岩石破坏准则

合集下载

岩石破坏准则

岩石破坏准则

2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。

一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。

对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。

图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。

图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。

本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。

2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。

它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。

朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。

考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。

当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。

土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。

根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。

因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。

岩石的破坏准则汇总

岩石的破坏准则汇总

岩石的破坏准则岩石的破坏准则对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论)。

岩石的应力、应变增长到一定程度,岩石将发生破坏。

用来表征岩石破坏条件的函数称为岩石的破坏准则。

岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系。

在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延1岩石的破坏准则2性性质,同时它的强度极限也大大提高了。

岩石的破坏准则许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论最大正应变理论最大剪应力理论(H.Tresca)八面体应力理论莫尔理论及库伦准则格里菲思理论(Griffith)伦特堡理论(Lundborg)经验破坏准则3岩石的破坏准则41、最大正应力理论这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力。

即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏。

适用条件: 单向应力状态。

对复杂应力状态不适用。

写成解析式:破坏岩石的破坏准则52、最大正应变理论该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏。

则破坏准则为式中 m ax ε——岩石内发生的最大应变值;u ε——单向拉、压时极限应变值;这一破坏准则的解析式为(由广义虎克定律)岩石的破坏准则6R — R t 或R c推出:实验指出,该理论与脆性材料实验值大致符合,对塑性材料不适用。

岩石的破坏准则73、最大剪应力理论(H.Tresca )该理论认为岩石材料的破坏取决于最大剪应力,即当最大剪应力达到单向压缩或拉伸时的危险值时,材料达到破坏极限状态。

其破坏准则为:在复杂应力状态下,最大剪应力231max σστ-=岩石的破坏准则8单位拉伸或压缩时,最大剪应力的危险值则有 R ≥-31σσ或写成 {}{}{}0)][)][)][221222232231=------R R R σσσσσσ这个理论适用于塑性岩石,不适用于脆性岩石。

岩土力学屈服准则及其特点

岩土力学屈服准则及其特点

岩土力学屈服准则及其特点岩土力学是土木工程领域中的重要学科之一,研究土体和岩石在外力作用下的力学性质和行为。

岩土力学中的屈服准则是指在应力条件下,土体或岩石的屈服发生的准则,也被称为破坏准则或破坏判据。

不同的屈服准则适用于不同的材料和应变条件,常用的几种屈服准则包括摩尔—库仑准则、穆克—库仑准则、德里奇—龙格准则和麦克考利准则等。

1. 摩尔—库仑准则:摩尔—库仑准则是最常用的岩土力学屈服准则之一,适用于岩石和混凝土等脆性材料。

该准则认为,当材料中最大主应力达到其抗压强度时,材料发生屈服和破坏。

2. 穆克—库仑准则:穆克—库仑准则适用于黏塑性土体,认为土体的屈服和破坏是由于主应力差异引起的。

当土体中最大主应力差异达到一定程度时,土体发生屈服和破坏。

3. 德里奇—龙格准则:德里奇—龙格准则适用于砂土和黏土等细粒土体,认为土体的屈服和破坏是由于应力路径引起的。

当土体中的应力路径达到一定条件时,土体发生屈服和破坏。

4. 麦克考利准则:麦克考利准则适用于岩石和土体,认为材料的屈服和破坏是由于剪切应变能达到一定程度引起的。

当剪切应变能达到一定条件时,材料发生屈服和破坏。

这些屈服准则具有以下特点:1. 适用性广泛:不同的屈服准则适用于不同类型的土体和岩石,能够满足不同材料的力学性质和行为。

2. 简单易用:这些屈服准则通常基于简化的假设和实验数据得出,具有较高的实用性和可操作性。

3. 数学表达简洁:这些屈服准则通过简洁的数学表达式描述材料的屈服和破坏条件,便于工程应用和计算。

4. 实验验证可靠:这些屈服准则的提出和应用通常基于大量的实验数据,经过多次验证和修正,具有较高的可靠性和准确性。

5. 工程应用广泛:这些屈服准则在土木工程领域广泛应用于岩土工程设计、施工和安全评估等方面,对工程实践具有重要意义。

岩土力学中的屈服准则是研究土体和岩石在外力作用下的力学性质和行为的基础,不同的屈服准则适用于不同材料和应变条件,具有广泛的适用性和工程应用价值。

岩石破坏应变准则

岩石破坏应变准则

岩石破坏应变准则岩石破坏应变准则是指在岩石受到外力作用下,岩石内部发生应变,当应变达到一定程度时,岩石就会发生破坏。

这个准则是岩石力学中非常重要的一个概念,对于岩石工程和地质灾害防治都有着重要的意义。

岩石破坏应变准则是基于岩石的本构关系和破坏准则建立的。

岩石的本构关系是指岩石在受到外力作用下的应力和应变之间的关系。

而破坏准则则是指岩石在受到一定应力作用下,达到一定应变时,就会发生破坏。

岩石的本构关系是非线性的,即岩石的应力和应变之间的关系不是简单的比例关系。

在岩石受到外力作用下,岩石内部会发生弹性变形和塑性变形。

弹性变形是指岩石在受到外力作用下,会发生短暂的变形,当外力消失时,岩石会恢复原状。

而塑性变形则是指岩石在受到外力作用下,会发生永久性的变形,当外力消失时,岩石无法恢复原状。

当岩石受到外力作用时,岩石内部会发生应变。

应变是指岩石内部的变形程度。

当应变达到一定程度时,岩石就会发生破坏。

岩石的破坏准则有很多种,常见的有莫尔-库伦破坏准则、德拉克-普鲁克破坏准则、霍克斯-普鲁克破坏准则等。

莫尔-库伦破坏准则是指当岩石内部的剪应力达到一定值时,岩石就会发生破坏。

德拉克-普鲁克破坏准则是指当岩石内部的应力状态达到一定条件时,岩石就会发生破坏。

霍克斯-普鲁克破坏准则是指当岩石内部的应力状态达到一定条件时,岩石就会发生破坏。

在岩石工程和地质灾害防治中,岩石破坏应变准则是非常重要的。

通过对岩石的破坏应变准则的研究,可以预测岩石的破坏形式和破坏时间,为岩石工程和地质灾害防治提供科学依据。

同时,对于岩石的破坏应变准则的研究,也可以为岩石力学的发展提供重要的参考。

岩石强度及破坏准则优缺点

岩石强度及破坏准则优缺点

岩石力学中常用的几种强度准则
Mohr-Coulomb准则
τ
当压力不大(小于10MPa) 时,包络线可采用直线型 近似
f Ctan
破坏角(剪裂面与最大主
应力 σ1的夹角)满足: = +
42
C
1 2
(
1
3
)
φ

O σ3
σ1
σ
Hale Waihona Puke C·ctgφ1 2
(
1
3
)
库仑—莫尔强度条件
岩石力学中常用的几种强度准则
对Mohr-Coulomb强度准则评价:
优点: ➢ 公式简单实用,各参数一般都可以利用常规试验器材和方法 来确定; ➢ 不仅能反映岩体的碎性破坏,而且能反映其塑性破坏特征。
缺点:
该准则为线性破坏准则,在高围压压缩条件下,该准则 评估的岩石三轴强度与试验实测强度数据偏差较大;
该准则没有考虑中间主应力对岩石真三轴强度的影响; 该强度准则还指出,岩体的破坏角θ,但在拉伸条件下,
O
σ
岩石力学中常用的几种强度准则
对Mohr强度理论的评价:
优点: ➢ 适用于塑性岩石,也适用于脆性岩石的剪切破坏; ➢ 较好解释了岩石抗拉强度远远低于抗压强度特征; ➢ 解释了三向等拉时破坏,三向等压时不破坏现象; ➢ 简单、方便:同时考虑拉、压、剪,可判断破坏方向。
缺点:
忽视了σ2 的作用,误差:±15% 没有考虑结构面的影响 不适用于拉断破坏,破裂面趋于分离 不适用于膨胀、蠕变破坏
理上的困难; 1952 年 Drucker 和 Prager 构造了一个内切于 M-C 准则的六棱锥的圆锥屈服面;
函数形式
式中 I1xyz123, 为应力张量第一不变量

岩石的破坏准则[详细]

岩石的破坏准则[详细]

五、岩石的破坏准则对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论).岩石的应力、应变增长到一定程度,岩石将发生破坏.用来表征岩石破坏条件的函数称为岩石的破坏准则.岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系.在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延性性质,同时它的强度极限也大大提高了.许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论最大正应变理论最大剪应力理论(H.Tresca)八面体应力理论莫尔理论及库伦准则格里菲思理论(Griffith)伦特堡理论(Lundborg)经验破坏准则1、最大正应力理论这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力.即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏.适用条件: 单向应力状态.对复杂应力状态不适用.写成解析式:破坏2、最大正应变理论该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏.则破坏准则为式中ε——岩石内发生的最大应变值;m axε——单向拉、压时极限应变值;u这一破坏准则的解析式为(由广义虎克定律)R —R t或R c推出:实验指出,该理论与脆性材料实验值大致符合,对塑性材料不适用.3、最大剪应力理论(H.Tresca)该理论认为岩石材料的破坏取决于最大剪应力,即当最大剪应力达到单向压缩或拉伸时的危险值时,材料达到破坏极限状态.其破坏准则为:在复杂应力状态下,最大剪应力231 max σστ-=单位拉伸或压缩时,最大剪应力的危险值则有 R ≥-31σσ或写成 {}{}{}0)][)][)][221222232231=------R R R σσσσσσ这个理论适用于塑性岩石,不适用于脆性岩石. 该理论未考虑中间主应力的影响.4、八面体剪应力理论(Von.米ises)该理论认为岩石达到危险状态取决于八面体剪应力.其破坏准则为已知单元体1σ,2σ,3σ ,作一等倾面(其法线夹角相同).为研究等倾面上的应力,取一由等倾面与三个主应力面围成的四面体来研究.N 与x 、y 、z 的夹角分别为γβα、、,且 γβα==. 设:l =αcos ,m =βcos ,n =γcos设等倾面ABC 面积为S,则三个主应力面(1σ,2σ,3σ面)的面积分别为根据力的平衡条件∑=0X , ∑=0Y , ∑=0Z推出:⎪⎩⎪⎨⎧⋅⋅=⋅=⋅⋅=⋅=⋅⋅=⋅=∑∑∑γσβσασcos 0cos 0cos 0321S S p Z S S p Y S S p X z y x , 而 等倾面S 上合力:222z y x p p p p ++=所以另,等倾面S 上的法向应力为各分力p x 、p y 、p z 在N 上的投影之和,即S oct ττ≥,推出适用条件:塑性,5、莫尔理论及莫尔库伦准则该理论是目前应用最多的一种强度理论.该理论假设,岩石内某一点的破坏主要取决于它的大主应力和小主应力,即σ1和σ3,而与中间主应力无关.也就是说,当岩石中某一平面上的剪应力超过该面上的极限剪应力值时,岩石破坏.而这一极限剪应力值,又是作用在该面上法向压应力的函数,即)(στf = .这样,我们就可以根据不同的σ1、σ3绘制莫尔应力图. 每个莫尔圆都表示达到破坏极限时应力状态.一系列莫尔圆的包线即为强度曲线一方面与材料内的剪应力有关,同时也与正应力有关关于包络线:抛物线:软弱岩石双曲线或摆线:坚硬岩石直线:当σ<10米Pa 时为简化计算,岩石力学中大多采用直线形式:c ——凝聚力(米Pa) ϕ——内摩擦角.该方程称为库伦定律,所以上述方法合称为:莫尔库伦准则. 当岩石中任一平面上f ττ≥ 时,即发生破坏.即: ϕσττtg c f ⋅+=≥下面介绍用主应力来表示莫尔库仑准则. 任一平面上的应力状态可按下式计算①②α(σ1)力圆,可建力之间关系1)c和ϕ值与σ1、σ3和α角关系在σ1~σ3的应力圆上,找出2α的应力点T(T米为半径为231σσ-) 则,与直径T米垂直且与圆相切的直线即为ϕστtgc⋅+=根据几何关系,902)2180(90-=--=ααϕ,得出代入ϕστtg c ⋅+=中,得到另由公式推导:将σ1、σ3表示的 σ 和 τ 代入ϕστtg c ⋅+=中,导出对α求导,01=ασd d 推出:245ϕα+= 破坏面与最大主应力面的夹角而与最大主应力方向的夹角2).用主应力σ1、σ3表达的强度准则 将 σ 和 τ 的表达式代入 ϕστtg c ⋅+=中,ϕασσσσασσtg c ⎥⎦⎤⎢⎣⎡-+++=-2cos 222sin 2313131利用关系:ααϕ2sin )902cos(cos =-= ααϕ2cos )902sin(sin -=-= 化简得:当σ3=0时(单轴压缩):ϕϕσsin 1cos 21-==c R c ,令ϕϕϕsin 1sin 1-+=N ,则,σ1当σ1=0时(单轴抗拉该值为 )(στf =但与实测的R t 线段进行修正.岩石破坏的判断条件:ϕ>, 破坏sin极限ϕ<,稳定sin6、格里菲思(Griffith)理论以上各理论都是把材料看作为连续的均匀介质,格里菲思则认为:当岩石中存在许多细微裂隙,在力的作用下,在缝端产生应力集中,岩石的破坏往往从缝端开始,裂缝扩展,最后导致破坏.方向成β角.且形状接近于椭圆,的局部抗拉强度,的边壁就开始破裂.1).任一裂隙的应力.假定:①椭圆可作为半元限弹性介质中的单个孔洞处理, ②二维问题处理,取0=z σ椭圆参数方程:αcos a x =,αsin b y = 椭圆的轴比为:ab m =椭圆裂隙周壁上偏心角的α的任意点的切向应力 可用弹性力学中英格里斯(Inglis)公式表示:由于裂缝很窄,轴比很小,形状扁平,所以最大应力显然发生在靠近椭圆裂隙的端部,即α很小的部位,当0→α时,αα→sin ,1cos →α又由于米,α很小,略去高次项,则有米为定值,当1σ,2σ,3σ确定时,y σ、xy τ也为定值,则b σ仅随α而变.这是任一条裂隙沿其周边的切向应力.显然在椭圆周边上,随α不同b σ有不同的值,对α求导.2mτxy则,2).岩块中的最大切向应力所在的裂隙上面导出了 某一条裂隙上的最大切向应力,但在多条裂隙中,哪一条裂隙的b σ 最大?y σ,xy τ与1σ,3σ的关系为:βσσσσσ2cos 223131--+=y , βσστ2sin 231--=xy代入 m ax ,b σ中,显然m ax ,b σ与β有关,对其求导,便可求得b σ为最大的那条裂隙,即确定出β角. 即取 0m ax ,=⋅βσd d m b则①02sin =β,有β=0或 90代入m ax ,b σ中,β=0时, mb 3max ,2σσ= 或 0 β= 90时,mb 1max ,2σσ=或0. 共四个可能极值,与σ1平行或垂直的裂隙.②将)(22cos 3131σσσσβ+-=代入 m ax ,b σ中,共有两个极值,即与σ1斜交裂隙中有两个方向裂隙的切向应力达极值.因为β=0或 90时,12cos =β或-1.因此,与σ1斜交时,必须β≠0或 90, 即 12cos <β 时 才是与σ1斜交,则要求或 0331>+σσ此时,裂隙的最大拉应力为(*)如果0331<+σσ, 则1)(23131>+-σσσσ,则3σ必为负值(拉应力)此时由12cos ≥β推出12cos =β,即β为0或90°,表明裂隙与σ1平行或正交.因为03<σ,考查β=0, 90的极值,则3max ,2σσ=b m (**) 为最大拉应力.式(*)(**)即为岩石中的m ax ,b m σ达到某一临界值时就会产生破坏. 为了 确定米值,做单轴抗拉试验,使σ3垂直裂隙面(椭圆长轴),则这时的t R -=3σ 推出 t b R m 2max ,-=σ 这说明裂隙边壁最大应力m ax ,b m σ与米乘积必须满足的关系.此时,格菲思强度理论的破坏准则为:I. 由(**)式,,t b R m 2max ,-=σ, 则 322σ=-t RII. 由(*)式,代入 t b R m 2max ,-=σ, 则有:等于0,处于极限状态; 大于0, 破坏; 小于0, 稳定.上面的准则是用σ1、σ3表示的,也可用y σ,xy τ表示 将t b R m 2max ,-=σ 代入 )(122max ,xy y y b mτσσσ+±=中, 222xyy y t R τσσ+±=- 推出:t y xy y R 222+=+±στσ,22224)2(t y t y xy y R R +=+=+σστσ 在0<σ时的包线更接近实际.7、修正的格里菲思理论格里菲思理论是以张开裂隙为前提的,如果压应力占优势时裂隙会发生闭合,压力会从裂隙一边壁传递到另一边,从而缝面间将产生摩擦,这种情况下,裂隙的发展就与张开裂隙的情况不同.麦克林托克(米eclintock)考虑了这一影响,对格里菲思理论进行了修正.麦克林托克认为,在压缩应力场中,当裂缝在压应力作用下闭合时,闭合后的裂缝在全长上均匀接触,并能传递正应力和剪应力.由于均匀闭合,正应力在裂纹端部不产生应力集中,只有剪应力才能引起缝端的应力集中.这样,可假定裂纹面在二向应力条件下,裂纹面呈纯剪破坏.其强度曲线如图.由图可知 OC =c τBD=)(2131σσ-(半径)OD=)(2131σσ+(圆心)EB=τ, OE=σ,ED=OD-OE=)(2131σσ+-σAB=EB ϕcos ⋅=ϕτcos ⋅ϕsin ⋅=ED DA =ϕσϕσσsin sin )(2131⋅-+由 AB=BD-AD,可推出式中,摩擦系数ϕtg f =另外,推出tyt xy R R στ+=12取y σ为c σ,裂隙面上的压应力,则有②当c σ很小时,取c σ=0时(勃雷斯Brace)=t R 4当时c σ<0时(拉应力),上两式不适用.低应力时,格里菲思与修正的格里菲思理论较为接近,高应力时差别大(当σ3>0时).8、伦特堡(Lundborg)理论定限度,于晶体破坏,大抗剪强度.的破坏状态:σ,τ——研究点的正应力和剪应力(米Pa)τ——当没有正应力时(σ=0)岩石的抗切强度(米Pa)i τ——岩石晶体的极限抗切强度(米Pa)A ——系数,与岩石种类有关.当岩石内的剪应力τ和正应力σ达到上述关系时,岩石就发生破坏.式中的τ实际上是代表最大的剪应力,因而是强度.上式中的0τ,i τ,A 由试验确定,见P55表3-5.9、经验破坏准则现行的破坏理论并不能全面的解释岩石的破坏性态,只能对某一方面的岩石性态做出合理的解释,但对其它方面就解释不通.因此,许多研究者在探求经验准则,目前应用较多的经验破坏准则为霍克(Hoke)和布朗(Brown)经验破坏准则.①Hoke和Brown发现,大多数岩石材料(完整岩块)的三轴压缩试验破坏时的主应力之间可用下列方程式描述:R c—完整岩石单轴抗压强度(米Pa); 米—与岩石类型有关的系数米值是根据岩石的完整程度,结晶及胶结情况,通过大量试验结果及经验而确定的.岩石完整、结晶或胶结好,米值就越大,最大的为25.②对于岩体,Hoke和Brown建议:米和S——常数,取决于岩石的性质以及在承受破坏应力σ1和σ3以前岩石扰动或损伤的程度.完整岩块S=1,岩石极差时S=0.当取σ3=0时,可得到岩体的单轴抗压强度:由于s =0~1,则c cm R R ≤ 如果令σ1=0,则得到岩体的单轴抗拉强度.从R厘米和R t 米中可看出,当S=1时,R 厘米=R c 为完整岩块,当S=0时,R t 米=R 厘米=0为完全破损的岩石.因此,处于完整岩石和完全破损岩石之间的岩体,其S 值在1~0之间.。

岩石力学6章(中)

岩石力学6章(中)

剪 裂 面 外 法 线 方 向 与 最 大 主 应 力 (maximum 之间的夹角可以从图6 中看出: principal stress)σ 1之间的夹角可以从图6-2中看出:
2θ = 90 + ϕ
o
θ = 45 +
o
ϕ
2
三、库伦一纳维尔破坏准则的第二种表示方法
库伦一纳维尔破坏准则也可采用主应力 1 σ 来表示, σ 、3 来表示, 剪裂面上应力与主应力关系如图6 所示,剪裂面上应力为: 剪裂面上应力与主应力关系如图6-3所示,剪裂面上应力为:
1 1 σ n = (σ 1 + σ 3 ) + (σ 1 − σ 3 ) cos 2θ 2 2 1 τ f = (σ 1 − σ 3 )sin 2θ 2
σ1
σn τ
b
σ3
σ3
a
θ
σ1
图6-3 剪裂面上应力与主应力关系
将它们代入库伦一纳维尔破坏准则表达式中: 将它们代入库伦一纳维尔破坏准则表达式中: 库伦一纳维尔破坏准则表达式中
n
剪切面上的正应 f = tg ϕ 。
取σ、τ 为直角坐标 系的横轴、 系的横轴、 纵轴, 纵轴,则上 式为一直线 方程。 方程。如图 6-1所示。 所示。
图6-1
库伦一纳维尔破坏准则示意图
随着最大主应力的增大,岩石逐渐达到破坏条件。 随着最大主应力的增大,岩石逐渐达到破坏条件。 如图6 如图6-2所示: 所示:
1 + sin ϕ 1 + sin ϕ σ1 = σ 3 ⋅ + 2τ 0 1 − sin ϕ 1 − sin ϕ
根据三角恒等式: 根据三角恒等式:
1 + sin ϕ ϕ 2 o = tg 45 + 1 − sin ϕ 2

岩石破坏机理及节理裂隙分布尺度效应的非线性动力学分析与应用

岩石破坏机理及节理裂隙分布尺度效应的非线性动力学分析与应用

岩石破坏机理及节理裂隙分布尺度效应的非线性动力学分析与应用概述:岩石破坏机理及节理裂隙分布尺度效应是岩石力学领域的核心问题之一、在实际工程中,岩石的破坏是一个非线性、复杂的过程,其研究对于地下开挖、土木工程、地震等都具有重要的意义。

本文将围绕岩石破坏机理和节理裂隙分布尺度效应展开非线性动力学分析与应用的研究。

一、岩石破坏机理研究1.岩石力学模型:岩石的力学性质是岩石破坏机理的基础。

研究岩石的本构模型和损伤模型,了解岩石在受力过程中的行为特点,对于预测岩石的破坏行为具有重要意义。

2. 破坏准则:破坏准则是判断岩石破坏的标志,研究岩石的破坏准则可以为实际工程提供指导。

常用的破坏准则有Mohr-Coulomb准则、Drucker-Prager准则、Hoek-Brown准则等。

3.破坏模式:不同的岩石在受力过程中会出现不同的破坏模式,如拉伸破坏、压缩破坏、剪切破坏等。

研究岩石的破坏模式可以提供关于岩石破坏机理的重要信息。

二、节理裂隙分布尺度效应研究1.节理裂隙尺度效应:岩石中存在着不同尺度的节理裂隙,研究节理裂隙的尺度效应可以帮助理解节理对岩石破坏的影响。

不同尺度的节理裂隙对岩石的强度和变形特性有不同影响,研究这种尺度效应对于评估岩石的可靠性和稳定性具有重要意义。

2.节理裂隙分布特征:节理裂隙的分布特征是确定岩石破坏性质的重要因素。

研究节理裂隙的分布特征可以为预测岩石破坏的范围和程度提供参考。

3.节理裂隙对破坏机理的影响:节理裂隙通常会导致岩石的非均匀变形和应力集中。

研究节理裂隙对岩石破坏机理的影响可以揭示节理裂隙与岩石破坏机理之间的关系。

非线性动力学分析是研究岩石破坏过程中非线性动力学行为的重要手段。

通过建立非线性动力学模型,可以模拟并预测岩石在受力过程中的破坏行为。

1.数值模拟方法:利用计算机仿真方法,建立岩石的非线性动力学模型,并通过数值计算手段研究岩石破坏的过程和机理。

2.实验研究:通过实验手段,对岩石的破坏行为进行直接观测和测量,验证非线性动力学模型的准确性,并提供实际工程的参考依据。

高围压条件下岩石破坏特征及强度准则研究

高围压条件下岩石破坏特征及强度准则研究

高围压条件下岩石破坏特征及强度准则研究随着地下开采和工程建设的不断深入,研究岩石高围压条件下的破坏特征和强度准则成为了一个热门话题。

在这篇论文中,我们将对此进行探讨。

一、背景在高围压条件下,岩石的变形和破坏行为与常压条件下有很大的不同。

这不仅影响到开采和地下工程的安全性,也对地下水、矿物等的开发利用产生了影响。

因此,研究高围压条件下岩石的破坏特征和强度准则具有非常重要的意义。

二、高围压条件下岩石破坏特征在高围压条件下,岩石的变形和破坏过程一般可分为三个阶段。

1. 前期变形阶段在高围压条件下,岩石在承受载荷后,表现出的是体积不变的显著挤压变形。

这是由于岩石的弹性变形引起的,而弹性模量与应力有关系,所以在高应力状态下,岩石的弹性模量变小,岩石表现出的弹性变形要小于在常压状态下表现出的弹性变形。

2. 稳定变形阶段随着承受载荷的增加,岩石开始发生不可逆的变形,即塑性变形。

在这个阶段,稳定的集中性裂隙会产生,并在岩石内扩展和连接起来,岩石开始失去强度,产生剪切破坏。

岩石的初始破断可以发生在这个阶段。

3. 加速失稳阶段这个阶段是岩石破坏的最终阶段,称为剪切破断阶段。

在这个阶段,裂隙网络不断扩展,岩石的剪切破坏加速,直到完全破坏为止。

三、高围压条件下岩石强度准则在常压条件下,岩石的强度主要是由抗拉强度和抗压强度组成。

但在高围压条件下,岩石的强度和破坏特征则更加复杂。

因为高围压下,岩石的力学行为是非线性的、多因素的、动态的。

因此,在高围压条件下,研究岩石的强度变化和破坏特征,需要采用更加严谨规范和细致的方法。

1. Mohr-Coulomb准则Mohr-Coulomb准则是最常用的岩石强度准则之一。

该准则认为,岩石的强度主要是由摩擦角和内聚力两个参数确定的。

当岩石受到剪切应力时,只有当应力状态超越摩擦角和内聚力所描述的应力半圆区域,岩石才会发生破坏。

2. Hoek-Brown准则Hoek-Brown准则是一种完整的岩石强度准则,比Mohr-Coulomb 准则更加普遍有效。

岩石的破坏准则

岩石的破坏准则
为研究等倾面上的应力,取一由等倾面与三个主应力面围成的四面 体来研究。
N与x、y、z的夹角分别为,且 。 设:,, 则有 设等倾面ABC面积为S,则三个主应力面(,,面)的面积分别为 根据力的平衡条件 , , 推出:,
而 等倾面S上合力: 所以: 另,等倾面S上的法向应力为各分力px、py、pz在N上的投影之和, 即
该值为 直线在轴上的截距,但与实测的Rt有差别,需对<0时的直线段 进行修正。
岩石破坏的判断条件: , 破坏
, 极限 ,稳定
6、格里菲思(Griffith)理论
以上各理论都是把材料看作为连续的均匀介质,格里菲思则认为: 当岩石中存在许多细微裂隙,在力的作用下,在缝端产生应力集中,岩 石的破坏往往从缝端开始,裂缝扩展,最后导致破坏。
由于s=0~1,则 如果令σ1=0,则得到岩体的单轴抗拉强度。 从Rcm和Rtm中可看出,当S=1时,Rcm=Rc为完整岩块,当S=0时, Rtm=Rcm=0为完全破损的岩石。因此,处于完整岩石和完全破损岩石 之间的岩体,其S值在1~0之间。
根据几何关系, ,得出 代入中,得到 另由公式推导:将1、3表示的 和 代入中,导出 或 对求导, 推出: 破坏面与最大主应力面的夹角 而与最大主应力方向的夹角
为)
2).用主应力1、3表达的强度准则 将 和 的表达式代入 中,
利用关系: 化简得: 当3=0时(单轴压缩):,
令,则, 当1=0时(单轴抗拉):
或写成 破坏 稳定
这个理论适用于塑性岩石,不适用于脆性岩石。 该理论未考虑中间主应力的影响。
4、八面体剪应力理论(Von.Mises)
该理论认为岩石达到危险状态取决于八面体剪应力。其破坏准则为
已知单元体三个主应力,, ,取坐标系平行于主应力。作一等倾 面(其法线N与三个坐标轴夹角相同)。八个象限的等倾面构成一个封 闭的正八面体,此八面体上剪应力和法向应力即为八面体应力。

试证明岩石力学mc准则

试证明岩石力学mc准则

试证明岩石力学mc准则
岩石力学中的Mohr-Coulomb准则(简称MC准则)是用来描述岩石在破坏时的应力状态的理论模型。

MC准则假设岩石的破坏是由于剪切应力超过了岩石材料的内聚力而发生的。

具体来说,MC准则假定岩石材料的内聚力是一个与正应力状态相关的函数。

这个函数在应力空间中可以用一条线段来表示,称为正应力线段,其斜率为内摩擦角。

MC准则定义了岩石破坏的极限条件,即剪切应力与正应力之间的关系。

根据MC准则,当岩石体内部的剪切应力超过正应力与摩擦力乘积时,岩石会发生破坏。

这个关系可以用下面的不等式来表示:
τ = σ * tan(φ)
其中,τ是岩石的剪切应力,σ是岩石的正应力,φ是岩石的内摩擦角。

几种岩石屈服准则

几种岩石屈服准则

Mohr- Coulomb 强度准则评价优点•同时考虑了拉剪和压剪应力状态;可判断破坏面的方向。

•强度曲线向压区开放,说明与岩石力学性质符合。

•强度曲线倾斜向上说明抗剪强度与压应力成正比。

•受拉区闭合,说明受三向等拉应力时岩石破坏;受压区开放,说明三向等压应力不破坏。

不足•库仑准则是建立在实验基础上的破坏判据,未从破裂机制上作出解释。

•忽略了中间主应力的影响(中间主应力对强度影响在15%左右)。

•库仑准则和莫尔准则都是以剪切破坏作为其物理机理,但是岩石试验证明:岩石破坏存在着大量的微破裂,这些微破裂是张拉破坏而不是剪切破坏。

•莫尔—库仑准则适用于低围压的情况。

Griffith 强度准则评价:优点:•岩石抗压强度为抗拉强度的8倍,反映了岩石的真实情况;•证明了岩石在任何应力状态下都是由于拉伸引起破坏;•指出微裂隙延展方向最终与最大主应力方向一致。

不足:•仅适用于脆性岩石,对一般岩石,莫尔强度准则适用性远大于Griffith准则。

•对裂隙被压闭合,抗剪强度增高解释不够。

•Griffith准则是岩石微裂隙扩展的条件,并非宏观破坏。

扩容:岩石在压力下,发生非线性体积膨胀的现象称为扩容。

•扩容是由于岩石试件内细微裂隙的形成和扩张所致,这种裂隙的长轴与最大主应力的方向是平行的。

(a)马克斯威尔(Maxwell)模型•由弹性单元和粘性单元串联而成•本构方程松弛曲线§6.4 岩石边坡加固6.4.1 注浆加固6.4.2 锚杆或预应力锚索加固6.4.3 混凝土挡墙或支墩加固6.4.4 挡墙与锚杆相结合的加固。

基于能量耗散与释放原理的岩石强度与整体破坏准则

基于能量耗散与释放原理的岩石强度与整体破坏准则

基于能量耗散与释放原理的岩石强度与整体破坏准则一、本文概述本文旨在探讨基于能量耗散与释放原理的岩石强度与整体破坏准则。

通过对岩石在受力过程中的能量转化和耗散机制进行深入分析,揭示岩石强度与破坏行为的内在关系。

文章首先介绍岩石强度和破坏准则的重要性,阐述现有研究的不足之处,进而引出基于能量耗散与释放原理的研究思路。

接着,文章将详细介绍能量耗散与释放原理在岩石力学中的应用,包括能量耗散率的定义、计算方法及其在岩石强度评估中的应用。

在此基础上,文章将提出一种基于能量耗散与释放原理的岩石整体破坏准则,为岩石工程的稳定性分析和灾害预防提供新的理论依据。

文章将总结研究成果,并指出未来研究方向和应用前景。

通过本文的研究,有望为岩石力学领域的发展提供新的思路和方法,促进岩石工程的安全与可持续发展。

二、岩石受力过程中的能量变化岩石在受力过程中,其内部微观结构、应力分布和能量状态都会发生显著变化。

这些变化不仅反映了岩石的力学特性,更揭示了其破坏的机理。

基于能量耗散与释放原理,我们可以对岩石受力过程中的能量变化进行深入分析。

当岩石受到外部载荷作用时,其内部会产生弹性应变能。

这是因为岩石在弹性变形阶段,内部微观结构通过弹性力场的作用来抵抗外部载荷,储存了弹性应变能。

随着载荷的增加,岩石内部的应力分布逐渐达到其强度极限,此时弹性应变能达到最大值。

当岩石达到强度极限后,其内部开始发生塑性变形和微裂纹的扩展。

这个阶段,岩石通过塑性变形和微裂纹的扩展来耗散弹性应变能,转化为热能、声能等其他形式的能量。

这个过程是能量耗散的主要阶段,它决定了岩石破坏的形式和程度。

随着塑性变形和微裂纹的进一步扩展,岩石的整体结构逐渐失去稳定性,最终发生破坏。

在破坏过程中,岩石内部储存的弹性应变能迅速释放,产生强烈的冲击波和声波,这是能量释放的主要阶段。

破坏过程中产生的碎片和粉末也会带走一部分能量。

通过对岩石受力过程中能量变化的分析,我们可以发现能量耗散与释放原理在岩石破坏中起着决定性作用。

岩石破坏德鲁克_普拉格准则的探讨

岩石破坏德鲁克_普拉格准则的探讨

3.1 修正的德鲁克—普拉格 (Drucker-Prager) 准则与 (Drucker-
Prager)准 则 一 样 ,同 时 考 虑 了 体 积 应 力 ,剪 应 力 以 及 中 间 主 应 力 对 岩
石强度的影响,并且表明岩石强度随最小主应力而变化;
3.2Drucker-Prager 准则明显趋于保守 , 修正后 的 Drucker-Prager
2009 年 第 7 期
岩石破坏德鲁克—普拉格准则的探讨
王建军 (中铁隧道集团二处有限公司 中国 北京 065201)
【摘 要】岩石的强度理论,反映了岩石在复杂应力状态下的破坏法则,它与岩石的破坏机理密切相关。 强度理论,不仅要能解释岩石破坏 的原因、破坏的形态,而且要能确定岩石破坏时的应力状态或变形状态.目前的强度理论则多数是从应力的观点来考察材料破坏的.本文就德鲁 克—普拉格准则进行探讨。
应 变 等 价 性 假 说 [1], 可 以 建 立 岩 石 损 伤 本 构 关 系 :
*σ* ;= ; σ ;(1-D)= ; C ; ; ε ;(1-D) (2)
; ; 式中: ; C ; 为岩石材料弹性矩阵;
*
σ
为有效应力矩阵; ; σ ; 为名
义应力矩阵; ; ε ; 为应变矩阵;D 为岩石损伤变量[2,3,4],定义为:
* 12 *
根据以上两式可得:αI1 +J2 =F (1-D) (9)
将 式 (8 ) 和 (9 ) 可 得 :
坠D
*

1-D
*
(10)
坠F F
*
将上式进行积分,可得 F (1-D)=g(F0 ,S0 ) (11)
* 12
将(9)式代入(12)式可得:αI1 +J2 =g(F0 ,S0 ) (12)

岩石破坏应变准则

岩石破坏应变准则

岩石破坏应变准则引言:岩石是地壳中的主要构成物质,其稳定性直接关系到地质工程的安全性和可持续发展。

岩石在受到外力作用下会发生破坏,因此研究岩石破坏的应变准则对于地质工程的设计和施工具有重要意义。

本文将介绍岩石破坏应变准则的基本概念、分类和应用。

一、岩石破坏应变准则的基本概念岩石破坏应变准则是指岩石在受到外力作用下发生破坏时,所表现出的应变规律和特征。

破坏应变准则是岩石力学研究的基础,它可以用来描述岩石的破坏过程和破坏特征,为工程实践提供理论依据。

二、岩石破坏应变准则的分类根据岩石破坏应变的特点和机制,岩石破坏应变准则可以分为以下几类:1. 弹性破坏准则弹性破坏准则是指岩石在受到外力作用下,当应力达到一定临界值时发生破坏,此时岩石的应变仍然处于弹性范围。

弹性破坏准则适用于岩石的强度较高,且具有较好的韧性的情况,如一些坚硬的岩石。

2. 弹塑性破坏准则弹塑性破坏准则是指岩石在受到外力作用下,当应力达到一定临界值时发生破坏,此时岩石的应变已经进入塑性范围。

弹塑性破坏准则适用于岩石的强度较低,具有较强的延展性和塑性变形能力的情况,如一些软弱的岩石。

3. 脆性破坏准则脆性破坏准则是指岩石在受到外力作用下,当应力达到一定临界值时发生破坏,此时岩石的应变表现为瞬时的破裂和断裂。

脆性破坏准则适用于岩石的强度较高,但缺乏韧性和延展性的情况,如一些脆性的岩石。

三、岩石破坏应变准则的应用岩石破坏应变准则在地质工程中具有广泛的应用价值,主要体现在以下几个方面:1. 工程设计岩石破坏应变准则可以用来评估岩石的破坏特征和破坏模式,为工程设计提供依据。

根据不同的岩石破坏应变准则,可以选择合适的工程方案和施工方法,以确保工程的安全性和可靠性。

2. 施工监测岩石破坏应变准则可以用来监测岩石的变形和破坏过程,及时发现和处理潜在的岩体稳定性问题。

通过对岩石破坏应变的监测和分析,可以采取相应的措施,防止岩体的进一步破坏,保证施工的顺利进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。

一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。

对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。

图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。

图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。

本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。

2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。

它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。

朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。

考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。

当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。

土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。

根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。

因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。

因此,朗肯强度破坏准则可以表示为:c σσ≥1,或者t σσ-≤3式中,1σ为岩石受到的最大主应力,MPa ;3σ为岩石受到的最小主应力,MPa ;c σ为岩石单轴抗压强度,MPa ;t σ为岩石抗拉强度,MPa 。

朗肯强度破坏准则只适用于岩石单向受力及脆性岩石在二维应力条件下的受拉状态,处于复杂应力状态中的岩石不能采用这种强度理论。

2.1.2最大正应变强度理论岩石受压时沿着平行于受力方向产生张性破裂。

因此,人们认为岩石的破坏取决于最大正应变,岩石发生张性破裂的原因是由于其最大正应变达到或超过一定的极限应变所致。

根据这个理论,只要岩石内任意方向上的正应变达到单轴压缩破坏或单轴拉伸破坏时的应变值,岩石便被破坏。

岩石强度条件可以表示为:m εε≤max (3)式中,m ax ε为岩石内发生的最大应变值,可用广义胡克定律求出;m ε为单向压缩或单向拉伸试验时岩石破坏的极限应变值,由实验求得。

对于三轴应力状态时:()[]321max 1σσμσε+-=E(4) 对单轴拉伸应力状态时:E1max σε=(5)试验证明,这种强度理论只适用于脆性岩石,不适用于岩石的塑性变形。

2.1.3最大剪应力强度理论最大剪应力张度理论也称为Tresca 强度准则,是研究塑性材料破坏过程中获得的强度理论。

试验表明,当材料发生屈服时,试件表面将出现大致与轴线呈45°夹角的斜破面。

由于最大剪应力出现在与试件轴线呈45°夹角的斜面上,所以,这些破裂面即为材料沿着该斜面发生剪切滑移的结果。

一般认为这种剪切滑移是材料塑性变形的根本原因。

因此,最大剪应力强度理论认为材料的破坏取决于最大剪应力。

当岩石承受的最大剪应力τmax 达到其单轴压缩或单轴拉伸极限剪应力τm 时,岩石便被剪切破坏。

当受力物体(质点)中的最大切应力达到某一定值时,该物体就发生屈服。

或者说,材料处于塑性状态时,其最大切应力是一不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。

Tresca 屈服准则认为当岩石中的最大剪应力达到单向压缩或拉伸时的危险值时,材料就达到危险状态。

该准则对于金属材料而言是近似正确的,但对于岩石材料而言则结果相差较大。

Tresca 准则是假定材料中最大剪应力达到某一特定值,材料就开始进入塑性状态。

其数学表达式为:max 2s Kστ==(6)或者max min 2s K σσσ-==(7)K 为材料屈服时的最大切应力值,也称剪切屈服强度。

若规定主应力大小顺序为123σσσ≥≥,则有:132K σσ-=(8)如果不知道主应力大小顺序时,则屈雷斯加屈服准则表达式为122331222s s s K K K σσσσσσσσσ-=±=±⎫⎪-=±=±⎬⎪-=±=±⎭(9) 左边为主应力之差,故又称主应力差不变条件。

式中三个式子只要满足一个,该点即进入塑性状态。

而从推导过程分析;Tresca 准则由于其假定材料内摩擦力为零(0φ=),因而在岩土工程设计中,其用于一些只有粘聚强度的纯粘性即(0φ=)的金属和岩石,效果会更好。

2.1.4Coulomb-Navier 准则Coulomb-Navier 准则认为岩石的破坏属于在正应力作用下的剪切破坏,它不仅与该剪切面上剪应力有关,而且与该面上的正应力有关。

所以岩石并不是沿着最大剪应力作用面发生破坏,而是沿着剪应力和正应力最不利组合的某一面产生破坏的。

其表达式为:tan C τσϕ=+(10)式中,ϕ为岩石材料的内摩擦角;σ为正应力;C 为岩石黏聚力。

在στ-坐标上它是一条直线。

如图2-2所示。

图2-2Coulomb-Navier 强度线及极限应力圆岩体中的正断层多陡倾,而逆断层的倾角多小于45°的地质现象。

利用图2-2所示的关系,可推导出:φφσφσsin 1)sin 1(cos 231-++=c (11)1)已知岩石中某一点的应力及剪切强度参数值,即可判断岩石破坏与否。

①左边>右边?岩石破坏;②左边=右边?岩石处于临界破坏状态; ③左边<右边?岩石不破坏。

2)当岩石在单向拉伸条件下破坏时,即10σ=,此时的单轴抗拉强度为:φφσσsin 1cos 23+-==c t (12)3)当岩石在单向压缩条件下破坏时,即30σ=,此时的单轴抗压强度为φφσσsin 1cos 21--==c c (13)Coulomb-Navier 准则是一种经验公式,它一般只适用于岩石材料的受压状态,对受拉不太适宜。

而且,该准则只考虑了最大和最小主应力对破坏的影响,并没有考虑中间主应力的影响。

2.1.5Mohr-Coulomb 破坏准则在岩土工程中,土体破坏准则应用最广泛的准则即为该准则。

该准则实质上也是一种剪应力屈服条件。

它认为当材料某平面上剪应力n τ达到一特定值时,材料就进入屈服阶段。

但是与Tresca 准则不同,这一特定值不是一个常数,而是和该平面上的正应力n σ有关。

其一般数学表达式为:(),,N n f C φστ=(14)当土体在法向应力不大的情况下,取线性关系,其破坏准则的表达式:1313sin cos 22C σσσσφφ-+=+(其中φ为内摩擦角,C 为粘聚力)令132N σσσ+=,又有13max 2σστ-=,则上式变为cos n tg C τφσφ=+;若φ值很小,则cos 1φ≈。

那么等式变为:n tg C τφσ=+(15)从上可以看出Mohr-Coulomb 准则没有考虑中主应力。

我们仍可以从上面的推导过程知道库仑公式的适用范围及其需要注意的地方。

在推导的第一步,先假定其为直线关系,而当法向应力很大时,其抗剪强度往往不成线性关系,而成曲线形式。

法向应力的增大对抗剪强度是有影响的,而库仑公式没有考虑这一影响。

其次在推导过程中假定内摩擦角φ很小,cos 1φ≈,这就造成计算值和真值之间有误差。

Mohr-Coulomb 准则推得:1cos ntg C τφσφ=+(16)而库伦定律:2n tg C φτσ=+(17)现我们把1τ叫真值,2τ叫计算值,可以看出计算值2τ比真值1τ大。

2.1.6八面体应力强度准则假定采用任一斜截面去截取正六面单元体,如图l(a)、图1(b)所示,采用材料力学或弹性力学的方法,则可推导出该斜截面上的最大切应力和主应力,即该截面与其中两个主应力轴成45°,亦即两个方向余弦为22±;而与另一个主应力轴平行,即方向余弦为0,则相应的应力分别记作双剪主切应力和双剪正应力,统称为双剪应力。

图1斜截面应力根据斜截面上的应力与主应力关系,则有:222123123l l l l σσσσ=++(18)l τ=(19) 由此,可得到正交八面单元体上双剪应力与主应力的关系:()1313131/2στσσ=±(20) ()1212121/2στσσ=±(21)()2323231/2στσσ=±(22)其张量表示为:()1/2ij ij i j στσσ=±(),1,2,3i j i j =≠(23)根据弹性理论,有:12383m σσσσσ++==(24)8τ=25)通过变换,等倾八面体应力与双剪应力的关系为:3311131223833ij i j i jσσσσσ==<∑∑++==(26)82233τ==(27) 八面体应力强度理论认为当八面体上剪应力τOCT 达到某一临界值时,材料便屈服或破坏。

冯-米塞斯(Von-Mises)认为,当八面体上的剪应力τOCT 达到单向受力至屈服时八面体上极限剪应力τs ,材料便屈服或破坏。

由冯-米塞斯强度条件τOCT=τs ,得()()()y σσσσσσσ3231213232221=-+-+-(28) 对于塑性材料,这个理论与试验结果很吻合。

在塑性力学中,这个理论称之为冯-米塞斯破坏条件,一直被广泛应用。

2.1.7Drucker-Prager 准则Drucker-Prager 强度准则是Von-Mises 准则的推广。

Von-Mises 准则认为,八面体剪应力或平面上的剪应力分量达到某一极限值时,材料开始屈服,在主应力空间,Mises 准则是正圆柱面,但岩石具有内摩擦性,因此,Drucker-Prager 强度准则在主应力空间是圆锥面,具体形式如下:2121J H H J =+(29)12313J σσσ++=(30)2J =(31)Drucker-Prager 强度准则计入了中间应力的作用,并考虑了静水压力对屈服过程的影响,能够反映剪切引起的膨胀(扩容)性质,在模拟岩石材料的弹塑性特征时,得到了广泛的应用,但是在进行数值计算时,H1、H2究竟选择何种形式,并无明确结论。

相关文档
最新文档