概率论试题以及答案

合集下载

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

概率论考试题和答案

概率论考试题和答案

概率论考试题和答案一、选择题(每题5分,共20分)1. 随机变量X服从标准正态分布,下列哪个选项是正确的?A. P(X > 0) = 0.5B. P(X < 0) = 0.5C. P(X = 0) = 0.5D. P(|X| > 1) = 0.5答案:A2. 如果随机变量X服从参数为λ的泊松分布,那么E(X)等于:A. λB. 2λC. λ^2D. 1/λ答案:A3. 假设随机变量X和Y是独立的,且X服从正态分布N(0,1),Y服从正态分布N(1,4),那么Z = X + Y的期望值E(Z)是:A. 1B. 0C. 2D. 4答案:A4. 对于二项分布B(n, p),其方差Var(X)是:A. npB. np(1-p)C. nD. p答案:B二、填空题(每题5分,共20分)5. 如果随机变量X服从均匀分布U(a, b),那么X的期望值E(X)是_________。

答案:(a+b)/26. 假设随机变量X服从正态分布N(μ, σ^2),那么X的标准差是_________。

答案:σ7. 对于参数为p的伯努利分布,其方差Var(X)是_________。

答案:p(1-p)8. 如果随机变量X服从指数分布Exp(λ),那么X的期望值E(X)是_________。

答案:1/λ三、计算题(每题15分,共30分)9. 已知随机变量X服从正态分布N(2, 4),求P(X < 0)。

答案:因为X服从正态分布N(2, 4),所以X的均值μ=2,方差σ^2=4,标准差σ=2。

我们需要求P(X < 0),即求标准正态分布下,Z < (0-2)/2 = -1的概率。

根据标准正态分布表,P(Z < -1) ≈ 0.1587。

所以,P(X < 0) ≈ 0.1587。

10. 假设随机变量X服从参数为λ=2的泊松分布,求E(X)和Var(X)。

答案:因为X服从泊松分布,所以E(X) = λ = 2,Var(X) = λ = 2。

概率论试题及答案

概率论试题及答案

概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。

2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。

三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。

求在一小时内至少有一台机器发生故障的概率。

2. 一个班级有50名学生,其中30名男生和20名女生。

如果随机选择一名学生,这名学生是男生的概率是0.6。

求这个班级中男生和女生的人数。

四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。

2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。

如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。

求第二次取出的球是蓝球的概率。

答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。

至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。

2. 设男生人数为x,女生人数为y。

根据题意,x/(x+y) = 0.6,且x+y=50。

解得x=30,y=20。

四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。

计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。

高等数学(概率论)习题及解答

高等数学(概率论)习题及解答

高等数学(概率论)习题及解答高等数学(概率论)题及解答
1. 题一
1.1. 题目
已知事件A和B的概率分别为P(A) = 0.2,P(B) = 0.3,且P(A∪B) = 0.4,求P(A∩B)。

1.2. 解答
根据概率的加法定理,有:
P(A∪B) = P(A) + P(B) - P(A∩B)
代入已知数据得:
0.4 = 0.2 + 0.3 - P(A∩B)
P(A∩B) = 0.1
所以,P(A∩B)的概率为0.1。

2. 题二
2.1. 题目
已知某城市一天中的天气分为晴天、阴天和雨天三种情况,其中晴天的概率为0.4,阴天的概率为0.3。

现已知,当下为晴天时,随后一天也是晴天的概率为0.7;当下为阴天时,随后一天为晴天的概率为0.5。

求当下为晴天时,随后一天为阴天的概率。

2.2. 解答
设事件A为当下为晴天,事件B为随后一天为阴天。

根据条件概率的定义,有:
P(B|A) = P(A∩B) / P(A)
已知 P(A) = 0.4,P(B|A) = 0.5,代入并整理得:
0.5 = P(A∩B) / 0.4
P(A∩B) = 0.5 * 0.4
P(A∩B) = 0.2
所以,当下为晴天时,随后一天为阴天的概率为0.2。

以上是高等数学(概率论)习题及解答的部分内容,如有更多问题或需要补充,请随时告知。

概率论复习题 (有答案)

概率论复习题 (有答案)

选择题1.设事件A 和B 满足A B ⊂,()0P B >,则下列选项一定成立的是 ( B ) (A) ()(|)P A P A B < (B) ()(|)P A P A B ≤ (C) ()(|)P A P A B > (D) ()(|)P A P A B ≥2.掷一颗骰子600次,求“一点” 出现次数的均值为 ( B ) (A) 50 (B) 100 (C) 120 (D) 1503.随机变量X 的分布函数为()F x ,则31Y X =+的分布函数()G y =( A )(A) 11()33F y - (B) (31)F y + (C) 3()1F y + (D) 11()33F y - 4.设连续型随机变量X 的密度函数有()()f x f x -=,()F x 是X 的分布函数,则下列成立的有 ( C )(A) ()()F a F a -= (B) 1()()2F a F a -=(C) ()1()F a F a -=- (D) 1()()2F a F a -=- 5.设二维随机变量(,)X Y 服从G 上的均匀分布,G 的区域由曲线2y x =与y x =所围,则(,)X Y 的联合概率密度函数为 A .(A)6,(,)(,)0,x y G f x y ∈⎧=⎨⎩其它 (B)1/6,(,)(,)0,x y Gf x y ∈⎧=⎨⎩其它(C)2,(,)(,)0,x y G f x y ∈⎧=⎨⎩其它 (D)1/2,(,)(,)0,x y Gf x y ∈⎧=⎨⎩其它6.设随机变量X 服从正态分布()211,N μσ,随机变量Y 服从正态分布()222,N μσ,且{}{}1211P X P Y μμ-<>-<, 则必有 ( C )(A)12σσ< (B) 12σσ> (C) 12μμ< (D) 12μμ>7.设随机变量12,,,n X X X 独立同分布,且方差为20σ>.令11ni i Y X n ==∑,则. ( A ) (A) 21(,)/Cov X Y n σ= (B) 21(,)Cov X Y σ=(C) 21()(2)/D X Y n n σ+=+ (D) 21()(1)/D X Y n n σ-=+8.设随机变量X 服从正态分布()211,N μσ,随机变量Y 服从正态分布()222,N μσ,且{}{}1211P X P Y μμ-<>-<, 则必有 ( B )(A)12σσ> (B) 12σσ< (C) 12μμ> (D) 12μμ<9设随机变量n X X X 12,,,,相互独立且同服从参数为λ的指数分布,其中()x Φ是标准正态分布的分布函数,则 AA) lim ()ni n X n P x x λ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎭∑B) lim ()ni n X n P x x →∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑C)lim ()n i n X P x x λ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎭∑ D) 1lim ()n i i n X P x x n λλ=→∞⎧⎫-⎪⎪⎪⎪≤=Φ⎨⎬⎪⎪⎪⎪⎩⎭∑ 11.已知()0.5,()0.4,()0.6,P A P B P A B ==⋃=则(|)P A B = A(A) 0.75 (B) 0.6 (C) 0.45 (D) 0.2 12、设二维随机变量(,)X Y 的概率密度函数为(),01,02(,)0,a x y x y f x y +<<<<⎧=⎨⎩其他,则常数a = D (A) 3 (B) 2 (C) 12 (D) 1313、已知(,)XB n p ,且8, 4.8EX DX ==,则n = B(A) 10 (B) 20 (C) 15 (D) 25 14、离散型随机变量X 的分布函数()F x 一定是 D(A) 奇函数 (B) 偶函数 (C) 周期函数 (D) 有界函数15、随机变量X 的分布函数为40,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩,则EX = A(A)144x dx ⎰(B)133x dx ⎰(C)134x dx ⎰(D)150x dx ⎰16、设~(2,4)X N ,且~(0,1)aX b N +,则 C(A) 2,2a b ==- (B) 2,1a b =-=- (C) 0.5,1a b ==- (D) 0.5,1a b ==17、设,X Y 为两个随机变量,1,4,cov(,)1DX DY X Y ===,令122,2Z X Y Z X Y =-=-,则1Z 与2Z 的相关系数为 D(A) 0 (B) 1(C)(D)18、设随机变量~(0,1)X N ,21Y X =+,则~Y A(A) (1,4)N (B) (0,1)N (C) (1,1)N (D) (1,2)N19、.以事件A 表示“甲同学考试合格,乙同学考试不合格”,则事件 A 为 D (A) 甲、乙两同学考试均合格; (B) 甲同学考试不合格,乙同学考试合格; (C) 甲同学考试合格; (D) 甲同学考试不合格或乙同学考试合格. 20设随机变量X 和Y 的关系为32011Y X =+,若3DX =,则DY = A (A) 27 (B) 9 (C) 2020 (D) 2038 21.若事件,,A B C满足()P C =A ,B ,C 不满足 A(A) A B C ==; (B) A B C ≠≠;(C) A B ==Ω,C =∅; (D) ,()0A B P C ==Ω=. 22.设随机变量()()22,4,,5XN YN μμ,{}14P X μ=≤-,{}25P Y μ=≥+,则1P 与2P 的关系是 B(A) 12P P > (B) 12P P = (C) 12P P < (D) 与μ相关23.以A 表示事件“甲种产品畅销,乙中产品滞销”则事件A 为( D ).A 甲种产品滞销,乙中产品畅销 .B 甲、乙两种产品均畅销.C 甲种产品滞销 .D 甲种产品滞销或乙种产品畅销24. n 张奖券中有m 张可以中奖,现有k 个人每人购买一张,其中至少有一个人中奖的概率为( C ).A k n k mn m C C C 11-- .B k n C m .C k n k m n C C --1 .D ∑=ki kni m C C 1 25、设随机变量X 服从参数为2的指数分布,则随机变量Xe Y 21--= A.A 服从)1,0(上的均匀分布 .B 仍服从指数分布.C 服从正态分布 .D 服从参数为2的泊松分布 26、设随机变量),(Y X 的概率分布为已知随机事件)0(=X 与)1(=+Y X 相互独立,则( C ) .A 3.0,2.0==b a .B 1.0,4.0==b a .C 2.0,3.0==b a .D 4.0,1.0==b a27、设)2.0,10(~B X ,)2.0,20(~B Y 且Y X ,相互独立,则~Y X +( C ) .A )2.0,10(B .B )4.0,30(B .C )2.0,30(B .D )4.0,10(B28、已知随机变量)4,9(~N X ,则下列随机变量中服从标准正态分布的有(B ) .A 49-X .B 29-X .C 43-X .D 23-X 29、设Y X ,为任意随机变量,若)()()(Y E X E XY E =,则下述结论中成立的是( A ) .A )()()(Y D X D Y X D +=+ .B )()()(Y D X D XY D = .C Y X ,相互独立 .D Y X ,不独立判断题1.二维正态分布的边缘分布是正态分布; T2.设有分布律:{}1(1)2/1/2(1,2,)n n np X n n +=-==,则X 的期望存在; F3.设 n 次独立重复试验中, 事件 A 出现的次数为m , 则 4n 次独立重复试验中,A 出现的次数为4m ; F4.若AB =∅,则事件,A B 一定相互独立; F5.X 与Y 相互独立且都服从指数分布()E λ,则~(2)X Y E λ+。

(完整)概率复习题及答案

(完整)概率复习题及答案

〈概率论〉试题一、填空题1.设A、B、C是三个随机事件。

试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,.则=3.若事件A和事件B相互独立, ,则4。

将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。

5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7。

已知随机变量X的密度为,且,则________________8。

设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________ 10。

若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12。

用()的联合分布函数F(x,y)表示13。

用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。

15。

已知,则=16.设,且与相互独立,则17。

设的概率密度为,则=18。

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19。

设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。

特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于。

22.设是来自正态总体的样本,令则当时~。

23。

设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。

(完整word版)概率论试题及答案

(完整word版)概率论试题及答案

试卷一一、填空(每小题2分,共10分)1.设是三个随机事件,则至少发生两个可表示为______________________。

2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。

3.已知互斥的两个事件满足,则___________。

4.设为两个随机事件,,,则___________。

5.设是三个随机事件,,,、,则至少发生一个的概率为___________。

二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。

每小题2分,共20分)1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。

(A) 取到2只红球(B) 取到1只白球(C) 没有取到白球(D) 至少取到1只红球2.对掷一枚硬币的试验, “出现正面”称为()。

(A) 随机事件(B) 必然事件(C) 不可能事件(D) 样本空间3. 设A、B为随机事件,则()。

(A) A (B) B(C) AB(D) φ4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。

(A) 与互斥(B) 与不互斥(C) (D)5. 设为两随机事件,且,则下列式子正确的是()。

(A) (B)(C) (D)6. 设相互独立,则()。

(A) (B)(C) (D)7.设是三个随机事件,且有,则()。

(A) 0.1 (B) 0.6(C) 0.8 (D) 0.78. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。

(A) p2(1–p)3 (B) 4 p (1–p)3(C) 5 p2(1–p)3(D) 4 p2(1–p)39. 设A、B为两随机事件,且,则下列式子正确的是()。

(A) (B)(C) (D)10. 设事件A与B同时发生时,事件C一定发生,则()。

(A) P(A B) = P (C) (B) P (A) + P (B) –P (C) ≤1(C) P (A) + P (B) –P (C) ≥1 (D) P (A) + P (B) ≤P (C)三、计算与应用题(每小题8分,共64分)1. 袋中装有5个白球,3个黑球。

概率论期末考试题及答案

概率论期末考试题及答案

概率论期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个事件是必然事件?A. 抛硬币正面朝上B. 抛硬币反面朝上C. 抛硬币出现正面或反面D. 抛硬币出现正面和反面2. 假设随机变量X服从正态分布N(μ, σ²),以下哪个选项是正确的?A. μ是X的期望值B. σ²是X的方差C. μ是X的中位数D. σ²是X的期望值3. 假设随机变量X和Y相互独立,以下哪个选项是正确的?A. P(X∩Y) = P(X)P(Y)B. P(X∪Y) = P(X) + P(Y)C. P(X∩Y) = P(X) + P(Y)D. P(X∪Y) = P(X)P(Y)4. 假设随机变量X服从二项分布B(n, p),以下哪个选项是正确的?A. X的期望值是npB. X的方差是np(1-p)C. X的期望值是nD. X的方差是p(1-p)二、填空题(每题5分,共20分)1. 如果随机变量X服从泊松分布,其概率质量函数为P(X=k) =________,其中λ > 0,k = 0, 1, 2, ...2. 假设随机变量X服从均匀分布U(a, b),其概率密度函数为f(x) = ________,其中a < x < b。

3. 假设随机变量X和Y相互独立,且X服从正态分布N(μ, σ²),Y 服从正态分布N(ν, τ²),则Z = X + Y服从正态分布N(μ+ν,________)。

4. 假设随机变量X服从二项分布B(n, p),其期望值E(X) = np,方差Var(X) = ________。

三、解答题(每题30分,共40分)1. 假设随机变量X服从正态分布N(0, 1),求P(-1 < X < 2)。

2. 假设随机变量X服从二项分布B(10, 0.3),求P(X ≥ 5)。

答案:一、选择题1. C2. A3. A4. A二、填空题1. λ^k * e^(-λ) / k!2. 1/(b-a)3. σ² + τ²4. np(1-p)三、解答题1. 根据标准正态分布表,P(-1 < X < 2) = Φ(2) - Φ(-1) =0.9772 - 0.1587 = 0.8185。

概率论习题与答案

概率论习题与答案

概率论习题 一、填空题1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 .2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率.3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 .4、 已知()0.7,()0.3,P A P A B =-= 则().P AB =5、 已知()0.3,()0.4,()0.5,P A P B P A B === 则(|).P B A B ⋃=6、 掷两枚硬币,至少出现一个正面的概率为..7、设()0.4,()0.7,P A P A B =⋃= 若,A B 独立,则().P B =8、设,A B 为两事件,11()(),(|),36P A P B P A B === 则(|).P A B =9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是.10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 .11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。

那么(|)P C AB = 。

12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,求此人是男性的概率 。

13、将3个球随机的放入4个杯子中,求杯子中球的最大个数分别为1,2,3的概率。

14、把C B A ⋃⋃表示为互不相容事件的和是 。

15、,,A B C 中不多于两个发生可表示为 。

二、选择题1、下面四个结论成立的是( ).()().,.().()A A B C A B C B AB C A BC C A B B A D A B B A--=-⋃=∅⊂=∅⋃-=-⋃=若且则2、设()0,P AB =则下列说法正确的是( )...()0()0.()()A AB B ABC P A P BD P A B P A ==-=和不相容 是不可能事件或3、掷21n +次硬币,正面次数多于反面次数的概率为( )1..21211.0.5.21nn A B n n n C D n -++++ 4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( ).()()..()().()()A P AB P A B B AC P A P BD P AB P A ⋃=∈==5、设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ).A P (AB )=0 .B P (A -B )=P (A )P (B ) .C P (A )+P (B )=1 .D P (A |B )=06、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ).A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ).D P (A ∪B )=17、已知()0.5P A =,()0.4P B =,()0.6P A B +=,则(|)P A B =( ).A 0.2 .B 0.45 .C 0.6 .D 0.758、同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ).A 0.125 .B 0.25 .C 0.375.D 0.509、设事件,A B 互不相容,已知()0.4P A =,()0.5P B =,则()P AB =( ).A 0.1 .B 0.4 .C 0.9 .D 110、已知事件A ,B 相互独立,且()0P A >,()0P B >,则下列等式成立的是( ).A ()()()P A B P A P B ⋃=+ .B ()1()()P A B P A P B ⋃=- .C ()()()P A B P A P B ⋃= .D ()1P A B ⋃=11、设1)(0<<A P ,1)(0<<B P ,1)|()|(=+B A P B A P ,则( )..A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立.D 事件A 与B 互不独立12、对于任意两事件A 和B ,)(B A P -=( )..A )()(B P A P - .B )()()(AB P B P A P +- .C )()(AB P A P -.D )()()(B A P A P A P -+13、设A 、B 是两事件,且P (A )=0.6,P(B)=0.7则P (AB )取到最大值时是( ).A 0.6 .B 0.7 .C 1 .D 0.4214、某人忘记了电话号码的最后一个数字,因而他随意地拨号。

《概率论》考试试题(含答案)

《概率论》考试试题(含答案)

《概率论》考试试题(含答案) ................................................................................................... 1 解答与评分标准 . (3)《概率论》考试试题(含答案)一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为( ) (A) 0; (B) 1; (C) 0.6; (D) 1/62. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为( )(A)12; (B) 225; (C) 425; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A)518; (B) 13; (C) 12; (D)以上都不对 4.某一随机变量的分布函数为()3xxa be F x e +=+,则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )(A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对二.填空题(每小题3分,共15分)1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B =_____.2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =______.3.随机变量ξ的期望为()5E ξ=,标准差为()2σξ=,则2()E ξ=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。

设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为2()22af x x x =++,a 为常数,则P (ξ≥0)=_______.三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.四.(本题10分) 设随机变量ξ的分布密度为, 03()10, x<0x>3Ax f x x⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望.五.(本题10分) 设二维随机变量(ξ,η)的联合分布是η=1 η=2 η=4 η=5ξ=0 0.05 0.12 0.15 0.07 ξ=1 0.03 0.10 0.08 0.11 ξ=2 0.070.010.110.10(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()E ξη⋅;六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件? (注:(1.28)0.90Φ=,(1.65)0.95Φ=)九.(本题6分)设事件A 、B 、C 相互独立,试证明AB 与C 相互独立.某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________.十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824 假定重复测量所得温度2~(,)N ξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间. (注:(1.96)0.975Φ=,(1.65)0.95Φ=)解:1(18201834183118161824)18255ξ=++++=-------------------2分 已知10.95, 0.05αα-==,0.02521.96u u α==---------------------------5分10σ=,n=5,0.025210 1.96108.7755u u nασ⨯===-------------------8分所求真值μ的0.95的置信区间为[1816.23, 1833.77](单位:℃)-------10分解答与评分标准一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2()E ξ=29、4. 0.94、5. 3/4三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故P (A )=5/625=1/125------------------------------------------------------5分(2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法----------------------------------------------------7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故12572625360)(==B P --------------------------------------------------10分四.解:(1)⎰⎰∞∞-==+=34ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)⎰==+=<1212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3300()()[ln(1)]1AxE xf x dx dx A x x x ξ∞-∞===-++⎰⎰13(3ln 4)1ln 4ln 4=-=-------------------------------------10分 五.解:(1)ξ的边缘分布为⎪⎪⎭⎫ ⎝⎛29.032.039.02 10--------------------------------2分 η的边缘分布为⎪⎪⎭⎫ ⎝⎛28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη⋅的分布列为ξη⋅0 1 2 4 5 8 10。

概率论期末试题及解析答案

概率论期末试题及解析答案

概率论期末试题及解析答案1. 简答题(每题10分)1.1 什么是概率?概率是描述随机事件发生可能性的数值。

它可以用来衡量某一事件在多次重复试验中出现的频率。

1.2 什么是样本空间?样本空间是指一个随机试验中所有可能结果的集合。

1.3 什么是事件?事件是样本空间中包含的一组可能结果的子集。

1.4 什么是互斥事件?互斥事件是指两个事件不能同时发生。

1.5 什么是独立事件?独立事件是指两个事件的发生与不发生互不影响。

2. 计算题(每题20分)2.1 设一枚硬币抛掷3次,计算至少出现两次正面的概率。

解析:样本空间:{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}至少出现两次正面的事件:{HHH, HHT, HTH, THH}概率 = 事件发生的次数 / 样本空间的次数 = 4 / 8 = 1/22.2 设A、B两个事件相互独立,且P(A) = 0.4,P(B) = 0.6,计算P(A∪B)。

解析:由于A、B事件相互独立,所以P(A∩B) = P(A) * P(B) = 0.4 * 0.6 = 0.24P(A∪B) = P(A) + P(B) - P(A∩B) = 0.4 + 0.6 - 0.24 = 0.763. 应用题(每题30分)3.1 甲乙两个备胎分别拥有10个和15个备用轮胎,轮胎坏掉时甲用2个备用轮胎的概率为0.2,乙用3个备用轮胎的概率为0.15。

现在从甲、乙两个备胎中随机挑选一个备用轮胎,请计算此备用轮胎坏掉的概率。

解析:设事件A为甲备胎的备用轮胎坏掉,事件B为乙备胎的备用轮胎坏掉。

P(A) = 0.2 * 10 / (0.2 * 10 + 0.15 * 15) = 0.2 * 10 / (2 + 2.25) ≈ 0.6667 P(B) = 0.15 * 15 / (0.2 * 10 + 0.15 * 15) = 0.15 * 15 / (2 + 2.25) ≈0.3333由于只能选择甲或乙中的一个备用轮胎,所以备用轮胎坏掉的概率为P(A) + P(B) ≈ 13.2 水果篮子中有5个橙子、3个苹果和2个香蕉,现从篮子中随机挑选两个水果,请计算挑选出的两个水果中至少有一个是橙子的概率。

概率论考试题及答案

概率论考试题及答案

概率论考试题及答案一、选择题(每题2分,共10分)1. 某校有100名学生,其中60名男生和40名女生。

随机抽取1名学生,该学生是女生的概率是多少?A. 0.4B. 0.6C. 0.8D. 1.0答案:A2. 抛一枚均匀的硬币,正面朝上和反面朝上的概率相等,那么连续抛掷3次硬币,得到至少两次正面朝上的概率是多少?A. 0.5B. 0.75C. 0.875D. 0.625答案:D3. 一个袋子里有5个红球和3个蓝球,随机抽取2个球,那么两个球都是红球的概率是多少?A. 1/6B. 1/3C. 1/2D. 2/5答案:D4. 如果事件A的概率是0.3,事件B的概率是0.4,且A和B互斥,那么A和B至少有一个发生的概率是多少?A. 0.7B. 0.5C. 0.6D. 0.4答案:A5. 一个骰子被抛掷,那么得到的点数是偶数的概率是多少?A. 0.5B. 0.33C. 0.25D. 0.16答案:A二、填空题(每题3分,共15分)6. 概率论中的_______定义了事件发生的可能性大小。

答案:概率7. 如果事件A和事件B是独立的,那么P(A∩B) = _______。

答案:P(A) * P(B)8. 随机变量X服从参数为λ的泊松分布,那么X的概率质量函数为:P(X=k) = _______。

答案:(λ^k / k!) * e^(-λ)9. 在连续概率分布中,随机变量X的取值范围是无限的,其概率密度函数f(x)满足________。

答案:∫f(x)dx = 110. 两个事件A和B互斥的充分必要条件是P(A∩B) = _______。

答案:0三、解答题(共25分)11. 一个工厂有3台机器生产同一种零件,每台机器在一小时内正常运转的概率分别为1/2、2/3和3/4。

假设这些机器相互独立,求至少有两台机器在一小时内正常运转的概率。

答案:首先,我们可以计算出每台机器不正常运转的概率,然后找出至少两台机器正常运转的组合情况。

概率论参考答案

概率论参考答案

一、单项选择题 1.若E(XY)=E(X))(Y E ⋅,则必有( B )。

A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y) C.X与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。

A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。

A .1)(=+∞F B .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)=( B )。

A .nk k m q p CB.kn k k n qp C -C .k n pq -D .k n k q p -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .24 6.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。

A .1a n n μσ-⎛⎫-Φ⎪⎝⎭B.1a n n μσ-⎛⎫-Φ ⎪⎝⎭C .a n n μσ-⎛⎫Φ⎪⎝⎭D .a n n μσ-⎛⎫Φ⎪⎝⎭7.设二维随机变量),(Y X 的联合分布函数为),(y x F ,其联合分布律为Y X0 1 2-1 0 10.2 0 0.10 0.4 0 0.1 0 0.2则(0,1)F = C 。

A .0.2B .0.4C .0.68.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F分布 D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。

(完整版)概率论大题附答案

(完整版)概率论大题附答案

第一章 随机事件及其概率1.6 假设一批100件商品中有4件不合格品.抽样验收时从中随机抽取4件,假如都为合格品,则接收这批产品,否则拒收,求这批产品被拒收的概率p . 解 以ν表示随意抽取的4件中不合格品的件数,则4964100C {1}1{0}110.84720.1528C p P P =≥=-==-≈-=νν.1.7 从0,1,2,,10…等11个数中随机取出三个,求下列事件的概率:1A ={三个数最大的是5};2A ={三个数大于、等于和小于5的各一个};3A ={三个数两个大于5,一个小于7}.解 从11个数中随机取出三个,总共有311C 165=种不同取法,即总共有311C 个基本事件,其中有利于1A 的取法有25C 10=种(三个数最大的是5,在小于5的5个数中随意取两个有25C 10=种不同取法);有利于2A 的取法有5×5=20种(在小于5的5个数中随意取一个,在大于5的5个数中随意取一个,有5×5=25种不同取法);有利于3A 的取法有5×25C 70=种(在小于5的5个数中随意取一个,在大于5的5个数中随意取两个).于是,最后得111102550()0.06()0.15()0.30165165165P A P A P A ======,,.1.8 考虑一元二次方程 02=++C Bx x , 其中B , C 分别是将一枚色子接连掷两次先后出现的点数. (1) 求方程无实根的概率α, (2) 求方程有两个不同实根的概率β.解 显然,系数B 和C 各有1,2,3,4,5,6等6个可能值;将一枚色子接连掷两次,总共有36个基本事件.考虑方程的判别式C B 42-=∆.事件{无实根}和{有两个不同实根},等价于事件{0}∆<和{0}∆>.下表给出了事件{∆由对称性知{0}∆<和{0}∆>等价,因此αβ=.易见,方程无实根的概率α和有两个不同实根的概率β为170.47αβ==≈.. ()1()1P AB P AB r =-=-, ()()1P A B P AB r +==-,()1()1[]P A B P A B p q r +=-+=-+-, ()()1[]P AB P A B p q r =+=-+-,([])()()P A A B P A AB P A p +=+==.1.18 假设箱中有一个球,只知道不是白球就是红球.现在将一个白球放进箱中,然后从箱中随机取出一个球,结果是白球.求箱中原来是白球的概率α.解 引进事件:=A {取出的是白球},1H ={箱中原来是白球},2H ={箱中原来是红球},则12,H H 构成完全事件组,并且12()()0.5P H P H ==.由条件知12(|)1(|)0.5P A H P A H ==,.由贝叶斯公式,有1111122()(|)2(|)()(|)()(|)3P H P A H P H A P H P A H P H P A H α===+.1.21 假设一厂家生产的每台仪器,以概率0.7可以直接出厂;以概率0.30需进一步进行调试, 经调试以概率0.90可以出厂,以概率0.10定为不合格品不能出厂.现在该厂在生产条件稳定的情况下,新生产了20台仪器.求最后20台仪器 (1) 都能出厂的概率α; (2) 至少两台不能出厂的概率β.解 这里认为仪器的质量状况是相互独立的.设1H ={仪器需要调试},2H ={仪器不需要调试},A ={仪器可以出厂}.由条件知1212()0.30 ()0.70 (|)0.80(|)1P H P H P A H P A H ====, ,,.(1) 10台仪器都能出厂的概率0112210100()()(|)()(|)0.300.800.700.940.940.5386P A P H P A H P H P A H ααα==+=⨯+===≈ ;.(2) 记ν——10台中不能出厂的台数,即10次伯努利试验“成功(不能出厂)”的次数.由(1)知成功的概率为p =0.06.易见,10台中至少两台不能出厂的概率109{2}1{0}{1}10.94100.940.060.1175P P P βννν=≥=-=-==--⨯⨯≈.1.23 设B A ,是任意二事件,证明:(1) 若事件A 和B 独立且B A ⊂,则()0P A =或()1P B =;(2) 若事件A 和B 独立且不相容,则A 和B 中必有一个是0概率事件.证明 (1) 由于B A ⊂,可见()()()()()()()()P AB P A P B P AB P A P A P A P B ===,,. 因此,若()0P A ≠,则()1P B =;若()0P B ≠,()0P A =.(2) 对于事件A 和B ,由于它们相互独立而且不相容,可见()()()0P A P B P AB ==,因此,概率()P A 和()P B 至少有一个等于0.补充:第二节 事件的关系和运算1. 设A ,B ,C 是三个随机事件,用事件A ,B ,C 的运算关系表示下列事件:⑴ A ,B ,C 三个都发生;⑵ A 发生而B ,C 都不发生;⑶ A ,B 都发生, C 不发生; ⑷ A ,B ,C 恰有一个发生;⑸ A ,B ,C 恰有两个发生;⑹ A ,B ,C 至少有一个发生; ⑺ A ,B ,C 都不发生.解:(1)ABC (2)ABC (3)ABC (4)ABC ABC ABC ++ (5)ABC ABC ABC ++ (6) A B C ++ (7) ABC第三节 事件的概率解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+0.40.30.6=+-=0.1 ()1()10.10.9P AB P AB =-=-=()()1()10.60.4P AB P A B P A B =+=-+=-= ()()()0.40.10.3P AB P A P AB =-=-=解:由()()()P A B P A P AB -=-,得()()()P A B P A P AB -=-()()()0.70.30.4P AB P A P A B =--=-=, ()1()10.40.6P AB P AB =-=-=3. 已知()09.P A =,()08.P B =,试证()07.P AB ≥. 解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+0.90.81≥+-0.7=解:由条件()()0P AB P BC ==,知()0P ABC =,()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ++=++---+1111500044488=++---+= 5. 设A ,B 是两事件,且()06.P A =,()07.P B =,问⑴ 在什么条件下,()P AB 取到最大值,最大值是多少? ⑵ 在什么条件下,()P AB 取到最小值,最小值是多少?解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+ 又因为()()P A P A B ≤+,()()P B P A B ≤+,所以(){}max (),()P A P B P A B ≤+, 所以0.7()1P A B ≤+≤,所以0.3()0.6P AB ≤≤.第四节 条件概率及与其有关的三个基本公式1.设有对某种疾病的一种化验,患该病的人中有90%呈阳性反应,而未患该病的人中有5%呈阳性反应,设人群中有1%的人患这种疾病,若某病人做这种化验呈阳性反应,则他患有这种疾病的概率是多少? 解:设{}A =某疾病患者,{}A =非某疾病患者,{}B =检查结果为阳性.依条件得,B A A ⊂+=Ω,且()0.01,P A = ()0.99P A =,(|)0.9P B A =(|)0.05P B A =所以()()()()()()()()0010901500109099005B P A P P AB ..A A P .B P B ....B BP A P P A P A A⨯===≈⨯+⨯+第五节 事件的独立性和独立试验1.设有n 个元件分别依串联、并联两种情形组成系统I 和II ,已知每个元件正常工作的概率为p ,分别求系统I 、II 的可靠性(系统正常工作的概率)解:{}A I =系统正常工作,{}B II =系统正常工作,{}B II =系统不正常工作 {}1,2,,i C i n ==每个元件正常工作,,且()i P C p =,{}i C =每个元件都不正常工作,()1i P C p =- 由条件知,每个元件正常是相互独立的,故1212()()()()()n n n P A P C C C P C P C P C p ===,()1i P C p =-,1212()()()()()(1)n n n P B P C C C P C P C P C p ===-()1()1(1)n P B P B p =-=--2. 设有六个相同的元件,如下图所示那样安置在线路中,设每个元件通达的概率为 p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的. 解: 设{}i A i =第条线路通达,1,2,3,i = {}A =代表这个装置通达,{}i A i =第条线路不通达,1,2,3,i = {}A =代表这个装置不通达, 由条件知,2()i P A p =,2()1i P A p =-,23123()1()1()1(1)P A P A P A A A p =-=-=--第二章 随机变量及其分布2.8 口袋中有7个白球,3个黑球,每次从中任取一球且不再放回. (1) 求4次抽球出现黑球次数X 的概率分布;(2) 抽球直到首次出现白球为止,求抽球次数Y 的概率分布.解 (1) 随机变量X 有4个可能值0,1,2,3,若以W 和B 分别表示白球和黑球,则试验“4次抽球”相当于“含7个W 和3个B ”的总体的4次不放回抽样,其基本事件总数为410C 210=,其中有利于{}X k = (0,1,2,3)k =的基本事件个数为:437C C k k-,因此 437410C C {}(0,1,2,3)C k k P X k k -===,或01230123~351056371131210210210210621030X ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (2) 随机变量Y 显然有1,2,3,4等4个可能值;以W k 和B k 分别表示第(1,2,3,4)k k =次抽到白球和黑球,则“不放回抽球直到首次出现白球为止”相当于“自含7个白球3个黑球的总体的4次不放回抽样”,其基本事件总数410P 10987120=⨯⨯⨯=.易见 7843728{1}{2}10120109120P Y P Y ⨯======⨯,,327732171{3}{4}109812010987120P Y P Y ⨯⨯⨯⨯⨯======⨯⨯⨯⨯⨯, .1234~842871120120120120Y ⎛⎫ ⎪ ⎪ ⎪⎝⎭. 2.11 设X 服从泊松分布,且已知{1}{2}P X P X ===,求{4}P X =.解 以X 表示随意抽取的一页上印刷错误的个数,以)4,3,2,1(=k X k 表示随意抽取的第k 页上印刷错误的个数,由条件知X 和)4,3,2,1(=k X k 服从同一泊松分布,未知分布参数λ决定于条件:2{1}{2}ee 2!P X P X λλλλ--====,.于是λ=2.由于随机变量)4,3,2,1(=k X k 显然相互独立,因此42222{=4}=e =e 0.090243P X --≈ !2.14 设随机变量X 服从区间25[,]上的均匀分布,求对X 进行3次独立观测中,至少有2次的观测值大于3的概率α.解 设Y 3次独立试验事件{3}A X =>出现的次数,则Y 服从参数为(3,)p 的二项分布,其中23p =.因此234820(){2}{3}3(1)92727P B P Y P Y p p p ===+==-+=+=α.2.17 设随机变量X 服从正态分布(3,4)N ,且满足 {}{}P X C P X C <=≥和{}2{}P X C P X C <=≥ ,分别求常数C解 (1)由{}X C <与{}X C ≥为对立事件,又{}{}P X C P X C <=≥得 1{}2P X C <=所以C=3 (2) 由题意可知23{}=32C P X C Φ-<=()所以反查表可得 3.88C ≈2.22 设随机变量X 服从[1,2]-上的均匀分布,求随机变量Y 的分布律,其中10 00 10X Y X X -<==>⎧⎪⎨⎪⎩,若,,若,,若.解 由于X 服从[1,2]-上的均匀分布,知随机变量Y 的概率分布为1{1}{0}{10}{0}{0}032{1}{0}{02}31~1233P Y P X P X P Y P X P Y P X P X Y =-=<=-≤<=======>=<≤=⎛⎫ ⎪ ⎪ ⎪⎝⎭,,;-1.补充:第二节 离散随机变量解:由条件知,随机变量X 的分布列如下:设{}A =至多遇到一次红灯,则54()(0)(1)64P A P X P X ==+==2.设每分钟通过交叉路口的汽车流量X 服从泊松分布,且已知在一分钟内无车辆通过与恰好有一辆车通过的概率相同,求在一分钟内至少有两辆车通过的概率。

概率论试题(附含答案)详细

概率论试题(附含答案)详细

事件表达式A B 的意思是事件A 与事件B 至少有一件发生假设事件A 与事件B 互为对立,则事件A B 是不可能事件. 这是因为对立事件的积事件是不可能事件。

已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从自由度为2的χ2分布. 因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。

已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则X +Y ~N (0,5). 因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有1233X X X ++是μ的无偏估计. 因为样本均值是总体期望的无偏估计.随机变量X 服从在区间(2,5)上的均匀分布,则X 的数学期望E (X )的值为3.5. 选C ,因为在(a ,b )区间上的均匀分布的数学期望为(a +b )/2。

已知P (A )=0.6, P (B |A )=0.3, 则P (A B )= 0.18. 由乘法公式P (A B )=P (A )P (B |A )=0.6⨯0.3=0.18。

三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为0.784. 是因为三人都不中的概率为0.63=0.216, 则至少一人中的概率就是1-0.216=0.784。

一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为0.25. 由古典概型计算得所求概率为31053210.254C ⨯⨯==。

已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=0.875,因P {X ≤1.5} 1.5()d 0.875f x x ==⎰假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (X +Y )= 填 4.5,因E (X )=5⨯0.5=2.5, E (Y )=2, E (X +Y )=E (X )+E (Y )=2.5+2=4.5一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=0.4,因为总体X 的方差为4,10个样本的样本均值的方差是总体方差的1/10。

概率论考试题及答案

概率论考试题及答案

概率论考试题及答案一、单项选择题(每题2分,共20分)1. 随机事件A和B是互斥的,那么下列哪个说法是正确的?A. P(A∪B) = P(A) + P(B)B. P(A∩B) = 0C. P(A∪B) = P(A) - P(B)D. P(A∩B) = P(A) + P(B)答案:B2. 如果随机变量X服从正态分布N(μ, σ^2),那么以下哪个是正确的?A. μ是X的中位数B. μ是X的众数C. μ是X的期望值D. μ是X的方差答案:C3. 以下哪个是条件概率的定义?A. P(A|B) = P(A) / P(B)B. P(A|B) = P(A∩B) / P(B)C. P(A|B) = P(B) / P(A)D. P(A|B) = P(A∪B) / P(B)答案:B4. 如果随机变量X和Y是独立的,那么以下哪个是正确的?A. P(X∩Y) = P(X)P(Y)B. P(X∪Y) = P(X) + P(Y)C. P(X∩Y) = P(X) - P(Y)D. P(X∪Y) = P(X)P(Y)答案:A5. 以下哪个是大数定律的表述?A. 样本均值收敛于总体均值B. 样本方差收敛于总体方差C. 样本中值收敛于总体中值D. 样本众数收敛于总体众数答案:A6. 以下哪个是中心极限定理的表述?A. 样本均值的分布随着样本量的增加而趋近于正态分布B. 样本方差的分布随着样本量的增加而趋近于正态分布C. 样本中值的分布随着样本量的增加而趋近于正态分布D. 样本众数的分布随着样本量的增加而趋近于正态分布答案:A7. 以下哪个是二项分布的参数?A. n和pB. n和σC. μ和pD. μ和σ答案:A8. 如果随机变量X服从泊松分布,那么其期望值E(X)等于?A. λB. 2λC. λ^2D. 1/λ答案:A9. 以下哪个是随机变量X的方差的定义?A. Var(X) = E(X^2) - [E(X)]^2B. Var(X) = E(X) - [E(X)]^2C. Var(X) = E(X) - E(X^2)D. Var(X) = E(X^2) - E(X)答案:A10. 以下哪个是随机变量X的标准差的定义?A. SD(X) = √E(X^2) - [E(X)]^2B. SD(X) = √Var(X)C. SD(X) = E(X) - [E(X)]^2D. SD(X) = Var(X) - E(X^2)答案:B二、填空题(每题3分,共30分)11. 如果随机变量X服从均匀分布U(a, b),那么其期望值E(X)为________。

概率论试题含答案)

概率论试题含答案)

第一部分 基本题一、选择题(共6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错0分)1. 事件表达式A B 的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 答:选D ,根据A B 的定义可知。

2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。

3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布 (D) 自由度为2的F 分布答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。

4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) (A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3) 答:选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

概率论考试题及答案

概率论考试题及答案

概率论考试题及答案一、选择题(每题2分,共20分)1. 设随机变量X服从标准正态分布,则P(X > 1)等于:A. 0.1587B. 0.8413C. 0.1587D. 0.8413答案:B2. 随机变量X和Y相互独立,且都服从二项分布,其中X~B(3, 0.5),Y~B(2, 0.5),则P(X+Y=3)等于:A. 0.5B. 0.375C. 0.25D. 0.75答案:B3. 设随机变量X服从泊松分布,其参数λ=2,则P(X=1)等于:A. 0.2707B. 0.1353C. 0.5000D. 0.2707答案:B4. 随机变量X服从均匀分布U(0, 4),则E(X)等于:A. 2B. 4C. 0D. 1答案:A5. 设随机变量X服从指数分布,其参数为λ=2,则D(X)等于:A. 1/4B. 1/2C. 2D. 4答案:C6. 设随机变量X服从正态分布N(μ, σ^2),其中μ=3,σ^2=4,则P(1<X<5)等于:A. 0.6826B. 0.9545C. 0.6830D. 0.9500答案:B7. 设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,则P(X≥5)等于:A. 0.5B. 0.7C. 0.3D. 0.8答案:B8. 设随机变量X服从几何分布,其成功概率为p=0.4,则P(X=3)等于:A. 0.064B. 0.256C. 0.064D. 0.256答案:A9. 设随机变量X服从超几何分布,其中总体大小为N=20,成功状态的个体数为M=5,样本大小为n=4,则P(X=2)等于:A. 0.4B. 0.6C. 0.2D. 0.8答案:C10. 设随机变量X服从t分布,自由度为10,则P(|X|<2)等于:A. 0.9500B. 0.9545C. 0.975D. 0.9800答案:A二、填空题(每题3分,共30分)1. 设随机变量X服从二项分布B(5, 0.2),则P(X=3)=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P{X≥87%×n}=97.72% 变即

因而
, 则n=400。
解: 设事件A i =“第i家图书馆有这本书”, i =1、2、3 事件B i =“从第i家图书馆借到这本书”, i =1、2、 3 事件C =“该学生能够借到书”。
由题义知P(A i)=1/2,P(B i A i)=1/2,从而P(B i A i)=1/4,事实上B i A i ,则P(B i)=1/4,i =1、 2、3。进一步B 1 ,B 2 ,B 3相互独立,则
二、选择题:(每个4分,共12分)
8、某人射击时,中靶的概率为
,如果射击直到中靶为止,则射击次数为3的概率为 A .
1/4 (A) (
)2 (B)(
)2×
(C)(
)2×
(D)(
)3
9、不相关与独立的关系是: A

(A) 若随机变量X与Y不是不相关的,则X与Y必然不独
立。
(B) 若随机变量X与Y不独立,则X与Y不相关。
B}=
,则a=。 5(4分)、利用契比雪夫不等式估计,当掷一枚均匀硬币时,为了保证 出现正面的频率在0.4到0.6之间的概率不少于90%。需要掷硬币的次数 为____250____。
学 院: 名:
专 业:
学 号:



线
4 6(4分)、设随机变量服从____F(n,1)_____分布。
7(4分)、设XN(1,4),YN(0,16),ZN(4,9),X,Y,Z相 互独立,则E(2U-3)= -3 ;D(4U一7)= 3472 。(其中U=4X十3Y—Z) 8(4分)、设随机变量X与Y相互独立,且均服从区间上的均 匀分布,则 。
损坏的概率为0.1,而且要求至少有87%的比部件工作,才 能使系统正常运行,问至少为多大时,才能保证系统的可 靠度系统正常运行的概率达到97.72%?(
(2.0)=0.9772,
(1.2)=0.8849)
解:设系统部件正常运行的件数为X,则X~B(n,0.9), 即X~N(0.9n,0.09n),则
广东工业大学考试试卷 ( 4 )
课程名称:
概率论与数理统计
考试时间: 第 周星期
( 月 日)
题 号
一二三四五





总 分
得 分
评 分 人
一填空题:(共30分)
1(3分)、已知P(A)=0.5,P(B)=0.6,P(B|A)=0.8,则P(AU B)=
___0.7___。
2(2分)、设随机变量X服从B(n,p)分布,已知EX=1.6,DX=1.28,则
上的均匀分布,Y服从参数的指数分布,求Z=X+Y的概率密 度函数量的分布函数,求: (Ⅰ) Y的概率密度 [5分] (Ⅱ) [4分] (Ⅲ)[4分]
解:
(Ⅰ) ; 。所以: Ⅱ) ; 所以:。 (Ⅲ) 。
45、[10分] 一个系统由几个相互独立的部件组成,每部件
P(C)=1=1=1-(1-1/4)(1-1/4)(1-1/4)=37/64
42、[15分]设随机变量(X,Y)的密度函数为
试求:(1)(X,Y)的分布函数 [3分]
(2)(X,Y)的边缘分布密度函数
(3)求概率及 [8分] 解:(1)
= (2)
[4分]
(3)= =
43、[10分]设X与Y是相互独立的随机变量,X服从[0,1]
(C) 若随机变量X与Y不相关,则X与Y独立。
(D) 以上都对
10、设独立随机变量X与Y分别服从参数为n与m的
分布,则X+Y的分布为
A

(A) 参数为n+m的
分布 (B) 参数为n+m的正态分布 (C) 参数为n+m-2的t分布 (D) 布。
三、计算题:[共58分]
不一定服从什么分
1、[10分] 一个大学生想借一本专业书,决定到三家图书 馆去借。每家图书馆有这本书的概率为1/2,若有,该 书被借出的概率也为1/2。假设三家图书馆采购、出借 图书是相互独立的,问该学生能够借到书的概率是多 少?
参数
n=
8 ;p=
0.2 。
3(5分)、设随机变量的密度函数为又已知E(X)=1,D(X)=1/6,则
a = ___1_____ ,b = ___-1___ ,c = ___2_____ ,的数学期望=___(e-
1)2___。
4(4分)、设随机变量X,Y同分布,X的密度函数为
设A={X>a}与B={Y>a}相互独立,且P{A
相关文档
最新文档