高分子材料化学-第三章ppt课件

合集下载

高分子材料成形工艺ppt课件

高分子材料成形工艺ppt课件
二、高分子材料的物理状态
l 玻璃态(T<Tg):聚合物分子链冻结,具有较好强度、受
力只产生很小弹性变形
l 高弹态(Tg<T<Tf):聚合物分子链部分链锻解冻,在外
力作用下产生较大弹性变形
l 粘流态(T>Tf):聚合物分子链完全解冻,很小的外力产
生明显的塑性变形
❖ 高聚物有几种物理状态,塑料与橡胶分别在什么 物理态下加工,什么物理态下使用?
特种橡胶:在特殊条件(如高温、低温、酸、碱、油、辐 射等)下使用的橡胶材料。
纤维
天然纤维:棉花、羊毛、蚕丝、麻等
纤维
人造纤维
化学纤维
合成纤维
人造纤维:利用自然界中纤维素或蛋白质作原料,经过化 学处理与机械加工制得的纤维;
合成纤维:利用煤、石油、天然气、水等不含天然纤维的 物质作为原料,经过化学合成与机械加工等制得的纤维。
§1 高分子材料简介
一、高分子化合物的结构
(1)高分子链的化学组成 (2)高分子链的形态 1.高分子链的结构 (3)高分子链中结构单元的键连接方式 (4)高分子链的空间构型 (5)高分子链的构象及柔顺性 2.高分子的聚集态结构
(1)高分子链的化学组成
A.碳链高分子 —C—C—C—C—C—或—C—C=C—C—。 侧基多样,产量最大、应用最广。
橡胶
(2)橡胶的分类 1)按原料来源:
天然橡胶:以天然橡胶树的乳液,经过凝固、干燥、压制 成片状生胶,再经硫化处理后制成可以使用的橡胶制品。
合成橡胶:用人工的方法将单体聚合而成的。 2)按应用范围
通用橡胶:天然橡胶以及能够用来代替天然橡胶制造轮胎 、工业用品、日常生活用品和其它大宗橡胶制品的合成橡胶;
B.杂链高分子 —C—C—O—C—C— , —C—C—N—C—C— , —C—C—S—

高分子物理化学 第三章

高分子物理化学 第三章

第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
粘度法(粘均分子量)
该法是目前最常用的方法之一。 溶液的粘度除了与分子量有关,还取决 于聚合物分子的结构、形态和尺寸, 因此,粘度法测分子量只是一种相对 的方法。
根据上述关系由溶液的粘度计算聚合物 的分子量。
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
例如尼龙6:
H2N(CH2)5CO NH(CH2)5CO n NH(CH2)5COOH
COOH 一头 (中 NH2 ,一头 间已无这两种基团),可用酸碱滴 定来分析端氨基和端羧基,以计算 分子量。
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
计算公式:
W——试样质量 n——试样摩尔数 ne——试样中被分析的端基摩尔数 Z——每个高分子链中端基的个数
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
C —— 溶液的浓度
—— 溶剂的沸点升高常数
—— 溶剂的冰点降低常数
—— 溶质分子量
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
一些溶剂的沸点升高常数
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
一些溶剂的冰点降低常数
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
特 点
可证明测出的是 ; 对缩聚物的分子量分析 应用广泛; 分子量不可太大,否则 误差太大。
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
溶液依数性法
小分子:
稀溶液的依数性:稀溶液的 沸点升高、冰点下降、蒸汽压下 降、渗透压的数值等仅仅与溶液 中的溶质数有关,而与溶质的本 性无关的这些性质被称为稀溶液 的依数性。

高分子材料研究方法--紫外可见吸收光谱 ppt课件

高分子材料研究方法--紫外可见吸收光谱  ppt课件

ppt课件
16
常用的是π→π*跃迁和n→π*,这两种跃迁都 需要分子中有不饱和基团提供π轨道。
n→π*跃迁与π→π*跃迁的比较如下:
π→π*
n→π*
吸收峰波长 与组成双键的
有关
原子种类基本无关
吸收强度 强吸收 104~105 弱吸收 <102
极性溶剂 向长波方向移动 向短波方向移动
ppt课件
O:
例:H C
H ppt课件
10
分子轨道有σ、σ*、π、 π*、n 能量高低σ<π<n<π*<σ*
σ* π*
n → σ* π→π* n→π*跃迁
n
π

σ→σ*

σ
ppt课件
11
主要有四种跃迁类型 跃迁所需能量为:
σ→σ* n→σ* π→π* n→π*
分子中电子的能级和跃迁
2
ppt课件
不同波长的光
ppt课件
L 4
A
图3-1 紫外可见吸收光谱示意图
末端吸收
最强峰
肩 峰
次强峰 峰谷
max
ppt课件
min

5
A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min

2. 对于同一待测溶液,浓度愈大,吸光度也愈大;
3. 对于同一物质,不论浓度大小如何,最大吸收峰所对应 的波长(最大吸收波长 λmax) 不变。并且曲线的形状也 完全相同。
CH3Br λmax=204nm
ppt课件
14
(3)π→π*跃迁
π电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁 所需能量比σ→σ*跃迁小,若无共轭,与n→σ*跃迁 差不多。200nm左右

高分子材料的稳定与降解-第三章-聚合物降解各论课件.ppt

高分子材料的稳定与降解-第三章-聚合物降解各论课件.ppt
* 实验发现,取向对PVC的光氧化有重要影响。 拉伸取向后的样品在太阳光紫外线(波长大 于300nm)照射下生成的羰基比未拉伸样品 多得多。
原因:PVC拉伸过程中形成了一种构象,有利 于自由基从分子链上夺取氢原子。
Thank yΒιβλιοθήκη u!证据: 过程: 在某个稳定性较差的位置无规的引发C-Cl 键断裂反应,生成大分子自由基,随后脱除 HCl。
缺陷:PVC脱HCl的自由基机理不能解释 HCl的自催化作用,也不能解释乙酸、 Lewis酸对脱HCl反应的催化作用。
(ii) 离子-分子机理:
(iii) 分子机理:
(3) 交联反应 PVC降解脱HCl以后,形成的共轭多烯结构。 可能会发生分子间的Diels-Alder反应。
(1)聚氯乙烯光降解脱HCl的机理: 一般认为是自由基机理: ① 第一步:无规断链生成自由基; ② 第二步:主链上生成一个孤立的不饱和键。
一般认为PVC脱HCl是“开拉链”反应:
要使PVC颜色发黄,至少需要连续7个共轭双 键结构。从大分子上依次除去HCl将不断增 加剩余链的共轭能,使下一步脱氯化氢所需 的活化能降低,容易形成多烯链。
多烯结构的分子内环化反应会导致形成苯或 其它芳环结构。
(4) 氧化断链 有氧存在时,PVC的自由基降解过程必然发生氧化 反应,其断链过程类似于聚烯烃的氧化过程。
烷氧自由基还可生成β位上带有氯原子的羰 基,急剧激活PVC的脱HCl作用,并生成羰 基烯丙基结构。
2. 聚氯乙烯的光降解 PVC在紫外光照射过程中发生降解和交联,生 成共轭多烯和氯化氢。
热失重研究表明,PVC的分解分两阶段进行:
PVC脱HCl时,生成多烯结构,同时由于交 联和环化,其相对分子质量增加。
(2)PVC脱HCl的机理: 聚合物分子链上的非正常结构(支化、氯代 烯丙基团、含氧结构、端基、头-头结构等) 引发了脱HCl反应。 含氯模型化合物的稳定性:

高分子材料的结构

高分子材料的结构
C—C单键的内旋转:
碳链的各种构象
2.高分子链的柔顺性
定义:高分子能够由于构象的变化而获得的不 同卷曲程度的特性。
表示方法:利用末端矩h来衡量。
h越小,卷曲越严重。 柔顺性主要取决于末端矩和链段的长度。
影响高分子柔顺性的因素
a、主链结构
单键 含有芳杂环 含有孤立双键
b、侧基性质
侧基极性 侧基体积 侧基对称性
第三章 高分子材料的结构
❖高分子材料:是以有机高分子化合物为主要组 分(适当加入添加剂)的材料。
❖包括 天然的:如淀粉、羊毛、纤维素、天然橡胶。 人工合成的:塑料、合成橡胶、合成纤维。
❖性能特点:重量轻、耐腐蚀、电绝缘性能优良, 可塑性好、易加工成型 、原料丰富、价格低廉。 但不耐高温和容易老化。
本章内容
侧基一般是有机取代基 —H,—Cl,—OH,—CH3,
O , —C—NH2
二、结构单元的键接方式和构型
1.键接方式
一种单体的加聚形式:
两种或两种以上单体的加聚形式:
2.空间构型
高分子中结构单元由化学键所构成的空间排布称为分子 链的构型。
如 :乙烯类高分子链的立体异构
三、高分子链的几何形状
高分子链通常呈现线形、支化、交联和体型等形 态,也有星形、梳形、梯形等特殊形态。

性 聚
合合
物物
聚合物的结构
聚合物是由许多单个的高分子链聚集而成,其结构有 两方面的含义:(1)单个高分子链的结构;(2)许多高分子链聚 在一起表现出来的聚集态结构。
一级结构 结构单元的化学组成、连接顺序、

链结构
近程结构 立体构型,以及支化、交联等

二级结构 高分子链的形态(构象)以及高

何曼君第三版高分子第三章PPT

何曼君第三版高分子第三章PPT

7
溶剂选择有三个原则: • 极性相似原则 • 溶度参数相近原则 • 溶剂化原则 ★ 注意三者相结合进行溶剂的选择
8
极性相似原则:相似者易共溶(定性)
对于小分子
极性大的溶质溶于极性大的溶剂 极性小的溶质溶于极性小的溶剂 溶质和溶剂极性越近,二者越易互溶
对于高分子:在一定程度上也适用
天然橡胶(非极性):溶于汽油,苯,己烷,石油醚(非极性溶剂) PS(弱极性):溶于甲苯,氯仿,苯胺(弱极性)和苯(非极性) PMMA(极性):溶于丙酮(极性) PVA(极性):溶于水(极性) PAN(强极性):溶于DMF,乙晴(强极性)
(3-17)
1 — Huggins参数,它反映高分子与溶剂混合时
相互作用能的变化。
1kT —物理意义是:当一个溶剂分子放到高聚物
中时引起的能量变化。
27
1 值的大小反映了高分子稀溶液与理想溶液的偏差程度:
(1)
1 0
时, 溶剂对高分子的作用强,且超过高分子
链段之间的相互作用,此时的溶剂为良溶剂;
• 科学研究中: 由于高分子稀溶液是处于热力学平衡态的真溶液,所 以可以用热力学状态函数来描述,因此高分子稀溶液 已被广泛和深入的研究过,也是高分子领域中理论比 较成熟的一个领域,已经取得较大的成就。 通过对高分子溶液的研究,可以帮助了解高分子的化学结构 ,构象,分子量,分子量分布; 利用高分子溶液的特性(蒸汽压,渗透压,沸点,冰点,粘 度,光散射等),建立了一系列高分子的测定手段,这在 高分子的研究工作和生产质量控制上都是必不可少的手段 。
3
二.分类 ①极稀溶液——浓度低于1%属此范畴,热力学稳 定体系,性质不随时间变化,粘度小。分子量的测 定一般用极稀溶液。 ②稀溶液——浓度在1%~5%。 ③浓溶液——浓度>5% ,如:纺丝液(10~15% 左右,粘度大);油漆(60%);高分子/增塑剂体 系(更浓,半固体或固体)。

第三章 高分子的结构与性能(1)

第三章  高分子的结构与性能(1)
第三章 高分子的结构与性能
高分子合成-加工-应用
合成:决定高聚物链结构 单体-聚合物元素组成 聚合方法及工艺-分子链原子间相对位置 关系,链的几何形状及大小 加工成型:确定聚合物链段间或分子间聚 集态结构 高分子链结构、聚集态结构等各种结构效 应:决定高分子材料性能。对聚合物进行 加工和利用的依据
3.1 高分子的链结构 -近程结构(一级结构)
2、键接结构:
结构单元在分子链中的连接方式,通过控制合成条件可改变
单烯类单体CH2=CHX聚合时,单体单元连接方式可有如下 三种:
CH 2 CH CH 2 CH X X
CH 2 CH CH CH 2 X X
CH CH 2 CH 2 CH X X
头-尾连接
链结构(单 个分子的结 构与形态)
液晶结构
3.1 高分子的链结构 -近程结构(一级结构)
1.结构单元的化学组成
碳链高分子:这类高聚物不易水解,易加工,易 燃烧,易老化,耐热性较差。一般用作通用塑料。 杂链高分子:主链带极性,易水解,醇解或酸解。 优点:耐热性好,强度高。这类聚合物主要用作 工程塑料 元素高分子:具有无机物的热稳定性,有机物的 弹性和塑性。但强度较低。
3.1 高分子的链结构 -近程结构(一级结构)
5、共聚物的序列结构 ● ● ● ●
无规共聚物 交替共聚物 嵌段共聚物 接枝共聚物
3.1 高分子的链结构 -近程结构(一级结构)
无规共聚
两种单体单元无规则地排列
ABAABABBAAABABBAAA
例1: PE,PP是塑料,但 乙烯与丙烯无规 共聚的产物为橡胶。 例2: PTFE(聚四氟乙烯)是塑料,不能 熔融加工,但四氟乙烯与六氟丙烯共聚物是 热塑性的塑料。

功能高分子材料-第三章高分子分离膜PPT课件

功能高分子材料-第三章高分子分离膜PPT课件

01
03
超滤膜的应用,提高了食品工业的生产效率和产品质 量,同时也为消费者提供了更加安全、健康的食品。
04
超滤膜的过滤精度高,能够有效地去除杂质和有害微 生物,同时保留原有的营养成分和口感,为食品工业 提供了一种高效、环保的加工方法。
纳滤膜在医药工业中的应用
纳滤膜是一种特殊类型的过滤膜,孔径范围在1-1纳米之间,具有较高的过滤精度和 选择性。
循环利用。
用于分离空气中的氧气、 氮气等气体,以及工业
尾气中的有害气体。
用于食品、医药、化工 等领域中物料的浓缩和
提纯。
02
高分子分离膜制备方法
相转化法
浸没沉淀相转化法
热致相分离法
将聚合物溶液流过支撑体,通过控制 溶剂蒸发速度和溶液浓度,使聚合物 在支撑体上沉淀,形成分离膜。
通过加热使聚合物溶液发生相分离, 形成分离膜。
反渗透膜技术的出现,为人类提供了 大量的淡水资源,对于解决全球水资 源短缺问题具有重要的意义。
超滤膜在食品工业中的应用
超滤膜是一种孔径范围在1-100纳米的过滤膜,能够 过滤出大分子物质和杂质,广泛应用于食品工业。
输标02入题
在食品工业中,超滤膜主要用于饮料、酒类、乳制品、 肉制品等产品的过滤澄清和除菌处理,提高产品质量 和延长保质期。
渗透速率。
高分子分离膜制备技术改进
先进的成膜技术
随着成膜技术的不断改进,高分子分离膜的 制备效率和质量得到了显著提高。例如,采 用先进的拉伸成膜技术、喷丝成膜技术、溶 胶-凝胶成膜技术等,可以制备出具有优异 性能的高分子分离膜。
新型的制膜设备
为了提高高分子分离膜的制备效率和产品质 量,不断有新型的制膜设备被研发出来。这 些设备采用了先进的控制系统和精密的机械 结构,能够实现自动化、连续化的生产,并

第三章 工程塑料(高分子材料)PPT课件

第三章  工程塑料(高分子材料)PPT课件
(b)混炼法是用乳液聚合的方法分别制得AS树脂(丙烯腈 与苯乙烯的共聚物)和BA(丁腈橡胶),然后两者进行机械混 拣,可得ABS。这种方法制得的ABS实际上是塑料与橡胶 的共混物。
(c)接枝混炼法,是由乳液接枝共聚制得的ABS树脂和另 一乳液制备的AS乳胶,将两种胶乳按不同比例混合、凝聚、 水洗、干燥,在混炼机上进行机械混炼,由于比例不同, 可得不同性质和型号的ABS。
⑤导热系数低;
⑥吸水性大(因酰胺基是亲水基团,其中PA6,PA66吸水性 最大)。
6.改性和新型聚酰胺 ①列增优强良② 单尼性体单龙能浇体③反,铸浇尼反应但尼铸龙④先应注与龙尼虽由芳注射金(龙有美以香射成属国(一下M族⑤结成型杜系材C简尼晶透邦型尼尼称公龙型明(龙龙R⑥抗M司聚尼。I()C开M冲高R。合龙芳I发)尼抗M尼香物。成⑦塑尼龙冲族龙,普功料电是龙尼尼的产。通主镀龙以龙)耐品尼是要尼高尼。呈龙2温为龙龙高0乳是世、A。纪耐B过S6辐0塑去年射料电代、,镀首耐 料相比尼,龙还)是是存尼在在龙腐M着6蚀C的强的尼一度尼龙白种龙较基色新,础品。所6种上要6不,或发获目尼展得前近龙起透主年6要明来为来有性基开聚,体间发必,苯了二电酰镀间尼苯龙二 , 小 、 刚同度的较是的低它,、采胺是由用和把吸了聚具湿碱对有须苯聚而高酰抑合胺反制法通两应晶,种过活体。与性的如其的生日他成尼本聚,东合使洋物其纺织公司的 引足因 ,此起 使开的加 胺 艺应发尺快单直用了寸了体接龙注液受玻变聚能在原入体到璃化合通模甲34料密注一纤较45速过具聚00酰于 闭 射~℃定维大度简内氯间3高的成6,限等、,便聚和0苯℃压模型脆生采化间二制使的合不石很化下具方成用法苯酰己聚成。快温二间瞬中法非主及结内合型共步新胺度苯间成。结链不晶酰工。通混提品二-7,反型目晶上同0过胺的高种℃晶应的前聚引单界(T同优方抗。体商,-一合入体较,面7的异熔名法冲杜可7缩物侧进种多再7点品外。在来强邦聚具。 链 行为N观尼2进度公法有o0一的共4m01,龙聚一的司℃与0e般支缩℃x得但电)连电,,,性镀续镀由分N能的使o间解Am更工B用苯温exS为艺二在。度相 棉 纤 维M、C尼碳龙的纤分是维N子采、om量用钛ex比尼耐金一聚辐龙属般射法6,作尼来最具龙为实有早R现优于IM。异原1尼透的9理7力明龙6是年学尼,性开龙能通发具和过电化性学能处,理抗 晶 须 等6增高一强倍原的左料品张右,种强,在,度达单在为3体有.很850熔高万~1点度~20成M之透7.功P0上明a ,,聚、抗(商浸合低压品蚀吸物强名)水度先为为性使3、制20M品P表a ,面抗粗压 大上维增程的强度不万 尼 工尼上足,龙设龙弥。因备6最高熔成N补其此及重-。型点乙了中各模要模的缘M。之酰尼以项具。材方量C反下基龙玻力简尼聚料法高应,己性璃对学单。制龙达过在内耐且优苯取4性,能纤成4程模酰酰薄热仍良0能可型0胺膜M以具胺水有力都直加Z度倍P(,商钾内为性一学ay比接。亦比。t名为助快及般强eN可l品一ZoS催催速耐尼度层ymK糙催后T般t化化e抓龙。聚ee压。xvl化化再尼通l制S剂剂伤所目合a其r,剂进T龙常)取由性 具前,,是抗再(行用层高对催,有主以冲铝压使化1氨化并的要0尼强片板基其学工浸,苯吸电艺为渍甲附镀H后)酸,-还和剥级或然原电离绝 尼龙用浇玻铸璃,纤反因维应而增对温特强苯度别二后在适甲力品酰1用5氯种0于℃与是大龙对以支件苯6上化6、二为。法胺气基与缩透电体聚明尼镀,而尼,成近龙。使年K铜ev、lar具镍有、高铬 学强度多、品耐种疲龙和劳6小相性强批、比度尼、尺,低龙寸RT密量IrMo度制g尼、a品m来耐龙i的d高日具-T温本和有等等开共更一金发系缩高属的列聚优在E法X异制透系性品能表,面主要形用成 稳都定有性明生和显产耐提。热高的性性。。结、以膜晶耐制和性超层候和高压性刚明强材性度料尼耐。、龙列高更P温A则小C纤以P的维-密层尼9,吸/实。6龙亦湿。、6可为用均基作匀体塑和料。导,电制成性薄薄

3高分子材料化学改性

3高分子材料化学改性
CH 2
+
CH
CH2 CH2 CH 2 CH2
CH 2
CH2
10
(3)高能辐射交联 • 高能辐射下,使聚合物大分子链产生自由基,从而发生交联 反应,有时还有脱基团的反应发生。
• 一般规律是双取代的碳链聚合物以断链为主,而其他大多数
聚合物则以交联为主,包括饱和的和不饱和的聚合物。 • 高能辐射源:加速电子、X射线、β射线、γ射线、快质子、 快中子、慢中子、γ粒子,原子反应堆混合射线。 反应分三步: A、初级自由基及活性氢原子的生成:
CH2
CH
.
Si(OR) 3 CH2 +CH2 CH
CH2 CH2
CH CH
.
Si(OR) 3 CH2
14
③接枝PE交联成交联PE a.接枝PE水解成硅醇
CH2 CH CH 2 CH2 Si(OR)3 CH2
催化剂
H2O
CH2
CH CH 2 CH 2
CH2
+ ROH
Si(OR)2
OH
b.含硅醇PE交联形成Si-O-Si
第三章 高分子材料化学改性
• 3.1 共聚合反应
• 3.2 交联
• 3.3 聚合物主链反应和侧基反应
• 3.4 互穿高分子材料网络
1 1
3.2交联 3.2.1概述
• 聚合物在热、光、辐射能或交联剂的作用下,分子链间以化 学键联结起来构成三维网状或体型结构的反应,称为交联
(cross-linking)。
成硅烷接枝聚合物,该聚合物在硅烷醇缩合催化剂的存在下, 遇水发生水解,从而形成网状的氧烷链交联结构。 • 硅烷交联技术由于其交联所用设备简单,工艺易于控制,投 资较少,成品交联度高,品质好,从而大大推动了交联聚乙 烯的生产和应用。 • 除聚乙烯、硅烷外,交联中还需用催化剂、引发剂、抗氧剂

高分子材料化学PPT课件

高分子材料化学PPT课件

第19页/共140页
溶剂的选择
溶度参数相近原则 极性相似相溶原则 溶剂化原则
第20页/共140页
溶度参数相近原则
如何选择溶解高分子材料合适的溶剂是药物制剂中常 遇到的问题,如制备薄膜包衣液或制备控释膜,如何 来选择溶剂、应用何种不同性质的化合物来调节膜上 孔隙的大小,药物、溶剂和高分子的相容性如何等, 这就需要运用判断高分子溶解度及相容性的一般规律。 这些规律对聚合物的溶剂选择具有一定的指导意义。
?溶度参数相近原则极性相似相溶原则313溶剂的选择?极性相似相溶原则?溶剂化原则?如何选择溶解高分子材料合适的溶剂是药物制剂中常遇到的问题如制备薄膜包衣液或制备控释膜如何来选择溶剂应用何种不同性质的化合物来调节膜上孔隙的大小药物溶剂和高分子的相容性如何等这就需要运用判断高分子溶解度及相容性的一般规律
1
1 3
1 :2 1: 2
第23页/共140页
极性相似相溶原则
对于非晶态极性聚合物不仅要求溶剂的溶度参数与聚 合物相近,而且还要求溶剂的极性要与聚合物接近才 能使之溶解,如聚乙烯醇是极性的,它可溶于水和乙 醇中,而不溶于苯中。
第24页/共140页
溶剂化原则ຫໍສະໝຸດ 溶度参数相近的聚合物一溶剂体系,不一定都能很好
只能发生溶胀。 交联度越大,溶解度越小。 交联度可以用交联点密度表示。交联聚合物中交联链
的结构单元数Nc占总结构单元数N的分数,通常用q表 示。Q=Nc/N。
第9页/共140页
制备药用高分子溶液的方法
药用高分子材料大多呈粒状、粉末状,如果将其直接 置于良溶剂中,易于聚结成团,与溶剂接触的团块表 面的聚合物首先溶解,使其表面粘度增加,不利于溶 剂继续扩散进人颗粒内部。
第33页/共140页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V1,2(δ 1-δ 2) ≈
Φ1Φ2
(3-2)
⑸内聚能密度和溶度参数 内聚能密度就是单位体积的内聚能,Δ E/V是内聚能密 度,混合热是由于两种物质内聚能密度不等引起的。 内聚能密度的平方根称为溶度参数δ 。
溶度参数 =
1/2 =
E CED V
例 完全非晶的PE的密度ρ a=0.85g/cm3,如果 其内聚能为2.05千卡/摩尔重复单元,试计算 它的内聚能密度? 解:摩尔体积

若聚合物与溶剂分子之间的作用力大于聚合物分子间 的作用力,溶剂量充足时,溶胀的聚合物则可继续进 入溶解阶段,此时,随着溶剂分子不断渗入,溶胀的 聚合物逐渐分散成真溶液。 高分子在良溶剂中溶解时被充分溶剂化而处于伸展状 态。在不良溶剂中,由于高分子溶剂化不充分,分子 链相当卷曲,处于紧密状态。 聚合物由于本身的结构、分子量、体系的粘度等影响 因素,其溶解过程要比小分子复杂的多。
Δ Gm=Δ Hm-TΔ Sm ﹤0
(3-1)
⑶溶解过程中,分子的排列趋于混乱,Δ Sm>0, Δ Gm 的正负取决于Δ Hm 的正负和大小。 ①极性聚合物-极性溶剂体系 由于高分子与溶剂分子的强烈相互作用,溶解时是放 热的(Δ Hm<0),此时体系的混合自由能为负,即 Δ Gm<0,溶解从热力学角度来看是可以自发进行的。 ②非极性聚合物 若不存在氢链,其溶解过程一般是吸热的,即 Δ Hm>0,所以,要使聚合物溶解,也即使必须满足 |Δ Hm|<|TΔ Sm|。
3.1.2 聚合物溶解过程的热力学
⑴高分子的溶解过程 高分子的溶解过程是溶质分子和溶剂分子相互混合的 过程,恒温恒压条件下,该过程能自发进行的必要条 件是吉布斯自由能变化(△Gm)小于零。 ⑵聚合物溶解过程的自由能变化:
聚合物溶解的必要条件:Δ Gm<0 Δ Sm——混合熵 Δ Hm——混合热 T为溶解时的绝对温度
高分子材料化学 -第三章
高分子溶液是研究单个高分子链结构的最佳方法Fra bibliotek应用粘合剂
涂料
溶液纺丝
增塑
共混
3.1 高分子溶液的理化性质

溶胀与溶解 聚合物溶解过程的热力学 溶剂的选择 凝胶
3.1.1 溶胀与溶解



高分子的溶解是一个缓慢过程,可分为两个阶段: 溶胀 溶解 ①溶胀的定义 溶剂分子扩散进入高分子内部,使其体积增大的现象。 ②溶胀的原因 高分子化合物特有的现象,原因在于溶剂分子与高 分子尺寸相差悬殊,分子运动速度相差很大,溶剂小 分子扩散速度较快,高分子向溶剂中的扩散速度很慢。 ③溶解的步骤 首先是溶剂小分子渗透进入高分子内部,撑开分子链, 增加其体积,形成溶胀的聚合物。

(一)非晶态聚合物的溶胀和溶解 ①聚合物溶解过程分两步进行:首先溶胀,然后溶解。 ②由于分子间堆砌比较松散,分子间相互作用力较弱, 溶剂分子比较容易渗人聚合物内部使之发生溶胀或溶 解(相对于结晶态聚合物而言)。 ③聚合物溶解过程的另一个特点:溶解度与相对摩尔质 量有关。通常相对摩尔质量大的,溶解度小;相对摩 尔质量小的,溶解度大。提高温度一般可以增加其溶 解度;降低温度则减小其溶解度。
28 gmol 3 V 32 . 94 cm mol 3 0 . 85 gcm
E2 . 05 1000 cal mol CED ~ 3 32 . 94 cm mol V
3 62 . 2 cal cm
8 2 . 6 10 Jm
(a) 溶胀法:
溶胀度法是在一定温度下, 将交联度相同的高分子分别 放在一系列溶度参数不同的 溶剂中使其溶胀,测定平衡 溶胀度,聚合物在溶剂中溶 胀度不同,只有当溶剂的溶 度参数与聚合物溶度参数相 等时,溶胀最好,溶胀度最 大。因此,可把溶胀度最大 的溶剂所对应的溶度参数作 为该聚合物的溶度参数。
⑷非极性聚合物混合热Δ Hm的计算: 经典Hildebrand溶度公式
Δ Hm
式中V1,2为溶液的总体积(ml);δ 为(solubility parameter) (MPa) 1/2,Φ为体积分数;下标1和2分别 表示溶剂和溶质 。 此式只适用于非极性的溶质和溶剂的相互混合。混合 热△Hm是由于溶质和溶剂的溶度参数不等而引起的, △Hm总是正值,如果溶质和溶剂的溶度参数愈接近, 则△Hm愈小,也愈能满足自发的条件,一般δ 1和δ 2的 差值不宜超过±1.5。

(三)交联聚合物的溶胀 交联聚合物由于三维交联网的存在而不会发生溶解, 只能发生溶胀。 交联度越大,溶解度越小。 交联度可以用交联点密度表示。交联聚合物中交联链 的结构单元数Nc占总结构单元数N的分数,通常用q表
示。Q=Nc/N。
制备药用高分子溶液的方法
药用高分子材料大多呈粒状、粉末状,如果将其直接 置于良溶剂中,易于聚结成团,与溶剂接触的团块表 面的聚合物首先溶解,使其表面粘度增加,不利于溶 剂继续扩散进人颗粒内部。 溶解之初,应采取适宜的方法,使颗粒高度分散,防 止粘聚成团,然后再加入良溶剂进行溶胀和溶解,这 样可以较快的制备高分子溶液。 例如聚乙烯醇和羧甲基纤维素钠在热水中易溶,配制 其水溶液时,则应先用冷水润湿、分散,然后加热使 之溶解。而羟丙甲纤维素在冷水中比在热水中更易溶 解,则应先用80~90℃的热水急速搅拌分散.由于其 在热水中不溶,颗粒表面不粘,则有利于充分分散, 然后用冷水(5℃左右)使其溶胀,溶解。
(二) 结晶聚合物的溶解 晶态聚合物,由于聚合物分子间排列规整,堆砌紧密, 分子间相互作用力较强,溶剂分子较难渗入晶相。因 此晶态聚合物的溶解要比非晶态聚合物困难,晶态聚 合物的溶解一般要先经过晶相的熔融,然后方可溶解。 结晶聚合物可分为两类: 1、极性结晶聚合物,在适宜的强极性溶剂中往往在室 温下即可溶解。 原因在于极性结晶聚合物的非晶相部分与强极性溶剂 接触,产生放热效应,破坏晶格,使之溶解。 如:聚酰胺(PA)可溶于甲酸、冰醋酸、浓硫酸、苯酚、 甲酚;

聚对苯二甲酸乙二醇酯(PET)可溶于苯酚/四氯乙烷、 间甲酚。 2、非极性结晶聚合物,溶解往往需要将体系加热到熔 点附近。破坏晶格后,再与溶剂作用而溶解。 高密度聚乙烯PE(熔点是135℃):溶解在四氢萘中, 温度为120℃左右;间同立构聚丙烯PP(熔点是134℃): 溶解在十氢萘中,130℃。 一般来说,分子量相同的同种化学类型聚合物,支化 的比线型的更易溶解。
相关文档
最新文档