数学教学典型案例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1.1 平面 第1课时
一、教学目标:
(一)知识目标:1.能够从日常生活实例中抽象出数学中所说的“平面”
2.理解平面的无限延展性
3.理解公理1、2、3
(二) 能力目标:1.正确地用图形和符号表示点、直线、平面以及它们之间的关系2初步掌握文字语言、图形语言与符号语言三种语言之间的转化
3.初步应用公理1、2、3解决简单的点、线共线共面问题
(三)情感目标:1.提高空间想像能力
2.通过图形、符号、语言的转换体会数学的美,激发学习兴趣
二、教学重点、难点
(一)重点:平面基本性质的三个公理
(二)难点:1.三种语言的转化
2.三个公理的简单应用
三、教 具:多媒体、黑板、整个教室
四、教学过程
(一)课题导入 在初中,我们主要平面图形就是由同一平面内的点、线所构成的图形平面图形以及我们学过的长方体、圆柱、圆锥等都是空间图形,空间图形就是由空间的点、线、面所构成的图形这节课我们就来认识够构成这些空间图形的基本元素及它们之间的关系和简单性质.
(二)新知探研
1.平面的两个特征:①无限延展(在探究这个特征的过程中,有同学提到电视剧《西游记》中的一个情节,我感觉比较好,大致情节是:如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心。”结果孙悟空真没有跑出如来佛的手掌心,如来佛的手掌可以看作是一个平面,可以无限延展,所以孙悟空逃不出去。学生对这个故事情节比较熟悉。这样学生容易理解,浅显易懂) ②平的(没有厚度,这跟如来佛手掌不太一样,可以增加一些趣味性) 一个平面把空间分成两部分,一条直线把平面分成两部分
2.平面的画法及其表示方法: ①在立体几何中,常用平行四边形表示平面锐角画成45
,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画
②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面α,平面A C 等
③两个相交平面:
画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如图2)
a βB
βB β
B α
4空间图形是由点、线、面组成的 空间图形的基本元素是点(孙悟空可以看成一个点)、直线(孙悟空的运动轨迹可以看成线,径直的运动轨迹可以看成直线)、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示
点、线、面的基本位置关系如下表所示:
集合中“∈”的符号只能用于点与直线,点与平面的关系,“⊂”和“ ”的符号只能用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言α⊄(平面α外的直线a )a α=∅ 或a A α= 5 平面的基本性质 立体几何中有一些公理,构成一个公理体系.人们经过长期的观察和实践,把平面的三条基本性质归纳成三条公理.
公理1 如果一条直线的两点在一个平面内,那么这条直线在此这个平面内推理模式:A A B B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴A B α⊂
应用:这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面,如泥瓦
工用直的木条刮平地面上的水泥浆. ①判定直线在平面内;②判定点在平面内模式:a A A a α
α⊂⎧⇒∈⎨∈⎩.
公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.
公理2 经过不在同一条直线上的三点,有且只有一个平面
推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭
不共线与β重合
或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈.
应用:①确定平面;②证明两个平面重合
“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.
实例:(1)门:两个合页,一把锁;(2)摄像机的三角支架;(3)自行车的撑脚公理2及其下一节要学习的三个推论是空间里确定一个平面位置的方法与途径,而确定平面是将空间问题转化为平面问题的重要条件,这个转化使得立体几何的问题得以在确定的平面内充分使用平面几何的知识来解决,是立体几何中解决相当一部分问题的主要的思想方法.
公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭
如图示: 或者:∵,A A αβ∈∈,∴,l A l αβ=∈ 应用:①确定两相交平面的交线位置;②判定点在直线上
公理3揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.
6 典例及练习
例题 课本P43例1
练习课本P43练习
(三)课堂总结
1、点、线、面的位置关系
2、平面的基本性质(公理1、2、3)及作用
(四)课外练习及作业
课本P51习题2、1A 组1、
2