按概率Pm进行变异操作。

6.没有满足某种停止条件,则转第2步,否则进入第7步。

7.输出种群中适应度值最优的染色体作为问题的满意解或最优界。

8.遗传算法过程图如图1:
图1 遗传算法过程图
3.遗传算法MATLAB代码实现
本题中控制参数如下:
(1)适应度函数形式FitnV=ranking(ObjV)为基于排序的适应度分配。

(2)交叉概率取为一般情况下的0.7,变异概率取其默认值.
(3)个体数目分别为2000和100以用于比较对结果的影响。

(4)最大遗传代数参考值分别为80和20.
(5)因含有5个未知数,故变量维数为5.
(6)因取值范围较小,变量的二进制数目为20.
(7)代沟设置为0.9.
3.1初始化及其他准备工作
区域描述器FieldD描述染色体的表示和解释,每个格雷码采用20位二进制。

5个变量的区间和边界定义如上述所示。

3.2计算适应度值
计算适应度值是由根据程序FitnV=ranking(ObjV)来实现的,对这个等级评定算法的缺省设置时选择压差为2和使用线性评估,给最适应个体的适应度值为2,最差个体的适应度值为0,适应度值结果由向量FitnV返回。

3.3选择、交叉操作
选择层使用高级函数选择调用低级函数随机遍历抽样例程sus,SelCh中的个体使用高级函数recombine进行重组,使个体通过SelCh被选择再生产,并使用单点交叉例程xovsp,使用交叉概率Px=0.7进行执行并交叉。

交叉后的子代被同一个矩阵SelCh返回。

3.4变异操作
为了产生子代,使用变异函数mut。

子代再次由矩阵SelCh返回,变异概率缺省值PM=Px/Lind,并使用bs2rv,将个体的二进制编码转换为十进制编码。

3.5遗传算法性能跟踪
每次迭代后的最优解和均值存放在trace中,在后续的作图中可选择调用出来。

3.6图形绘制及函数值和自变量输出
使用plot函数绘出所建数学模型的最佳解及种群均值随迭代次数的变化曲线,并使用best 属性使lengend标注位置处于最优位置。

使用矩阵翻转命令flipud及矩阵元素查找命令输出2个优化解及5个自变量。

4实验分析
改变种群数量等参数的实验结果对比。

表格横列2000-80表示参数设置为种群大小为2000,最大迭代次数80.竖列f1value、f2value和X1等分别表示函数值和自变量取值。

表1 参数改变最优化函数值及自变量取值
2000-80 2000-20 100-80 100-20 f1value 20.0914 20.3343 20.968 23.8958
f2value 4.6331 4.6205 4.8023 4.7151 X1 3.9961 3.9655 3.9958 3.474
X2 1.0132 1.0055 1.0631 1.0388
X3 2.0167 2.4596 2.0012 2.3256
X4 2.0073 5.1599 2.0079 4.5378
X5 3.0001 3.0164 3.0002 3.0079
当参数设置为种群大小为2000,最大迭代次数80时,最佳解及种群均值随迭代次数的变化曲线如图3所示。

第一目标函数第二目标函数
图2 种群大小为2000,最大迭代次数80变化曲线
线如图3所示。

第一目标函数第二目标函数
图3 种群大小为2000,最大迭代次数20变化曲线
当参数设置为种群大小为100,最大迭代次数80时,最佳解及种群均值随迭代次数的变化曲线如图3所示。

第一目标函数第二目标函数
图4 种群大小为100,最大迭代次数80变化曲线
线如图3所示。

第一目标函数第二目标函数
图5 种群大小为100,最大迭代次数20变化曲线
种群大小2000,最大迭代次数80时,各自变量取值如图6所示。

可看出各变量的变化较为稳定,即可知收敛性较好,应为最优解。

图6 5维自变量变化曲线
4.2结果分析
(1)因本体优化目标并不太复杂,故交叉概率取为较一般的0.7,变异概率也采用默认值,避免太多的无谓改变。

曲线在一开始的几次迭代后迅速下降,但到了一定值后,曲线则变得平缓,说明收敛速度较快,交叉和遗传概率满足优化要求。

(2)种群规模的大小和迭代次数的多少对结果的影响是较大的。

主要表现在种群规模较小或迭代次数较少时,其结果较最优解偏差较大。

由于计算机性能的不断提高,在速度要求不高时可选择较大种群和较多迭代次数已确保结果的最优化。

(3)由自变量变化曲线可看出,在交叉和变异概率选取适当的前提下,种群大小2000,最大迭代次数80时,各自变量变化较为稳定,说明最优解已基本收敛。

相关文档
最新文档