信号与系统3-4

合集下载

信号与系统-第三章习题讲解

信号与系统-第三章习题讲解

Fn

1 T
T f (t)e jntdt 1
0
T
T E(1 t )e jntdt
0
T
E T e jnt dt 1 T te jnt dt]
T0
T0

E { 1 [t TT
1 e jnt
jn
|T0

T e jnt
0 jn
dt]}
E { 1 [T 1 0]} j E ; n 1, 2,....
E cos( )
2




2E cos( ) 2E cos( )

2
2 2 2

2
[1 ( )2 ]

3 32已知阶跃函数和正弦、余弦函数的傅立叶变换:
FT[u(t)] 1 (); j
FT[cos(0t)] [ ( 0 ) ( 0 )]; FT[sin(0t)] j[ ( 0 ) ( 0 )];
E
n

e
j

2
,
n为奇数
0,
n为偶数
故:f (t ) jE e jt jE e jt jE e j3t jE e j3t ....


3
3
4、求题图3-4所示周期三角信号的傅里叶级 数并画出幅度谱。
解:将该信号表示为三角形式的傅里叶级数,有
1T
2
频谱图如下所示:
3 7利用信号f (t)的对称性,定性判断题图3-7中各 周期信号的傅里叶级数中所含有的频率分量。
解:(1)图(a)中f (t)为偶函数,同时也是奇谐函数,故其 傅氏级数中只含奇次余弦分量。 (2)图(b)中f (t)为奇函数,同时也是奇谐函数,故其傅 氏级数中只含奇次正弦分量。 (3)图(c)中f (t)为奇谐函数,故其傅氏级数只含奇次谐 波分量。 (4)图(d )中f (t)为奇函数,故其傅氏级数中只含正弦分量。 (5)图(e)中f (t)既为偶函数又为偶谐函数,故其傅氏级数 中仅含直流和偶次谐波的余弦分量。

信号与系统课后习题与解答第三章

信号与系统课后习题与解答第三章

3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。

图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为Te jE e jE e jEe jEt f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。

若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20= 幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。

解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫⎝⎛==n tjn n tjn ne n Sa TE eF t f 112)(1ωωτωτ其直流分量为T E n Sa T E F n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω 将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。

信号与系统课后习题参考答案

信号与系统课后习题参考答案

1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1 图中信号的函数表达式。

1-3 已知信号x1(t)与x2(t)波形如题图1-3 中所示,试作出下列各信号的波形图,并加以标注。

题图1-3⑴x1(t2)⑵ x1(1 t)⑶ x1(2t 2)⑷ x2(t 3)⑸ x2(t 2) ⑹x2(1 2t)2⑺x1(t) x2( t)⑻x1(1 t)x2(t 1)⑼x1(2 t) x2(t 4)21- 4 已知信号x1(n)与x2 (n)波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴x1(2n 1) ⑵ x1(4 n)⑶ x1(n)2⑷ x2 (2 n)⑸ x2(n 2) ⑹ x2(n 2) x2( n 1)⑺x1(n 2) x2(1 2n)⑻x1(1 n) x2(n 4)⑼ x1(n 1) x2(n 3)1- 5 已知信号x(5 2t )的波形如题图1-5 所示,试作出信号x(t)的波形图,并加以标注。

题图1-51- 6 试画出下列信号的波形图:1⑴ x(t) sin( t) sin(8 t)⑵ x(t) [1 sin( t )] sin(8 t)21⑶x(t) [1 sin( t)] sin(8 t)⑷ x(t) sin( 2t )1-7 试画出下列信号的波形图:⑴ x(t)1 e t u(t) ⑵ x(t) e t cos10 t[u(t 1) u(t 2)]⑶ x(t)(2 e t)u(t)⑷ x(t) e (t 1)u(t)⑸ x(t)u(t22 9) ⑹ x(t)(t2 4)1-8 试求出以下复变函数的模与幅角,并画出模与幅角的波形图1j2 ⑴ X (j ) (1 e j2)⑵ X( j1 e j4⑶ X (j ) 11 ee j ⑷ X( j )试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。

题图 1-10形图。

题图 1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。

郑君里《信号与系统》(第3版)(上册)(课后习题 傅里叶变换)【圣才出品】

郑君里《信号与系统》(第3版)(上册)(课后习题 傅里叶变换)【圣才出品】

第3章 傅里叶变换3-1 求图3-1所示对称周期矩形信号的傅里叶级数(三角形式与指数形式)。

图3-1解:(1)三角形式由图3-1可知,f(t)为奇函数,故有所以三角形式的傅里叶级数为。

(2)指数形式因所以指数形式的傅里叶级数为。

3-2 周期矩形信号如图3-2所示。

若:重复频率f=5kHz脉宽τ=20μs幅度E=10V求直流分量大小以及基波、二次和三次谐波的有效值。

图3-2解:由图3-2可知,f(x)为偶函数,且f=5kHz,得:所以直流分量为1V基波分量为1sin() 1.3910Vπ=≈二次谐波为2sin( 1.325Vπ=≈三次谐波为。

33sin() 1.2110V π=≈3-3 若周期矩形信号f 1(t )和f 2(t )波形如图3-2所示,f 1(t )的参数为τ=0.5μs,T=1μs,E=1V ;f 2(t )的参数为τ=1.5μs,T=3μs,E=3V ,分别求:(1)f 1(t )的谱线间隔和带宽(第一零点位置)频率单位以kHz 表示;(2)f 2(t )的谱线间隔和带宽;(3)f 1(t )与f 2(t )的基波幅度之比;(4)f 1(t )基波与f 2(t )三次谐波幅度之比。

解:由题3-2的结论可知,f(t)的傅里叶级数可表示为其中,。

(1)f 1(t )的谱线间隔,则带宽:。

(2)f 2(t )的谱线间隔带宽:。

(3)由题3-2可知,所以f 1(t )的基波幅度为:f 2(t )的基波幅度为:故。

(4)的三次谐波幅度为:故。

3-4 求图3-3所示周期三角信号的傅里叶级数并画出频谱图。

图3-3解:由图3-3可知,f(t)为偶函数,故。

bn所以的傅里叶级数可表示为()f t其幅度谱如图3-4所示。

图3-43-5 求图3-5所示半波余弦信号的傅里叶级数。

若E=10V ,f=10kHz ,大致画出幅度谱。

图3-5解:由图3-5可知,f(t)为偶函数,因而b n =0,();所以其傅里叶级数可表示为若E=10V ,,则幅度谱如图3-6所示。

信号与系统第二版课后习题解答(3-4)奥本海姆

信号与系统第二版课后习题解答(3-4)奥本海姆

Chap 33.1 A continuous-time periodic signal x(t) is real value and has a fundamental period T=8. The nonzero Fourier series coefficients for x(t) arej a a a a 4,2*3311====--.Express x(t) in the form)cos()(0k k k k t A t x φω+=∑∞=Solution:Fundamental period 8T =.02/8/4ωππ==00000000033113333()224434cos()8sin()44j kt j t j t j t j tk k j t j t j t j tx t a e a e a e a e a e e e je je t t ωωωωωωωωωππ∞----=-∞--==+++=++-=-∑A discrete-time periodic signal x[n] is real valued and has afundamental period N=5.The nonzero Fourier series coefficients for x[n] are10=a ,4/2πj e a --=,4/2πj e a =,3/*442πj e a a ==- Express x[n] in the form)sin(][10k k k k n A A n x φω++=∑∞=Solution:for, 10=a , 4/2πj ea --= , 4/2πj ea = ,3/42πj e a --=,3/42πj e a =n N jk k N k e a n x )/2(][π∑>=<=n j n j n j n j e a e a e a e a a )5/8(4)5/8(4)5/4(2)5/4(20ππππ----++++=n j j n j j n j j n j j e e e e e e e e )5/8(3/)5/8(3/)5/4(4/)5/4(4/221ππππππππ----++++=)358cos(4)454cos(21ππππ++++=n n)6558sin(4)4354sin(21ππππ++++=n nFor the continuous-time periodic signal)35sin(4)32cos(2)(t t t x ππ++= Determine the fundamental frequency 0ω and the Fourier seriescoefficients k a such thattjk k kea t x 0)(ω∑∞-∞==.Solution:for the period of )32cos(t πis 3=T , the period of )35sin(t πis 6=Tso the period of )(t x is 6, i.e. 3/6/20ππ==w )35sin(4)32cos(2)(t t t x ππ++=)5sin(4)2cos(21200t t ωω++=0000225512()2()2j t j t j t j t e e j e e ωωωω--=++-- then, 20=a , 2122==-a a , j a 25=-, j a 25-=3.5 Let 1()x t be a continuous-time periodic signal with fundamental frequency1ω and Fourier coefficients k a . Given that211()(1)(1)x t x t x t =-+-How is the fundamental frequency2ω of 2()x t related to? Also,find a relationship between the Fourier series coefficients k b of2()x t and the coefficients k a You may use the properties listed inTable 3.1. Solution:(1). Because )1()1()(112-+-=t x t x t x , then )(2t x has the same period as )(1t x , that is 21T T T ==, 12w w =(2). 212111()((1)(1))jkw t jkw t k TT b x t e dt x t x t e dt T --==-+-⎰⎰ 111111(1)(1)jkw t jkw t TTx t e dt x t e dt T T --=-+-⎰⎰111)(jkw k k jkw k jkw k e a a e a e a -----+=+=Suppose given the following information about a signal x(t): 1. x(t) is real and odd.2. x(t) is periodic with period T=2 and has Fourier coefficients k a .3. 0=k a for 1||>k .4 1|)(|21202=⎰dt t x .Specify two different signals that satisfy these conditions. Solution:0()j kt k k x t a e ω∞=-∞=∑while: )(t x is real and odd, then k a is purely imaginary and odd , 00=a , k k a a --=,.2=T , then 02/2ωππ==and0=k a for 1>kso0()j kt k k x t a e ω∞=-∞=∑00011j t j t a a e a e ωω--=++)sin(2)(11t a e ea t j tj πππ=-=-for12)(2121212120220==++=-⎰a a a a dt t x∴ j a 2/21±=∴)sin(2)(t t x π±=3 Consider a continuous-time LTI system whose frequency response is⎰∞∞--==ωωωω)4sin()()(dt e t h j H t jIf the input to this system is a periodic signal⎩⎨⎧<≤-<≤=84,140,1)(t t t x With period T=8,determine the corresponding system output y(t). Solution:Fundamental period 8T =.02/8/4ωππ==0()j kt k k x t a e ω∞=-∞=∑∴ 00()()jk t k k y t a H jk e ωω∞=-∞=∑0004, 0sin(4)()0, 0k k H jk k k ωωω=⎧==⎨≠⎩ ∴ 000()()4jkw t k k y t a H jk e a ω∞=-∞==∑Because 48004111()1(1)088T a x t dt dt dt T ==+-=⎰⎰⎰另:x(t)为实奇信号,则a k 为纯虚奇函数,也可以得到a 0为0。

信号与系统陈后金版答案

信号与系统陈后金版答案

第二步:求差分方程的齐次 解: 2 求差分方程的齐次 第二步 h [ 0 ] = C 1 + C 2 r −5r /6 +1/ 6 = 0 1 k1 1 k 1 特征方程为: [ ( + 特征方程为=hCk1 ] = )[3 (C 2) ( −) 2 ( 求 ] u [ C ] = 3, C 2 = − 2 h [1] ⇒ ) 出 k1 ∴r =1/ 2, r2 =1/3 2 3 3 1 2
(3) 计算固有响应与强迫响应 计算固有响应与强迫响应:
1 7 1 k 4 1 k y[k ] = [ − ( ) + ( ) ]u[k ] 完全响应: 完全响应 2 2 2 3 3 7 1 k 4 1 k 固有响应: yh [k ] = [− ( ) + ( ) ]u[ k ] 固有响应 2 2 3 3 1 强迫响应: 强迫响应 y p [k ] = u[k ] 2 (4) 计算瞬态响应与稳态响应 计算瞬态响应与稳态响应:
特征根为 s1 = -2, s2 = -5, 又因为 n > m , 所以: 则 h ( t ) = K 1e − 2 t u ( t ) + K 2 e − 5 t u ( t )
h '(t ) = − 2 K 1e −2 t u (t ) + K 1δ (t ) − 5 K 2 e −5 t u (t ) + K 2δ (t ) = − 2 K 1e −2 t u (t ) − 5 K 2 e −5 t u (t ) + ( K 1 + K 2 )δ (t ) h ''(t ) = 4 K 1e −2 t u (t ) − 2 K 1δ (t ) + 25 K 2 e −5 t u (t ) − 5 K 2δ (t ) + ( K 1 + K 2 )δ '(t ) 代入方程有: = K 1 + K 2 = '( t ) = 2 K 2δ ( t ) + 5 K∴K2 + (7/3; K1 )δ −1/3; 2δ '( t ) + 3δ ( t ) 1δ ( t )

信号与系统基础(2)3-4

信号与系统基础(2)3-4
Y (0) y (t )dt 0

1 F [ f (t )] 则 j 从上面公式可知,一个有始有终的信号,即 f ()= f (-)=0, 则 F(j)中无()项。 F [ f (t )]
一个无限信号是否含(),看是否有
f ()+ f (-)=0
电信学院
3
例 3.13
求下列信号的傅里叶变换:
f (t )
f (t )
1
0
1
1 f (t )
t
0
1
t
1 j2 F ( j ) Sa( ) e ( ) j 2

2
1
0
1
f (t )
1 1 f (t )
0
t
1
f (t )
t
1 j2 F ( j ) Sa( ) e 3 ( ) j 2
电信学院
6
频域微分性质
公式
jt f (t ) F ( j )
( jt) n f (t ) F ( n) ( j )
变形 主要应用
t f (t ) jF ( j )
计算含t的时域信号的傅里叶变换
电信学院
7
例 3.15
t
已知:1 2 ( ) ,根据频域微分特性
4 Sa 2 ( ) Sa 2 ( ) 2
电信学院
13

MATLAB计算
求下列信号的傅里叶变换。 f (t ) e 2t (t 1)
>> f=sym('exp(2*t)*Heaviside(-t+1)') f= exp(2*t)*Heaviside(-t+1) >> F=fourier(f) F= exp(-i*w)*exp(2)/(2-i*w) >> F=simple(F) F= 1/(2-i*w)*exp(2-i*w) 傅里叶变换为 e j 21

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

信号与系统 习题部分参考答案

信号与系统 习题部分参考答案

(2)[1 + mf (t)]cos(w0t) = cos(w0t) + mf (t) cos(w0 (t)

π [δ
(w
+
w0
)
+
δ
(w

w0
)]
+
m 2
{F[
j(w
+
w0
)
+
F[
j(w

w0
)]}
(3) f (6 − 3t) = f [−3(t − 2)] ↔ 1 F (− 1 jw)e− j2w
↔ 2π e−a⎜−ω⎜
(4)单边指数信号 ∵ e−atu(t) ↔ 1 a + jw
∴ 1 ↔ 2π e−a(−w)u(−w) a + jt
即 1 ↔ 2π eawu(−w) a + jt
3.20 求下列各傅里叶变换的原函数
(1) F (ω) = δ (ω − ω0 ) (2) F (ω) = u(ω + ω0 ) − u(ω − ω0 );
sin 2π (t − 1) π (t − 1)
⎡ ⎢ ⎣
sin(π
πt
t
)⎤2
⎥ ⎦

2a a2 + t2
,
a
>
0;
(4) 1 ; a+ jt
解:
(1)∵

(t
)

tSa(
wτ 2
)

w0
Sa(
w0t 2
)


Gw0
(− w)
令 w0 = 4π

信号与系统课后答案第三章作业答案

信号与系统课后答案第三章作业答案

初始为 0, C2 -4
y f (t) -4e3tu(t) 4e2tu(t)
全响应= yx (t)+y f (t) 4e2tu(t)-2e3tu(t)
3-2 描述某 LTI 系统的微分方程为
d2 y(t) dt 2

3dy(t) dt来自2y(t)

df (t) dt

6
1
1
(2e1 e1 et ) u(t)
e1(2 et ) u(t)
(2)
f
(t)

a[u(t
s) 2

u(t
2)]
h(t) b[u(t 2) u(t 3)]
f
(t)

h(t)

ab[(t

1 2
)
u(t
1 2
)

(t

1 2
)
u(t
1) 2

tu(t)

1 4
(et

e3t
)u(t)

1 2
t
e3tu(t)

[
1 4
et

(
1 2
t

1 4
)e3t
]u
(t)
3-19 一 个 LTI 系 统 , 初 始 状 态 不 祥 。 当 激 励 为 f (t) 时 其 全 响 应 为
(2e3t sin 2t)u(t) ;当激励为 2 f (t) 时其全响应为 (e3t 2sin 2t)u(t) 。求
(1) 初始状态不变,当激励为 f (t 1) 时的全响应,并求出零输入相应、
零状态响应; (2) 初始状态是原来的两倍、激励为 2 f (t) 时系统的全响应。

第三、四章连续时间信号与系统的频域分析内容总结

第三、四章连续时间信号与系统的频域分析内容总结
X

连续时间信号与系统的频域分析总结
8 页
例15、试求信号f(t)=cos(4t+ )的频谱 。 3
解:
X

连续时间信号与系统的频域分析总结
9 页
例16、一因果LTI系统的输入和输出,由下列微分方程表示:(采用傅里叶变
换计算)。 (1)求系统的单位冲激响应 h( t ) ;
d 2 y( t ) dy( t )
X

连续时间信号与系统的频域分析内容总结
2 页
第四章是傅里叶变换在LTI系统分析中的应用。 在第三章信号频域分解、分析基础上,研究不同激励信号 通过系统的响应、信号通过系统无失真条件、理想低通滤波器 模型以及物理可实现条件、希尔伯特变换、抽样定理等主要内 容。
X

连续时间信号与系统的频域分析总结
3) (j
5)
1ห้องสมุดไป่ตู้
j
3
1
j 5
2
j
4
y z s(t ) e 3t (t ) e 5t (t ) 2e 4t (t )
X

连续时间信号与系统的频域分析总结
10 页
例17、如图所示系统,其乘法器的两个输入端分别为:f (t) sin(2t) , s(t) cos(6t)
系统的频率响应为
8
15y( t ) 2 f ( t )
dt 2
dt
(2)若 f ( t ) e4t( t ) ,求该系统的零状态响应 yzs (t) 。
解: (1)
H ( j)
2
11
j2 8 j 15 j 3 j 5
h(t) e 3t(t) e 5t(t)
(2)

信号与系统第四版习题解答

信号与系统第四版习题解答

《信号与系统》(第四版)习题解析高等教育出版社2007年8月目录第1章习题解析 (3)第2章习题解析 (7)第3章习题解析 (17)第4章习题解析 (25)第5章习题解析 (32)第6章习题解析 (43)第7章习题解析 (51)第8章习题解析 (57)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。

] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。

图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解 各系统响应与输入的关系可分别表示为 )()(t i R t u R R ⋅=tt i L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)( 1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

S RS L S C题1-4图解 系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

第一章 离散时间信号与系统3,4,5

第一章 离散时间信号与系统3,4,5
h(1) ah(0) (1) 0 h(2) ah(1) (2) 0 ┇ h( n) 0 , n 0 改一下递推关系: 1 y(n 1) y(n) x(n) a 利用已知结果 h(n) 0 ,n 0 则当 n 0 时 :
1 h(0) h(1) (1) 0 a 1 h(1) h(0) (0) a 1 a 1 h(2) h(1) (1) a 2 a ┇ 1 h(n) h(n 1) a n a 0, n 0 ∴ h(n) a n u (n 1) h( n) n a , n 0 从上一节例题知道,此系统是非因果系统,当 a 1 时,系 统稳定。 同样道理,一个常系数线性差分方程相当于一个线性移不 变系统,同样取决于所选的边界条件,边就是说边界条件合适 时,一个常系数线性差分方程相当于一个线性移不变系统。例 如上面例题,边界条件为:
边界条件 y (0) 1,讨论此系统是否是线性移不变系统。 解:(1)令 x1 (n) (n) , y1 (0) 1 ←讨论 n 0 的情况 y1 (1) ay1 (0) x1 (1) a 则 y1 (2) ay1 (1) x1 (2) a 2
┇ y1 (n) ay1 (n 1) x1 (n) a n
在以后的讨论中,我们都假设常系数线性差分方程就代表线 性移不变系统,而且在大多数情况下,代表可实现的因果系统。 差分方程表示法的优点:可以直接得到系统的结构(将输入 变换成输出的运算结构,并非实际结构)例如: y(n) b0 x(n) a1 y(n 1) 方框图表示法如下:
§1.4连续时间信号及傅里叶级数 1.单位阶跃信号


1


《信号与系统》课程讲义3-4

《信号与系统》课程讲义3-4

t 2
1
§3.4卷积定理和相关定理
二、相关定理
1.能量信号与功率信号
①能量与能量信号
∫ i)能量 E =
+∞
|
f
(t) |2dt
−∞
ii)能量信号E<+ ∞,例 f (t) = EGτ (t)
∫ ②iii功))功功率率率与P信功=号率Tl→iPm信+<∞+号T1∞−T22T
f (t 例f
) 2 dt (t) =
) )
f f
2 2
(t (τ
−τ −t
)dt )dτ
③ ⇒ f1(t) * f2 (−t) = R12 (t)
§3.4卷积定理和相关定理
[例3]:已知 f1(t) = G2 (t),f2 (t) = (−t + 2)R2 (t) 求① f1(t) * f2 (t)
② R12 (t) = f1(t) * f2 (−t)
t+2 -1

§3.4卷积定理和相关定理
⎧0
∫⎪

t+2 2dτ
−1
∫ f1 (t )
*
f2 (t)
=
⎪ ⎨

∫⎪
⎪⎩
+21dτ
−1
12dτ
t−2
0
t < −3 ⎧ 0
− 3 ≤ t < −1 −1≤ t <1
=
⎪⎪⎪⎨2(t 4+
3)
1 ≤ t < 3 ⎪⎪2(3 − t)
t>3
⎪⎩ 0
t < −3 − 3 ≤ t < −1 −1≤ t <1
§3.4卷积定理和相关定理

西安交通大学_信号与系统A课后习题(第3、4章)

西安交通大学_信号与系统A课后习题(第3、4章)

6
7
8
9
10
t
(c)
1
《第二次课后作业》 28 对下图所示的离散时间周期信号 x[n] 求傅里叶级数系数, 并画出每一组系数 ak 的模和相位。
x[n] … -12 -6 1 … 0 6 12 n
(b)
x[n] 2 … -12 -6 1 … 0 -1 6 12 n
(c) 11 现对一信号 x[n] 给出如下信息: 1. x[n] 是实、偶信号。 3. a11 = 5 2. x[n] 有周期 N = 10 和傅里叶系数 ak 。 4.
《第二次课后作业》 11 已知下列关系:
y (t ) = x(t ) ∗ h(t )

g (t ) = x(3t ) ∗ h(3t )
并已知 x(t ) 的傅里叶变换是 X ( jω ) , h(t ) 的傅里叶变换是 H ( jω ) ,利用傅里叶变换性质证明
g (t ) 为 g (t ) = Ay ( Bt )
x(t ) = t , 0 < t < 1
3
画出 x(t ) 并求出它的傅里叶级数系数。 45 设 x(t ) 是一个实周期信号,其正弦-余弦形式的傅里叶级数表示为
x(t ) = a0 + 2∑ [ Bk cos kω0t − Ck sin kω0t ]
k =1

(a) 求 x(t ) 的偶部和奇部的指数形式的傅里叶级数表示;也就是利用上式的系数求下面 两式中的 α k 和 β k ,
h (t ) = e
−4 t
z[n] = x[n] y[ n]
对下列各输入情况下,求输出 y (t ) 的傅里叶级数表示: (b) x(t ) = ∑ n =−∞ (−1) n δ (t − n)

电子教案《信号与系统》(第三版)信号系统习题解答.docx

电子教案《信号与系统》(第三版)信号系统习题解答.docx

《信号与系统》(第 3 版)习题解析高等教育出版社目录第 1 章习题解析 (2)第 2 章习题解析 (6)第 3 章习题解析 (16)第 4 章习题解析 (23)第 5 章习题解析 (31)第 6 章习题解析 (41)第 7 章习题解析 (49)第 8 章习题解析 (55)第 1 章习题解析1-1题 1-1 图示信号中, 哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c)(d)题 1-1图解 (a)、(c)、(d)为连续信号; (b)为离散信号; (d)为周期信号;其余为非周期信号; (a)、(b)、(c)为有始(因果)信号。

1-2 给定题 1-2 图示信号 f( t ),试画出下列信号的波形。

[提示: f( 2t )表示将 f( t )波形压缩,f( t)表示将 f( t )波形展宽。

]2(a) 2 f( t 2 )(b) f( 2t ) (c) f(t)2(d) f( t +1 )题1-2图解 以上各函数的波形如图 p1-2 所示。

图 p1-21-3如图1-3图示,R、L、C元件可以看成以电流为输入,电压为响应的简单线性系统S R、S L、 S C,试写出各系统响应电压与激励电流函数关系的表达式。

S RS LS C题 1-3图解各系统响应与输入的关系可分别表示为u R (t)R i R (t )u L (t)di L (t )L1dttu C (t )i C ( )dC1-4如题1-4图示系统由加法器、积分器和放大量为 a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

题 1-4图解 系统为反馈联接形式。

设加法器的输出为 x( t ),由于x(t ) f (t) ( a) y(t)且y(t ) x(t)dt ,x(t) y (t)故有y (t) f (t ) ay (t)即y (t ) ay(t ) f (t)1-5已知某系统的输入 f( t )与输出 y( t )的关系为 y( t ) = | f( t )|,试判定该系统是否为线性时不变系统?解 设 T 为系统的运算子,则可以表示为y(t) T[ f (t )]f (t)不失一般性,设 f( t ) = f 1( t ) + f 2 ( t ),则T[ f 1 (t)]f 1 (t)y 1 (t )T[ f 2 (t)] f 2 (t )y 2 (t )故有T[ f (t)] f 1 (t )f 2 (t ) y(t)显然f 1 (t ) f 2 (t)f 1 (t ) f 2 (t )即不满足可加性,故为非线性时不变系统。

信号与系统(习题课)

信号与系统(习题课)

求系统的零输入响应yx(t)。
解:系统特征方程为 s2+4s+4=0 ,
解得特征根 s1= s2= -2
by wky
零输入响应与齐次解的形式相同: yx(t)= (K1 + K2t)e-2t 根据初始状态,有 y(0-) = yx(0-) = K1= -2 y’(0-) = y’x(0-) = -2K1 + K2 = 3
求系统的零输入响应yx(t)。
解:系统特征方程为 s2+5s+4=0 ,
解得特征根 s1=-1, s2=-4
by wky
零输入响应与齐次解的形式相同: yx(t)=K1e-t + K2e-4t 根据初始状态,有 y(0-) = yx(0-) = K1+ K2 = 1 y’(0-) = y’x(0-) = -K1 -4 K2 = 5
by wky
2-4 利用单位阶跃信号u(t)表示下列信号 (b)
3 2 1 -3 -2 -1 0 1 2 3 t f(t)
u(t+1)u(1-t) u(t+2) u(2-t)
u(t+3) u(3-t)
f(t)=u(t+3)u(3-t) +u(t+2)u(2-t)+u(t+1)-u(t-1) =u(t+3)-u(t-3) +u(t+2)-u(t-2) +u(t+1)u(1-t)
by wky
【采用经典法:】
齐次解 uCh(t) = K1e-t 特解 uCp(t) = A+Be-3t 特解代入原微分方程 -3Be-3t + A+Be-3t = 1+e-3t 解得 A = 1, B =-1/2 ∴ 特解 uCp(t) = 1 -1/2e-3t 全解(完全响应)=齐次解 + 特解 uC(t) = K1e-t + (1 -1/2e-3t )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F( jω)
∠ (ω) F
30°
60°
(5π)
(3π)
(3π)
0
(5π)
−4
−4 −2
2
4
ω
−2
2
0
−30°
4
ω
−60°
f (t) = 3cos(2t −30°) +5cos(4t +60°)
第3章第4讲
9
Signals And systems
例3.21
j3 ω 求它的傅里叶反变换。 已知频谱 F( jω) = ,求它的傅里叶反变换。 jω+ 2
F( jω) = F( jω)⋅Ω Ω(ω) δ 1 =τΩ ( Sa

F( jω)
ω τ
2
)δΩ(ω)

0Ω
τ
ω
τ nΩ τ =τΩ∑Sa( )δ(ω−nΩ 显然这是 ) 显然这是T=2τ 2 n=−∞ 的频谱图
第3章第4讲
8
Signals And systems
3.8 傅里叶反变换
傅里叶反变换的求法是借助于已知的变换对和性 质
已知频谱,求它的傅里叶反变换。 已知频谱,求它的傅里叶反变换。
2sin 3(ω −2 )] [ π F( jω) = ω−2π 2sin 3 ] 6sin 3 ] [ ω [ ω 考虑频谱 = = 6Sa(3 ) ω ω 3 ω ωτ 已知 G (t) ⇔τSa( ) ,令 τ = 6,得 G (t) ⇔6Sa(3 ) τ ω 6 2
1
Sa(t −1 e j(t−1) ⇔ 2(ω −1 e− jω ) G ) π
1

1 f (t) = π Sa(t −1 e j(t−1) )
第3章第4讲
13
Signals And systems
课堂练习题
F( jω) = 1 ( jω +α)2
求下列频谱函数F(jω 的傅里叶反变换 求下列频谱函数 ω)的傅里叶反变换 f (t)。 。
第3章第4讲
5
Signals And systems
举 例

冲激串函数 δT(t)
F[δT (t)] = 2 ∑Fδ(ω−nΩ π ɺn )
n=0
δT (t)
1 T 1 2 π ɺ F = ∫ 2T δT (t)e− jnΩt dt = , Ω= n T −2 T T
⋯ ⋯
− 2T −T T 0 2T
已 G (t) ⇔τ Sa(ωτ ) 知 τ 2
对 性 τ Sa( 2 ) ⇔2 G (ω) (ω) τ π 2

即 得
由 移 质 频 性 由 移 质 时 性
( G ω π Sa t) ⇔ 2( )
1
Sa(t)e jt ⇔ 2(ω −1 G ) π
1 ∞ 1 ∞ 10 2 2 E = ∫ [ f (t)] dt = F( jω) dω = ∫ F( jω) dω = J −∞ 2 ∫−∞ π π 0 π
2

第3章第4讲
2
Signals And systems
3.7 周期信号的傅里叶变换
傅里叶变换可以推广至周期信号,其目的是把周 傅里叶变换可以推广至周期信号, 期与非周期信号的分析统一起来, 期与非周期信号的分析统一起来, 虽然周期信号不满足绝对可积条件, 虽然周期信号不满足绝对可积条件,但周期信号 的傅里叶变换可以通过冲激函数表达出来, 的傅里叶变换可以通过冲激函数表达出来,这也 反映了周期信号的离散性。 反映了周期信号的离散性。 除了将幅度频谱画作冲激之外, 除了将幅度频谱画作冲激之外,周期信号的傅里 叶变换与其傅里叶级数的系数的双边频谱相似。 叶变换与其傅里叶级数的系数的双边频谱相似。
n=−∞ ∞
ɺ F( jω) =F [ f (t)] =F [ ∑F ejnΩt ] n
n=−∞

ɺ ɺ = ∑F F [ejnΩt ] =2 ∑Fδ(ω−nΩ π ) n n
n=−∞ n=−∞


上式说明:周期信号的频谱是离散的, 上式说明:周期信号的频谱是离散的,它集中在基 和它所有谐波频率上。也可以说明, 频Ω和它所有谐波频率上。也可以说明,傅里叶级 数是傅里叶变换的一种特例。 数是傅里叶变换的一种特例。
F( jω)
(π)
(π)
0
j
θ ω ω0
cos(ω0t +θ) ⇔π[δ(ω +ω0 )e− jθ +δ(ω −ω0 )e jθ ]
ϕ(ω)
−ω0 0
θ
ω0
−ω 0
ω0
ω
第3章第4讲
ω
−θ
4
Signals And systems
一般周期信号的傅里叶变换
周期信号可表示为: 周期信号可表示为
ɺ f (t) = ∑F e jnΩt n
第3章第4讲
]
12
Signals And systems
课堂练习题
F( jω) =[ε(ω) −ε(ω −2)]e− jω
求下列频谱函数F(jω 的傅里叶反变换 求下列频谱函数 ω)的傅里叶反变换 f (t)。 。 解: F( jω) =[ε(ω) −ε(ω −2)]e− jω =G (ω −1 e− jω ) 2
第3章第4讲
1
Signals And systems
例 3.17
ω τ
π 2 tτ 根据对称特性: 根据对称特性: Sa( ) ⇔2 G (ω) 令τ =10 10Sa(5t) ⇔2 G (ω) τ π τ π 10

sin 5t 的能量。 求信号 f (t) = 2cos997t ⋅ 的能量。 πt 已知: 解:已知: 1 cos997t ⇔[δ(ω −997) +δ(ω +997)]
f (t)
f1(t)
δT (t)
⋯ ⋯
− 2T −T T 0 2T
⋯ ⋯
t
=
0T
∗ ⋯ ⋯
t
− 2T −T T 0 2T
⋯ ⋯
t
其中: 为第一个周期, 周期函数 f (t) = f1(t)∗δT (t) ,其中:f1(t)为第一个周期, 周期函数的傅里叶 δT (t)为冲激串。 为冲激串。 变换的一般公式 根据时域卷积定理: 若 f1(t) ⇔F ( jω),根据时域卷积定理: 1
应用频移性质, 应用频移性质,有
0.5 δ(t + 4) +δ(t −4)]e [
jπ 3
π − j12t
⇔cos[4(ω − )] 12
] ⇔cos(4 − ) ω 3 π
−j 3
π
0.5 δ(t +4)e +δ(t −4)e [
jπ 3
−j π 3
π
f (t) = 0.5 δ(t + 4)e +δ(t −4)e [
G (t) ⇔τ Sa( τ
)
2 sin 5t 1 10 f (t) = cos997t ⋅ = cos997t ⋅10Sa(5t) π 5t π
根据频域卷积定理: 根据频域卷积定理: ( jω) = F 信号的能量为: 信号的能量为:
1 ⋅ 2 G (ω)∗[δ(ω−997) +δ(ω+997)] π 10 2 π =G (ω−997) +G (ω+997) 10 10
课堂练习题
F( jω) = 2ε(1−ω)
求下列频谱函数F(jω 的傅里叶反变换 求下列频谱函数 ω)的傅里叶反变换 f (t)。 。
解: 已 知 ε(t) ⇔
时 性 移 质
1 +πδ(ω) jω ejω ejω jω ε(t +1 ⇔ ) +πδ(ω)e = +πδ(ω) jω jω
ejt 对 性 称 质 2 ε(− +1 ⇔ +πδ(t) π ω ) jt
e− j2πt G (t) ⇔6Sa[3(ω −2π)] 6
f (t) = e− j2πt G (t) 6
第3章第4讲
11
Signals And systems
例3.22(b)
π
已知频谱,求它的傅里叶反变换。 已知频谱,求它的傅里叶反变换。
F( jω) = cos(4 + ) ω 3 cos(4t) ⇔π[δ(ω + 4) +δ(ω −4)] 已知 根据对称性质, 根据对称性质,有 π[δ(t + 4) +δ(t − 4)] ⇔2 cos(4 ) π ω
∴ ejt f (t) =δ(t) + jπt
第3章第4讲
15
Signals And systems
Parseval定理 定理
1 ∞ 1 ∞ 2 2 ∫−∞| f (t) | dt = 2π ∫−∞ F( jω) dω = π ∫0 F( jω) dω
∞ 2
时域求得的信号能量
频域求得的信号能量
上式是非周期信号的能量等式, 上式是非周期信号的能量等式,是 Parseval 定理在非周期 信号时的表示形式。所以,信号能量可以从时域中求得, 信号时的表示形式。所以,信号能量可以从时域中求得, 也可以从频域中求得。 也可以从频域中求得。
第3章第4讲
3
Signals And systems
正弦信号的傅里叶变换
f (t) = cos(ω0t +θ)
θ ,有 ω0
考虑余弦信号
cosω0t ⇔π[δ(ω+ω0 ) +δ(ω−ω0 )]
根据时移性质, 根据时移性质,t →t +
cos(ω0t +θ) ⇔π[δ(ω+ω0 ) +δ(ω−ω0 )] e
相关文档
最新文档