年对口高考试卷数学

合集下载

2024年广西中职对口数学高考真题-+参考答案

2024年广西中职对口数学高考真题-+参考答案

2024年广西壮族自治区中等职业教育对口升学考试真题数学注意事项:1.本试卷共4页,总分100分,考试时间60分钟,请使用黑色中性笔直接在试卷上作答.2.试卷前的项目填写清楚.题号一二三总分评分人得分一、单项选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个是正确的,请将正确选项填入相应题号下)1.已知集合M ={—1,1,x 2},则x 满足()A.x ≠0且x ≠1B.x ≠-1且x ≠0C.x ≠0D.x ≠±12.函数y=ln √x -1+的定义域为()A.{x |x ≠0且x ≠1} B.{x |x >1}C.{x |x ≥1}D.{x |0<x <1}3.下列函数为奇函数的是()A.f (x )=x 2—1B.f (x )=|x |C.21)(x x x f +=D.f (x )=sin 2x 4.下列各值的大小不正确的是()A.2ln 21<log 23B.(-2)3<(-3)3C.6-2<(-5)-2D.log 23<log 39_____1x (x -1)___5.圆心为(4,-5)且与x 轴相切的圆的方程为()A.(x -4)2+(y +5)2=42B.(x +4)2+(y -5)2=42C.(x +4)2+(y -5)2=52D.(x -4)2+(y +5)2=526.下列说法正确的是()A.若直线l 平行于平面α内的无数条直线,则l //α;B.若直线l 在平面α外,则l //α;C.若l //b,直线b ⊂α,则l //α;D.若l //b ,直线b ⊂α,则l 平行于平面α内无数条直线.7.一个笔筒有2B 24支,另一个笔筒有HB 30支,从中任取一支,则有取法.()A.24种B.30种C.54种D.720种8.从编号为1,2,3,…,10的大小相同的求中任取4个,则4个球中号码最大为7的概率()A.212B.152C.74 D.31二、填空题(本大题共5小题,每小题6分,共30分)9.不等式x 2-x -30≤0的解集为.10.已知α是第二象限的角,且tan α=-3,则cos α=.11.已知平面向量a =(1,k),向量b =(-2,5),则a //b,则k=.12.过点M(a ,-1),N(2,a )的直线,且与直线2y -x +1=0平行,则a =.13.如图,在正方体ABCD-A1B 1C 1D 1中,则异面直线A 1B 与AD 1所成角大小为.三、解答题(本大题共2小题,共30分,答题时应写出文字说明、证明过程或验算步骤)14.在等差数列{a n}中,a n=n+8,求S10.(10分)15.某宾馆有相同标准床位100张,根据经验,当宾馆每天的床价不超过100元时,床位可以全部租出去;当床价超过100元时,每提高10元将有5张床空闲,为了提高效益,该宾馆要给床位定一个合适的价格,而且该宾馆每天支出的费用是5000元.(1)当床价为150元时,当天有多少张空床?(2)写出该宾馆一天出租床位的纯收入y与床价x之间的函数关系式.(3)宾馆床价多少时,纯收入最多?2024年广西壮族自治区中等职业教育对口升学考试真题数学(参考答案)一、选择题。

中职数学 2024年江苏省南京市职业学校对口单招高考数学一调试卷

中职数学 2024年江苏省南京市职业学校对口单招高考数学一调试卷

2024年江苏省南京市职业学校对口单招高考数学一调试卷一、选择题(本大题共10小题,每小题4分,共40分,每小题列出的四个选项中,只有一项是符合要求的)A .{-2,-1,0,1}B .{0,1,2}C .{-2}D .{-2,-1}1.(4分)已知集合M ={-2,-1,0,1,2},N ={x |x >3或x <-1},则M ∩N =()A .-iB .iC .0D .12.(4分)已知z =,则z -z =( )1-i2+2iA .1B .2C .3D .43.(4分)已知命题p :(88)10=(1011001)2,命题q :若ac 2>bc 2,则a >b ,给出下列四个复合命题:①¬p ,②¬q ,③p 且q ,④p 或q ,其中真命题的个数为( )A .-3B .-2C .-D .-4.(4分)若数组a =(-2,1,3)和b =(1,-,x )满足a =-2b ,则实数x 等于( )123212A .1B .2C .3D .45.(4分)某项工程的网络图如图所示(单位:天),若该工程的最短总工期为10天,则E 工序最多所需工时为( )天.A .18种B .24种C .36种D .54种6.(4分)中国古代的五经是指:《诗经》《尚书》《礼记》《周易》《春秋》,甲、乙、丙、丁、戊5名同学分别选取了其中一本不同的书作为课外兴趣研读,若甲乙都没有选《诗经》,乙也没选《春秋》,则5名同学所有可能的选择有( )二、填空题(本大题共5小题,每小题4分,共20分)A .-B .-C .0D .7.(4分)已知函数f (x )=sin (ωx +φ)在区间(,)单调递增,直线x =和x =为函数y =f (x )的图像的两条相邻对称轴,则f ()=( )π62π3π62π35π12M 321212A .-=1B .-=1C .-=1D .-=18.(4分)已知双曲线-=1(a >0,b >0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y 2=4x 的准线上,则双曲线的方程为( )x 2a 2y 2b2M 3M 7x 221y 228x 228y 221x 23y 24x 24y 23A .B .C .D .9.(4分)斜边长为2的等腰直角三角形,绕其腰旋转180°形成的几何体体积为( )4π3πM 232π32πM 23A .1B .2C .3D .410.(4分)若两个正数x ,y 满足4x +y =xy ,则x +的最小值是( )y4M 211.(4分)执行下面的程序框图,则输出B = .三、解答题:(本大题共8题,共90分)12.(4分)已知sin (α-β)=,cos (π+α)sin (π-β)=-,则cos (2α+2β)= .131613.(4分)定义在R 上的偶函数f (x ),在区间[0,+∞)上是增函数,且f (2)=0,则xf (x )<0的解集为 .14.(4分)设直线l :y =kx +b (k >0),圆:+=1,C 2:(θ为参数),若直线l 过C 1圆心且与圆C 2相切,则l 的方程为 .C 1x 2y 2{x =4+cosθy =sinθ15.(4分)已知函数f (x )=若存在实数a ,b ,c (a <b <c )使得f (a )=f (b )=f (c ),则的范围是.{|6x -2|,x <1,x ≥12x -1a +b c 16.(8分)已知关于x 的不等式ax 2+x +c >0的解集为(-1,2).(1)求a ,c 的值;(2)求函数f (x )=log c (|2x -3|+a )的定义域.17.(10分)已知函数f (x )是定义在R 上的奇函数,且满足f (x +2)=f (-x ),当0≤x ≤1时,f (x )=ae x +b ,f ()=1-.(1)求a ,b ;(2)求f (1)+f (2)+f (3)+…+f (2022)+f (2023)的值;(3)若f (lnx )>c 2-2c -4恒成立时,求c 的取值范围.152√e 18.(12分)已知函数f (x )=cos (2x -)-2sinxcosx .(1)求函数f (x )的最小正周期及f (x )取最大值时x 的取值集合;(2)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,其周长是20,面积为10,f ()=,求边a 的长.M 3π3M 3A2M 3219.(12分)已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合A ={-1,1,2,3}和B ={-1,0,1,2,3},分别从集合A ,B 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.{x +y -8<0x >0y >020.(14分)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2,设b A =a n +1-a n .(1)证明:数列{b n }是等差数列;(2)求数列{a n }的通项公式;(3)求数列{}的前n 项和S n .1b n b n +121.(10分)三年疫情结束后,市场在复苏,2023年小王通过市场调查,决定投资生产某种电子零件.已知固定成本为6万元,年流动成本g (x )(万元)与年产量x (万件)的关系为g (x )=,每个电子零件售价为12元,若小王加工的零件能全部售完.(1)求年利润f (x )(万元)关于年产量x (万件)的函数解析式;(2)求当年产量x 为多少万件时年利润f (x )最大?最大值是多少?V W X +6x ,0<x <813x +-56,x ≥812x 2256x22.(10分)某县为了提振乡村经济,鼓励农民利用自有住房从事农家乐、民宿经营活动.小李有楼房一幢,室内面积共210m 2,拟分隔成两类房间作为旅游客房.大房间面积为18m 2,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15m 2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1000元,装修小房间每间需600元.如果小李只能筹款9800元用于装修,且游客能住满客房,他应分隔出大房间和小房间各多少间,能获得最大收益?23.(14分)已知椭圆+=1(a >b >0)的左右焦点分别为F 1,F 2,点M (0,2)是椭圆的一个顶点,△F 1MF 2是等腰直角三角形.(1)求椭圆的方程;(2)过点M 分别作直线MA ,MB 交椭圆于A ,B 两点,设两直线的斜率分别为k 1,k 2,且k 1+k 2=8,证明:直线AB 过定点(-,-2).x 2a 2y 2b 212。

职中对口数学试卷高考答案

职中对口数学试卷高考答案

一、选择题(每题4分,共20分)1. 已知函数f(x) = 2x - 3,若f(x+1) = 2,则x的值为()A. 1B. 2C. 3D. 4答案:B解析:将x+1代入函数f(x)中,得到f(x+1) = 2(x+1) - 3 = 2x - 1。

由题意知f(x+1) = 2,所以2x - 1 = 2,解得x = 2。

2. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°答案:D解析:三角形内角和为180°,所以∠C = 180° - ∠A - ∠B = 180° - 60° - 45° = 75°。

3. 下列函数中,定义域为全体实数的是()A. y = 1/xB. y = √(x-1)C. y = x²D. y = |x|答案:C解析:A项的定义域为x ≠ 0,B项的定义域为x ≥ 1,D项的定义域为全体实数,但y = |x|不是多项式函数。

只有C项的定义域为全体实数,且y = x²是一个多项式函数。

4. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项a10的值为()A. 27B. 30C. 33D. 36答案:D解析:等差数列的通项公式为an = a1 + (n-1)d,代入a1 = 2,d = 3,n = 10,得到a10 = 2 + (10-1)×3 = 2 + 27 = 29。

故选D。

5. 若复数z满足|z-1| = |z+1|,则z的几何意义是()A. z在实轴上B. z在虚轴上C. z在y=x的直线上D. z在y=-x的直线上答案:A解析:复数z在复平面上的几何意义为z对应的点。

|z-1|表示z对应的点到点(1,0)的距离,|z+1|表示z对应的点到点(-1,0)的距离。

对口高考高二数学试卷

对口高考高二数学试卷

考试时间:120分钟满分:100分一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且f(1) = 3,f'(1) = 2,f(2) = 7,则a、b、c的值分别为:A. 1, 2, 4B. 1, 3, 4C. 2, 1, 4D. 2, 3, 42. 下列命题中正确的是:A. 若a > b,则a^2 > b^2B. 若a > b,则a + c > b + cC. 若a > b,则ac > bcD. 若a > b,则a/c > b/c(c > 0)3. 已知等差数列{an}的首项为a1,公差为d,则第n项an的表达式为:A. an = a1 + (n-1)dB. an = a1 - (n-1)dC. an = a1 + ndD. an = a1 - nd4. 已知等比数列{bn}的首项为b1,公比为q,则第n项bn的表达式为:A. bn = b1 q^(n-1)B. bn = b1 / q^(n-1)C. bn = b1 q^nD. bn = b1 / q^n5. 若复数z = a + bi(a、b为实数),则|z|的值为:A. √(a^2 + b^2)B. a^2 + b^2C. a + bD. a - b6. 已知直线l的方程为2x - 3y + 6 = 0,则直线l的斜率为:A. 2/3B. -2/3C. 3/2D. -3/27. 圆C的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则圆C的半径为:A. 2B. 3C. 4D. 58. 已知向量a = (2, -3),向量b = (3, 4),则向量a与向量b的点积为:A. 0B. -1C. 1D. 59. 函数y = log2(x - 1)的图像经过点(3, 1),则该函数的定义域为:A. (1, +∞)B. (2, +∞)C. (3, +∞)D. (4, +∞)10. 若不等式2x - 3 < x + 5,则x的取值范围为:A. x < 8B. x < 3C. x > 8D. x > 3二、填空题(本大题共5小题,每小题10分,共50分。

河北对口高考真题数学答案

河北对口高考真题数学答案

河北对口高考真题数学答案河北省对口高考数学试题通常包括选择题和解答题两部分。

解答题比较繁琐,需要学生们仔细审题、分析问题、理清思路、运用所学知识解题。

下面是我为您精心整理出的河北对口高考数学试题的答案,希望对您有所帮助。

选择题部分1. 下列符合不等式$-2x+1<7$的解集的是()A. (-2, 3)B. (-3, 2)C. (-3, 3)D. [-3, 2)答案:A2. 若a是实数,且$a^2+3a-4=0$,则a的值为()A. -4, 1B. -1, 4C. 1, -4D. -4, -1答案:A3. 在平面直角坐标系中,点P(3, 4)关于原点O的对称点为()A. (-3, 4)B. (-4, -3)C. (4,3)D. (-3, -4)答案:D4. 已知函数$f(x)=ax^2+bx+c$的图象经过点(-2, 5),(1, 4),(3, -2),则a+b+c=()A. 14B. 17C. 8D. 10答案:C解答题部分1. 求函数$f(x)=x^2-2mx+m-2$的最小值。

解:首先,由完全平方公式$f(x)=x^2-2mx+m-2=\left( x-m \right) ^2-m+2$,令$y=x-m$,则$f(x)=y^2-m+2$。

因为$y^2 \ge 0$,所以$f(x)=y^2-m+2 \ge 2-m$,即$f(x)$的最小值为$2-m$。

2. 已知$a_1=2$,$a_2=1$,$a_n=\frac{1}{a_{n-1}}+\frac{1}{a_{n-2}}$(n≥3),求$a_3$及$a_4$。

解:根据已知条件可列出$a_n=a_n-1^{-1}+a_{n-2}^{-1}$,将$a_3$带入计算可得$a_3=2$,将$a_4$带入计算可得$a_4=3/2$。

以上便是我整理出的河北对口高考数学试题的答案,希望能够对您的学习有所帮助。

【以上答案仅供参考】。

安徽对口高考数学真题

安徽对口高考数学真题

安徽省文化素质分类考试试题(数学)选择题(共30小题,每题4分,满分120分)在每小题给出的四个选项中,选出一个符合题目要求的选项 1. 若集合A ={1,3},B ={2,3,5},则A ∪B =( )A .{3}B .{1,3}C .{2,3,5}D .{1,2,3,5}2. 袋中共有6个除颜色外完全相同的球,其中有2个黄球和4个白球,从袋中任取一球,该球为黄球的概率是( )A .16B .13C .12D .233. 在等差数列{n a }中,若a 1=2,公差d =3,则该数列的前6项和S 6=( )A .40B .48C .57D .664. 已知点P (0,-2),Q (-2,-4),则线段PQ 中点的坐标是( )A .(1,-4)B .(-1,4)C .(-1,-3)D .(-3,1)5. 不等式2x 2+x >0的解集为( )A .{x |x <-12}B .{x |x >0}C .{x |-12<x <0}D .{x |x <-12或x >0}6. 将向量a =(2,1),b =(-2,3),则a ·b =( )A .-4B .-1C .1D .47. 如图示意,在平行四边形ABCD 中,AB +AD =( )A .ACB .CAC .BD D .DB8. 在△ABC 中,角ABC 所对的边是a ,b ,c ,若a =b =2,B =30°,则c =( )AB .CD .9. 函数f (x )=lg (x +1)的定义域为( )A .(-1,+∞)B .(0,+∞)C .(-∞,-1)D .(-∞,O)C第7题图10. 过点P (2,1)且斜率为1的直线方程是( )A .x -y +1=0B .x -y -1=0C .x +y +3=0D .x +y -3=011. cos 405°的值是( )A .2B .-2C .2D .-212. 设函数f (x )=x +ax,若f (2)=-4,则f (-2)=( ) A .-4B .4C .-8D .813. 某中学共有高中学生3300人,其中高一1200人,高二1100人,高三1000人,为了解该校高中学生观看“中国诗词大会”电视节目的情况,采用分层抽样的方法从中抽取330人进行调查,则应当抽取的高三学生人数为( ) A .100B .ll0C .120D .13014. 在筹比数列{n a }中,a 1=2,公比q =2,若n a =64,则n =( )A .5B .6C .7D .815. 已知a >b >0,则下列不等式成立的是( )A .a 1>b1B .a-2>b -2C .a ⎛⎫ ⎪⎝⎭12>b⎛⎫ ⎪⎝⎭12D .a 2>b 216. “a 2>0”是“a >O ”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件17. 为得到函数y =sin (x +π5)(x ∈R )的图像,只需把函数y =sin (x -π5)(x ∈R )的图像( ) A .向左平移π25个单位 B .向右平移π25个单位 C .向左平移π5个单位D .向右平移π5个单位 18. 若a =30.5,b =log 30.5,则( )A .a >b >0B .b >a >0C .b >0>aD .a >0>b19. 函数f (x )=-x 2+1,在区间[-1,2]上的最小值为( )A .0B .1C .-3D .-520. 已知sin α=35,且α是第二象限角,则sin (2-α)= ( )A .35B .45C .-35D .-4521. 设a >0且a ≠l ,m 、n 是正有理数,则下列各式正确的是( )A .m n a +=m a ·n aB .m n a +=m a +n aC .log a (m +n )=log a m ·log a nD .log a (m +n )=log a m +log a n22. 如图示意,正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥A 1-BCD 的体积为( )A .13B .14C .16D .11223. 若直线x =a 与圆(x -l)2+y 2=1相切,则a 的值为( )A .-1或1B .-2或2C .0或2D .0或-224. 双曲线x 29-y 24=1的实轴长为( )A .2B .3C .4D .625. 若sin α tan α<0,则α是( )A .第一或第三象限角B .第一或第四象限角C .第二或第三象限角D .第二或第四象限角26. 在平面直角坐标系中,若动点M 到点F 1(-1,0),F 2(1,0)的距离之和为4,则动点M 的轨迹方程是( )A .x 24+y 23=1B .x 23+y 24=1C .x 216+y 212=1D .x 212+y 216=1 27. 如图示意,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,P A 则直线PC 与平面ABC 所成的角为( )ABCDA 1B 1C 1D 1第22题图A.π6B.π4C.π3D.π228. 函数f(x)=sin cosx π27+cos sinxπ27的最小正周期为( )A.π2B.πC.π32D.2π29. 已知直线l、m和平面α,直线l在平面α内,则下列结论正确的是( )A.若m∥α,则m∥l B.若m⊥l,则m⊥αC.若m∥l,则m∥αD.若m⊥α,则m⊥l30. 已知抛物线y=(a-1)x2+bx-1的图像如图示意,则函数y=x a+b的图像可能是( )A B C D。

职教对口高考数学试卷

职教对口高考数学试卷

1. 已知函数f(x)=2x+1,若f(a)=5,则a的值为()A. 2B. 3C. 4D. 52. 在△ABC中,a=5,b=7,c=8,则sinA+sinB+sinC的值为()A. 12B. 14C. 16D. 183. 已知等差数列{an}的公差为d,若a1=2,a4=10,则d的值为()A. 3B. 4C. 5D. 64. 已知函数f(x)=x²-2x+1,则f(x)的图像关于()A. x轴B. y轴C. 原点D. 直线x=15. 在△ABC中,若∠A=30°,∠B=45°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°6. 已知等比数列{an}的公比为q,若a1=3,a4=81,则q的值为()A. 3B. 9C. 27D. 817. 已知函数f(x)=x³-3x²+4x-2,则f(x)的零点为()A. 1B. 2C. 3D. 48. 在△ABC中,若∠A=60°,a=8,b=6,则c的长度为()A. 10B. 12C. 14D. 169. 已知函数f(x)=2x²+3x-2,则f(x)的图像开口方向为()A. 向上B. 向下C. 向左D. 向右10. 在△ABC中,若∠A=90°,a=6,b=8,则△ABC的面积为()A. 24B. 30C. 36D. 42二、填空题(本大题共10小题,每小题5分,共50分。

)11. 已知等差数列{an}的公差为d,若a1=3,a4=11,则d=________。

12. 已知函数f(x)=x²-4x+4,则f(x)的顶点坐标为________。

13. 在△ABC中,若∠A=45°,∠B=90°,a=6,则b=________。

14. 已知等比数列{an}的公比为q,若a1=2,a4=32,则q=________。

2023年广西中职对口数学高考真题 +参考答案

2023年广西中职对口数学高考真题 +参考答案

2023年广西壮族自治区中等职业教育对口升学考试真题数学注意事项:1.本试卷共4页,总分100分,考试时间60分钟,请使用黑色中性笔直接在试卷上作答.2.试卷前的项目填写清楚.一、单项选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个是正确的,请将正确选项填入相应题号下) 1.下列关系成立的是( )A.0∈∅B.2∈NC.3∈{x |-1<x <3}D.3∈{x |-1<x ≤3} 2.过点(2,0)且与y =2x -1平行的直线方程为( ) A.y =2x -4 B.121+=x yC.y =2x +4D.1-21-x y=3.函数的定义域是( ) A.[2,3] B.[1,3) C.[2,3) D.[1,3] 4.下列函数中,偶函数的是( )A.f (x )=x 2-2xB.f (x )=x 2-3C.f (x )=|x -2|D.f (x )=x+cos x22)3ln(-+-=x x y5.下列各组值的大小正确的是( ) A.log 0.50.7<log 0.53B.0.32<0.33C.ln3<1D.40.8<21.86.已知直线l 和三个不重合的平面α,β,γ,下列说法正确的是( ) A.若α⊥ β,l ⊥β,那么l ⊥ αB.若l // α,l ⊥β,那么α // βC.若α // β,l ⊥α,那么l // βD.若α ⊥ β,β⊥γ,那么α ⊥ γ7.用4种不同的颜色对下图3个区域涂色,要求相连的区域不能使用同一个颜色,则不同的涂法有( ).A.24种B.36种C.48种D.64种8.从数字1,2,3,4中任取两个不同的数字构成一个两位数,则所取位数大于40的概率为( )A.51 B.31C.41D.21二、填空题(本大题共5小题,每小题6分,共30分) 9. 不等式3x 2+2x -1≤0的解集为 . 10.已知角α是锐角,且tan α=21,则sin α= .11.已知平面向量a=(2,-1),向量b =(m,2),则b +7a =(5,-5),则m= .12.已知圆的一般方程为x 2+2x +y 2-4y =0,则圆心坐标为 . 13.如图,在正方体ABCD-A 1B 1C 1D 1,AB=AC=1,则异面直线A 1B 与AD 1所成角大小为 .1 23三、解答题(本大题共2小题,共30分,答题时应写出文字说明、证明过程或验算步骤).(10分)14.已知数1+2,3+22,5+23,......,求数列前6项之和S615.(20分)某医药研发一种甲流新药,如果成年人按规定的剂量服用,据监测:服药后每亳升血液中含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.M(1,4)y=2a-t(1)结合图像,求k与a的值;(2)写出服药后y与t之间的函数关系式;(3)据进一步测定:每毫升血液中含药不少于0.5微克时治疗疾病有效,求服药一次治疗有效时间的范围.2023年广西壮族自治区中等职业教育对口升学考试真题数学(参考答案)一、选择题。

2024年湖南对口高考数学试卷(含参考答案)

2024年湖南对口高考数学试卷(含参考答案)

湖南省2024年普通高等学校对口招生考试数 学本试题卷包括选择题、填空题和解答题三部分,共5页。

时量120分钟,满分120分。

一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={1,3,5},N={3,4,5,6},则=N MA.{3,5}B.{4,6}C.{1,4,6}D.{1,3,4,5,6 } 2.已知数列{a n }的通项公式为32+=n a n ,*∈N n ,若37=m a ,则=mA.15B.17C.20D.34 3.函数xx y 1+=的图像 A.关于原点对称 B.关于x 轴对称 C.关于y 轴对称 D.关于直线y=x 对称4.从7名学生中选派2名学生分别到甲、乙两地参加社会实践活动,则不同的选派方法共有A.14种B.21种C.42种D.49种 5.已知2log ,2,3.03.03.02===c b a ,则A.c b a <<B.a b c <<C.b c a <<D.b a c << 6.下列命题中,正确的是A.平行于同一个平面的两条直线必平行B.平行于同一个平面的两个平面必平行C.过平面外一点只可以作一条直线与这个平面平行D.过直线外一点只可以作一个平面与这条直线平行 7.“()()042=+-x x ”是“2=x ”的A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件 8.函数x x y cos sin 3+=取最大值时,x 的值可以为A.6π B.4π C.3π D.2π9.光线从点M(-3,3)射到点P(1,0)后被x 轴反射,则反射光线必经过的点是A.(3,5)B.(4,2)C.(4,4)D.(5,3)10.已知函数()x f y =在)[∞+,0上单调递增,且()()x f x f =-,则不等式()()31f x f <-的解集为A.()42,- B.()4,∞- C.()∞,4 D.()()∞+∞-,,42二、填空题(本大题共5小题,每小题4分,共20分)11.某学校为了解一年级120名男生和80名女生的身高情况,计划用分层抽样的方法抽取20名学生进行测量,则抽取的男生人数为 .12.已知向量()m a ,1=,()1,2=b ,且()b b a ⊥+,则实数=m .13.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边上一点的坐标为⎪⎪⎭⎫⎝⎛-21,23,则α2sin . 14.已知函数()x x f ln =,若0>>b a ,且()()b f a f =,则=ab .15.已知点P 在圆01022=-+y y x 上运动,则点P 到直线0543=-+y x 的距离的最大值为 .三、解答题(本大题共7小题,其中第21,22小题为选做题。

中职数学 2023年内蒙古对口升学高考数学试卷

中职数学 2023年内蒙古对口升学高考数学试卷

2023年内蒙古对口升学高考数学试卷一、选择题(本大题共12小题,每小题5分,共60分。

从下列每小题给出的四个选项中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案)A .(-∞,0)∪(0,+∞)B .[0,2)C .RD .[1,+∞)1.(5分)设全集U =R ,集合M ={x ||x -1|<1},集合N ={x |log 2x <0},则M ∪∁U N =( )A .−12B .-1C .1D .122.(5分)已知函数f (x )在定义域R 上是奇函数,当x >0时,f (x )=2x 2+x ,则f (−12)=( )A .3-x <3x <0.3xB .3x <0.3x <3-xC .0.3x <3-x <3xD .3x <3-x <0.3x3.(5分)若-1<x <0,则下列各不等式成立的是( )A .4B .2C .22D .24.(5分)设a >1,若f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为12,则a =( )√√A .3B .-3C .0D .不能确定5.(5分)在Rt △ABC 中,∠C =90°,AC =3,则AB •AC =( )√→→A .32B .12C .62D .636.(5分)已知关于x 的一元二次方程x 2-4xsinθ-tanθ=0有两个相等的实数根,其中π2<θ<π,则sinθ-cosθ=()√√√A .0或4B .4C .0或2D .27.(5分)等差数列{a n }中,a 3-a 26+a 9=0,{b n }是等比数列,且b 6=a 6,则b 5b 7的值为( )二、填空题(本大题共6小题,每小题5分,共30分。

将答案写在答题卡指定位置上)A .255B .55C .52D .58.(5分)已知△ABC 的顶点B ,C 在椭圆上,顶点A (2,0)是椭圆的一个焦点,且椭圆的另一个焦点在BC 边上.若△ABC 的周长为45,则该椭圆的离心率e 为( )√√√√√A .0B .2C .2或7D .0或59.(5分)已知直线l 1经过点A (3,a ),B (a -2,3),l 2经过点C (2,3),D (-1,a -2),若直线l 1⊥l 2,则a 的值为( )A .①②B .②③C .①④D .③④10.(5分)用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题,其中真命题的是( )①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b .A .48B .36C .24D .1211.(5分)某省实验中学为预防流感爆发,计划安排学生在校内进行常规体检,共有4个检查项目,需要安排在4间空教室进行检查.学校现有一排7间的空教室供选择使用,但为了避免学生拥挤,要求作为检查项目的教室不能相邻,则共有( )种安排方案.A .(4,2)B .(4,-2)C .(26,−3)D .(−26,−3)12.(5分)已知点A (4,-3),F 是抛物线x 2=-8y 的焦点,M 是抛物线上的点,当|MA |+|MF |的值最小时,点M 的坐标是( )√√13.(5分)若函数f (x )的定义域是(19,3),则函数f (3x )的定义域是 .14.(5分)在△ABC 中,三边a ,b ,c 满足a 2-b 2=c (a -c ),则∠B = .15.(5分)某学校五年级共有n 个班,甲、乙两个人从外地转到该校五年级,学校让他们各自随机选择班级,若他们刚好选在同一个班级的概率为16,则n = .三、解答题(本大题共6小题,共60分。

2023年河北省对口招生数学真题(含答案)

2023年河北省对口招生数学真题(含答案)

2023年河北省普通高等学校对口招生文化考试数学一、选择题(本大题共15小题,每小题3分,共45分,在每小题所给出的四个选项中,只有一个符合题目要求)1.设集合M ={}|11x x -<<,N ={}2|10x x -=,则M N ⋃=( )A .{}|11x x -≤<B .{}|11x x -<<C .{}|11x x -≤≤D .{}|11x x -<≤2.已知a b 、为实数,且a b <,则下列各式正确的是( )A .22a b >B .ac bc >C .a b e e <D .()()22log 1log 1a b +<+3.下列函数在定义域内是偶函数的是( )A .3y x x =+B .2y x x =+C .cos y x x =⋅D .sin y x x =⋅4.“1cos 2α=”是“3πα=”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.已知()21f x x +=,则()f x =( )A .()21x +B .()21x -C .21x +D .21x +6.已知点P ()sin ,cos αα在第三象限,则α终边在第( )象限. A .一B .二C .三D .四7.在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.a =2,c =∠C =45︒,则∠B =( )A .75°B .75°或15°C .60°D .60°或120°8.已知A 点坐标(-1,2),B 点坐标(2,-2),下列选项正确的是( ) A .()3,4AB =-B .25AB =C .AB 和向量3455⎛⎫- ⎪⎝⎭,都是单位向量 D .线段AB 中点坐标是102⎛⎫⎪⎝⎭, 9.已知f (x )=xa ,其中0<a <1,则f (-2)、f (1)、f (0)从小到大顺序为( )A .f (1)<f (0)<f (-2)B .f (-2)<f (0)<f (1)C .f (0)<f (1)<f (-2)D .f (-2)<f (1)<f (0)10.在等差数列{an }中,5a =2m +1,4a =m ,3a =m -2,则n a =( )A .2n -1B .2n -3C .2n -5D .2n -711.已知两直线2ax +y +10=0与直线4x -y +a +9=0平行,则两直线距离为( )ABCD12.已知双曲线一顶点为(-5,0),中心在原点,对称轴为坐标轴,渐近线过点P (1,2),则此双曲线方程为( )A .221510x y -= B .221510x y -=- C .22125100x y -=- D .22125100x y -= 13.在二项式10(1)x -的展开式中,第8项的系数是( )A .210CB .210C - C .310C D .310C -14.已知直线a ⊆.α,直线b ⊆β,且a ⊄β,以下说法正确的是( ) A .若a ∥b ,则α∥β B .若a ⊥b ,则α⊥βC .若α//β,则a ∥bD .若a //b ,则a //β15.现有语、数、外、历史四本书,分给甲、乙、丙三人,每人至少一本书,则甲分到数学书的方案有( )种.A .6B .9C .12D .24二、填空题(本大题有15个小空,每空2分,共30分.请将正确答案填在答题卡中对应题号后面的横线上,不填、填错不得分)16.已知函数()()(21,0,0),x x f x x ⎧-≤⎪=⎨>则f [f (-2)]=_______.17.若不等式²0x ax b ++<的解集为(-1,3),则22a b -=_______.18.已知120.2313,,log 23a b c -⎛⎫=== ⎪⎝⎭则a ,b ,c 按由小到大的顺序排列为_______.19.在△ABC 中,a 、b 、c 分别为∠A 、∠.B 、∠C 的对边,且满足²²²0,b c a bc +-+= 则∠A =_______..20.求值:122π25sin ()44-=_______.21.若),3(m a =,)12,1(+=m b ,且a ∥b ,则a b -=_______.22.已知1)32(-+=m x m y 是幂函数,则此函数的单调递增区间为_______.23.已知数列{}n a 是等比数列,22a =,165=a 则数列{}n a 前4项的和=4S _______. 24.函数)12(log )(2--=x x f 的定义域是_______.(用区间表示)25.函数sin sin 12y x x π⎛⎫=⋅++ ⎪⎝⎭的最大值是_______.26.已知圆²²20x y y +-=被直线20x y -+=所截,则所截得弦的弦长为_______. 27.已知直线2360x y -+=过椭圆的两个顶点,则该椭圆的离心率为_______.28.已知在三棱锥P -ABC 中P A 、AB 、AC 两两互相垂直,12,4,3,PA AB AC ===则二面角P -BC -A 的正切值为_______..29.已知矩形ABCD 与正方形CDEF 成直二面角,AB =2,AD =1,G 为DC 的中点,则CE 与AG 所成角为_______.30.已知211313m m C C +=,则2mP =_______.. 三、解答题(本大题共7小题,共45分。

对口高考数学试卷单招

对口高考数学试卷单招

一、填空题(每空2分,共20分)1. 已知函数f(x)=x^2-4x+4,则f(x)的对称轴为______。

2. 若等差数列{an}的首项为a1,公差为d,且a1+a3+a5=12,则a2+a4+a6=______。

3. 在△ABC中,若∠A=60°,∠B=45°,则sinC=______。

4. 若复数z满足|z-2|=|z+2|,则复数z的实部为______。

5. 已知等比数列{bn}的首项为b1,公比为q,且b1+b2+b3=18,则b4+b5+b6=______。

6. 若函数f(x)=ax^2+bx+c(a≠0)的图象开口向上,且f(0)=1,则a、b、c的符号分别为______。

7. 在平面直角坐标系中,点P(-2,3)关于y轴的对称点为______。

8. 若函数g(x)=log2(x+1)+log2(x-1)的定义域为[1,+∞),则函数g(x)的值域为______。

9. 已知数列{an}的通项公式为an=n^2-2n+1,则数列{an}的前n项和为______。

10. 若函数f(x)=x^3-3x+2在区间(-∞,0)上单调递增,则函数f(x)在区间(0,+∞)上的单调性为______。

二、选择题(每题3分,共30分)1. 若等差数列{an}的首项为a1,公差为d,则a1+a2+a3+a4+a5=______。

A. 5a1+dB. 5a1+4dC. 5a1+5dD. 5a1+6d2. 在△ABC中,若∠A=60°,∠B=45°,则sinC与cosA的大小关系为______。

A. sinC > cosAB. sinC = cosAC. sinC < cosAD. 无法确定3. 若复数z满足|z-2|=|z+2|,则复数z位于______。

A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知等比数列{bn}的首项为b1,公比为q,且b1+b2+b3=18,则b4+b5+b6=______。

2023年河北省普通高等学校对口招生文化考试 数学试卷(五)(含详细答案)

2023年河北省普通高等学校对口招生文化考试 数学试卷(五)(含详细答案)

2023年河北省普通高等学校对口招生文化考试数学试卷(五)―,选择题(本大题共15小题,每小题3分,共45分,每小题所给出的四个选项中,只有一个符合题目要求,多选、错选,均不得分)1.设集合M ={x ||x |<3},N ={x |x 2-2x +3=0},则M ∪N =( ). A .{x |-3≤x <3} B .{x |-3<x ≤3} C . ∅ D .{3}2.下列命题中正确的是( ).A .若|a |>|b |,则a >bB .若a 2>b 2,则|a |>|b |C .若a >b ,则ac 2>bc 2D .若a >b ,则lg (a -b )>0 3. 2log x <1是x <2的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数f (x )= sin()cos()22x x ππ++则f (x )是( ).A .周期为2π的奇函数B .周期为2π的偶函数C .周期为π的奇函数D .周期为π的偶函数5.若0≤a <1时,在同一坐标系中函数y =a x 与y =log x 的图象大致是( ).A. B. C. D .6.已知OA =(x ,2), OB =(-2,1),并且OA ⊥OB ,则AB 的长度是( ).A .B .1C .2D 7.在△ABC 中,cosB a =cosAb 则△ABC 是( ). A .等边三角形 B .等腰三角形 C .等腰或直角三角形 D .等腰直角三角形8.在等差数列{a n }中,a 1+a 2+a 3=6,a 7+a 8+a 9=14,则a 4+a 5+a 6=( ). A .12 B .10 C .8 D .49.已知在数列{a n }中,a 3=4,a n =2a n +1,则a 3=( ).A .2B .1C . 12D . 1410.下列各组函数中,表示同一个函数的是( ). A .y =x 和y=B .y =x 和y =e lneC .y =|x |和yD .y =cosx 和y =cos (2π-x )11.若圆2224x y x y a +-++=0与y 轴相切,则a 的值是( ). A .4B .2C .1D .9212.从3门不同的文化学科和6门不同的专业学科中任选4门,组成一个高考科目组,若要求这组科目中 文化和专业都有,则不同的选法种数是( ). A .126 B .111 C .96D .3613.在(3mx 的展开式中第9项为常数项,则n 的值为( ). A .10 B .11C .12D .1314.若方程2246x y k k +-+=1表示焦点在x 轴的椭圆,则k 的取值范围为( ). A .(-6,-1)B .(-6,4)C .(-1,4)D .(-∞,-1)15.在正方体ABCD -A 1B 1C 1D 1中,点O 是底面ABCD 的中心,E 、F ,G 分别是BB 1,DD 1,CC 1的中点,则异面直线EF 与OG 所成的角为( ). A .6π B .4π C .3π D .2π 二,填空题(本大题共15小题,每小题2分,共30分)16. 函数f (x )= 23,12,1x x x x -+>⎧⎨<⎩,则f [f (-2)]=______________.17.函数ff (x )=21log (21)x +的定义域为_____________.18.计算: 211220212022100!coss C π-+-+=_____________.19.已知不等式2ax +2x +c ≥0的解集为11(,)32-,则不等式﹣cx 2+2x -a ≥0的解集为(用区间表示) _____________.20.已知向量a 与b 的夹角为120°,a =(3,4),|b |=1,则|a +5b |=_____________. 21.已知{a ,}是等比数列,a 3和a 7是方程x 2-9x +4=0的两个根,则a 5的值为_____________.22.不等式2221()2x x +->2-x 的解集为_____________.23.已知1sin cos 8αα⋅=,则cosa -sinα=_____________.24.过双曲线22169x y -=1的右焦点F 2的直线与双曲线的右支交于A 、B 两点,若|AB |=6,则三角形ABF 1的周长为_____________.25.若直线3x -y +1=0与x +my -2=0互相垂直,则m =_____________.26.以等腰直角三角形斜边上的高为棱,折成直二面角,则折后两条直角边的夹角为_____________.27.在△ABC 中,若a 2+b 2<c 2,且sinC 则∠C =_____________. 28.一枚硬币连续抛3次,恰有1次出现反面的概率是_____________. 29.已知(x +b )5的展开式中x 2的系数是﹣80,则b 的值为_____________.30.4名学生和1名老师站成一列,如果老师必须站在中间,且学生甲必须与老师相邻,那么不同的排法有____________种.三、解答题( 本大题共 7 小题 , 共 45 分 , 要写出必要的文字说明 , 证明过程和演算步骤 )31 . ( 5 分 ) 已知集合 A= { x | x 2+ x ﹣12 ≤ 0 } , 集合 B= {x | x + m > 2 } , 若 A ∩ B =∅ , 求 m 的取值范围 .32 . ( 6 分 ) 某种商品每件成本为 160 元 , 经市场调查发现 , 若定价为 240 元 / 件 , 可以卖出 30 件 , 单价每下降 5 元 , 则销售量增加 10 件 . 问当售价定为多少元时投资少且利润最大 ? 最大利润为多少元 ? ( 为了结算方便 , 该商场的所有商品售价为整数 )33 . ( 7 分 ) 已知 {a n } 为等比数列 , a 1= 12,a 2< a 1 , 其前 n 项和为 S n , 且 S 1+ a 1 , S 2+a 2 , S 3+ a 3 成等差数列 .( 1 ) 求数列{a n }的通项公式 ;( 2 ) 若 bn = log 2a n , 求{bn } 的前 n 项和 T n . 34 . ( 6 分 ) 已知函数 f (x )=cos x x ωω + 2cos x ω﹣12( ω >0) 其最小正周期为2π. ( 1 ) 求 ω的值 ;( 2 ) 求使函数 f (x ) 取得最大值的 x 的集合 .35 . ( 7 分 ) 设抛物线的顶点在原点 , 焦点是圆222x y x +=的圆心 , 过抛物线焦点且斜率为 2 的直线与抛物线交于 A 、 B 两点 . (1)求此抛物线的标准方程和直线方程 ; (2)求线段AB 中点 M 的坐标 .36 . ( 8 分 ) 如图 , 已知 DA ⊥平面 ABC , ∠ ABC = 90 ° , 且 AD = AB , AM ⊥ DC 于 M ,N 为 BD 的中点 . 求证 : (1)平面 DBC ⊥平面 DAB ; (2)MN ⊥ DC .37 . ( 6 分 ) 现有 3 人去参加某娱乐活动 , 该活动有甲、乙两个游戏可供参加者选择 . 为增加趣味性 , 约定 :每人通过擦一枚质地均匀的骰子决定自己去参加哪个游戏 , 抑出点数为 1 或 2 的人去参加甲游戏 , 掷出点数大于 2 的人去参加乙游戏 .( 1 ) 求这3人中恰有 2 人去参加甲游戏的概率 ;( 2 ) 设 ξ表示参加甲游戏的人数 , 求随机变量 ξ的概率分布 .2023年河北省普通高等学校对口招生文化考试数学试卷(五)答案1.A2.B3.A4.C5.D6.D7.C8.B9.B 10.D 11.A 12.B 13.C 14.A 15.D 16.11 17.(-12)(0,+∞) 18.2025 19.(-2,3) 20.521.2 22.(-2,1) 23.±24.28 25.3 26. 60︒ 27. 120︒ 28.3829.-2 30.1231.解:A =[-4,3],B =(2-m ,+∞).∵A ∩B =∅,∴2-m ≥3.解得m ≤-1. 故m 的取值范围是(―∞,-1].32.解:设单价下降了x 个5元,则单价为(240-5x )元,销售量为(30+10x )件,利润为y 元.y =[(240-5x )-160](30+10x )=-50x 2+650x +2400=-50(x -6.5)2+4512.5因为商品售价为整数,所以当x =6,即售价定为210元时,投资最少且利润最大,最大利润为4500元.33.解:(1)设此等比数列的公比为q .∵S 1+a 1+S 2+a 2,S 3+a 3成等差数列, ∴2(S 2+a 2)=(S 1+a 1)+(S 3+a 3),∴S 2-S 1+2a 2=a 1+S 3-S 2+a 3,即3a 2=a 1+2a 3,∵a 1=12,32∴q =12+q 2解得q =1或q =12.又∵a 2<a 1, q =12.a n =a 11n q -=12n⎛⎫ ⎪⎝⎭数列{a n }的通项公式为a n =(1)2n(2)b n =log 2a n =log 2(1)2n =-n .∵b 1=-1, b n -b n ﹣1=-1,∴数列{ b n }是首项为―1,公差为―1的等差数列.T n =(1)2n n --=-22n n +34.解:(1)原式2x ω +1cos 22x ω =sin(2).6x πω+最小正周期为2π,∵22πω=2π,解得ω=2. (2)当4x +6π=2π+2k π (k ∈Z )即x =12π+2k π (k ∈Z )时,函数取得最大值是1,所以取得最大值时x 的集合为|,122k x x k Z ππ⎧⎫=+∈⎨⎬⎩⎭35.解:(1)由圆的方程可知,圆心坐标为(1,0),所以抛物线的焦点坐标为(1,0).因此抛物线的标准方程为y 2=4x .因为直线过点(1,0)且斜率为2,所以直线方程为y -0=2(x -1),即2x -y -2=0.(2)设抛物线与直线的交点分别为A (x 1,y 1),B (x 2,y 2),解方程组24,220,y x x y ⎧=⎨--=⎩化简为x 2-3x +1=0.根据韦达定理得x 1+x 2=3. 设线段AB 中点M (x 0,y 0),则x 0=122x x +=32又点M 在直线2x -y -2=0上,所以y 0=1,即中点M (32,1) 36.证明:(1)因为DA ⊥平面ABC ,所以DA ⊥BC .因为∠ABC =90°,所以AB ⊥BC .又DA ∩AB =A ,所以BC ⊥平面DAB .因为BC ⊆平面DBC ,所以平面DBC ⊥平面DAB .(2)因为AD =AB ,N 为BD 的中点,所以AN ⊥DB .因为平面DBC ⊥平面DAB ,所以AN ⊥平面DBC ,所以AN ⊥DC .又AM ⊥DC 于M ,所以DC ⊥平面AMN ,所以MN ⊥DC . 37.解:(1)掷出点数为1或2的概率为26=13,从而挪出点数大于2的概率为23. 设事件A 表示事件“3人中恰有2人去参加甲游戏”.则P (A )= 2231233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=29(2)依题意知ξ的所有可能取值为0,1,2,3.P (ξ=0)= 03031233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=827,P (ξ=1)= 2131233C ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=49 P (ξ=2)= 2231233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=29,P (ξ=3)= 3331233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=127 所以ξ的概率分布为:角形OMN 的面积为1||2MN d ⋅⋅=123⨯43。

2023年安徽对口高考数学真题(文字版)

2023年安徽对口高考数学真题(文字版)

2023安徽对口升学数学试题一.单选题(每题4分,共30题,总分120分) 1.设集合=-=--=B A B A 则},1,2{},1,0,1,2{A.}1,2{-B.}0,1{-C.}1,2{--D.}1,0{2.函数4||1)(-=x x f 的定义域为 A.}0|{≠x x B.}4|{-≠x x C.}4|{≠x xD.}4|{±≠x x3.=⎪⎭⎫ ⎝⎛-3cos πA.21B.21- C.23D.23-4.不等式0)13(≤-x x 的解集为A.}0|{≤x xB.}31|{≥x xC.}310|{≤≤x xD.}310|{≥≤x x x 或5.已知点)4,6(),2,0(--==N M ,则线段MN 中点的坐标是A.)1,3(B.)1,3(-C.)1,3(-D.)1,3(--6.古代数学家常用小石子在沙滩上摆成各种形状来研究数学,如下图中的小石子个数 16,9,4,1被称为“正方形数”现从2,3,4,8,9,12,14中任取一个数,则取到“正方形数”的概率是A.71B.72C.73D.75 7.过三点)2,0(),0,4(),0,0(--C B A 的圆的方程是A.5)2(22=++y xB.5)1(22=++y xC.5)1()2(22=+++y xD.5)2()1(22=+++y x 8.=θθcos sinA.θ2cosB.θ2sinC.θ2cos 21D.θ2sin 219.已知直线1:,12:21-=+-=kx y l x y l ,若21l l ⊥,则=kA.21-B.21C.2-D.2 10.在等差数列}{n a 中,若6,352==a a ,则=8aA.6B.7C.8D.911.已知向量),2(),2,1(m b a -==,若b a //,则=+b aA.)2,1(--B.)2,1(-C.)6,3(-D.)6,3(-12.角︒2023的终边在A.第一象限B.第二象限C.第三象限D.第四象限13.在等比数列}{n a 中,若首项321=a ,公比21-=q ,则}{n a 的前6项和为A.22B.21C.20D.19 14.下列结论正确的是A.若c b c a R c b a +>+∈>则,,B.若bc ac R c b a >∈>则,,C.若d b c a d c b a ->->>则,,D.若bd ac d c b a >>>则,,15.在ABC ∆中,若ac b c a 2222=-+,则=BA.︒30B.︒45C.︒60D.︒13516.“y x =”是“||||y x =”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.设一组数据的平均数和标准差分别为x 和s ,把x sV s =称为该组数据的离散系数。

数学对口高考试题及答案

数学对口高考试题及答案

数学对口高考试题及答案第一节:选择题1. 设函数$f(x)=\frac{1}{x}$,则$f\left( \frac{1}{2} \right)=$_________。

A. $-2$B. $2$C. $-\frac{1}{2}$D. $\frac{1}{2}$答案:D. $\frac{1}{2}$2. 设$a$、$b$、$c$满足条件$a+b+c=0$,则$\frac{a^3+b^3+c^3}{3abc}=$_________。

A. $-1$B. $3$C. $1$D. $-3$答案:A. $-1$3. 曲线$y=ax^2+bx+c$(a>0)与$x$轴交于两点$A$、$B$,交与$y$轴交于点$C$,且$S_{\bigtriangleup ABC}=15$,则该曲线的表达式为_________。

A. $y=2x^2+3x-1$B. $y=2x^2-3x+1$C. $y=2x^2-3x-1$D.$y=2x^2+3x+1$答案:C. $y=2x^2-3x-1$第二节:填空题1. 利用对数表,计算$log_520$的值为_________。

答案:$1.5$2. 已知函数$f(x)=\log_2{x}$,则方程$f\left( x^{2^{x}} \right)+1=f^{-1}(x)$的解为_________。

答案:$x=0$ or $x=1$3. 设$x^2+ax+b=0$,其中$a$,$b$为实数,$x_1$、$x_2$是其两个根。

若$x_1+\frac{1}{x_2}=3$,$x_2+\frac{1}{x_1}=2$,则$a$、$b$的值分别是_________。

答案:$a=-4$,$b=10$第三节:解答题1. 已知函数$f(x)=\frac{1}{x-1}$,函数$g(x)=x^2-5$,求复合函数$f(g(x))$的定义域。

解答:首先找出复合函数$f(g(x))$的表达式:$f(g(x))=\frac{1}{(x^2-5)-1}=\frac{1}{x^2-6}$。

江苏省对口单招职教高考数学考试含答案

江苏省对口单招职教高考数学考试含答案

江苏省中等职业学校学业水平考试《数学》试卷(第3套)本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.每个小题列出的四个选项中,只有一项符合要求.)1. 方程182x⎛⎫= ⎪⎝⎭的解是( )A .31B .31- C .3 D .3-2.设全集R U =,集合{}2>=x x P ,则=P C U ( )A .{}2≤x xB .{}2<x xC .{}2≠x x D .{}2,1 3.下列关于奇函数图象的对称性,正确的叙述是( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点中心对称D .关于直线x y =对称 4.下列关于零向量的说法中,错误..的是( ) A .零向量的长度为0 B .零向量没有方向C .零向量的方向是任意的D .零向量与任一向量都平行 5.样本数据-1,2,0,-2, 1的方差为( ) A .1 B .2 C .3 D .5 6.在长方体ABCD-A 1B 1C 1D 1中,下列表述正确的是( ) A .A 1A ⊥平面BB 1C 1C B .A 1A ⊥平面DC C 1D 1 C .A 1A //平面ABCD D .A 1A //平面BB 1C 1C7.直线220x y -+=和310x y ++=的交点坐标为( ) A .(0,2) B .(1,4) C .(-2,-2) D .(-1,0)8.某公司在甲、乙、丙、丁四个地区的销售点分别有150个、120个、180个、250个.公司为了调查产品销售情况,需从这700个销售点中抽取一个容量为100的样本,比较适宜的抽样方法是( )A .简单随机抽样法B .分层抽样法C .系统抽样法D .抽签法9.设p :2a =,q :1a >-;则( )A .p 是q 的充分而不必要条件B .p 是q 的必要而不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件 10.过点(-1,3)且与直线210x y -+=垂直的直线方程是( ) A .270x y -+= B .210x y --=A B C DB 1C 1D 1 A 1 第6题图C .210x y +-=D .210x y ++= 11.已知(3,4),(2,3)a b =-=,则2||3a a b -⋅等于( )A .28B .8-C .8D .28- 12.302302302.log ,,..===c b a 则c b a ,,的大小关系是( )A .a b c <<B .c b a <<C .c a b <<D .a c b << 二、填空题(本大题共2小题,每小题4分,共8分) 13.函数()2f x x =的单调增区间是 .14.如图,在正方体1111ABCD A B C D -中,对角线1BD 与底面ABCD 所成角的正切值为 .三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(满分8分)解不等式215x +<.16.(满分10分)已知 4cos 5α=-,α是第三象限的角,试求sin α和tan α的值. 17.(满分10分)某林场计划第一年植树造林200公顷,以后每年比前一年多造林3%.问: (1)该林场第五年计划造林多少公顷?(只需列式) (2)该林场五年内计划造林多少公顷?(精确到0.01)第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.)1.[选做题]在1-1和1-2两题中选答一题.第14题图1—1.与A B ⋅相等的是 ( )A .AB B .ABC .A B +D .A B +1—2.某职业学校机电4班共36名学生,经统计,全班学生身高(单位:cm )情况如下表:160以下 [160,170) [170,180) 180及以上 1人12人20人3人若根据上表绘制饼图,则代表身高在[170,180]内人数的扇形的圆心角等于( ) A .20︒B .100︒C .200︒D .270︒2.[选做题]在2-1和2-2两题中选答一题.2—1.下列关于算法的说法,正确的有( )①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果. A .1个 B .2个 C .3个 D .4个 2—2.某项工程的网络图如图所示(单位:天),则完成该工程的最短总工期为( )A .10.5B .12C .13D .16.5 3.[选做题]在3-1和3-2两题中选答一题.3—1.函数3sin(2)6y x π=-的最小正周期为( )A .2πB .πC .2πD .3π 3—2.复数2(34i -)的实部和虚部分别是( )A .3,4-B .6,8-C .3,4i -D .6,8i - 二、填空题(本大题共1小题,共4分.)4—1.将参数方程是参数)(t 42⎩⎨⎧==ty tx 化为普通方程是 .4—2.表示图中阴影部分平面区域的不等式是 .第4—2题江苏省中等职业学校学业水平考试《数学》试卷 参考答案及评分标准(第3套)本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.)1 2 3 4 5 6 7 8 9 10 11 12 DACBBDDBACAC二、填空题(本大题共2小题,每小题4分,共8分)13.[)∞+,0或(0)+∞,;14.22. 三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.解:原不等式等价于5215x -<+< ………………3分 624x ∴-<< ………………5分 32x ∴-<< ………………7分 ∴原不等式的解集为{}32x x -<<. ………………8分 16.解:因为α是第三象限的角,所以sin 0α<,………………2分又因为22sin cos 1αα+=,所以 224sin 1cos 1()5αα=--=--………………5分 35=-………………7分 3sin 35tan 4cos 45ααα-===-. ………………10分17.解:(1)该林场第五年计划造林 4200(13%)+ 公顷. ……4分 (2)该林场五年内计划造林200+200(13%)++2200(13%)++3200(13%)++4200(13%)+ ……2分5200[1(13%)]1(13%)-+=-+ ……5分1061.83≈(公顷) ……6分第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.二、填空题(本大题共1小题,共4分.)4—1.24x y =; 4—2.632≥+y x .。

2023年河南省中职对口升学高考数学试卷(排版)

2023年河南省中职对口升学高考数学试卷(排版)

河南省2023年普通高等学校对口招收中等职业学校毕业生考试数学试题卷考生注意:所有答案都要写在答题卡上,写在试题卷上无效一、选择题(每小题3分,共30分.每小题只有一个选项是正确的,请将正确选项涂在答题卡上)1.若{}0A x x =≤,则正确的关系式是()A.0A⊆ B.{}0A∈ C.Aφ∈ D.{}0A⊆2.下列函数中是偶函数且在区间(),0-∞上单调递增的是()A.2y x =B.3y x = C.22y x =- D.2y x x=--3.函数211log y x=-的定义域为()A.(0,2)(2,)+∞ B.(,2)(2,)-∞+∞ C.[)0,2 D.()0,24.22log 8log 2-的值等于()A.2log 6B.22log 8log 2C.2D.15.钟表的时针每6小时转过的角的弧度数是()A.4πB.3πC.2πD.π6.下列选项中,正确的是()A.第一象限的角都是锐角 B.1sin 7502=C.三角函数sin ,cos x x 都是奇函数D.cos110=7.已知直线l 经过点()2,2P -且与直线112y x =+垂直,则直线l 的方程是()A.220x y +-=B.260x y --=C.260x y --=D.220x y ++=8.直线0x +=与圆()2244x y -+=的位置关系是()A.相切B.相交且过圆心C.相离D.相交不过圆心9.已知数列{}n a 是等差数列,且3960a a +=,则269a a a -+的值是()A.20B.30C.60D.8010.手机密码通常由0,1,2,3,4,5,6,7,8,9中的6位数字组成(允许重复),如果任意输入一个6位数字,恰好能开机的概率是()A.691P B.691C C.619 D.6110二、填空题(每小题3分,共24分)11.设函数()21f x x =+,则(1)f x +=.12.函数23cos y x =+的值域是.13.212sin 75- 的值为.14.已知向量(1,0) (1,2)a b ==则()2a b b -=.15.已知向量(21,1) (,2)a m b m =+-= 且//a b,则m 的值等于.16.一个圆柱体的底面半径等于4,高为2,则圆柱的全面积为.17.把本金P=10000元存入银行,假如每期利率是2%,期数为2期,按复利计算,则到期后的本息和是.18.某班有48名学生,若任选一人是女生的概率是512,则这个班的男生人数是.三、解答题(每题8分,共24分)19.若方程221211x ym m +=-+表示双曲线,求m 的取值范围.20.锐角三角形的内角A,B,C 的对边分别为a,b,c,已知,sin a A =,,34ABC S ∆=,4a c +=,求(1)角B 的大小;(2)边b 的长度.21.已知点(P m 在双曲线221169x y -=上,求点P 到双曲线右焦点的距离.四、证明题(每题6分,共12分)22.求证函数1()1x x e f x e +=-为奇函数.23.如图所示:已知四棱锥P ABCD -的底面四边形ABCD 是平行四边形,,M N 分别是,AB PC 所的中点,求证://MN PAD 平面.五、综合题(本题10分)23.设{}n a 是公比为正数的等比数列,132212a a a =-=-,1求数列{}n a 的通项公式;2设等差数列{}n b 的首项为1,公差为2,求数列{}n n a b +的前n 项和n S .。

河南省对口升学高考数学试题

河南省对口升学高考数学试题

河南省2024年对口升学高考数学试题河南省2024年对口升学高考数学试题一、选择题1、本题考查对基本概念的掌握,以及数的表示方法。

以下哪个数的绝对值最小? A. -5 B. 0 C. 1 D. 5 答案:B. 02、本题考查实数的运算。

若,则的值等于: A. 5 B. -5 C. 2 D. -2 答案:C. 23、本题考查基本三角函数知识。

若,则的值等于: A. sin(π/3)B. cos(π/3)C. tan(π/3)D. cot(π/3) 答案:A. sin(π/3)二、填空题4、本题考查数列的通项公式。

已知数列{an}的通项公式为,则 a5 的值等于 ______。

答案:-1041、本题考查平面直角坐标系的性质。

已知点P(2,3),则点P关于原点的对称点P'的坐标为 ______。

答案:(2, -3)三、解答题6、本题考查一元二次方程的解法。

解方程:x^2 - 2x - 3 = 0。

解:将方程x^2 - 2x - 3 = 0因式分解,得: (x - 3)(x + 1) = 0 解得:x1 = 3,x2 = -1。

答案:x1 = 3,x2 = -1。

61、本题考查函数的知识。

已知函数f(x)的定义域为R,且满足f(x + 1) = f(x - 1) + 4,求f(x)的解析式。

解:由题意,得f(x + 1) - f(x - 1) = 4,即,化简得f(x + 2) - f(x) = 4,则,两式相减得f(x+4)-f(x+2)=0,化简得f(x+4)=f(x+2),因此f(x+2)=f(x),即f(x)是以2为周期的周期函数,可设f(x) = ax + b,代入条件可得到a和b的值,从而求得f(x)的解析式。

具体解法如下:由上可知f(x+2)=f(x),因此f(x)是以2为周期的周期函数,可设f(x) = ax + b,代入条件可得到: a + b = b + 4 (1) a(-1 + a + b) = b + 4 (2)解得a=1,b=3,所以f(x)的解析式为f(x) = x + 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省2018年普通高等学校对口招生考试
数学
本试题卷包括选择题、填空题和解答题三部分,共4页。

时量120分钟。

满分120分一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A={1,2,3,4},B={3,4,5,6},则
A.{1,2,3,4,5,6}
B.{2,3,4}
C.{3,4}
D.{1,2,5,6}
2.“的
A.充分必要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
3.函数的单调增区间是
A.(
B.[1,+
C.(
D.[0,+
4.已知,且为第三象限角,则
A. B. C. D.
5.不等式的解集是
A.{x|x}
B.{x|x}
C.{x|0}
D.{x|x}
6.点M在直线3x+4y-12=0上,O为坐标原点,则线段OM长度的最小值是
A.3
B.4
C. D.
7.已知向量a,b满足=7,
A.30°
B.60°
C.120°
D.150°
8.下列命题中,错误的是
A.平行于同一个平面的两个平面平行
B.平行于同一条直线的两个平面平行
C.一个平面与两个平行平面相交,交线平行
D.一条直线与两个平行平面中的一个相交,则必与另一个相交
9.已知
A.a b c
B.a c b
C.c
D.c
10.过点(1,1)的直线与圆相交于A,B两点,O为坐标原点,则△OAB面积的最大值为
A.2
B.4
C.
D.
二、填空题(本大题共5小题,每小题4分,共20分)
11.某学校有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的
样本,则应抽取男生的人数为______。

12.函数(b为常数)的部分图像如图所示,则b=______。

13.的展开式中的系数为______(用数字作答)。

14.已知向量a=(1,2),b=(3,4),c=(11,16),且c=xa+yb,则x+y=______。

15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形,则第10个正方形的面积为______。

三、解答题(本大题共7小题,其中第21、22小题为选做题,满分60分,解答应写出文字说明、证明过程或演算步骤)
16.(本小题满分10分)
已知数列为等差数列,.
()求数列的通项公式;
(II)设数列的前n项和,若,求n.
17.(本小题满分10分)
某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测,用ξ表示取出饮料中不合格的评述,求:
()随机变量ξ的分布列;
(II)检测出有不合格饮料的概率。

18. (本小题满分10分)
已知函数的图像过点(5,1)。

()求f(x)的解析式,并写出f(x)的定义域
(II)若f(m),求m的取值范围。

19. (本小题满分10分)
如图,在三棱柱ABC-中,,,∠ABC=90°,D为AC的中点。

(I)证明:BD⊥平面;
(II)求直线与平面所成的角。

20.(本小题满分10分)
已知椭圆C:()的焦点为(-1,0),(1,0),点A(0,1)在椭圆C上。

(I)求椭圆C的方程;
(II)直线L过点且与垂直,L与椭圆C相交于M,N两点,求MN的长
选做题:请考生在第21,22题中选择一题作答,如果两题都做,则按所做的第21题计分,作答时,请写清题号。

21. (本小题满分10分)
如图,在四边形ABCD中,BC=CD=6,AB=4,∠BCD=120°,∠ABC=75°,求四边形ABCD 的面积。

22. (本小题满分10分)
某公司生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲产品可获利4万元,生产1吨乙产品可获利润5万元,问:该公司如何规划生产,才能使公司每天获得的利润最大?。

相关文档
最新文档