第十讲 稳定同位素地球化学

合集下载

稳定同位素PPT课件

稳定同位素PPT课件

已测定出矿物~水之间的待定常数 a、b
矿物~水
a
石英~水 3.38×106
碱长石~水 2.15 ×106
方解石~水 2.78 ×106
白云母~水 2.38 ×106
b 温度区间(oC) -3.40 200~500 -3.82 350~500 -3.40 0~800 -3.89 350~650
形成时,两共生矿物与一个公共流体相达成平衡,则两 个矿物的 δ18O 值之间存在一个平衡差,由此值可根据内 部计温法计算成岩温度。
例如:以石英、方解石共生矿物对为例: 1000 lnα石英-水=3.38×106T-2 -3.40 1000 lnα方解石-水=2.78×106T-2-3.40 则石英—方解石氧同位素温度计为: 1000 lnα石-方=(3.38-2.78)·(106T-2)+[ -3.40 -(-3.40)] 1000 lnα石-方=Δ石-方=0.60(106T-2) 外部测温法,可用来计算水介质的氢、氧同位素组成。其条件 是,当某矿物的氢、氧同位素组成及其形成温度是可知时,便可根 据有关方程,计算出介质水的氢、氧同位素组成: 1000 lnα矿物—水=δ18O矿—δ18O水=(α/T2)+b 其中δ18O矿、T已知,a、b是待定常数,则可计算出成矿溶液的 H、O同位素组成。
其结果是岩石中富集了18O,水中富集了16O。由于大部分 岩石中氢的含量很低,因此,在水~岩交换反应中氢同位素 成分变化不大。有实验证明,在含OH的矿物中,水-岩反应 结果使得矿物的δD增高。 原因:键强度
• 3.矿物晶格的化学键对氧同位素的选择 • 实验证明: • Si—O—Si键矿物18O最富; • Si—O—Al,Si—O—Mg,Si—O—Fe 其

稳定同位素地球化学-碳硫同位素

稳定同位素地球化学-碳硫同位素

氟化法
利用BrF5把Ag2S转变为SF6,特别用于测定δ33S和δ36S。
硫酸盐岩:
• • • 直接高温分解法
加入Cu2O或 V2O5与SiO2在1100 ºC分解硫酸盐,经Cu炉转变为SO2。
三酸还原法
用混合酸(HI+HCl+H3PO2)将硫酸盐还原为H2S,转化为Ag2S。
Kiba试剂还原法
用Kiba试剂(SnCl2+H3PO4)还原,获H2S,转化为Ag2S。提岩石全部硫。
辉钼矿 > 黄铁矿 > 闪锌矿 ≈ 磁黄铁矿 > H2S > 黄铜矿 > S ≈ HS- 铜蓝 > 方铅矿 > 辰砂 > 辉 铜矿 ≈ 辉锑矿 > 辉银矿 > S2-
• 蒸发岩(石膏)与海水SO42-之间和硫酸盐矿物 (如重晶石、石膏)之间分馏可以忽略不计。
沉积的石膏与溶液SO42-之间的同位素分馏在室温下仅 为1.65±0.12‰,相对现代海水+20‰值它们之间的差值是 可以不计的。
2)细菌厌氧发酵
细菌厌氧发酵过程产生CO2和CH4, 发酵造成的碳同位素分馏远比热解过程 大,其分馏系数 αCO2-CH4 = 1.025 ~ 1.060 温度增加分馏变小,高温时接近热解时 的分馏系数。
3)细菌还原硫酸盐(Bacterial Sulfate Reduction)
厌氧条件下硫酸盐还原细菌的还原作用是造成全 球硫循环的最重要的分馏作用。实验表明各类硫酸盐还 原细菌产生的直接同位素分馏在0~46‰之间,即分馏 系数为: αSO4-H2S = 1.000x ~ 1.046 分馏系数的大小与硫酸盐的浓度有关(Canfield and Teske, 1996)。
13C/12C
= 0.0112372 (Craig, 1957)

稳定同位素地球化学

稳定同位素地球化学



稳定同位素基础 稳定同位素分馏 同位素地质测温 稳定同位素各论(H、O、C、 S、N)
二. 稳定同位素基础
1.基本概念: 1.1 同位素 1.2 同位素分类 放射性同位素 稳定同位素:无可测放射性的同位素。 其中一部分是放射性同位素衰变的最终 稳定产物,称之为放射成因同位素。另 一部分是天然的稳定同位素,即自核合 成以来就保持稳定的同位素。
大气降水线
地热水
岩浆侵入浅部地 壳加热围岩和水 导致水-岩相互 作用; 中性、“氯化物” 地热水H同位素组 成与当地大气降水 类似,但18O值升 高; 酸性富硫的地热 水H和O同位素组 成均不同于当地大 气降水.
氧 同 位 素 和 矿 床
火成岩
• 绝大多数火成岩的18O变化范围为 5~15‰,D范围为-40~-100‰。一般来 说, 18O值随SiO2含量增加而增加。
影响植物碳同位素分馏的内在因素
C3循环(Calvin循环)

羧化过程动力学分馏,陆地植物(-29.4 ‰),细菌(-20 ‰)
稳定同位素地球化学发展
• 自H. Urey发表“The Thermodynamic Properties of Isotopic Substances”以来的 五十年间是稳定同位素地球化学的重要 发展阶段 • 稳定同位素地球化学和放射成因同位素 地球化学成为地球化学甚至地球科学的 重要组成部分 • 稳定同位素地球化学的基本理论及其在 地球科学中的应用
• • • (a) 光合作用: 6CO2+11H2OC6H22O11+6O2 三步: 植物从大气中优先吸收12CO2,使之溶解于细 胞质中; (b) 溶解在细胞质中的12CO2通过酶的作用优先 转移到磷酸甘油酸中,使残余的CO2富集13C, 这些重CO2在呼吸作用中排出; (c) 植物磷酸甘油酸合成各种有机组分时进一步 分馏。

21-23稳定同位素地球化学

21-23稳定同位素地球化学
Element Notation
Hydrogen Lithium Boron Carbon Nitrogen Oxygen Sulfur δ D δ 6Li δ δ δ δ δ δ
11 6
Ratio
D/H(2H/1H) li/7Li B/10B C/12C N/14N O/16O O/16O S/32S
18 18 216 1/3C16O2+ H O ƒ 1/3C O + H 3 2 3 2 O
α=1.0492
α=1.0286
反应使岩石中富集了18O、而在水中富集16O。由于大 部分岩石中氢的含量很低,因此水岩同位素交换反应 中氢同位素成分变化不大,但在含OH-的矿物中,水 岩反应结果使得矿物的δD增高。
1000ln A 10 / T B
6 2
α是分馏系数;T是绝对温度;A、B是常数,由实验 确定。从上式可知,温度越高,分馏越小;温度越低, 分馏越大。 在实际进行同位素地质温度测定时,只要测定两个共 生矿物的同位素组成,便可根据公式进行同位素平衡 温度计算。
稳定同位素地球化学
例子:含石英、白云母和磁铁矿的花岗片麻岩
H-O同位素地球化学
(3) 矿物晶格化学键 对氧同位素的选择 当火成岩和变质岩 达到氧同位素平衡时, 岩石中矿物氧同位素 有一个相应的分馏次 序,其中Si-O-Si键的 矿物中最富18O,其 次为Si-O-Al键、SiO-Mg键等。
H-O同位素地球化学
云和沉积物五个库间进行。
H-O同位素地球化学
1.H-O同位素的分馏 (1)蒸发-凝聚分馏: 水在蒸发过程中轻水分子H216O比重水分子D218O易于富 集在蒸汽相中,而凝聚作用相反,重的水分子优先凝结。 因此在气、液相之间发生H、O同位素的物理分馏。 由于水分子经过反复多次蒸发-凝聚过程使得内陆及高纬

稳定同位素在地质上的应用PPT课件

稳定同位素在地质上的应用PPT课件

No Image
第45页/共67页
No
Image
例如:以石英、方解石共生矿物对为例:
第46页/共78页
1000 lnα石英-水=3.38×106T-2 -3.40 1000 lnα方解石-水=2.78×106T-2-3.40 则石英—方解石氧同位素温度计为:
1000 lnα石-方=(3.38-2.78)·(106T-2)+[ -3.40 -(-3.40)] 1000 lnα石-方=Δ石-方=0.60(106T-2) 外部测温法,可用来计算水介质的氢、氧同位素组成。其条件是,
3、制备成质谱分析气体样品,化合物的另一组要有恒定的同位素组成, C要恒定。
CO2中测氧,
4、要求定量地制备出一种纯气体。
5、原始样品要有足够的纯度。
第16页/共67页
§3.2 同位素标准
为了使同位素资料便于对比,同时消除样品分析过程中有可能的系统误差,必须将样品的同位素组 成与某一相应标准物质的同位素组成进行比较,水 石英~水 碱长石~水 方解石~水 白云母~水
a
b
3.38×106
2.15 ×106
2.78 ×106
2.38 ×106
温度区间(oC) -3.40 200~500 -3.82 350~500 -3.40 0~800 -3.89 350~650
形成时,两共生矿物与一个公共流体相达成平衡,则两 个矿物的 δ18O 值之间存在一个平衡差,由此值可根据内 部计温法计算成岩温度。
103lnαA-B =(A1— A2)(106T-2)+ (B1—B2)
第33页/共67页
矿床的同位素组成
• 水是成矿溶液的主要成份,查明水的成因,是任何成矿理论首先必须解 决的问题,利用H、O同位素比值能够明确断定成矿溶液中水的来源和 蚀变溶液的成因,测定矿石矿物和脉石矿物的S、C的来源, 共生矿物 可以测温。

稳定同位素地球化学

稳定同位素地球化学

地球化学→地球科学问题(I)
➢ 陨石化学研究,了解地球和太阳系的形成; ➢ 确定地质时间; ➢ 确定岩浆房的深度和温度; ➢ 发现地幔柱; ➢ 沉积物可以俯冲进入地幔; ➢ 确定不同类型变质岩的形成温度和压力; ➢ 确定造山带上升的程度和速度以及剥蚀速率; ➢ 确定地壳形成时间和方式; ➢ 确定大气形成时间和演化方式; ➢ 了解地幔对流; ➢ 了解冰期的寒冷程度及其成因; ➢ 38亿年前早期生命的化学证据.
地球化学→地球科学问题(II)
➢寻找火星生命; ➢探索其它行星(金星,火星,木星); ➢环境科学和环境问题(酸雨,臭氧空洞;
温室效应和全球变暖;水和土壤污染等); ➢不可再生资源(如金属矿床和石油); ➢寻找新的矿产资源。
原文:
''When, however, the geologist advances further, and desires to study something more than the mere external forms and physical characters of the materials of which our globe is built up, he is compelled to call in the aid of chemistry, for it is by chemical science alone that he can be enabled to demonstrate the true nature of these materials, to explain their formation or origin, or to discover the causes which have produced the changes or alterations which they have already experienced, or which they may now be undergoing.''

同位素地球化学PPT课件

同位素地球化学PPT课件

32
1)轻稳定同位素
A. 原子量小,同一元素的各同位素间
的相对质量差异较大(ΔA/A≧5%);
B. 轻同位素组成变化的主要原因是同
位素分馏作用造成的,其反应是可逆的。
2019/7/3
第五章 同位素地球化学Ⅰ
33
2)重稳定同位素
A. 原子量大,同一元素的各同位素间的相
对质量差异小(ΔA/A=0.7~1.2%),环境 的物理和化学条件的变化通常不导致重稳 定同位素组成的改变;
526262621放射性同位素衰变定律及同位素地质年代学原理622kar法及40ar39ar法年龄测定623rbsr法年龄测定624smnd法年龄测定625upb法年龄测定53621621同位素地质年代学的基本原理前提及分类541放射性原子释放出粒子和能量的现象即所谓的放2放射性衰变元素的原子核自发地发出粒子和释放能量而变成另一种原子核的过程
2019/7/3
第五章 同位素地球化学Ⅰ
11
5. 同位素地球化学发展现状
同位素地球化学发展迅速,已渗透到地 球科学的各个研究领域,如:大地构造 学、岩石学、矿床学、海洋学、环境科 学、空间科学等。
主要表现在以下方面:
♣ 实验测试技术不断完善和提高; ♣ 多元同位素体系的综合研究; ♣ 研究领域不断扩大; ♣ 各种新方法的出现 。
28
② 类型
1)放射性同位素(unstable or radioactive isotope)
其原子核是不稳定的,它们能自发地放出粒子并衰变成 另一种同位素。
2)稳定同位素(stable isotope)
原子核是稳定的,或者其原子核的变化不能被觉察。 元素周期表中,原子序数相同,原子质量不同,化学性

稳定性同位素地球化学

稳定性同位素地球化学
地球化学
授课教师:李净红 武汉工程科技学院
第六章 稳定性同位素地球化学 1 稳定性同位素的基本理论 2 H-O稳定同位素 3 C稳定同位素 4 S稳定同位素
一、稳定同位素的基本理论
基本概念与分类
z 稳定同位素概念
不 具 有 放 射 性 的 同 位 素 称 为 稳 定 同 位 素 ( Stable Isotope)。
z 同位素效应
由不同的同位素组成的分子之间存在相对质量差,从 而引起该分子在物理和化学性质上的差异,称为同位 素效应(isotope effect)。
一、稳定同位素的基本理论
基本概念与分类
z 同位素分馏
同位素分馏(isotope fractionation)是指在一系统 中,某元素的同位素以不同的比值分配到两种物质或 物相中的现象。
这两个标准的氢、氧同位素组成分别为: δDVSMOW=0‰,δ18OVSMOW=0‰ δDslap=-428‰,δ18OSLAP=-55.50‰
一、稳定同位素的基本理论
基本概念与分类
z 同位素标准
H-O同位素
氧同位素标准SMOW居于全球氧同位素变异范围的 中间,
SMOW作为氢同位素标准时则位于“重”的一端,大 部分岩石、矿物和天然水的δD< 0 ‰。
一、稳定同位素的基本理论
基本概念与分类
z 分馏值Δ与分馏系数的转换
根据分馏系数的定义,则有:
α A−B = RA / RB
α A−B
=
1+δA 1+δB
/1000 /1000
=
1000 + δ A 1000 + δ B
Δ A−B =(RA / RB −1)×1000 =(α A−B −1)×1000

地球化学第六章 同位素地球化学-稳定同位素

地球化学第六章 同位素地球化学-稳定同位素

第六章同位素地球化学——稳定同位素第一节基本概念一、同位素的定义核素:是由一定数量的质子(P)和中子(N)构成的原子核。

核素具有质量、电荷、能量、放射性和丰度5中主要性质。

元素:具有相同质子数和中子数的核素.同位素:原子核内质子数相同而中子数不同的一类原子叫做同位素(isotope),他们处在周期表上的同一位置二、同位素的分类– 放射性同位素(radioactive isotope):原子核是不稳定的,它们能够白发地衰变成其他的同位素。

最终衰变为稳定的放射性成因同位素。

目前已知的放射性同位素达1200种左右,由于大部分放射性同位素的半衰期较短,目前已知自然界中存在的天然放射性同位素只有60种左右。

放射性同位素例子:238U→234Th+4He(α)+Q→206Pb;235U→207Pb;232Th→208Pb– 稳定同位素(stable isotope):原子核是稳定的,迄今还未发现它们能够自发衰变形成其他的同位素。

自然界中共有1700余种同位素,其中稳定同位素有260余种。

z轻稳定同位素,又称天然的稳定同位素,是核合成以来就保持稳定。

其特点是①原子量小,同—元素的各同位素间的相对质量差异较大;②轻稳定同位素变化主要原因是同位素分馏作用所造成的,其反应是可逆的。

如氢同位素(1H和2H)、氧同位素(16O和18O)、碳同位素(12C和13C)等。

z重稳定同位素,又称放射成因同位素(radiogenic isotope):稳定同位素中部分是由放射性同位素通过衰变后形成的稳定产物。

其特点是①原子量大,同—元素的各同位素间的相对质量差异小(0.7%~1.2%)环境的物理和化学条件的变化通常不导致重稳定同位素组成改变;②重稳定同位素变化主要原因是放射性同位素衰败引起,这种变化是单向的不可逆的。

如87Sr是由放射性同位素87Rb衰变而来的;三、同位素的丰度和原子量1.同位素丰度(isotope abundance) :可分为绝对丰度和相对丰度绝对丰度是指某一同位素在所有各种稳定同位素总量中的相对份额,常以该同位素与1H(取1H=1012)或28Si(取28Si=106)的比值表示。

化学地层学-稳定同位素

化学地层学-稳定同位素

2011-7-20
Wang X.L.
3
利用宇宙事件所造成的沉积物内铱含量的 增大等进行事件地层划分和对比; 增大等进行事件地层划分和对比;也可利 用不同地质时代化学元素含量的变化, 用不同地质时代化学元素含量的变化,推 断地球化学环境演变的规律, 断地球化学环境演变的规律,等。 化学地层学已在地层界线层型剖面的研究 中得到广泛的应用。 中得到广泛的应用。
2011-7-20
Wang X.L.
11
因而, 因而,当: δ>0,表示样品中重同位素比标准富集; > ,表示样品中重同位素比标准富集; δ<0,表示样品中重同位素比标准亏损。 < ,表示样品中重同位素比标准亏损。 实际应用中, 值就是物质同位素组成的代 实际应用中,δ值就是物质同位素组成的代 名词。 名词。
2011-7-20 Wang X.L. 19
在古气候研究中也可用碳酸盐氧同位素 标准: 标准: 其13C/12C=1123.72×10-5, × 18O/16O=2067.1×10-6 × 根据定义, 根据定义,其δ13C=0,相对 ,相对SMOW,其 , δ18O=30.86‰。 = 。
2011-7-20
化学地层学
马锦龙 兰州大学资源环境学院
2011-7-20 Wang X.L. 1
概念
化学地层学是地层学的一个新分支学科 和新兴的边缘学科, 和新兴的边缘学科,它是地球化学在地 层学中的具体应用, 层学中的具体应用,也是地球化学与地 层学综合研究的结果。 层学综合研究的结果。
2011-7-20
Wang X.L.
2011-7-20
Wang X.L.
10
R样——样品中某元素的同位素比值 样品中某元素的同位素比值 R标——指定标准中某元素的同位素比值 指定标准中某元素的同位素比值

稳定性同位素示踪法(优质PPT文档)

稳定性同位素示踪法(优质PPT文档)

质谱分析法
光谱分析法
2.同一元素的同位素具有相同的化学性质 需用Pyrex玻璃管(1cm Φ2mm)吸满样液,烘干后再放入放电管。
可进行放射性示踪法难以进行的实验。 10、N素损失率: 七.15N实验结果计算
进样过程
制样时注意:
3.同一元素的同位素之间存在质量差异 以下在质谱仪上进行
(3)离子峰的选择(14N和15N的峰比28N、29N小10倍,选28N、29N、30N)。 例:N素中T最长的13N:T=9. R回 = 已检出的Nf量 / Nf×100% (9)
2.同位素效应:藻类对14C、13C、12C的吸 收依次递减。
3.予测样品测定项目……
五、质谱和光谱测定15N原理
14N和15质量不同 质谱:把N2离子化为28N-N2,29N-N2 ,30N-N2 使其 在均匀磁场中发生不同角度偏转 2 光谱:28N-N2:谱线波长为2976.8埃
29N-N2:谱线波长为2982.9埃 30N-N2:谱线波长为2988.6埃
参考公式
af = Wp• Rp• ap/Nf• RN
式中: af:N素肥料的原子百分超 Wp:植物总重量(待测) ap:植物样品中原子百分超 Rp:植物样品中含N百分率
Nf:施纯N量 RN:N肥利用率
注意事项:
1.同位素交换反应:在一定条件下,标记 的铵盐可与大气发生反应:
15NH+4水溶液+14NH3→14NH+4水溶液+15NH3 15N丰度高时应注意。
核素 A(%) 质量数
14N 99.635
14
15N 0.365
15
注意:由于同位素之间的质量差异,因此 它们的物理、化学、生物化学等性质会有 所不同,进行实验时,需注意同位素效应。

2123稳定同位素地球化学

2123稳定同位素地球化学
为重同位素。
C16O32 3H 218O C18O32 3H 216O
(18O /16 O)CO32 /(18O /16 O)H2O
作用前后物质的化学组成未发生变化,只是两相之间同 位素相对丰度发生了变化,分馏强度受动力学因素控制
稳定同位素地球化学
稳定同位素地球化学
稳定同位素地球化学
稳定同位素地球化学研究自然体系中稳定同位素的组 成及其变化规律,属同位素地球化学的分支学科。
在自然作用过程中,同位素间的性质差异可导致同位 素分馏现象的发生,使得质量较轻的同位素在部分共存 物质相中富集,而质量较重的同位素在另外的物质相中 富集。轻重同位素间发生分馏可用来探讨地质作用过程 的物质来源和环境条件等问题。
CDT:美国亚利桑那州迪亚布洛铁陨石中的陨硫铁;
稳定同位素地球化学
3.同位素分馏系数 由于同位素质量不同,在各种地球化学过程中会引起 同位素在不同化合物和物相中的丰度变异,这种现象 称同位素分馏。分馏程度用分馏系数α表示:
RA / RB [w( A2) / w( A1)]/[w(B2) / w(B1)]
反应使岩石中富集了18O、而在水中富集16O。由于大 部分岩石中氢的含量很低,因此水岩同位素交换反应 中氢同位素成分变化不大,但在含OH-的矿物中,水 岩反应结果使得矿物的δD增高。
H-O同位素地球化学
(3) 矿物晶格化学键 对氧同位素的选择
当火成岩和变质岩 达到氧同位素平衡时, 岩石中矿物氧同位素 有一个相应的分馏次 序,其中Si-O-Si键的 矿物中最富18O,其 次为Si-O-Al键、SiO-Mg键等。
Absolute Ratio
1.557×10-4
0.08306
4.044 1.122×10-2 3.613×10-3 2.0052×10-3 3.76×10-4 4.43×10-2

稳定同位素地球化学

稳定同位素地球化学

元素 H、O
C C S
标准样 大洋水平均 美国南卡罗莱纳州,皮迪组的美洲箭石(已耗尽) 索洛霍芬石灰岩 美国亚利桑那州坎宁迪亚布洛铁陨石中的陨硫铁
缩写 SMOW
PDB NBS—20
CD
STABLE ISOTOPE
• 2.质谱仪测定:

质谱仪是目前同位素成分测定的
主要手段(MAT—261,MAT—251)。
其工作原理是:把待测元素的原子或分
子正离子化,并引入电场和磁场中运动,
带正电的质点因质量不同而被分离测定。
• δA=
STABLE ISOTOPE
• 热力学性质 • 电能---电子层分布 • 平动能 • 转动能 • 振动能---产生同位素分馏的主要原因 • 振动频率与原子的质量成反比 • 含有较轻同位素的分子比重同位素的分子具有
STABLE ISOTOPE
② 同位素交换反应:就是参与反应的各相物质在保持化学平衡的 状态下,各物相间发生同位素再分配的现象。 使轻重同位素分别富集在不同分子中而发生分异,称同位素交换反应。
例如:方铅矿和闪锌矿之间达到反应平衡时, 大气圈与水圈之间发生氧同位素交换反应
2 (0H ℃2 :1 α=O 18 . 071 4O , 6 2 25 ℃:α2 =H 1.02 01 6O )6 1O 8 2
近年来,稳定同位素地球化学以同位素分馏理论为基础,将 重点从同位素平衡体系转向非平衡体系(如同位素交换动力学)。 激光探针同位素分析技术的日趋成熟,又大大促进了应用研究。 目前,稳定同位素应用正向着地球科学的各个领域渗透,研究已 涉及水圈、古海洋、气候学、冰川学、古环境、考古学、天体化
STABLE ISOTOPE
• 习惯上把微量(较小相对丰度)同位素 放在R的分子上,这样可以从样品的δ值, 直接看出它含微量同位素比标准样品是 富集了,还是贫化了。 • δ>0表示34S比标准样品是富集了; • δ<0表示34S比标准样品是贫化了。

第十讲稳定同位素地球化学

第十讲稳定同位素地球化学

第十讲地质常用主要稳定同位素简介18OFull atmospheric General Circulation Model (GCM) with water isotope fractionation included.内容提要●基本特征●氢同位素●碳同位素●氧同位素●硫同位素10.1. 传统稳定同位素基本特征☐只有在自然过程中其同位素分馏变化为可测量范围的元素,才能应用于地质研究用途,这些元素的质量范围多<40;☐多为能形成固、气、液多相态物质的元素,其稳定同位素组成可发生较大程度变化。

总体上,重同位素趋于在结合紧密的固相物质中富集;重同位素趋于在氧化价态最高的物相中富集;☐生物系统中的同位素变化常用动力效应来解释。

在生物作用过程中(如光合作用、细菌反应及其它微生物过程),相对于反应初始组成,轻同位素趋于在反应生成物中富集。

10.2. 氢(hydrogen)☐直到1930年代,人们才发现H不是由1 个同位素,而是由两个同位素组成:1H:99.9844%2H(D):0.0156%☐在SMOW中D/H=155.8 10-6☐氢还有一个同位素氚(3H),但为放射性核素,半衰期仅为~12.5y。

10.2.1 氢同位素基本特征☐与多数重元素的同位素组成不同,太阳系物质具有高度不均一的氢(氧)同位素组成,尤其是内地行星与彗星之间;☐1H与D同位素间质量相对差最大,在地球样品中表现出最大的稳定同位素变化(分馏)范围;☐从大气圈、水圈直至地球深部,氢总是以HO、OH-,2H2、CH4等形式存在,即在各种地质过程中起着重要作用;☐氢同位素以 D表示,其同位素测量精度通常为0.5‰至2‰(相对其它稳定同位素偏低)。

JFC:Jupiter family cometsOCC:outer solar system Oortcloud comets内地行星与碳质球粒陨石具有相似的氢同位素组成,但与彗星之间存在差异(Taylor,2015,PSRD: Water in Asteroid 4 Vesta)(Robert ,2011,Nature Geoscience)行星和陨石的氢同位素组成(Alexander et al., 2012, EPSL)NASA/JPL-Caltech/UCLA/MPS/DLR/IDAWater in apatite in meteorites from Vesta varies in its hydrogen isotopic composition. Range is similar to the range in Earth.来自小行星带不同陨石样品中磷灰石的氢同位素组成(Sarafian et al.,2014)Hydrogen isotope variations in mantle-derived materials(Bell and Ihinger, 2000)金云母K-碱镁闪石韭闪石&羟钛角闪石10.2.2 主要分馏机制◆发生氢同位素分馏的主要原因是水蒸气压的不同,其次为其冰点差异。

地球化学中的稳定同位素

地球化学中的稳定同位素

地球化学中的稳定同位素稳定同位素是指在自然界中,核外电子数量相同,但质子数或中子数不同的同一元素的不同类型。

在地球化学中,稳定同位素可以用于探究地球和生命的起源和演化,研究大气、水体和岩石圈的物质循环和生态系统的结构与功能。

下面本文将探讨稳定同位素在地球化学中的应用和意义。

一、稳定同位素的定义和特征同一元素的同位素结构、化学性质近似,只有不同中子数的核能够区分它们。

一般地,同位素的质量数是它的质子数和中子数的和,所以同位素的质量通常都不是整数。

而稳定同位素是相对于不稳定同位素而言的。

稳定同位素相对不稳定同位素,在核的构成上有较高的稳定性以及质量数成正比增大。

在地球化学中,常用稳定同位素作为指示地球环境的工具。

其主要特征是原子核中的质子和中子的比值稳定,不会发生α、β、γ衰变。

二、稳定同位素在地球化学中的应用地球化学中的很多研究都需要利用稳定同位素进行探究。

如下是一些稳定同位素在地球化学中的应用:1.碳同位素碳由两种同位素构成,即碳-12和碳-13,其中碳-12占总碳的98.9%。

在生态系统中,生物体对不同碳同位素的利用、转换过程与环境变化密切相关,因此,研究碳同位素在生态系统中的地位和作用,可对生态学、环境保护和气候变化等问题提供重要的参考。

2.氧同位素氧同位素主要包括氧-16、氧-17和氧-18。

在水文地球化学中,氧同位素是水循环研究中的重要因素。

依据氧同位素的比例、分布可以判断水来源,搞清水的运移路径。

同时因为不同温度条件下氧同位素比例存在一定的差异,所以也可以在探究过去的气候变化时提供参考。

3.硫同位素硫同位素有三种,分别为硫-32、硫-33和硫-34。

硫有广泛的利用价值,包括石油和天然气、硫酸等化工品生产,和生物活性。

硫同位素对矿床研究也有很大的帮助。

4.氢同位素常见的氢同位素有氢-1、氘和氚。

氢同位素的存在可以反映一些重要环境参数,如降水来源、植物的水分来源等。

同时,氢同位素还可以用于考察化石水的来源和多层储层的性质等。

稳定同位素地球化学

稳定同位素地球化学

简单地以硫化物的δ34S值代表成矿溶 液中硫的来源是不恰当的,在分析硫化 物矿床的硫的来源时,矿床形成时的氧 逸度、酸碱度以及其它物理化学条件 的 了解是极其重要的。
小 结 硫同位素分馏与氧逸度(fO2)和PH值的关系: (1)高氧逸度(log fO2 >-38) 成矿溶液沉淀的硫化物比低氧逸度下的同种矿物 富集32S。 (2)低氧逸度(log fO2 <-38) PH降低氢离子活度增加,有利于H2S(溶液)和 HS-的形成,两者相对硫化物优先富集34S,成 矿液体中沉淀出的硫化物随PH降低,不断富集 32S。
水溶液中硫的存在状态取决于fO2及pH值。 成矿流体中重要的含硫组分有H2S、HS-与S-2、 SO4-2 、HSO4- 等,它们之间存在下列平衡: H2S(溶液)===== H++ HSHS- ======= H++ S-2 (还原条件) 2H++ SO4-2 === H2S(溶液)+2O2 HSO4- === H++ SO4-2 在上述平衡中,氢离子活度控制着共存的 H2S 、HS-与S-2的相对比例,而氧逸度控制SO4-2 相 对水溶液中H2S的丰度。
第六章
稳定同位素地球化学
天然同位素按其核稳定性分为稳定和 不稳定两类,稳定同位素不能自发产生核 衰变而转变为其它同位素, 放射性同位素—放射性元素的衰变、 计时原理——同位素地质年代学。 稳定同位素——同位素分馏原理—— 稳定同位素地球化学 探讨地质作用的物理化学环境和物质 的来源等问题。是当今环境科学领域中最 重要的方法和手段.
三 硫同位素的生物分馏作用
自然界中,硫同位素组成变化的重要原因之 一是厌氧细菌引起硫酸盐离子的还原作用 这些细菌从硫酸盐离子中分离出氧并释放出 比硫酸盐更富集32S的H2S

第10讲地球化学PPT课件

第10讲地球化学PPT课件

第五节:碳酸盐研究与全球变化
C3植物主要分布于干旱和半干旱地区,它在 植被群落中的比例是随夏季平均蒸发量增加而 增加,随湿度降低而减少,和随干季土壤湿度 的增加而减少。在干热的气候条件下,C4植物 在植物中比例较高,因此,第四纪时期黄土高 原古植被群落中C4植物的比例变化是不显著的, 黄土-古土壤碳酸盐中δ13C值的变化可能主要 是古植被密度变化所造成的。
变化,广州:广东科技出版社,1998 7.田均良、彭祥林等著,黄土高原土壤地球化学,北京:科学出
版社,1994 8.文启忠等著,中国黄土地球化学,北京:科学出版社,1989 9. 其它刊物文献请在我系网站查阅。
第六节:湖泊沉积研究与气候、环境演化
微量元素Mg和Sr的研究对确定湖泊的物理化学条件 更加有效,这两种元素可取代非海洋沉积环境中形成的 介形虫壳体方解石晶格中的钙原子,它们同Ca含量的 比值是确定温度、离子组成及盐度的上好指标。
在一个流域面积可以完全确定的湖泊,盐度的增加 与蒸发量增加有联系,盐度的改变往往会造成Sr/Ca 的改变,主要是由于湖水碳酸根离子达到了过饱和所致。
早更新世(午城黄土)
马兰黄土(L1)可

与氧同位素曲线中


2、3、4期相对应,


古土壤层S1可与氧

同位素第5期相对

比,成因复杂的古


土壤层S5则可与13、
期 14、15相联系。
第五节:碳酸盐研究与全球变化
洛川剖面上部的各种 黄土、古土壤类型及
其古环境参数
(古环境参数主要根据与现 代土壤对比得出)
思考简答题
1. 冰期效应造成的海水氧同位素组分(δ18O)变化的原因; 2. 谈谈利用地质历史时期有孔虫的δ18O建立大洋温度梯度剖

稳定同位素地球化学-碳硫同位素

稳定同位素地球化学-碳硫同位素

• 有机物热解反应,如断链或脱羟基反应: C-C-C → C-C + CH4 CH3COOH → CO2 + CH4
后一个反应造成CO2和CH4之间大约25‰的分馏。
硫同位素的分馏 • 硫化物氧化为硫酸盐:Δ≈0‰
这意味着大陆岩石风化过程中,黄铁矿氧化呈硫酸根流 入河流,再到海洋,这个过程没有硫同位素变化。 • 硫酸盐无机还原为H2S过程(TSR): Δ≈15‰ 在250℃下,二价Fe为还原剂就可以把硫酸盐还原: SO42- + 8Fe2+ + 10H+ → H2S + 8Fe3+ + 4H2O
碳同位素样品常规制备
• 碳酸盐岩(磷酸法):
碳酸盐与磷酸反应在固定温度下获得CO2,可以同时测定样品 的δ13C 和δ18O值(相对V-PDB)。现在用Gas-Bench和质谱连机。• Fra bibliotek机碳(支管法):
将有机碳与氧化剂( CuO、Cu2O或 V2O5)混合,在真空条件 下封入石英管中,放入马福炉中在一定温度下反应几小时。降温后 在真空系统中打碎石英管,纯化和收集CO2。
(1)平衡同位素分馏对碳、硫同位素的控制 碳同位素平衡分馏 • 随化合价降低,δ13C呈下降趋势(T≤800℃):
MCO3 > MCO3- > C(金刚石)> C(石墨)> CH4
• 有机物(如烷烃类)碳链增长相对富集13C:
δ13CC1 < δ13CC2 < δ13CC3 < δ13CC4
• CO2-CaCO3体系 的13C富集顺序(高 低温不同): 低温(T <130℃)下: CaMg(CO3)2 > CaCO3
国际标准与参考标准 V-PDB和PDB (Vienna – Peedee Belemnite): 作为国际上的碳同位素标准。 δ13CV-PDB = 0‰
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十讲地质常用主要稳定同位素简介18OFull atmospheric General Circulation Model (GCM) with water isotope fractionation included.内容提要●基本特征●氢同位素●碳同位素●氧同位素●硫同位素10.1. 传统稳定同位素基本特征☐只有在自然过程中其同位素分馏变化为可测量范围的元素,才能应用于地质研究用途,这些元素的质量范围多<40;☐多为能形成固、气、液多相态物质的元素,其稳定同位素组成可发生较大程度变化。

总体上,重同位素趋于在结合紧密的固相物质中富集;重同位素趋于在氧化价态最高的物相中富集;☐生物系统中的同位素变化常用动力效应来解释。

在生物作用过程中(如光合作用、细菌反应及其它微生物过程),相对于反应初始组成,轻同位素趋于在反应生成物中富集。

10.2. 氢(hydrogen)☐直到1930年代,人们才发现H不是由1 个同位素,而是由两个同位素组成:1H:99.9844%2H(D):0.0156%☐在SMOW中D/H=155.8 10-6☐氢还有一个同位素氚(3H),但为放射性核素,半衰期仅为~12.5y。

10.2.1 氢同位素基本特征☐与多数重元素的同位素组成不同,太阳系物质具有高度不均一的氢(氧)同位素组成,尤其是内地行星与彗星之间;☐1H与D同位素间质量相对差最大,在地球样品中表现出最大的稳定同位素变化(分馏)范围;☐从大气圈、水圈直至地球深部,氢总是以HO、OH-,2H2、CH4等形式存在,即在各种地质过程中起着重要作用;☐氢同位素以 D表示,其同位素测量精度通常为0.5‰至2‰(相对其它稳定同位素偏低)。

JFC:Jupiter family cometsOCC:outer solar system Oortcloud comets内地行星与碳质球粒陨石具有相似的氢同位素组成,但与彗星之间存在差异(Taylor,2015,PSRD: Water in Asteroid 4 Vesta)(Robert ,2011,Nature Geoscience)行星和陨石的氢同位素组成(Alexander et al., 2012, EPSL)NASA/JPL-Caltech/UCLA/MPS/DLR/IDAWater in apatite in meteorites from Vesta varies in its hydrogen isotopic composition. Range is similar to the range in Earth.来自小行星带不同陨石样品中磷灰石的氢同位素组成(Sarafian et al.,2014)Hydrogen isotope variations in mantle-derived materials(Bell and Ihinger, 2000)金云母K-碱镁闪石韭闪石&羟钛角闪石10.2.2 主要分馏机制◆发生氢同位素分馏的主要原因是水蒸气压的不同,其次为其冰点差异。

由于HDO 较H 2O 蒸气压低,引起D 在液相中相对蒸气相发生富集(典型的瑞利分馏现象)。

◆自然界中引起水中氢发生同位素分馏的物理作用与引起水中氧发生分馏的物理作用相同,故在大多数情况下,18O 的分馏与D 的分馏平行(参见氧同位素部分)。

A. 蒸气压-冰点分馏B. 平衡交换反应常见矿物与水的平衡体系实验表明,氢同位素的分馏曲线较为复杂(因此,将有限温度范围的实验结果进行外推通常会产生不正确的曲线);目前对<400︒C的矿物分馏曲线了解有限。

现有实验表明,矿物分馏曲线多在400-220︒C区间发生突变,其原因可能与氢在矿物中存在多种配位位置有关;氢同位素封闭温度较低,准确了解样品是否保持了高温条件下的同位素组成,是将分析结果正确应用于地质研究的重要前提。

软水铝石黝帘石绿帘石-斜黝帘石透闪石蛇纹石阳起石高岭石黑云母角闪石A角闪石B 白云母金云母1000l n αT ︒C106T -2 ︒K实验确定的矿物-水氢同位素分馏曲线C. 动力分馏此外,渗滤作用(如粘土矿物、页岩对水流的过滤作用)、盐溶液中的水化作用及生物作用过程均可对氢同位素分馏产生影响。

氢同位素的分馏行为与氧同位素相似,部分内容将在氧同位素部分介绍10.3. 碳(Carbon)☐碳在宇宙(太阳系)中具高丰度,但在地球上常表现为微量元素(~n⨯100ppm)。

碳同时存在于生物圈和无机物中,且存在从金刚石至碳酸盐的不同氧化价态,具较大程度的同位素分馏范围;☐碳由两个稳定同位素组成:12C=98.89%13C=1.11%(14C为宇宙成因核素)☐自然界中δ13C的变化范围>100‰(+20‰至-90‰)。

10.3.1 分馏机制:动力分馏-光合作用◆生物光合作用对碳同位素产生的分馏由二个步骤完成:a)获取CO2并在细胞内扩散,为可逆过程,可引起约-4‰的同位素分馏;b)酶性羟作用(enzymatic carboxylation reaction),为不可逆作用过程,可导致-17‰至-40‰的分馏。

◆由光合作用引起的动力分馏是影响碳同位素分馏的主要途径。

分馏机制:化学交换反应效应原理:大气中CO2在水体中溶解,形成的HCO3-与CaCO3间形成平衡反应,导致13C在生物碳酸盐中富集:Ca2++ 2HCO3-=CaCO3+ H2O +CO2在不同温度条件下的碳同位素分馏行为在所有平衡相中,CaCO3-石墨矿物对适用于高温条件下地质温度计应用。

CaCO3-CO2-石墨-CH4体系碳同位素分馏与温度的关系10.3.2 主要物质储库中的组成特征Sedimentary organics, Petroleum, Coral 海相-非海相有机物Marine-nonmarine Organism 沉积有机物、石油、珊瑚Freshwater Carbonate淡水碳酸盐海相碳酸盐Marine CarbonateAir CO 2大气CO 2Carbonatite, Diamond火成碳酸岩, 金刚石地球部分物质储库C 同位素组成范围光合作用和平衡反应导致沉积碳酸盐中富集13C ,而在生物成因物质中发生13C 的相对贫化,即轻同位素富集。

北大西洋不同深度海水C 同位素组成及海水C溶解量演化曲线:随海水深度增加,生物作用强度降低,温度下降,导致C同位素组成 值变小。

Depth profile of total dissolved inorganic carbon and δ13C inthe North Atlantic. (Whiter, 1998)地幔矿物(红色)及幔源岩浆岩(灰色)碳同位素组成Carbon isotope ratios in mantle(red) and mantle-derivedmaterials (gray).After Mattey (1987).BABB=back-arc basin basalts Diopside: 透辉石Carbonatite: 岩浆成因碳酸岩金刚石的同位素组成变化范围最大,高负值部分主要来自榴辉岩,反映出部分生物碳转变成了金刚石。

图中透辉石C同位素组成相对较低,其成因不明。

光合作用过程中,最初形成的基本化合物最小单位由三个碳原子组成,称C3植物(小麦、水稻、土豆等)。

后来发现了基本单位为四个碳的植物,称C4植物(玉米、高粱、甘蔗等),以区别于C3植物。

古植物类型识别大气、地表水中碳来源识别10.4. 氧(Oxygen)10.4.1 基本特征☐氧是地球丰度最高的元素,且以固、液、气相存在的物质均有较大温度稳定范围。

这些因素决定了氧同位素研究的重要意义。

☐氧由三个同位素组成:16O = 99.763 %17O = 0.0375 %18O = 0.1995 %☐氧同位素组成用18O /16O比值表示,因其质量差异最大。

☐自然界中18O /16O比值变化范围可达10%。

10.4.2 物质储库组成特征太阳系物质氧同位素组成具有高度不均一性(Rumble et al.,2007)月球物质来源于地球?CAI:Ca–Al-rich inclusionPlot showing the 18O / 16O and 17O / 16O ratios in chondrules and CAIs in meteorites. These particles define a line with much steeper slope than the Earth line consistent with loss or addition of 16O. Note that the variations in oxygen isotopic ratios are much larger than those shown by rocks from the Earth, Mars, and VestaHow do we know where meteorites come from?各陨石类型具不同氧同位素特征,据此可鉴别陨石来源SNC (shergottite-nakhlite-chassignite) meteorites , thought to beigneous rocks from Mars.SNC :辉玻-、透辉橄-和纯橄无球粒陨石岩石圈主要岩浆岩氧同位素组成特征陆相及夏威夷橄榄岩包体中橄榄石和单斜辉石氧同位素组成。

Oxygen isotope ratios in olivines and clinopyroxenes from mantle peridotite xenoliths. Data from Matteyet al. (1994).岩石圈主要沉积岩氧同位素组成10.4.3 同位素分馏:平衡交换反应☐硅酸盐矿物18O的富集行为取决于与氧原子形成共价键原子的键强及质量大小,高的质/荷比(低质量数、高离子电位)的矿物有利于18O的富集;☐石英中Si-O键能在硅酸盐矿物中最强,而Al-O键相对弱,因Si、Al质量相近,故在石英中18O相对长石类矿物明显富集;☐平衡交换反应中常见硅酸盐矿物富集18O的相对顺序见下表:平衡交换反应中常见硅酸盐矿物富集18O的相对顺序表(Hoefs, 1987)不同二价阳离子碳酸盐与水在250 C条件下的氧同位素分馏碳酸盐中二价阳离子的质量也影响其18O的富集程度,虽然质量效应对氧同位素分馏作用的影响弱于价键的影响。

作为壳-幔岩石的主要成分,对硅酸盐矿物的氧同位素分馏行为进行了大量实验研究,其主要研究方法列于下表(Hoefs, 1987)由实验确定的硅酸盐矿物对地质温度计参数A(Mattews et al., 1983a, b)QZ-石英,Ab-钠长石,Cc-方解石,Jd-硬玉,Zo-黝帘石,An-钙长石,Di-透辉石,Wo-钙硅石,Mt-磁铁矿高温范围(600-1300 C) 共生矿物氧同位素温度计常数温度计方程:1000Inα = A×106/T2Cc Ab An Di Fo MtQz 0.38 0.94 1.99 2.75 3.67 6.29Cc 0.56 1.61 2.37 3.29 5.91Ab 1.05 1.81 2.73 5.35An 0.76 1.68 4.30Di 0.92 3.54Fo 2.62Qz:quartz石英,Cc:calcite方解石,Ab:albite钠长石,An: anorthite钙长石,Di:diopside透辉石,Fo:forsterite镁橄榄石, Mt:magnetite磁铁矿.(Chiba, et al., 1989)10.4.4 同位素分馏:动力分馏☐大气氧相对稳定,δ18O=+23‰。

相关文档
最新文档