2015-01概率统计试卷+答案
概率统计考试题及答案(精编文档).doc
【最新整理,下载后即可编辑】湖北汽车工业学院概率论与数理统计考试试卷(2015~2016~1)一、(本题满分24,每小题4分)单项选择题(请把所选答案填在答题卡指定位置上): 【C 】1.已知A 与B 相互独立,且0)(>A P ,0)(>B P .则下列命题不正确的是)(A )()|(A P B A P =. )(B )()|(B P A B P =.)(C )(1)(B P A P -=. )(D )()()(B P A P AB P =. 【B 】2.已知随机变量X 的分布律为则)35(+X E 等于)(A 8. )(B 2. )(C 5-. )(D 1-.【A 】3.设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ,而 }5{},4{21+≥=-≤=μμY P p X P p ,则)(A 对任何实数μ,都有21p p =. )(B 对任何实数μ,都有21p p <.)(C 只对μ的个别值,才有21p p =. )(D 对任何实数μ,都有21p p >.【C 】4.在总体X 中抽取样本,,,321X X X 则下列统计量为总体均值μ的无偏估计量的是)(A 3213211X X X ++=μ. )(B2223212X X X ++=μ.)(C 3333213X X X ++=μ.)(D 4443214X X X ++=μ.【D 】5. 设)(~n t X ,则~2X)(A )(2n χ.)(B )1(2χ. )(C )1,(n F . )(D ),1(n F .【B 】6.随机变量)1,0(~N X ,对于给定的()10<<αα,数αu 满足αα=>)(u u P ,若α=<)(c X P ,则c 等于)(A 2αu . )(B 2)1(α-u . )(C α-1u . )(D 21α-u . 二、(本题满分24,每小题4分)填空题(请把你认为正确的答案填在答题卡指定位置上): 1. 设样本空间{},2,3,4,5,61=Ω,{},21=A ,{},32=B ,{},54=C ,则=)(C B A {},3,4,5,61.2. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门都不及格的占3%。
2015年高考理数专题复习---概率统计(解析版)
2015年高考理数专题复习---概率统计预测2013年高考中,本节的内容还是一个重点考查的内容,因为这部分内容与实际生活联系比较大,随着新课改的深入,高考将越来越重视这部分的内容,排列、组合、概率、统计都将是重点考查内容,至少会考查其中的两种类型。
(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。
(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。
这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。
复习建议在复习中,要注意理解变量的多样性,深化函数的思想方法在实际问题中的应用,充分注意一些概念的实际意义,理解概率中处理问题的基本思想方法,掌握所学概率知识的实际应用.1.把握基本题型应用本章知识要解决的题型主要分两大类:一类是应用随机变量的概念,特别是离散型随机变量分布列以及期望与方差的基础知识,讨论随机变量的取值范围,取相应值的概率及期望、方差的求解计算;另一类主要是如何抽取样本及如何用样本去估计总体.作为本章知识的一个综合应用,教材以实习作业作为一节给出,应给予足够的重视.2.强化双基训练主要是培养扎实的基础知识,迅捷准确的运算能力,严谨的判断推理能力.3.强化方法选择特别在教学中要掌握思维过程,引导学生发现解决问题的方法,达到举一反三的目的,还要进行题后反思,使学生在大脑记忆中构建良好的数学认知结构,形成条理化、有序化、网络化的有机体系.4.培养应用意识要挖掘知识之间的内在联系,从形式结构、数字特征、图形图表的位置特点等方面进行联想和试验,找到知识的“结点”.再有就是将实际问题转化为纯数学问题进行训练,以培养利用所学知识解决实际问题的能力.母题一:5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求:(1)甲中奖的概率;(2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.母题二:某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(2)求这三人该课程考核都合格的概率(结果保留三位小数).母题三:某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改,若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01): (1)恰好有两家煤矿必须整改的概率;(2)至少关闭一家煤矿的概率.母题四:袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球扣1分,取得1个黑球得0分.求所得分数 的分布列.母题五:.A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白2,服鼠的只数比服用B有效的多,就称该试验组为甲类组.设每一只小白鼠服用A有效的概率为31. (1)求一个试验组为甲类组的概率;(2)观察3个试验组,用ξ表示这3用B有效的概率为2个试验组中甲类组的个数,求ξ的分布列和数学期望.7 8 99 4 4 6 4 7 3高考模拟1.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )(A )8,8 (B )10,6 (C )9,7 (D )12,4【答案】C2.右图是 2011年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84B. 84,1.6C. 85,1.6D. 85,4【答案】C 【解析】2580855x =+=,244 1.6.5s +== 3.如图,矩形O A B C 内的阴影部分是由曲线()()()sin 0,f x x x π=∈及直线()()0,x a a π=∈与x 轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为14,则a 的值是( ) A .712π B.23π C .34π D.56π 【答案】B【答案】A6.右图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积约( ) A .523 B .521 C .519 D .516 【答案】A 7.设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于34的概率为( ) A .964 B .964π C .916π D .916【答案】B8.已知椭圆2214x y +=的焦点为12,F F ,在长轴A 1A 2上任取一点M ,过M 作垂直于A 1A 2的直线交椭圆于点P ,则使得120PF PF ⋅< 的点M 的概率为( )A B C D .12【答案】B9.在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第五组)的频数为()A.12B.24C.36D.48【答案】C10.盒子中放有编号为1,2,3,4,5的形状和大小完全相同的5个白球和5个黑球,则取出球的编号互不相同的概率为()A.115B.112C.12D.23【答案】D【解析】32352180.33243 P C⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭12.对某种花卉的开放花期追踪调查,调查情况如下:则这种卉的平均花期为__ _天.【答案】16天(15.9天给满分)16.(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)4050,,[)5060,,…,[]90100,后得到如下图的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[)4050,与[]90100,两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率。
2015年概率论考试题答案
2005级建筑工程(本)自考班 概率统计期末考试题(A 卷)参考答案一、填空 1. ABBC AC 或 ABC ABC ABC ABC2. 出现的点数恰为53. r p -A 与B 互斥∴ ()()()P A B P A P B =+ 则 ()()()P B P A B P A r p =-=-4.21 ()22~21124()114412X e EX DX EX DX EX ∴===+=+=,则5. 0.25由题设,可得X sin 的概率分布为{}sin 00.250.250.5P X ==+={}5.021sin =⎭⎬⎫⎩⎨⎧===πX P X P则 ()sin 0.5E X =,()sin 0.50.50.25D X =⨯=二、单项选择 1.D 2. A 3. A利用集合的运算性质可得. 4.DA 与B 互斥()0P AB ∴=故 ()()()()P A B P A P AB P A -=-= 5.BB A ⊂ AB B ∴=故 ()()P AB P B = 6. (C )由已知X 服从二项分布(,)B n p ,则()1DX np p =- 又由方差的性质知,(21)4(1)D X np p -=-7. (B )()04X N 服从,04EX DX ∴==,于是 ()222E X X EX EX -=-⎡⎤⎣⎦()24DX EX EX =+-=28. (A ) 由正态分布密度的定义,有 22()2()()x p x x μσ--=-∞<<+∞24()()x x x ϕ--∞<<+∞⇒由 22242σσ=⇒=9. (D )X EX DX λ==若服从泊松分布,则∴如果EX DX ≠时,只能选择泊松分布. 10. (D )∵ X 为服从正态分布N (-1, 2), EX = -1 ∴ E (2X - 1) = -3三、计算与应用题 1. 解:设 A 表示“取到的两球颜色不同”,则1153A n C C =而样本点总数28C n =故 ()1153281528A C C n P A n C ===2. 解:设 A 表示“能把门锁打开”,则112373A n C C C =+,而210C n = 故 ()1123732108A 15A C C C n P n C +=== 3. 解:设 A 表示“有4个人的生日在同一月份”,则21124611C C n A =而样本点总数为612=n故 412612611()0.007312A C C n P A n === 4. 解:设 A 表示“至少取到一个次品”,因其较复杂,考虑逆事件A =“没有取到次品”则 A 包含的样本点数为A n 346C =。
2015统计试题及答案
2015统计试题及答案一、选择题1. 在投掷一枚公正的硬币一次,正反面出现的概率是:A. 1/2B. 2/3C. 1/3D. 1/4答案:A. 1/22. 一个班级有30名女生和20名男生,随机选取一个学生,男生的概率是:A. 1/3B. 2/3C. 1/2D. 3/5答案:B. 2/33. 一副扑克牌从中随机抽取一张,它是红心的概率是:A. 1/4B. 1/2C. 2/5D. 1/3答案:B. 1/24. 一顶帽子有5个蓝色和3个红色的球,从中随机抽取一个球,则是蓝色的概率是:A. 5/8B. 3/8C. 2/5D. 3/5答案:A. 5/85. 从字母A、B、C、D、E中任意选择一个字母,它是辅音字母的概率是:A. 1/5B. 2/5C. 3/5D. 4/5答案:D. 4/5二、填空题1. 已知事件A发生的概率为0.3,事件B发生的概率为0.4,事件A 和事件B同时发生的概率为0.1,事件A和事件B互斥的概率为()。
答案:0.22. 在一篮子中,有3个红球和2个蓝球。
从篮子中随机抽取两个球,不放回,那么两个球颜色相同的概率是()。
答案:3/103. 一副扑克牌共有52张牌,其中4张为A,那么从这副牌中随机抽取一张牌,且它不是A的概率为()。
答案:48/524. 在某个城市,根据统计数据,男性人口占总人口的30%,女性人口占总人口的70%,那么一个随机抽取的人是女性的概率是()。
答案:0.75. 一枚骰子投掷一次,出现的点数是素数的概率为()。
答案:3/6三、解答题1. 请问,什么是概率?概率是指某个事件在重复试验中发生的可能性大小。
通常用一个介于0和1之间的数表示,0表示不可能发生,1表示必然发生。
2. 请给出条件概率的定义及计算公式。
条件概率是指在已知一事件A发生的条件下,另一事件B发生的概率。
计算公式为P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
概率统计参考答案(习题一)
概率统计参考答案(习题一)1、 写出下列随机试验的样本空间及各个事件的样本点:(1) 同时郑三枚骰子,记录三枚骰子的点数之和。
解:设三枚骰子点数之和为k ,k=3,,4,5,…,18;则样本空间为{k |k 3,4,...,18}Ω==,且事件A={k |k 11,12,...,18}=,事件B={k |k 3,4,...,14}=。
(2) 解:设从盒子中抽取的3只电子元件为(i,j,k),(i,j,k)为数列1,2,3,4,5的任意三个元素构成的组合。
则Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)} A={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}。
2、 下列式子什么时候成立?解:AUB=A :成立的条件是B ⊂A ;(2)AB=A :成立的条件为A ⊂B 。
3、 设A 、B 、C 表示三事件,试将下列事件用A 、B 、C 表示出来。
解:(1) 仅A 发生:ABC ;(2) A 、B 、C 都发生:ABC ;(3) A 、B 、C 都不发生:ABC ;(4) A 、B 、C 不都发生:ABC ;(5) A 不发生,且B 与C 中至少发生一事件:(A B C);(6) A 、B 、C 中至少有一事件发生:AUBUC ;(7) A 、B 、C 中恰好有一事件发生:ABC+ABC+ABC ;(8) A 、B 、C 中至少二事件发生: BC ABC ABC ABC A +++=(AB )U (AC )U (BC );(9) A 、B 、C 中最多一事件发生:BC ABC ABC ABC A +++=(AB)U(AC)U(BC)------------------。
4、设P(A)=0.5,P(B)=0.6,问:(1)什么条件下,P(AB)取得最大值,最大值是多少?解:由P(AUB)=P(A)+P(B)-P(AB)得到P(AB)=P(A)+P(B)-P(AUB)<=0.5+0.6-0.6=0.5,此时,P(AUB)=0.6。
概率统计(I)2015-2016-2(15级)期末试题及参考答案
0 1 1 C4 1 2 1 2 C 4 1 2 1 2 0 4 1 3
11 0.6875. 16
1 1, 2; 4, 25; 4. X , Y N 2 E X 1, E Y 2, D X 4, D Y 25, R X , Y
2 待检检验为:
H 0 : 0 0.27,
0 .
因总体方差已知,用 U 检验法,即检验统计量为
U X 0
n
. 因 0.05 ,查表得拒绝域为
W U : U U : U 0.95 U : U 1.645 .
2. FY y P Y y P 2 X 1 y
y 1 y 1 y 1 PX FX F . 2 2 2 1 1 3. X U 1,1 P X 0 Y B 4, 2 2
i
n
n
3
xi
i 1
n
e 3n ,
i 1
i 1
显然可见, L 关于 单调递增;又 xi , i 1, 2,, n , 从而 min x1 , x2 ,, xn ;故 的极大似然估计值为
ˆ min x ,极大似然估计量为 ˆ min X ; l i l i
1
fX x
f x, y dy
1 1 x , 1 x 1 x 1dy , 1 x 1 ; , 其它 0 其它 0,
fY y
2015年高考数学真题分类汇编:专题(11)概率和统计(文科)及答案
2015年高考数学真题分类汇编专题11 概率和统计文1.【2015高考新课标1,文4】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()(A)310(B)15(C)110(D)120【答案】C【解析】从1,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为110,故选C.【考点定位】古典概型【名师点睛】求解古典概型问题的关键是找出样本空间中的基本事件数及所求事件包含的基本事件数,常用方法有列举法、树状图法、列表法法等,所求事件包含的基本事件数与样本空间包含的基本事件数的比值就是所求事件的概率.2.【2015高考重庆,文4】重庆市2013年各月的平均气温(°C)数据的茎叶图如下0 8 91 2 5 82 0 03 3 83 1 2则这组数据中的中位数是()(A) 19 (B) 20 (C ) 21.5 (D )23【答案】B【解析】由茎叶图可知总共12个数据,处在正中间的两个数是第六和第七个数,它们都是20,由中位数的定义可知:其中位数就是20,故选B.【考点定位】茎叶图与中位数.【名师点睛】本题考查复数的概念和运算,采用分母实数化和利用共轭复数的概念进行化解求解.本题属于基础题,注意运算的准确性.3.【2015高考四川,文3】某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )(A )抽签法 (B )系统抽样法 (C )分层抽样法 (D )随机数法 【答案】C【解析】按照各种抽样方法的适用范围可知,应使用分层抽样.选C【考点定位】本题考查几种抽样方法的概念、适用范围的判断,考查应用数学方法解决实际问题的能力.【名师点睛】样本抽样是现实生活中常见的事件,一般地,抽签法和随机数表法适用于样本总体较少的抽样,系统抽样法适用于要将样本总体均衡地分为n 个部分,从每一部分中按规则抽取一个个体;分层抽样法则是当总体明显的分为几个层次时,在每一个层次中按照相同的比例抽取抽取样本.本题条件适合于分层抽样的条件,故应选用分层抽样法.属于简单题. 4.【2015高考陕西,文2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167(高中部)(初中部)男男女女60%70%【答案】C【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=,故答案选C .【考点定位】概率与统计.【名师点睛】1.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表各部分数量占总数的百分数.2.通过扇形图可以很清晰地表示各部分数量同总数之间的关系.5.【2015高考湖南,文2】在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I 所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A、3B、4C、5D、6【答案】B【解析】根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取207435⨯= (人),故选B.【考点定位】茎叶图【名师点睛】系统抽样是指当总体中个数较多时,将总体分成均衡的几部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本的抽样方法,其实质为等距抽样. 茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.缺点为不能直接反映总体的分布情况. 由数据集中情况可以估计平均数大小,再根据其分散程度可以估测方差大小.6.【2015高考山东,文6】为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的标号为( )(A)①③ (B) ①④ (C) ②③ (D) ②④【答案】B【解析】甲地数据为:26,28,29,31,31;乙地数据为:28,29,30,31,32; 所以,2628293131295x ++++==甲,2829303132305x ++++==乙,2222221s [(2629)(2829)(2929)(3129)(3129)] 3.65=-+-+-+-+-=甲,2222221s [(2830)(2930)(3030)(3130)(3230)]25=-+-+-+-+-=乙,即正确的有①④,故选B .【考点定位】1.茎叶图;2.平均数、方差、标准差.【名师点睛】本题考查茎叶图的概念以及平均数、方差、标准差的概念及其计算,解答本题的关键,是记清公式,细心计算.本题属于基础题,较全面地考查了统计的基础知识.7.【2015高考湖北,文2】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1365石 【答案】B .【解析】设这批米内夹谷的个数为x ,则由题意并结合简单随机抽样可知,282541534x=,即281534169254x =⨯≈,故应选B . 【考点定位】本题考查简单的随机抽样,涉及近似计算.【名师点睛】本题以数学史为背景,重点考查简单的随机抽样及其特点,通过样本频率估算总体频率,虽然简单,但仍能体现方程的数学思想在解题中的应用,能较好考查学生基础知识的识记能力和估算能力、实际应用能力.8.【2015高考山东,文7】在区间[]0,2上随机地取一个数x ,则事件“121-1log 2x ≤+≤()1”发生的概率为( ) (A )34 (B )23 (C )13 (D )14【答案】A【解析】由121-1log 2x ≤+≤()1得,11122211113log 2log log ,2,022222x x x ≤+≤≤+≤≤≤(),所以,由几何概型概率的计算公式得,3032204P -==-,故选A .【考点定位】1.几何概型;2.对数函数的性质.【名师点睛】本题考查几何概型及对数函数的性质,在理解几何概型概率计算方法的前提下,解答本题的关键,是利用对数函数的单调性,求得事件发生的x 范围. 本题属于小综合题,较好地考查了几何概型、对数函数等基础知识.9.【2015高考陕西,文12】 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( )A .3142π+ B . 112π+ C .1142π- D . 112π- 【答案】C【解析】22(1)||1(1)1z x yi z x y =-+⇒=≤⇒-+≤如图可求得(1,1)A ,(1,0)B ,阴影面积等于21111114242ππ⨯-⨯⨯=-, 若||1z ≤,则y x ≥的概率211142142πππ-=-⨯,故答案选C 【考点定位】1.复数的模长;2.几何概型.【名师点睛】1.本题考查复数的模长和几何概型,利用z a bi =+||z ⇒=把此题转化成几何概型,采用分母实数化和利用共轭复数的概念进行化解求解.2.求几何概型,一般先要求出实验的基本事件构成的区域长度(面积或体积),再求出事件A 构成区域长度(面积或体积),最后再代入几何概型的概率公式求解;求几何概型概率时,一定要分清“试验”和“事件”,这样才能找准基本事件构成的区域长度(面积或体积).3.本题属于题,注意运算的准确性.10.【2015高考湖北,文8】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则( ) A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 【答案】B .【解析】由题意知,事件“12x y +≤”的概率为11111222118p ⨯⨯==⨯,事件“12xy ≤”的概率02S p S =,其中11021111(1ln 2)222S dx x=⨯+=+⎰,111S =⨯=,所以021(1ln 2)112(1ln 2)1122S p S +===+>⨯,故应选B.【考点定位】本题考查几何概型和微积分基本定理,涉及二元一次不等式所表示的区域和反比例函数所表示的区域.【名师点睛】以几何概型为依托,融合定积分的几何意义、二元一次不等式所表示的区域和反比例函数所表示的区域等内容,充分体现了转化的数学思想在实际问题中的应用,能较好的考查学生灵活运用基础知识解决实际问题的能力.11.【2015高考广东,文7】已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 【答案】B【考点定位】古典概型.【名师点晴】本题主要考查的是古典概型,属于容易题.解题时要抓住重要字眼“恰有”,否则很容易出现错误.列举基本事件一定要注意按顺序列举,做到不重不漏,防止出现错误.解本题需要掌握的知识点是古典概型概率公式,即()AP A=包含的基本事件的个数基本事件的总数.12.【2015高考湖北,文4】已知变量x和y满足关系0.11y x=-+,变量y与z正相关. 下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关【答案】A.【解析】因为变量x和y满足关系0.11y x=-+,其中0.10-<,所以x与y成负相关;又因为变量y与z正相关,不妨设z ky b=+(0)k>,则将0.11y x=-+代入即可得到:(0.11)0.1()z k x b kx k b=-++=-++,所以0.10k-<,所以x与z负相关,综上可知,应选A. 【考点定位】本题考查正相关、负相关,涉及线性回归方程的内容.【名师点睛】将正相关、负相关、线性回归方程等联系起来,充分体现了方程思想在线性回归方程中的应用,能较好的考查学生运用基础知识的能力.其易错点有二:其一,未能准确理解正相关与负相关的定义;其二,不能准确的将正相关与负相关问题进行转化为直线斜率大于和小于0的问题.13.【2015高考福建,文8】如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0).且点C与点D在函数1,0()11,02x xf xx x+≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD内随机取一点,则该点取自阴影部分的概率等于()A .16 B .14 C .38 D .12【答案】B【解析】由已知得(1,0)B ,(1,2)C ,(2,2)D -,(0,1)F .则矩形ABCD 面积为326⨯=,阴影部分面积为133122⨯⨯=,故该点取自阴影部分的概率等于31264=.【考点定位】几何概型.【名师点睛】本题考查几何概型,当实验结果由等可能的无限多个结果组成时,利用古典概型求概率显然是不可能的,可以将所求概率转化为长度的比值(一个变量)、面积的比值(两个变量)、体积的比值(三个变量或根据实际意义)来求,属于中档题.14.【2015高考北京,文4】某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )A .90B .100 C .180 D .300【答案】C【解析】由题意,总体中青年教师与老年教师比例为1600169009=;设样本中老年教师的人数为x ,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320169x =,解得180x =,故选C. 【考点定位】分层抽样.【名师点晴】本题主要考查的是分层抽样,属于容易题.解题时一定要清楚“320”是指抽取前的人数还是指抽取后的人数,否则容易出现错误.解本题需要掌握的知识点是分层抽样,即抽取比例=样本容量总体容量.15.【2015高考重庆,文15】在区间[0,5]上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为________.【答案】32 【解析】方程22320x px p ++-=有两个负根的充要条件是2121244(32)020320p p x x p x x p ⎧∆=--≥⎪+=-<⎨⎪=->⎩即21,3p <≤或2p ≥,又因为[0,5]p ∈,所以使方程22320x px p ++-=有两个负根的p 的取值范围为2(,1][2,5]3,故所求的概率2(1)(52)23503-+-=-,故填:32.【考点定位】几何概率.【名师点睛】本题考查几何概率及一元二次方程实根的分布,首先将方程22320x px p ++-=有两个负根的充要条件找出来,求出p 的取值范围,再利用几何概率公式求解,本题属于中档题,注意运算的准确性.16.【2015高考湖北,文14】某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【解析】由频率分布直方图及频率和等于1可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[0.5,0.9]内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=,所以消费金额在区间[0.5,0.9]内的购物者的人数为:0.6100006000⨯=,故应填3;6000. 【考点定位】本题考查频率分布直方图,属基础题.【名师点睛】以实际问题为背景,重点考查频率分布直方图,灵活运用频率直方图的规律解决实际问题,能较好的考查学生基本知识的识记能力和灵活运用能力.17.【2015高考广东,文12】已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .【答案】11【解析】因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,所以样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为2125111x +=⨯+=,所以答案应填:11.【考点定位】均值的性质.【名师点晴】本题主要考查的是均值的性质,属于容易题.解本题需要掌握的知识点是均值和方差的性质,即数据1x ,2x ,,n x 的均值为x ,方差为2s ,则(1)数据1x a ±,2x a ±,,n x a ±的均值为x a ±,方差为2s ;(2)数据1kx ,2kx ,,n kx 的均值为kx ,方差为22k s ;(3)数据1kx a ±,2kx a ±,,n kx a ±的均值为kx a ±,方差为22k s .18.【2015高考北京,文14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 . 【答案】乙;数学【解析】①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学. 【考点定位】散点图.【名师点晴】本题主要考查的是散点图,属于容易题.解题时一定要抓住重要字眼“语文”和“更”,否则很容易出现错误.解此类图象题一定要观察仔细,分析透彻,提取必要的信息.19.【2015高考福建,文13】某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 【答案】25【解析】由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=.【考点】分层抽样.【名师点睛】本题考查抽样方法,要搞清楚三种抽样方法的区别和联系,其中分层抽样是按比例抽样;系统抽样是等距离抽样,属于基础题.20.【2015高考安徽,文17】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],,[80,90],[90,100](Ⅰ)求频率分布图中a 的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【答案】(Ⅰ)0.006;(Ⅱ)0.4;(Ⅲ)110【解析】(Ⅰ)因为110)028.02022.00018.0004.0(=⨯+⨯+++a ,所以006.0=a(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为4.010)018.0022.0(=⨯+,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为321,,A A A ; 受访职工评分在[40,50)的有: 50×0.004×40=2(人),即为21,B B .从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{}{}{}{},,,,,,,,21113121B A B A A A A A{}{}{}{}{}{},,,,,,,,,,,,2123132212312B B B A B A B A B A A A 又因为所抽取2人的评分都在[40,50)的结果有1种,即{}21,B B ,故所求的概率为101=p . 【考点定位】本题主要考查了频率分布直方图、概率和频率的关系、古典概型等基础知识. 【名师点睛】利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.21.【2015高考北京,文17】(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(I )估计顾客同时购买乙和丙的概率;(II )估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;(III )如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大? 【答案】(I )0.2;(II )0.3;(III )同时购买丙的可能性最大.【解析】试题分析:本题主要考查统计表、概率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(I )由统计表读出顾客同时购买乙和丙的人数200,计算出概率;(II )先由统计表读出顾客在甲、乙、丙、丁中同时购买3中商品的人数100200+,再计算概率;(III )由统计表读出顾客同时购买甲和乙的人数为200,顾客同时购买甲和丙的人数为100200300++,顾客同时购买甲和丁的人数为100,分别计算出概率,再通过比较大小得出结论.试题解析:(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=. (Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=, 顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点:统计表、概率.【名师点晴】本题主要考查的是统计表和古典概型,属于中档题.解题时一定要抓住重要字眼“估计”和“最大”,否则很容易失分.解此类统计表的试题一定要理解透彻题意,提取必要的信息.解本题需要掌握的知识点是古典概型概率公式,即()A P A =包含的基本事件的个数基本事件的总数.22.【2015高考福建,文18】全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05. 【解析】解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.5 5.5 6.57.5 6.0520202020⨯+⨯+⨯+⨯=. 解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个.所以所求的概率1911010P =-=. (II )同解法一.【考点定位】1、古典概型;2、平均值.【名师点睛】本题考差古典概型和平均数,利用古典概型的“等可能”“有限”性的特点,能方便的求出概率.由实际意义构造古典概型,首先确定试验的样本空间结构并计算它所含样本点总数,然后再求出事件A 所含基本事件个数,代入古典概型的概率计算公式;根据频率分布表求平均数,对于每组的若干个数可以采取区间中点值作为该组数据的数值,再求平均数.23.【2015高考广东,文17】(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【答案】(1)0.0075;(2)230,224;(3)5. 【解析】试题分析:(1)由频率之和等于1可得x 的值;(2)由最高矩形的横坐标中点可得众数,由频率之和等于0.5可得中位数;(3)先计算出月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的用户的户数,再计算抽取比例,进而可得月平均用电量在[)220,240的用户中应抽取的户数.试题解析:(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075(2)月平均用电量的众数是2202402302+= 因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户 考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.【名师点晴】本题主要考查的是频率分布直方图、样本的数字特征(众数、中位数)和分层抽样,属于中档题.解题时一定要注意频率分布直方图的纵轴是频率组距,否则很容易出现错误.解本题需要掌握的知识点是频率分布直方图、样本的数字特征(众数、中位数)和分层抽样,即在频率分布直方图中,各小长方形的面积的总和等于1,众数是最高矩形的横坐标中点,中位数左边和右边的直方图的面积相等,=⨯频率频率组距组距,=样本容量抽取比例总体容量. 24.【2015高考湖南,文16】(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球12,A A 和1个白球B 的甲箱与装有2个红球12,a a 和2个白球12,b b 的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖。
2015考研数学二真题及答案
2015考研数学二真题及答案在2015年考研数学二的真题中,有一道关于概率统计的题目,让考生进行推理和计算。
以下是该题目的详细描述和解答方法。
题目描述:某公司的员工年龄分布服从正态分布,且平均年龄为30岁,标准差为4岁。
现从该公司随机抽取10名员工,请计算抽到的这10名员工年龄的平均值大于32岁的概率。
解答方法:该题目要求计算抽到的这10名员工年龄的平均值大于32岁的概率。
首先,我们知道正态分布的随机变量服从正态分布,且满足以下两个参数:均值(mean)和标准差(standard deviation)。
我们已知平均年龄为30岁,标准差为4岁。
因此,我们可以使用正态分布的公式来计算概率。
正态分布的公式如下:P(X > x) = 1 - P(X ≤ x)其中,P(X > x)表示大于x的概率,P(X ≤ x)表示小于等于x的概率。
根据题目要求,我们需要计算抽到的这10名员工年龄的平均值大于32岁的概率。
现在我们需要进行一些计算来得出答案。
我们知道,抽到的这10名员工年龄的平均值服从正态分布。
根据中心极限定理,当样本容量足够大时,样本均值的分布接近正态分布。
根据题目中的条件,我们可以将问题转化为计算样本均值大于32岁的概率。
根据中心极限定理,样本均值的分布服从正态分布,且其均值等于总体均值,标准差等于总体标准差除以样本容量的平方根。
因此,我们可以使用正态分布的标准化公式来计算概率:Z = (X - μ) / (σ / √n)其中,Z为标准化的变量,X为样本均值,μ为总体均值,σ为总体标准差,n为样本容量。
根据题目中的条件:X = 32,μ = 30,σ = 4,n = 10代入上述公式,我们可以计算出Z的值为:Z = (32 - 30) / (4 / √10) = 1.58现在,我们需要计算Z大于1.58的概率。
我们可以查找标准正态分布表或使用计算器来得出该概率值。
假设得出的概率值为P(Z > 1.58) = 0.0571根据题目要求,我们需要计算抽到的这10名员工年龄的平均值大于32岁的概率。
概率统计试卷及答案
概率统计试卷 A一、填空题(共5 小题,每题 3 分,共计15分)1、设P(A) =a , P(B) = 0.3, P(A B ) = 0.7,若事件A 与B 互不相容,则 a = .2、设在一次试验中,事件A 发生的概率为p ,现进行n 次重复试验,则事件A 至少发生一次的概率为 .3、已知P(A ) = 0.3, P(B) = 0.4 , P(AB ) = 0.5,则P(|B A B )= .4、设随机变量X 的分布函数为0,0,()sin ,0,21.2x F x A x x x ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩则A = .5、设随机变量X ~(1)π,则P{2()X E X =}= . 二、选择题(共5 小题,每题3 分,共计15分)1、设P(A|B) = P(B|A)=14,2()3P A =, 则( )一定成立. (A) A 与B 独立,且2()5P A B =. (B) A 与B 独立,且()()P A P B =. (C) A 与B 不独立,且7()12P A B =. (D) A 与B 不独立, 且(|)(|)P A B P A B =.2、下列函数中,( )可以作为连续型随机变量的概率密度.(A)3sin ,,()20x x f x ππ⎧≤≤⎪=⎨⎪⎩其它. (B) 3sin ,,()20x x g x ππ⎧-≤≤⎪=⎨⎪⎩其它. (C)3s ,,()20co x x x ππϕ⎧≤≤⎪=⎨⎪⎩其它. (D) 31s ,,()20co x x h x ππ⎧-≤≤⎪=⎨⎪⎩其它. 3、设X 为一随机变量,若D(10X ) =10,则D(X ) = ( ).(A) 110. (B) 1. (C) 10. (D) 100.4、设随机变量X 服从正态分布2(1,2)N ,12100,,X X X 是来自X 的样本,X 为样本均值,已知~(0,1)Y aX b N =+,则有( ).(A)11,55a b ==. (B) 5,5a b ==.(C)11,55a b ==-. (D) 5,5a b ==-. 5、在假设检验中,显著性水平α的意义是( ). (A) 原假设0H 成立,经检验不能拒绝的概率.(B) 原假设0H 不成立,经检验被拒绝的概率. (C) 原假设0H 成立,经检验被拒绝的概率.(D)原假设0H 不成立,经检验不能拒绝的概率. 三、10片药片中有5片是安慰剂,(1)从中任取5片,求其中至少有2片是安慰剂的概率.(2)从中每次取一片,作不放回抽样,求前3次都取到安慰剂的概率. (本题10分)四、以X 表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(以分计),X 的分布函数是0.41,0,()0,0.x X e x F x x -⎧->=⎨≤⎩ 求下述概率:(1)P {至多3分钟}.(2)P {3分钟至4分钟之间}. (本题10分)五、设随机变量(X ,Y)的概率密度为()1(),0,0,(,)20x y x y ex y f x y -+⎧+>>⎪=⎨⎪⎩其它. (1) 求边缘概率密度(),()X Y f x f y .(2) 判断X 和Y 是否相互独立? (本题10分)六、设随机变量X 的分布律为X -2 0 2 p k 0.4 0.3 0.3求22(),(35)E X E X +. (本题10分)七、设12,,n X X X 为总体的一个样本,12,,,n x x x 为一相应的样本值,总体密度函数为1,01,()0x f x ≤≤=⎪⎩其它. 其中θ>0,求θ为未知参数的矩估计值和估计量. (本题10分)八、用金球测定引力常数(单位:10-11312m kg s --⋅⋅),观察值为6.683 6.681 6.676 6.678 6.679 6.672设测定值总体为N 2(,)μσ,2,μσ均未知,试求2σ的置信水平为0.9的置信区间.(本题10分)(2s = 0.15×10-4,20.05χ(5) = 11.070, 20.05χ(6) = 12.592, 20.95χ(5) = 1.145,20.95χ(6)=1.635 ).九、按规定,100g 罐头番茄汁中的平均维生素C 含量不得少于21/mg g ,现从工厂的产品中抽取17个罐头,其 100g 番茄汁中测得平均维生素C 含量(/mg g )记录如下:16 25 21 20 23 21 19 15 13 23 17 20 29 18 22 16 22设维生素含量服从正态分布2(,)N μσ,2,μσ均未知,问这批罐头是否符合要求(取显著性水平α= 0.05).(本题10分) (225416s =, 0.05t (16) = 1.7459, 0.05t (17) = 1.7396, 0.025t (16) = 2.1199, 0.025t (17) =2.1098)参考答案一、1、0.3 2、1(1)np -- 3、0.25 4、1 5、12e 二、1、C 2、B 3、A 4、D 5、C三、解 (1)设A=“任取5片,至少2片安慰剂.” ……1分法一23324155555555510113()126C C C C C C C P A C +++== ……4分 法二514555510113()1126C C C P A C +=-= ……4分 (2)设B=“不放回任取5片,前3次都取到安慰剂.” ……1分5431()109812P B =⋅⋅=……4分四、解(1) 设A={至多3分钟} ……1分0.431()(3)(3)11P A P X F e e -⨯-=≤==-=- ……4分(2) 设B={3分钟至4分钟之间} ……1分1.6 1.2 1.2 1.6()(34)(4)(3)(4)1(1)0P B P X F F P X e e e e ----=≤≤=-+==---+=- ……4分五、解 (1) (X, Y) 关于X 的边缘密度为()01(),0()(,)20,0x y X x y edy x f x f x y dy x +∞-++∞-∞⎧+>⎪==⎨⎪≤⎩⎰⎰ ……2分=1(1),020,0xx e x x -⎧+>⎪⎨⎪≤⎩ ……2分 (X, Y) 关于Y 的边缘密度为()01(),0()(,)20,0x y Y x y edx y f y f x y dx y +∞-++∞-∞⎧+>⎪==⎨⎪≤⎩⎰⎰ ……2分 =1(1),020,0yy e y y -⎧+>⎪⎨⎪≤⎩ ……2分 (2) ()()X Y f x f y ⋅=()1(1)(1),0,040,x y x y ex y -+⎧++>>⎪⎨⎪⎩其它 ……1分显然()()(,)X Y f x f y f x y ⋅≠,故X 和Y 不独立. ……1分六、解 E(X 2 )=(-2)2 ×0.4+ 02 ×0.3+22 ×0.3=2.8 …… 5分E(3X 2 +5)=3 E(X 2 )+5=3×2.8 +5=13.4 ……5分 七、解11()E X dx ==⎰⎰……3分110|==……3分由矩估计定义知11nii X X n ===∑ ……2分 解得矩估计值为2ˆ()1x x θ=- ……1分矩估计量为2ˆ()1X X θ=- ……1分八、解 2,μσ均未知,2σ的置信度为0.9的置信区间为2222/21/2(1)(1)[,](1)(1)n S n S n n ααχχ----- ……2分这里n = 6, 2α= 0.05, 2s =0.15×10-5查表得20.05χ(5)=11.070, 20.95χ(5)=1.145 ……3分 计算得 2462/2(1)50.1510 6.77410,(1)11.070n s n αχ---⨯⨯==⨯- ……2分24521/2(1)50.1510 6.55010,(1) 1.145n s n αχ----⨯⨯==⨯- ……2分即2σ的置信区间为[6.774×10-6,6.550×10-5]. ……1分九、解 检验假设H 0:μ≥21, H 1:μ<21. ……1分2σ未知,检验问题的拒绝域为(1)x t t n α=≤-- ……3分n = 17, α= 0.05, x = 20, 2s =254/16,查表得0.025t (16) = 1.7459 ……2分t ==–1.03>-1.7459 ……2分 故接受H 0即认为这批罐头符合要求. ……2分 概率统计试卷 B一、填空题(共5 小题,每题 3 分,共计15分)1、设A 、B 为两个随机事件,()P A = 0.7, ()P A B -= 0.3则()P AB = .2、已知()P A =14, (|)P B A =13, (|)P A B =12,则()P A B = .3、若随机变量X 的概率密度为,01(),02,40,2x ke x f x x x ⎧<⎪⎪=≤<⎨⎪≥⎪⎩,则k = .4、设随机变量X 的分布率为 X -1 0 1k p 13 16 12 则X 的分布函数()F x = .5、设X 为随机变量,若已知2,()1,2XEX D ==则2(2)E X -= .二、选择题(共5 小题,每题3 分,共计15分)1、设A 、B 是两个相互独立的事件,且()0,()0,P A P B >>则()P A B ) =( )一定成立.(A) ()()P A P B + (B) 1()()P A P B -(C) 1()()P A P B + (D) 1()P AB -2、下列函数中,( )可以作为连续型随机变量的分布函数.(A) 1,0()10x e x F x x ⎧<=⎨≥⎩ (B)2,0()10x e x F x x -⎧<=⎨≥⎩ (C) 30,0()10x x F x e x <⎧=⎨-≥⎩ (D)40,0()10xx F x e x -<⎧=⎨+≥⎩ 3、设X 和Y 是两个相互独立的随机变量,DX = 4,DY =2,则(32)D X Y -=( ).(A) 8 (B) 16(C) 28 (D) 444、设12,,(1)n X X X n >是来自正态总体N 2(,)μσ的简单随机样本,X 是样本均值,222212112222341111(),(),111(),(),1n n i i i i n n i i i i S X X S X X n n S X S X n n μμ=====-=--=-=--∑∑∑∑则服从自由度为n -1的t 分布的随机变量是( ).(A)X t =(B) X t =(C)X t =(D)X t =5、在假设检验中,0H 表示原假设,1H 为备择假设,则称为犯第二类错误是( ).(A) 1H 不真,接受1H (B) 1H 不真,接受0H (C) 0H 不真,接受0H (D) 0H 不真,接受1H三、已知在10件产品中有2件次品,在其中任取两次,每次任取一件,作不放回抽样,求下列事件的概率: (1) 两件都是正品;(2) 第二次取出的是次品. (本题10分)四、设事件A 在每次试验发生的概率为0.3,A 发生不少于3次时,指示灯发出信号,进行了5次重复独立试验,求指示灯发出信号的概率. (本题10分)五、设随机变量(X,Y)的概率密度为(),01,0(,)10x y e e x y f x y e -+⎧<<<<+∞⎪=-⎨⎪⎩其它 (1) 求边缘概率密度(),()X Y f x f y ;(2) 判断X 和Y 是否相互独立? (本题10分)六、设随机变量12,X X 的概率密度别为212,0,()0,0.x e x f x x -⎧>=⎨≤⎩ 424,0,()0,0.x e x f x x -⎧>=⎨≤⎩ (1)求212(23)E X X -; (2)又设12,X X 相互独立,求12()E X X . (本题10分)七、设12,,(1)n X X X n >为总体X 的一个样本,12,,,n x x x 为一相应的样本值,总体密度函数为(1),()0c x x c f x θθθ-+⎧>=⎨⎩其它, 其中c>0为已知,θ>1,求θ为未知参数的最大似然估计值和估计量. (本题10分)八、用铂球测定引力常数(单位:10-11m 3.kg -1.s -2),观察值为6.661 6.661 6.667 6.667 6.664设测定值总体为N 2(,)μσ,2,μσ未知,试求2σ的置信水平为0.9的置信区间. (本题10分)(250.910,s -=⨯20.05χ(4) = 9.488, 20.05χ(5) = 11.071,20.95χ(4) = 0.711,20.95χ(5)=1.145 )九、如果一个矩形的宽度与长度的比为11)2≈0.618,这样的矩形称为黄金矩形,某工艺厂生产的矩形的宽度与长度的比值总体服从正态分布N 2(,)μσ,现随机抽取16个,测得x = 0.6544, s = 0.0925, 其均值为μ,方差为2σ,2,μσ均未知,试检验假设H 0:μ= 0.618, H 1:μ≠0.618 (取α= 0.05). (本题10分)(0.025t (19) = 2.0930, 0.025t (20) = 2.0860, 0.05t (19) = 1.7291, 0.05t (20) =1.72470.025t (15) = 2.1315, 0.025t (16) = 2.1199, 0.05t (15) = 1.7531, 0.05t (16) =1.7459)参考答案一、1、0.6 2、1/3 3、0.5 4、0,11,103()1,01211x x F x x x <-⎧⎪⎪-≤<⎪=⎨⎪≤<⎪⎪≥⎩ 5、4 二、1、B 2、A 3、D 4、B 5、C 三、解 设i A =“第i 次取出的是正品.”i B =“第i 次取出的是次品.” ……2分(1)121218728()()(|)10945P A A P A P A A ==⋅= ……4分 212121212121121(2)()()()()()(|)()(|)822191109109455P B P A B B B P A B P B B P A P B A P B P B B =⋃=+=+=⋅+⋅== ……4分四、解 设A 发生的次数为X ,B 为指示灯发出信号,则X 服从b (n ,p ), n=5,p=0.3 ……4分法一5553()(3)(0.3)(0.7)0.163kk kk P B P X C -==≥=≈∑……6分法二2550()1(3)1(0.3)(0.7)0.163k k k k P B P X C -==-<=-≈∑ ……6分五、解 (1) (X, Y) 关于X 的边缘密度为()0,01()(,)1,x y X e e dy x f x f x y dy e +∞-++∞-∞⎧<<⎪==-⎨⎪⎩⎰⎰其它 ……2分 =,0110,xe e x e -⎧<<⎪-⎨⎪⎩其它 ……2分 (X, Y) 关于Y 的边缘密度为1()0,0()(,)1,0x y Y e e dx y f x f x y dx e y -++∞-∞⎧>⎪==-⎨⎪≤⎩⎰⎰……2分 =,00,0y e y y -⎧>⎨≤⎩ ……2分(2) ()()X Y f x f y ⋅(),01,010x y e e x y e -+⎧<<<<+∞⎪=-⎨⎪⎩其它 ……1分显然()()(,)X Y f x f y f x y ⋅=,故X 和Y 相互独立. ……1分 六、解11()2E X =,21()4E X = …… 2分 2222222111()()[()]()()448E X D X E X =+=+=……2分221212(1)(23)2()3()11523288E X X E X E X -=-=⋅-⋅=…… 3分(2)12,X X 独立,1212111()()()248E X X E X E X ==⋅= ……3分七、解 样本X 1,X 2,…,X n 的似然函数为(1)(1)11()nnnn i i i i L c xc x θθθθθθθ-+-+===∏⋅=⋅∏ ……3分 而1ln ()ln ln (1)ln nii L n n c x θθθθ==+-+∑ ……2分令1ln ()ln ln 0ni i d nL n c x d θθθ==+-=∑ ……2分解得的最大似然估计值为1ˆln ln nii nx n cθ==-∑ ……2分最大似然估计量为1ˆln ln nii nXn cθ==-∑ ……1分八、解 2,μσ均未知,2σ的置信度为0.9的置信区间为2222/21/2(1)(1)[,](1)(1)n S n S n n ααχχ----- ……2分这里n = 5, 2α= 0.05, 2s =0.9×10-5查表得20.05χ(4)=9.488, 20.95χ(4)=0.711 ……3分 计算得 2562/2(1)40.910 3.79410,(1)9.488n s n αχ---⨯⨯==⨯- ……2分25521/2(1)40.910 5.06310,(1)0.711n s n αχ----⨯⨯==⨯- ……2分即2σ的置信区间为[3.794×10-6,5.063×10-5]. ……1分九、解 检验假设H 0:μ= 0.618, H 1:μ≠ 0.618. ……1分2σ未知,检验问题的拒绝域为/2|||(1)x t t n α=≥- ……3分n = 16, α= 0.05, α/2 = 0.025, x = 0.6544, s = 0.0925, 查表得0.025t (15) = 2.1315 ……2分||||t ==1.574 < 2.1315 ……2分 故接受H 0即认为矩形的宽度与长度的比为0.618. ……2分概率统计试卷 C一、填空题(共5 小题,每题 3 分,共计15分) 1、设A 、B 、C 为三个随机事件, 11()()(),()()0,(),48P A P B P C P AB P BC P AC ======则()P A B C = . 2、设随机变量X 的概率密度为2(1),11,()0,k x x f x ⎧--<<=⎨⎩其他.,则k = .3、设随机变量X,Y 相互独立,~(1,4),~(10,0.4),X N Y b 则(2)D X Y -= .4、设12,,,n X X X 是来自总体2(,)N μσ的样本,X 是样本均值,则X 服从的分布为 .5、设12,,,n X X X 是来自总体2(,)N μσ的样本,2S 为样本方差,μ未知时,则2σ的一个置信水平为1α-的置信区间为 . 二、选择题(共5 小题,每题3 分,共计15分)1、设A 、B 是两个相互独立的事件,且()0,()0,P A P B >>则 ( )一定成立.(A) (|)1()P A B P A =- (B) (|)0P A B = (C) ()1()P A P B =- (D) (|)()P A B P B =2、函数()=y f x 是一连续型随机变量X 的概率密度,则( )一定成立. (A) ()f x 的定义域为[0,1] (B) ()f x 的值域为[0,1](C) ()f x 非负 (D) ()f x 在(-∞,∞)内连续3、设X 和Y 是两个相互独立的随机变量,且都服从泊松分布,又知()2,()3,E X E Y ==则2()E X Y +=( ).(A) 51 (B) 10 (C) 25 (D) 304、设总体2~(,)X N μσ,其中μ已知,2σ未知,123,,X X X 是来自正态总体X 的一个容量为3的样本,则下列选项中不是统计量的是 ( ). (A) 123X X X ++ (B) 123max{,,}X X X(C)2222123()X X X σ++ (D) 132X X μ+- 5、设总体2~(,)X N μσ, 12,,,n X X X 是来自正态总体的样本,则2σ的无偏估计量是( ). (A) 211()n i i X X n =-∑ (B) 211()1n i i X X n =--∑(C) 2211n i i X X n =-∑ (D) 211()1n i i X X n =-+∑三、有两种花籽,发芽率分别为0.8, 0.9,从中各取一颗,设各花籽是否发芽相互独立,求(1)这两颗花籽都能发芽的概率, (2)恰有一颗能发芽的概率. (本题12分)四、设随机变量X 的分布函数为0,1,()ln ,1,1,.X x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩(1)求{2 2.5},P X <<(2)求密度函数().X f x (本题12分)五、设随机变量(X,Y )的概率密度为225.25,1,(,)0,x y x y f x y ⎧≤≤=⎨⎩其它. (1) 求边缘概率密度(),()X Y f x f y ;(2) 判断X 和Y 是否相互独立? (本题12分)六、设随机变量(X,Y )的概率密度为212,01,(,)0,.y y x f x y ⎧≤≤≤=⎨⎩其他求(),().E X E XY (本题10分)七、设随机变量X 的分布律为1{}(1),0,1x xP X x p p x -==-=,1,2,,n X X X 是来自X的一个样本,12,,,n x x x 为一相应的样本值, p 为未知参数,求p 的最大似然估计值和估计量. (本题12分)八、某批矿砂的5个样品中的镍含量,经测定为(%) 3.25 3.27 3.24 3.26 3.24设测定值总体服从正态分布,但参数均未知,问在α= 0.01下能否接受假设:这批矿砂的镍含量的均值为 3.25. (本题12分)(s = 0.013, 0.005t (4) = 4.6041, 0.005t (5) = 4.0322, 0.01t (4) = 3.7459, 0.01t (5) = 3.3649)参考答案一、1、5/8=0.625 2、3/8=0.375 3、18.4 4、2(,)N n σμ5、2222/21/2(1)(1)(,)(1)(1)n S n S n n ααχχ-----二、1、A 2、C 3、D 4、C 5、B 三、解 设i A =“第i 种花籽取一颗.”(i =1,2)(1) P (两颗花籽都能发芽)=12()P A A12()()0.80.90.72P A P A ==⨯= ……6分(2) P (恰有一颗能发芽)=12121212()()()P A A A A P A A P A A =+1212()()()()0.80.10.20.90.26.P A P A P A P A =+=⨯+⨯= ……6分 四、解 (1) (2 2.5)(2.5)(2)X X P X F F <<=-5l n 2.5l n 2l n4=-= ……6分 (2)1,1,()()0,.X X x e f x F x x⎧<<⎪'==⎨⎪⎩其他 ……6分 五、解 (1) (X, Y ) 关于X 的边缘密度为 2125.25,11()(,)0,x X x ydy x f x f x y dy +∞-∞⎧-≤≤⎪==⎨⎪⎩⎰⎰其它 ……3分 2221241215.25(1),11280,xx y x x x ⎧=--≤≤⎪=⎨⎪⎩其它 ……2分 (X, Y ) 关于Y 的边缘密度为2,01()(,)0,Y x ydx y f y f x y dx +∞-∞⎧≤≤⎪==⎨⎪⎩⎰其它 ……3分35/225.25 3.5,0130,y x y y ⎧=≤≤⎪=⎨⎪⎩其它……2分(2) ()()(,)X Y f x f y f x y ⋅≠,故X 和Y 不相互独立. ……2分 六、解()(,)E X x f x y dxdy∞∞-∞-∞=⎰⎰…… 2分 112400041245x dx xy dy x dx ===⎰⎰⎰, ……3分()(,)E XY xy f x y dxdy∞∞-∞-∞=⎰⎰……2分 113500011232x dx xy dy x dx ===⎰⎰⎰ …… 3分七、解 设12,,,n x x x 是相应于样本X 1,X 2,…,X n 的的一个样本值,X 的分布律为1{}(1),0,1x x P X x p p x -==-=故似然函数为1111()(1)(1)nniii i i i x n x nx x i L p p p p p ==--=∑∑=∏-=- ……4分 而11ln ()()ln ()ln(1)nni i i i L p x p n x p ===+--∑∑令11ln ()01nniii i xn x dL p dp pp==-=-=-∑∑ ……4分解得p 的最大似然估计值为 11ˆni i px x n ===∑最大似然估计量为 11ˆ.ni i pX X n ===∑ ……4分八、解 检验假设H 0:μ= 3.25, H 1:μ≠3.25 .2σ未知,检验问题的拒绝域为/2|||(1)x t t n α=≥- ……4分n = 5, α= 0.01, α/2 = 0.005, x = 3.252, s = 0.013,查表得0.005t (4) = 4.6041 ……4分|||t == 0.343 < 4.6041 故接受H 0即认为这批矿砂的镍含量的均值为3.25. ……4分概率统计试卷 D一、填空题(共5 小题,每题 3 分,共计15分)1、设事件A,B 相互独立,()0.4,()0.7,==P A P A B 则()P B = .2、设随机变量X 的概率密度为cos ,,()220,k x x f x ππ⎧-≤≤⎪=⎨⎪⎩其他.,则k = . 3、设随机变量123,,X X X 相互独立且都服从参数为λ的泊松分布,令1231()3Y X X X =++则()D Y = .4、设12,,,n X X X 是来自总体2(,)N μσ的样本,2,X S 分别是样本均值和样本方差,则22(1)n S σ-服从的分布为 .5、设12,,,n X X X 是来自总体2(,)N μσ的样本,2,X S 分别是样本均值和样本方差,2σ已知时,μ的一个置信水平为1-α的置信区间为 . 二、选择题(共5 小题,每题3 分,共计15分)1、设A 、B 是两个相互独立的事件,且()0,()0,P A P B >>则 ( )一定成立.(A) (|)1()P A B P A =- (B) (|)0P A B = (C) ()1()P A P B =- (D) (|)()P A B P B =2、函数()=y f x 是一连续型随机变量X 的概率密度,则( )一定成立.(A) ()f x 的定义域为[0,1] (B) ()f x 的值域为[0,1] (C) ()f x 非负 (D) ()f x 在(-∞,∞)内连续3、设()0,E X ≥且2111(1)2,(1),222E X D X -=-=则()E X =( ). (A)(B) 2(C) 1 (D) 04、设1234,,,X X X X 是来自正态总体X 的样本,其中μ已知,2σ未知,则下列选项中不是统计量的是 ( ).(A) 4114ii X X ==∑ (B) 142X X μ+-(C) 42211()3i i S X X ==-∑ (D) 42211()i i K X X σ==-∑5、设总体2~(,)X N μσ, 12,,,n X X X 是来自正态总体的样本,则2σ的无偏估计量是( ).(A) 211()n i i X X n =-∑ (B) 211()1n i i X X n =-+∑(C) 211()1n i i X X n =--∑ (D) 2211n i i X X n =-∑三、有两种花籽,发芽率分别为0.8, 0.9,从中各取一颗,设各花籽是否发芽相互独立,求(1)这两颗花籽都能发芽的概率,(2)恰有一颗能发芽的概率. (本题12分)四、设随机变量X 的分布函数为0,1,()ln ,1,1,.X x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩(1)求{03}P X <≤,(2)求密度函数().X f x (本题12分)五、设随机变量(X,Y )的概率密度为 4.8(2),01,0,(,)0,y x x y x f x y -≤≤≤≤⎧=⎨⎩其它.(1) 求边缘概率密度(),()X Y f x f y ;(2) 判断X 和Y 是否相互独立? (本题12分)六、设随机变量(X,Y )的概率密度为2,01,01,(,)0,.y x y f x y <<<<⎧=⎨⎩其他 ,求(),().E Y E XY (本题10分)七、设1,2,,n X X X 是来自总体X 的一个样本,12,,,n x x x 为一相应的样本值,总体X 的密度函数为 1,01,(,)(0)0,x x f x θθθθ-⎧<<=>⎨⎩其它.,求θ为未知参数的矩估计值和估计量. (本题12分)八、某批矿砂的5个样品中的镍含量,经测定为(%) 3.25 3.27 3.24 3.26 3.24设测定值总体服从正态分布,但参数均未知,问在α= 0.01下能否接受假设:这批矿砂的镍含量的均值为 3.25. (本题12分)(s = 0.013, 0.005t (4) = 4.6041, 0.005t (5) = 4.0322, 0.01t (4) = 3.7459, 0.01t (5) = 3.3649)参考答案一、1、0.5 2、1/2=0.5 3、13λ 4、2(1)n χ- 5、/2()X z α二、1、A 2、C 3、B 4、D 5、C 三、解 设i A =“第i 种花籽取一颗.”(i =1,2)(1) P (两颗花籽都能发芽)=12()P A A12()()0.80.90.72P A P A ==⨯= ……6分(2) P (恰有一颗能发芽)=12121212()()()P A A A A P A A P A A =+1212()()()()0.80.10.20.90.26.P A P A P A P A =+=⨯+⨯= ……6分 四、解 (1) (03)(3)(0)101X X P X F F <≤=-=-= ……6分(2)1,1,()()0,.X Xx e f x F x x ⎧<<⎪'==⎨⎪⎩其他 ……6分 五、解 (1) (X, Y ) 关于X 的边缘密度为4.8(2),01()(,)0,x X y x dy x f x f x y dy +∞-∞⎧-≤≤⎪==⎨⎪⎩⎰⎰其它 ……3分 2202.4(2) 2.4(2),010,x x y x x x ⎧-=-≤≤⎪=⎨⎪⎩其它 ……2分 (X, Y ) 关于Y 的边缘密度为14.8(2),01()(,)0,yY y x dx y f y f x y dx +∞-∞⎧-≤≤⎪==⎨⎪⎩⎰⎰其它 ……3分 21214.8[(2)] 2.4(34),0120,y y x y y y y ⎧--=-+≤≤⎪=⎨⎪⎩其它 ……2分(2) ()()(,)X Y f x f y f x y ⋅≠,故X 和Y 不相互独立. ……2分 六、解()(,)E Y y f x y dxdy∞∞-∞-∞=⎰⎰……2分 11112311000000222223333dx y dy y dx dx x =====⎰⎰⎰⎰, ……3分 ()(,)E XY xy f x y dxdy∞∞-∞-∞=⎰⎰……2分 1111231100000022112.3333dx xy dy xy dx xdx x =====⎰⎰⎰⎰ ……3分七、解 由矩法估计1()(,)E X x f x d xμθ∞-∞==⎰11110011x x dx x θθθθθθθ-+===++⎰ ……4分 以1A 代1μ得 1111ni i A X Xn θθ====+∑ ……4分得θ的矩估计量为ˆ,1X X θ=- θ的矩估计值为 ˆ1x x θ=-. ……4分 八、解 检验假设H 0:μ= 3.25, H 1:μ≠3.25 .2σ未知,检验问题的拒绝域为/2|||(1)x t t n α=≥- ……4分n = 5, α= 0.01, α/2 = 0.005, x = 3.252, s = 0.013,查表得0.005t (4) = 4.6041 ……4分|||t ==0.343 < 4.6041 故接受H 0即认为这批矿砂的镍含量的均值为3.25. ……4分。
2015-2016-1概率试题(合作办学) B卷参考答案
(答案要注明各个要点的评分标准)一、填空题(每小题3分,共15分)1.{}2,3,4,5,6,7,8,9,10,11,12Ω=; 2.0.7; 3.0.504; 4. 3; 5. 2- 二、选择题(每小题3分,共15分)1. B ; 2. D ; 3.A ; 4.C ; 5.C 三、计算下列各题(共28分)1(10分).解:设1B ,2B ,3B 分别表示此人来自甲乙丙三地区,A={此人感染疾病}, 则由题意得123111(),()333P B P B P===,123111(|),(|),(|),643P A B P A B P A B ===--------------2分(1)由全概率公式,有11223P ()()(|)()(|)()A PB P A B P B P A B P B P =++ ------------------4分11111()36434=++= 此人染病的概率为14. -----------------------------6分(2) 1111()()(|)(|)()()P AB P B P A B P B A P A P A ==11236194⨯== ------------------------8分同理,21(|)3P B A =,34(|)9P B A =此人来自甲乙丙三地区的概率分别为214,,939---------------------10分2. (1)1()(1)1f x dx A x dx ∞-∞=-=⎰⎰,----------------------2分即12AA -=得:2A =----------------------4分 (2)()()xF x f x dx -∞=⎰-------------------------5分00,02(1),011,1xx x dx x x <⎧⎪⎪=-≤≤⎨⎪>⎪⎩⎰20,02,011,1x x x x x <⎧⎪=-≤≤⎨⎪>⎩ ------------------9分(3)13311{}()()22224P X F F <<=-= --------------------------12分 (4) ()()E X xf x dx ∞-∞=⎰1012(1)3x x dx =-=⎰ -------------------------14分22()()E X x f x dx ∞-∞=⎰12012(1)6x x dx =-=⎰ ---------------------16分22111()()()6918Var x E X E X =-=-= ----------------------18分四(共22分) 1.(8分)解:函数21,20,y x y '=+=>单调增加,且y -∞<<∞,---------------------2分反函数11(),()22y x h y h y -'=== ----------------------------4分 21Y X =+的概率密度为:()[()]|()|Y X f y f h y h y '=--------------------------6分2211212(4(1))(1())2y y ππ=⨯=-+-+,y -∞<<∞ ------------------8分 2.(14分) 解:(1)由(,)1dx f x y dy ∞+∞-∞-∞=⎰⎰------------------------2分有121Axdx ydy A ==⎰⎰ --------------------4分(2)20,01()(,)0,X xydy x f x f x y dy ∞-∞⎧≤≤⎪==⎨⎪⎩⎰⎰其他 2,010,x x ≤≤⎧=⎨⎩其他 ----------------------7分1,02()(,)0,Y xydx y f y f x y dx ∞-∞⎧≤≤⎪==⎨⎪⎩⎰⎰其他 ,0220,yy ⎧≤≤⎪=⎨⎪⎩其他 ----------------------------10分 由于 (,)()()X Y f x y f x f y =,所以,X Y 独立。
2015年高考数学 概率统计专题试卷 12
2015年高考数学概率统计专题试卷1.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3根据样本的概率分布估计,大于或等于31.5的数据约占( )A.211B.13C.12D.232.为了了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校400名授课教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图所示.据此可估计上学期该校400名教师中,使用多媒体进行教学次数在[16,30)内的人数为( )A.100 B.160 C.200 D.2803.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A.18 B.36 C.54 D.724.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( )A.众数 B.平均数 C.中位数 D.标准差5.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,则以上两组数据的方差中较小的一个为s2,则s2=( )A.25B.725C.35D.26.已知一组正数x1,x2,x3,x4的方差s2=14(x12+x22+x32+x42-16),则数据x1+2,x2+2,x3+2,x4+2的平均数为( )A.2 B.3 C.4 D.67.某中学从高三甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x+y的值为________.8.为了调查学生每天零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.某市抽取1000名年龄在[2,22](单位:岁)内的学生每天的零花钱,样本的频率分布直方图如图所示,则样本数据落在[6,14)内的频数为________.9.某班有48名学生,在一次考试中统计出平均分为70,方差为75,后来发现有2名同学的分数登记错了,甲实际得80分却记成了50分,乙实际得70分却记成了100分,更正后平均分为________,方差为________.10.下图1是某县参加2011年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A n(如A2表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个程序框图.现要统计身高在160 cm~180 cm(含160 cm,不含180 cm)内的学生人数,那么在程序框图中的判断框内应填写的条件是________.图1图211.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.12.某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60]的频率及全班人数;(2)求分数在[80,90]之间的频数,并计算频率分布直方图中[80,90]间的矩形的高.13.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min抽取一包产品,称其重量,分别记录抽查数据如下:甲:102,101,99,98,103,98,99;乙:110,115,90,85,75,115,110.(1)这种抽样方法是哪一种?(2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间的产品较稳定.14.某果农选取一片山地种植沙糖桔,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间[40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图所示.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的43倍.(1)求a,b的值;(2)从样本中产量在区间(50,60]上的果树中随机抽取2株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.15.已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.(1)若第5组抽出的号码为22,写出所有被抽出职工的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率.四、新添加的题型参考答案1.B【解析】大于或等于31.5的数据是最后的3组,故大于或等于31.5的数据约占127366++=13. 2.B【解析】由茎叶图,可知在20名教师中,上学期使用多媒体进行教学的次数在[16,30)内的人数为8,据此可以估计400名教师中,使用多媒体进行教学的次数在[16,30)内的人数为400×820=160. 3.B【解析】本题考查了频率分布直方图的有关知识.设样本数据落在区间[10,12)内的频率与组距的比为x ,则(0.02+0.05+x +0.15+0.19)×2=1,得x =0.09,故样本数据落在区间[10,12)内的频数为0.09×2×200=36.4.D【解析】本题考查众数、平均数、中位数及标准差的概念,考查推理论证能力.当每个样本数据加上2后,众数、平均数、中位数都会发生变化,不变的是数据的波动情况,即标准差不变.5.A 【解析】x 甲=7,s 甲2=15 [(6-7)2+(7-7)2+(7-7)2+(8-7)2+(7-7)2]=25, x 乙=7,s 乙2=15 [(6-7)2+(7-7)2+(6-7)2+(7-7)2+(9-7)2]=65, 两组数据的方差中较小的一个为s 甲2,即s 2=25. 6.C【解析】∵s 2=14 (x 12+x 12+x 32+x 42-16)=14[(x 1-x )2+(x 2-x )2+(x 3-x )2+(x 4-x )2],∴2x (x 1+x 2+x 3+x 4)-4x 2=16,∴8x 2-4x 2=16,x =2,即x 1+x 2+x 3+x 4=8,∴123422224x x x x +++++++=4,故选C . 7.8【解析】因为甲班学生成绩的众数是85,所以由茎叶图可知,x =5.乙班学生成绩的中位数是83,所以y =3,x +y =8.8.680【解析】由频率分布直方图的意义知4×(0.02+0.03+0.03+0.08+x)=1,解得x =0.09,所以样本数据落在[6,14)内的频数为1000×4×(0.08+0.09)=680.9.70 50【解析】因甲少记了30分,乙多记了30分,故平均分不变,设更正后的方差为s 2,则由题意可得s 2=148[(x 1-70)2+(x 2-70)2+…+(80-70)2+(70-70)2+…+(x 48-70)2],而更正前有75=148 [(x 1-70)2+(x 2-70)2+…+(50-70)2+(100-70)2+…+(x 48-70)2],化简整理得s 2=50.10.i≤7【解析】由题意可知,本题是统计身高在160 cm ~180 cm(含160 cm ,不含180 cm)内的学生人数,即求A 4+A 5+A 6+A 7,故程序框图中的判断框内应填写的条件是“i≤7”.11.(1)0.04 (2)440【解析】(1)设[25,30)年龄组对应小矩形的高度为h ,则5(0.01+h +0.07+0.06+0.02)=1,h =0.04.志愿者年龄在[25,35)的频率为5(0.04+0.07)=0.55,故志愿者年龄在[25,35)的人数约为0.55×800=440.12.(1)0.08 25(2)0.016【解析】(1)分数在[50,60]的频率为0.008×10=0.08.由茎叶图知,分数在[50,60]之间的频数为2,所以全班人数为20.08=25. (2)分数在[80,90]之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90]间的矩形的高为425÷10=0.016. 13.(1)系统抽样 (2)见解析 (3)甲车间的产品较稳定【解析】(1)因为间隔时间相同,所以是系统抽样.(2)茎叶图如下:(3)甲车间:平均值:x 1=17 (102+101+99+98+103+98+99)=100, 方差:s 12=17 [(102-100)2+(101-100)2+…+(99-100)2]=247. 乙车间:平均值:x 2=17 (110+115+90+85+75+115+110)=100, 方差:s 22=17 [(110-100)2+(115-100)2+…+(110-100)2]=16007. ∵x 1=x 2,s 12<s 22,∴甲车间的产品较稳定.14.(1)a =0.08,b =0.04(2)35【解析】(1)样本中产量在区间(45,50]上的果树有a×5×20=100a(株),样本中产量在区间(50,60]上的果树有(b+0.02)×5×20=100(b+0.02)(株),依题意,有100a=43×100(b+0.02),即a=43(b+0.02).①根据频率分布直方图可知(0.02+b+0.06+a)×5=1,②由①②得:a=0.08,b=0.04.(2)样本中产量在区间(50,55]上的果树有0.04×5×20=4(株),分别记为A1,A2,A3,A4,产量在区间(55,60]上的果树有0.02×5×20=2(株),分别记为B1,B2.从这6株果树中随机抽取2株共有15种情况:(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2).其中产量在(55,60]上的果树至少有一株被抽中共有9种情况:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2).记“从样本中产量在区间(50,60]上的果树中随机抽取2株,产量在区间(55,60]上的果树至少有一株被抽中”为事件M,则P(M)=915=35.15.(1)2,7,12,17,22,27,32,37,42,47.(2)52(3)2 5【解析】(1)由题意,第5组抽出的号码为22.因为k+5×(5-1)=22,所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为2,7,12,17,22,27,32,37,42,47.(2)因为10名职工的平均体重为x=110(81+70+73+76+78+79+62+65+67+59)=71,所以样本方差为:s2=110(102+12+22+52+72+82+92+62+42+122)=52.(3)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).记“体重为76公斤的职工被抽取”为事件A,它包括的事件有(73,76),(76,78),(76,79),(76,81)共4个.故所求概率为P(A)=410=25.。
2015年高考真题概率与统计(理科)
2015年高考真题解答题专项训练:概率与统计(理科)1.(2015•广东理)某工厂36名工人年龄数据如图:(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)?2.(2015•新课标二卷理)(本题满分12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.3.((2015•新课标一卷 理)本小题满分13分,(1)小问5分,(2)小问8分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。
(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望 4.(2015•重庆理)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i w =,w =1881i i w =∑(Ⅰ)根据散点图判断,y=a+bx 与y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:5.(2015•天津 理)(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(Ⅰ)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率;(Ⅱ)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队(1)求A中学至少有1名学生入选代表队的概率.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望.7.(2015•陕西理)本小题满分12分)设某校新、老校区之间开车单程所需时间为T,(Ⅰ)求T的分布列与数学期望ET;(Ⅱ)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.8.【2015高考山东,理19】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;分;若能被10整除,得1分.若能被5整除,但不能被10整除,得1(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.9.(2015•湖南理)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产,A B两种产品时间之和不超过12小时.假定每天该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(Ⅰ)求Z的分布列和均值;(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.11.(2015•安徽理)(本小题满分12分)已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(Ⅰ)求当天小王的该银行卡被锁定的概率;(Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.13.(2015•北京理)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;a ,求甲的康复时间比乙的康复时间长的概率;(Ⅱ)如果25(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)2015年高考真题解答题专项训练:概率与统计(理科)参考答案1.(1)44,40,36,43,36,37,44,43,37.(2)平均值40;方差:(3)23人.63.89%.【解析】试题分析:(1)利用系统抽样的定义进行求解即可;(2)根据均值和方差公式即可计算(1)中样本的均值和方差s2;(3)求出样本和方差即可得到结论.解:(1)由系统抽样知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,…,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.(3)∵s2=.∴s=∈(3,4),∴36名工人中年龄在﹣s和+s之间的人数等于区间[37,43]的人数,即40,40,41,…,39,共23人.∴36名工人中年龄在﹣s和+s之间所占百分比为≈63.89%.点评:本题主要考查统计和分层抽样的应用,比较基础.2.(Ⅰ)详见解析;(Ⅱ)0.48.【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(Ⅱ)记1A C 表示事件:“A 地区用户满意度等级为满意或非常满意”; 2A C 表示事件:“A 地区用户满意度等级为非常满意”; 1B C 表示事件:“B 地区用户满意度等级为不满意”; 2B C 表示事件:“B 地区用户满意度等级为满意”. 则1A C 与1B C 独立,2A C 与2B C 独立,1B C 与2B C 互斥,1122B A B A C C C C C = .1122()()B A B A P C P C C C C = 1122()()B A B A PC C P C C =+1122()()()()B A B A P C P C P C P C =+.由所给数据得1A C ,2A C ,1B C ,2B C 发生的概率分别为1620,420,1020,820.故1()A P C 16=20, 2()=A P C 420,1()=B PC 1020,2()B P C 8=20,故101684()=+0.4820202020P C ⨯⨯=. 考点:1、茎叶图和特征数;2、互斥事件和独立事件. 3.(1)14;(2)分布列见解析,期望为35. 【解析】试题分析:(1)本题属于古典概型,从10个棕子中任取3个,基本事件的总数为310C ,其中事件“三种棕子各取1个”含基本事件的个数为111235C C C ,根据古典概型概率计算公式可计算得所求概率;(2)由于10个棕子中有2个豆沙棕,因此X 的可能值分别为0,1,2,同样根据古典概型概率公式可得相应的概率,从而列出其分布列,并根据期望公式求得期望为35. 试题解析:(1)令A 表示事件“三个粽子各取到1个”,则由古典概型的概率计算公式有1112353101(A)4C C C P C ==; (2)X 的所有可能取值为0,1,2,且383107(X 0),15C P C ===12283107(X 1),15C C P C ===21283101(X 2),15C C P C ===故7713E(X)0121515155=???. 考点:古典概型,随机变量的颁布列与数学期望.考查学生的数据处理能力与运算求解能力. 4.(Ⅰ)y c =+适合作为年销售y 关于年宣传费用x 的回归方程类型;(Ⅱ)100.6y =+46.24【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w 先求出建立y 关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x的回归方程先求出年销售量y 的预报值,再根据年利率z 与x 、y 的关系为z=0.2y-x 即可年利润z 的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值,列出关于x 的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用. 试题解析:(Ⅰ)由散点图可以判断,y c =+y 关于年宣传费用x 的回归方程类型.(Ⅱ)令w =,先建立y 关于w 的线性回归方程,由于81821()()()ii i ii w wy ydw w ==--=-∑∑=108.8=6816, ∴ cy dw =- =563-68×6.8=100.6. ∴y 关于w 的线性回归方程为 100.668y w =+, ∴y 关于x 的回归方程为100.6y =+(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值100.6y =+, 576.60.24966.32z=⨯-= . (ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值0.2(100.620.12zx x =+-=-+ ,13.6=6.82,即46.24x =时,z取得最大值. 故宣传费用为46.24千元时,年利润的预报值最大.……12分考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识5.(Ⅰ)635;()52E X =【解析】(Ⅰ)由已知,有22222333486()35C C C C P A C +== 所以事件A 发生的概率为635. (Ⅱ)随机变量X 的所有可能取值为1,2,3,4()45348(1,2,3,4)k k C C P X k k C -===所以随机变量X 的数学期望()1331512341477142E X =⨯+⨯+⨯+⨯= 考点:古典概型、互斥事件、离散型随机变量的分布列与数学期望. 6.(1)A 中学至少1名学生入选的概率为99100p =. (2)X 的分布列为:X 的期望为()2E X =.【解析】(1)由题意,参加集训的男女生各有6名.参赛学生全从B 中抽取(等价于A 中没有学生入选代表队)的概率为333433661100C C C C =. 因此,A 中学至少1名学生入选的概率为1991100100-=.(2)根据题意,X 的可能取值为1,2,3.1333461(1)5C C P X C ===,2233463(2)5C C P X C ===, 3133461(3)5C C P X C ===,所以X 的分布列为:因此,X 的期望为131()1232555E X =⨯+⨯+⨯=. 考点:本题考查随机事件的概率、古典概型、随机变量的分布列、数学期望等基础知识,考查运算求解能力、应用意识,考查运用概率与统计的知识与方法分析和解决实际问题的能力. 7.(Ⅰ)分布列见解析,32;(Ⅱ)0.91. 【解析】 试题分析:(Ⅰ)先算出T 的频率分布,进而可得T 的分布列,再利用数学期望公式可得数学期望ET ;(Ⅱ)先设事件A 表示“刘教授从离开老校区到返回老校区共用时间不超过120分钟”,再算出A 的概率.从而 0.4400.132⨯+⨯=(分钟)(Ⅱ)设12,T T 分别表示往、返所需时间,12,T T 的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在途中的时间不超过70分钟”. 解法一:121212(A)P(70)P(25,45)P(30,40)P T T T T T T =+≤==≤+=≤1212P(35,35)P(40,30)T T T T +=≤+=≤10.210.30.90.40.50.10.91=⨯+⨯+⨯+⨯=.解法二:121(A )P P T T T=+>=12P(40,40)T T +==0.40.10.10.40.10.10.09=⨯+⨯+⨯=故(A)1P(A)0.91P =-=.考点:1、离散型随机变量的分布列与数学期望;2、独立事件的概率. 8.(Ⅰ)有:125,135,145,235,245,345; (Ⅱ)X 的分布列为21EX =【解析】 试题分析:(Ⅰ)明确“三位递增数”的含义,写出所有的三位符合条件的“三位递增数”;(Ⅱ)试题解析:明确随机变量的所有可能取值及取每一个值的含义,结合组合的知识,利用古典概型求出X 的分布列和数学期望EX . 解:(Ⅰ)个位数是5的“三位递增数”有:125,135,145,235,245,345;(Ⅱ)由题意知,全部“三位递增烽”的个数为3984C =随机变量X 的取值为:0,-1,1,因此()3839203C P X C === ()24391114C P X C =-== ,()12111114342P X ==--=,因此0(1)13144221EX =⨯+-⨯+⨯= 考点:1、新定义;2、古典概型;3、离散型随机变量的分布列与数学期望;4、组合的应用.9.(1)107;(2)详见解析. 【解析】试题分析:(1)记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球}1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖},则可知1A与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥,且1B =12A A ,2B =12A A +12A A ,12C B B =+,再利用概率的加法公式即可求解;(2)分析题意可知1(3,)5X B ,分别求得00331464(0)()()55125P X C ===,11231448(1)()()55125P X C ===,22131412(2)()()55125P X C ===,3303141(3)()()55125P X C ===,即可知X 的概率分布及其期望.试题解析:(1)记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球}1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖},由题意,1A 与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥,且1B =12A A ,2B =12A A +12A A ,12C B B =+,∵142()105P A ==,251()102P A ==,∴11212211()()()()525P B P A A P A P A ===⨯=, 2121212121212()()()()()(1())(1())()P B P A A A A P A A P A A P A P A P A P A =+=+=-+-21211(1)(1)52522=⨯-+-⨯=,故所求概率为1212117()()()()5210P C P B B P B P B =+=+=+=;(2)顾客抽奖3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,∴1(3,)5X B ,于是00331464(0)()()55125P X C ===,11231448(1)()()55125P X C ===,22131412(2)()()55125P X C ===,3303141(3)()()P X C ===,故X 的分布列为X 的数学期望为 13()355E X =⨯=.考点:1.概率的加法公式;2.离散型随机变量的概率分布与期望. 【名师点睛】本题主要考查了离散型随机变量的概率分布与期望以及概率统计在生活中的实际应用,这一直都是高考命题的热点,试题的背景由传统的摸球,骰子问题向现实生活中的热点问题转化,并且与统计的联系越来越密切,与统计中的抽样,频率分布直方图等基础知识综合的试题逐渐增多,在复习时应予以关注.10.(Ⅰ)Z 的分布列为:()9708E Z =;(Ⅱ)0.973. 【解析】(Ⅰ)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1)目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C . 将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C . 将10001200z x y =+变形为561200zy x =-+,当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=. 当18W =时,(1)表示的平面区域如图3, 四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200zy x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=. 故最大获利Z 的分布列为第20题解答第20题解答第20题解答因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯=(Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=, 由二项分布,3天中至少有1天最大获利超过10000元的概率为3311(1)10.30.973.p p =--=-=考点:线性规划的实际运用,随机变量的独立性,分布列与均值,二项分布. 11.(Ⅰ)310;(Ⅱ)350. 【解析】 试题分析:(Ⅰ)依据题目所给的条件可以先设“第一次检查出的是次品且第二次检测出的是正品”为事件A .得出1123253()10A A P A A ==.(Ⅱ)X 的可能取值为200,300,400.依此求出各自的概率136,,101010,列出分布列,求出期望136200300400350101010EX =⨯+⨯+⨯=.试题解析:(Ⅰ)记“第一次检查出的是次品且第二次检测出的是正品”为事件A .1123253()10A A P A A ==.(Ⅱ)X 的可能取值为200,300,400.22251(200)10A P X A ===.31123232353(300)10A C C A P X A +===. 136(400)1(200)(300)1101010P X P X P X ==-=-==--=.136200300400350101010EX =⨯+⨯+⨯=. 考点:1.概率;2.随机变量的分布列与期望.12.(Ⅰ)12;(Ⅱ)分布列见解析,期望为52. 【解析】(Ⅰ)设“当天小王的该银行卡被锁定”的事件为A , 则5431(A)=6542P =创(Ⅱ)依题意得,X 所有可能的取值是1,2,3 又1511542(X=1),(X=2),(X=3)1=.6656653P P P ==?=创 所以X 的分布列为所以1125E(X)1236632=???. 考点:1、古典概型;2、离散型随机变量的分布列和期望. 13.(Ⅰ)37,(Ⅱ)1049,(Ⅲ)11a =或18 【解析】试题分析:针对甲有7种情况,康复时间不少于14天有3种情况,概率为37;如果25a =,甲、乙随机各取一人有49种情况,用列举法列出甲的康复时间比乙的康复时间长的情况有10种,概率为1049,由于A 组数据为10,11,12,13,14,15,16;B 组数据调整为a ,12,13,14,15,16,17,或12,13,14,15,16,17,a ,由于A ,B 两组病人康复时间的方差相等,即波动相同,所以11a =或18.试题解析:(Ⅰ)甲有7种取法,康复时间不少于14天的有3种取法,所以概率37P =; (Ⅱ) 如果25a =,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙共有49种取法,甲的康复时间比乙的康复时间长的列举如下:(13,12),(14,12),(14,13),(15,12),(15,13),(15,14),(16,12)(16,13),(16,15),(16,14)有10种取法,所以概率1049P =. (Ⅲ)把B 组数据调整为a ,12,13,14,15,16,17,或12,13,14,15,16,17,a ,可见当11a =或18a =时,与A 组数据方差相等.(可利用方差公式加以证明,但本题不需要)考点:1、古典概型;2、样本的方差。
2015级《概率论与数理统计》A卷及解答
上海立信会计金融学院2016 ~2017学年第二学期《高等数学-概率论与数理统计》课程 代码:06169040 本试卷系A 卷集中考试 考试形式:闭卷 考试用时: 90分钟考试时能使用计算工具__________专业 _________班 姓名 __________学号 ____________ 序号题号 一 二 三 四 总分 应得分 10 20 40 30 100 实得分一、单项选择题(本大题共5小题,每小题2分,共10分)1.某种动物活到25岁以上的概率为0.8,活到30岁以上的概率为0.4,则现年25岁的这种动物活到30岁以上的概率是 ( D ) (A) 0.76 (B) 0.4 (C)0.32 (D)0.52.下列函数中可作为随机变量分布函数的是 ( C )(A)⎩⎨⎧≤≤=.,0;10,1)(1其他x x F (B)⎪⎩⎪⎨⎧≥<≤<-=.1,1;10,;0,1)(2x x x x x F(C)⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x F (D)⎪⎩⎪⎨⎧≥<≤<=.1,2;10,;00,0)(4x x x x F3.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎪⎩⎪⎨⎧<<<<,,0;20,20,41其他y x则P{0<X <1,0<Y <1}= (A ) (A)41 (B)21 (C)43(D)14.设(X ,Y )为二维随机变量,且D (X )>0,D (Y )>0,则下列等式成立的是 (B ) (A))()()(Y E X E XY E ⋅= (B))()(Cov Y D X D (X,Y)XY ⋅⋅=ρ(C))()()(Y D X D Y X D +=+ (D)),(Cov 2)2,2(Cov Y X Y X =5.设随机变量X 和Y 相互独立且同服从正态分布N (0,4)。
高考概率大题及答案
高考概率大题及答案【篇一:2015年高考数学概率与统计试题汇编】4.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:??a??0.76,a? ,据此估计,??bx? ,其中b???根据上表可得回归直线方程y该社区一户收入为15万元家庭年支出为( )a.11.4万元 b.11.8万元c.12.0万元 d.12.2万元【答案】b考点:线性回归方程.13.如图,点a 的坐标为?1,0? ,点c 的坐标为?2,4? ,函数f?x??x2 ,若在矩形abcd 内随机取一点,则此点取自阴影部分的概率等于.【答案】5 12【解析】试题分析:由已知得阴影部分面积为4??x2dx?4?1275?.所以此点取自阴影3355部分的概率等于?. 412考点:几何概型.16.某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率;(Ⅱ)设当天小王用该银行卡尝试密码次数为x,求x的分布列和数学期望.15【答案】(Ⅰ);(Ⅱ)分布列见解析,期望为. 22【解析】试题分析:(Ⅰ)首先记事件“当天小王的该银行卡被锁定”的事件为a.则银行3卡被锁死相当于三次尝试密码都错,基本事件总数为a6?6?5?4,事件a包含3的基本事件数为a5?5?4?3,代入古典概型的概率计算公式求解;(Ⅱ)列出随机变量x的所有可能取值,分别求取相应值的概率,写出分布列求期望即可.试题解析:(Ⅰ)设“当天小王的该银行卡被锁定”的事件为a,5431= 则p(a)=6542(Ⅱ)依题意得,x所有可能的取值是1,2,3151又p(x=1)=,p(x=2)=?6651542,p(x=3)=1=. 6653所以x的分布列为所以e(x)=1?1122?3?6635. 2考点:1、古典概型;2、离散型随机变量的分布列和期望.2015江苏理科5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 【答案】5. 6考点:古典概型概率2015年重庆理科17.(本小题满分13分,(1)小问5分,(2)小问8分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。
2015-2016学年第一学期概率论与数理统计阶段测验(二)试卷答案
北 京 交 通 大 学2015~2016学年第一学期概率论与数理统计阶段测验(二)试卷参 考 答 案一.(本题满分10分)设二维随机变量()Y X ,的联合密度函数为()()⎩⎨⎧<<<-=其它0101,y x y c y x f ⑴ 求常数c (5分);⑵ 求概率{}1<+Y X P (5分). 解:⑴ 由密度函数的性质:()1,=⎰⎰+∞∞-+∞∞-dxdy y x f ,得()()⎰⎰⎰⎰-==+∞∞-+∞∞-y dx y c dy dxdy y x f 011,1()()6312111210cc dy y y c ydy y c =⎪⎭⎫ ⎝⎛-=-=-=⎰⎰,由此得6=c . ⑵ {}()⎰⎰<+=<+1,1y x dxdy y x f Y X P()⎰⎰⎰-=-⎪⎪⎭⎫⎝⎛-=-=2101212102616dx y y dy y dx xx y x x ()434121321321=⎪⎭⎫ ⎝⎛-=-=⎰dx x .二.(本题满分10分)设随机变量Y 服从参数为1=λ的指数分布,定义随机变量k X ,()2,1=k 如下:⎩⎨⎧>≤=k Y kY X k 10 求二维随机变量()21,X X 的联合分布列.解:由题设,得随机变量Y 的密度函数为()⎩⎨⎧≤>=-0x x e y f y. ()()()()111121112,100---∞--=-===≤=≤≤===⎰⎰e e dy e dy yf Y P Y Y P X X P y y ,()()()02,11021=∅=>≤===P Y Y P X X P ,()()()()2121212121112,101-----=-===≤<=≤>===⎰⎰e e edy e dy y f Y P Y Y P X X P y y,()()()()22222122,111-∞+-+∞-+∞=-===>=>>===⎰⎰e e dy e dy yf Y P Y Y P X X P yy .因此,()21,X X 的联合分布列为三.(本题满分12分)设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧<<=其它01421,22y x y x y x f .⑴ 求随机变量X 及Y 各自的边缘密度函数()x f X 与()y f Y (8分);⑵ 判断随机变量X 与Y 是否相互独立(4分)? 解:⑴ 当11<<-x 时, ()()()4212212182121421421,22x x y x ydy x dyy x f x f x x X -=⋅===⎰⎰+∞∞-, 所以,随机变量X 的边缘密度函数为()()⎪⎩⎪⎨⎧<<--=其它11182142x x x x f X .当10<<y 时, ()()2523322724731421421,y y y y y ydy x dx y x f y f yyyyY =⋅=⋅===--+∞∞-⎰⎰, 所以,随机变量Y 的边缘密度函数为()⎪⎩⎪⎨⎧<<=其它102725y yx f X . ⑵ 因为()()()y f x f y x f Y X ≠,,所以随机变量X 与Y 不独立.四.(本题满分12分)设随机变量X 与Y 相互独立,下表给出()Y X ,的联合分布列及X 与Y 各自的边际分布的某些取值:试计算该表的其它数值. 解:()()()2418161,,12111=-===-====y Y x X P y Y P y Y x X P , ()()()4161241,1111=======y Y P y Y x X P x X P ,()()()()1218124141,,,2111131=--===-==-====y Y x X P y Y x X P x X P y Y x X P , ()()()214181,1212=======x X P y Y x X P y Y P ,()()()3141121,1313=======x X P y Y x X P y Y P ,()()43411112=-==-==x X P x X P ,()()()838121,,21222=-===-====y Y x X P y Y P y Y x X P , ()()()4112131,,31332=-===-====y Y x X P y Y P y Y x X P .表中其余各值如下表所示:可以验证,对于上述表中各值,X 与Y 相互独立.五.(本题满分12分)将3个球随机地放入4个杯子中.令X 表示杯子中球的最大个数.求:⑴ X 的分布列(6分);⑵ X 的数学期望()X E 与方差()X D (6分). 解:⑴ X 的可能取值为3,2,1.且{}8341334===P X P .{}1614433===X P .{}{}{}1691618313112=--==-=-==X P X P X P .所以,随机变量X 的分布列为⑵ ()1616316281=⨯+⨯+⨯=X E .()1651161316928312222=⨯+⨯+⨯=X E .因此,()()()()2568716271651222=⎪⎭⎫ ⎝⎛-=-=X E X E X D . 六.(本题满分10分)记掷n 颗均匀的骰子点数之和为X ,求()X E (5分)与()X var (5分). 解:以k X 表示掷第k 颗均匀的骰子出现的点数,()n k ,,2,1 =,则随机变量n X X X ,,,21相互独立,而且同分布,∑==nk k X X 1.k X 的分布列为所以,(){}27621616161====⋅=∑∑==k k k k k X P k X E . (){}691616126122===⋅=∑∑==k k kk k X P k XE所以,()()()()1235273691var 222=⎪⎭⎫ ⎝⎛-=-=k k k X E X E X .因此,()()n X E X E X E nk nk k n k k 2727111===⎪⎭⎫ ⎝⎛=∑∑∑===.再由n X X X ,,,21 的相互独立性,得()()n X X X nk nk k n k k 12351235var var var 111===⎪⎭⎫ ⎝⎛=∑∑∑===.七.(本题满分14分)一射手进行射击,击中目标的概率为p ()10<<p ,射击直至击中2次目标时为止.令X 表示首次击中目标所需要的射击次数,Y 表示总共所需要的射击次数. ⑴ 求二维随机变量()Y X ,的联合分布律(6分). ⑵ 求随机变量Y 的边缘分布律(4分).⑶ 求在n Y =时,X 的条件分布律.并解释此分布律的意义(4分). 解:⑴ 随机变量Y 的取值为 ,4,3,2;而随机变量X 的取值为1,,2,1-n ,并且 (){}次第次,第二次命中目标在第一次命中目标在第n m P n Y m X P ===, 2211p q p q p q n m n m ----=⋅=, (其中p q -=1) ()1,,2,1;,4,3,2-==n m n .⑵ ()()()221122111,p q n p q n Y m X P n Y P n n m n n m --=--=-======∑∑,() ,4,3,2=n . 即随机变量Y 的边缘分布律为()()221p q n n Y P n --== () ,4,3,2=n .⑶ 由于()()()()111,2222-=-=======--n p q n p q n Y P n Y m X P n Y m X P n n 因此在n Y =时,X 的条件分布律为 ()11-===n n Y m X P ()1,,2,1-=n m 这表明,在n Y =的条件下,X 的条件分布是一个“均匀”分布.它等可能地取值1,,2,1-n .八.(本题满分10分)设随机变量X 与Y 相互独立,且都服从标准正态分布()1,0N .令随机变量22Y X Z +=.⑴ 试求随机变量Z 的密度函数()z f Z (6分).⑵ 试求()Z E (4分).⑴ 由题意,得()2221x X ex f -=π ()∞<<∞-x , ()2221y y ey f -=π()∞<<∞-y .设随机变量22Y X Z +=的分布函数为()z F Z ,则(){}{}z Y X P z Z P z F Z ≤+=≤=22当0≤z 时,(){}()022=∅=≤+=P z Y X P z F Z ;当0>z 时,(){}()()⎰⎰≤+=≤+=zy x YXZdxdy y f x f z Y XP z F 2222⎰⎰≤++-=zy x y x dxdy e 2222221π作极坐标变换θθsin ,cos r y r x ==,则有()⎰⎰⎰--==zr zr Z rdr erdr ed z F 022202221πθπ所以,随机变量22Y X Z +=的分布函数为()⎪⎩⎪⎨⎧≤>=⎰-000022z z rdre z F z rZ所以,随机变量22Y X Z +=的密度函数为()()⎪⎩⎪⎨⎧≤>='=-0022z z zez F z f z Z Z ⑵ ()()⎰⎰⎰∞+-+∞-∞+-∞+∞-+-===2222222dz ezedz e zdz z f z Z E z z z z222212222ππ====⎰⎰+∞∞--+∞-dz e dz ez z . 九.(本题满分10分)设G 是由X 轴、Y 轴及直线022=-+y x 所围成的三角形区域,二维随机变量()Y X ,在G 内服从均匀分布.① 求X 与Y 的相关系数(6分);② 计算概率{}X Y P ≥(4分).(1) 由于区域G 的面积为1,因此()Y X ,的联合密度函数为()()()⎩⎨⎧∉∈=Gy x G y x y x f ,,1,.当10<<x 时,()()()x dy dy y x f x f xX -===⎰⎰-+∞∞-12,220,所以,()()⎩⎨⎧<<-=其它01012x x x f X .当20<<y 时,()()21,210ydy dx y x f y f yY -===⎰⎰-∞+∞-, 所以,()⎪⎩⎪⎨⎧<<-=其它2021y y y f Y .()()()3131212121=⎪⎭⎫ ⎝⎛-=-⋅==⎰⎰+∞∞-dx x x dx x xf X E X , ()()32212=⎪⎭⎫ ⎝⎛-⋅==⎰⎰+∞∞-dy y y dy y yf Y E Y , ()()()6141312121222=⎪⎭⎫ ⎝⎛-=-⋅==⎰⎰+∞∞-dx x x dx x f x XE X,()()32212222=⎪⎭⎫⎝⎛-⋅==⎰⎰+∞∞-dy y ydy y f y Y E Y,所以,()()()()1813161var 222=⎪⎭⎫ ⎝⎛-=-=X E X E X ,()()()()923232var 222=⎪⎭⎫ ⎝⎛-=-=Y E Y E Y , ()()⎰⎰⎰⎰⎰--+∞∞-+∞∞-⋅===1220222012,dx y x xydy dxdxdy y x xyf XY E xx,()()6121324122212123102=⎪⎭⎫ ⎝⎛+-=+-=-=⎰⎰dx x x x dx x x ,所以,()()()()181323161,cov -=⨯-=-=Y E X E XY E Y X .()()()2192181181var var ,cov ,-=-==Y X Y X YX ρ.(2) {}()()()2123232,1121=-=-===≥⎰⎰⎰⎰⎰-≥dx x dy dxdxdy y x f X Y P x xxy .。
2015年高考数学(新课标Ⅱ版)分项汇编专题12概率和统计(含解析)理
专题12 概率和统计一.基础题组1. 【2014新课标,理5】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0. 75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.45 【答案】A()0.6(|)0.8()0.75P A B P B A P A ⋂===,故选A.2. 【2011新课标,理4】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A .13B .12C .23D .34【答案】A 【解析】3. 【2005全国3,理5】=+--+-→)342231(lim 221x x x x n( ) A .21-B .21C .61-D .61【答案】C 【解析】4. 【2006全国2,理16】一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄,学历,职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(元)月收入段应抽出人.【答案】:255. 【2014全国2,理19】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆay bt =- 6. 【2011新课标,理19】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表(2)(理)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤≤⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元),求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率) 【解析】:(1)由试验结果知,用A 配方生产的产品中优质品的频率为2280.3100+=,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为32100.42100+=,所以用B配方生产的产品的优质品率的估计值为0.42.(2)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,因此P(X=-2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即X的分布列为X的数学期望E(X)=-2×0.04+2×0.54+4×0.42=2.68.7. 【2006全国2,理18】某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一,二,三箱中分别有0件,1件,2件二等品,其余为一等品.(1)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;(文19(1))求抽检的6件产品中恰有一件二等品的概率;(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率.8. 【2005全国3,理17】(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率.9. 【2005全国2,理19】(本小题满分12分)甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.令x 为本场比赛的局数,求x 的概率分布和数学期望.(精确到0.001)3456.0)4.06.04.06.04.06.0()5(222224=⨯⨯+⨯⨯==c p ξ所以ξ的概率分布表如下所以ξ10.【2015高考新课标2,理3】根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
概率统计试题及答案
概率统计试题及答案一、选择题(每题5分,共20分)1. 在概率论中,如果一个事件的概率为0,那么这个事件:A. 一定会发生B. 可能发生C. 不可能发生D. 无法确定答案:C2. 一组数据的方差是用来衡量:A. 数据的集中程度B. 数据的离散程度C. 数据的平均水平D. 数据的中位数答案:B3. 随机变量X服从标准正态分布N(0,1),那么P(X > 1)的值是:A. 0.8413B. 0.1587C. 0.5D. 0.3446答案:B4. 在统计学中,置信区间是用来:A. 表示总体参数的精确值B. 表示样本统计量的精确值C. 表示总体参数的估计范围D. 表示样本统计量的估计范围答案:C二、填空题(每题5分,共20分)1. 概率论中,一个事件的概率范围是[ , ]。
答案:[0, 1]2. 如果一组数据的平均值为μ,方差为σ²,那么这组数据的标准差是。
答案:σ3. 假设检验中,如果P值小于显著性水平α,那么我们拒绝假设。
答案:零4. 正态分布曲线的对称轴是。
答案:均值三、简答题(每题10分,共30分)1. 请简述什么是大数定律,并给出一个例子。
答案:大数定律是指随着试验次数的增加,事件发生的频率趋近于其概率。
例如,抛硬币时,随着抛掷次数的增加,正面朝上的次数所占的比例会趋近于0.5。
2. 解释什么是中心极限定理,并说明其在实际应用中的意义。
答案:中心极限定理是指,当样本量足够大时,独立同分布的随机变量之和的分布趋近于正态分布。
在实际应用中,它允许我们使用正态分布来近似描述各种不同分布的样本均值的分布,从而进行统计推断。
3. 什么是回归分析?它在数据分析中的作用是什么?答案:回归分析是一种统计学方法,用于研究变量之间的依赖关系。
在数据分析中,它可以帮助我们预测一个变量的值,基于其他一个或多个变量的信息。
四、计算题(每题10分,共30分)1. 已知随机变量X服从二项分布B(n=10, p=0.5),求P(X=5)。
2015年高考数学真题分类汇编:专题(12)概率和统计(理科)及答案
专题十二 概率和统计1.【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下:0891258200338312则这组数据的中位数是( )A 、19B 、20C 、21.5D 、23 【答案】B .【解析】从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20,选B ..【考点定位】本题考查茎叶图的认识,考查中位数的概念.【名师点晴】本题通过考查茎叶图的知识,考查样本数据的数字特征,考查学生的数据处理能力.2.【2015高考广东,理4】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A .1 B. 2111 C. 2110 D. 215【答案】B .【解析】从袋中任取2个球共有215105C =种,其中恰好1个白球1个红球共有1110550C C =种,所以从袋中任取的2个球恰好1个白球1个红球的概率为5010=10521,故选B . 【考点定位】排列组合,古典概率.【名师点睛】本题主要考查排列组合,古典概率的计算和转化与化归思想应用、运算求解能力,解答此题关键在于理解所取2球恰好1个白球1个红球即是分步在白球和红球各取1个球的组合,属于容易题.3.【2015高考新课标1,理4】投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A )0.648 (B )0.432 (C )0.36 (D )0.312【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.【考点定位】本题主要考查独立重复试验的概率公式与互斥事件和概率公式【名师点睛】解答本题时,先想到所求事件是恰好中3次与恰好中2次两个互斥事件的和,而这两个事件又是实验3次恰好分别发生3次和2次的独立重复试验,本题很好考查了学生对独立重复试验和互斥事件的理解和公式的记忆与灵活运用,是基础题,正确分析概率类型、灵活运用概率公式是解本题的关键.4.【2015高考陕西,理11】设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率为( )A .3142π+B .1142π-C .112π- D .112π+【答案】B【考点定位】1、复数的模;2、几何概型.【名师点晴】本题主要考查的是复数的模和几何概型,属于中档题.解几何概型的试题,一般先求出实验的基本事件构成的区域长度(面积或体积),再求出事件A 构成的区域长度(面积或体积),最后代入几何概型的概率公式即可.解本题需要掌握的知识点是复数的模和几何概型的概率公式,即若z a bi =+(a 、R b ∈),几何概型的概率公式()P A =()()A 构成事件的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.5.【2015高考陕西,理2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .167B .137C .123D .93【答案】B【解析】该校女老师的人数是()11070%150160%137⨯+⨯-=,故选B . 【考点定位】扇形图.【名师点晴】本题主要考查的是扇形图,属于容易题.解题时一定要抓住重要字眼“女教师”,否则很容易出现错误.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形图可以很清晰地表示各部分数量同总数之间的关系. 6.【2015高考湖北,理2】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1365石 【答案】B【解析】依题意,这批米内夹谷约为169153425428=⨯石,选B. 【考点定位】用样本估计总体.【名师点睛】《九章算术》是中国古代第一部数学专著,是算经十书中最重要的一种.该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就.本题“米谷粒分”是我们统计中的用样本估计总体问题.7.【2015高考安徽,理6】若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准 差为( )(A )8 (B )15 (C )16 (D )32【答案】C【解析】设样本数据1x ,2x ,⋅⋅⋅,10x 8=,即方差64DX =,而数据121x -,221x -,⋅⋅⋅,1021x -的方差22(21)2264D X DX -==⨯,所以其标16=.故选C.【考点定位】1.样本的方差与标准差的应用.【名师点睛】已知随机变量X 的均值、方差,求X 的线性函数Y aX b =+的均值、方差和标准差,可直接用X 的均值、方差的性质求解.若随机变量X 的均值EX 、方差DX 、标Y aX b =+的均值aEX b +、方差2a DX 、标准差.8.【2015高考湖北,理4】设211(,)X N μσ ,222(,)Y N μσ ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥【答案】C【考点定位】正态分布密度曲线. 【名师点睛】正态曲线的性质①曲线在x 轴的上方,与x 轴不相交. ②曲线是单峰的,它关于直线μ=x 对称. ③曲线在μ=x 处达到峰值πσ21.④曲线与x 轴之间的面积为1.⑤当σ一定时,曲线随着μ的变化而沿x 轴平移,如图甲所示⑥μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中.如图乙所示.9.【2015高考福建,理4】为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入为15万元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元 【答案】B【解析】由已知得8.28.610.011.311.9105x ++++==(万元),6.27.58.08.59.885y ++++==(万元),故 80.76100.4a =-⨯=,所以回归直线方程为ˆ0.760.4yx =+,当社区一户收入为15万元家庭年支出为ˆ0.76150.411.8y =⨯+=(万元),故选B .【考点定位】线性回归方程.【名师点睛】本题考查线性回归方程,要正确利用平均数公式计算和理解线性回归方程的意义,属于基础题,要注意计算的准确性.10.【2015高考湖北,理7】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p << D .321p p p <<【答案】B【解析】因为,[0,1]x y ∈,对事件“12x y +≥”,如图(1)阴影部分1S , 对事件“1||2x y -≤”,如图(2)阴影部分2S , 对为事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是132S S S <<,正方形的面积为111=⨯, 根据几何概型公式可得231p p p <<.(1) (2) (3) 【考点定位】几何概型.【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.11.【2015高考山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,N μσ ,则()68.26%P μσξμσ-<<+= ,()2295.44%P μσξμσ-<<+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福州大学概率论与数理统计试卷A (20150111)(3学分)
一、 单项选择(每小题3分,共18分)
1.设B A ⊂且相互独立,则( )
A. P (A ) = 0
B. P (A ) = 0或1
C. P (A ) = 1
D. 上述都不对
2、设总体X 服从正态分布(0,4)N ,而1215,,,X X X 是来自X 的简单随机样本,则随机变量
22
110
22
11152()
X X Y X X ++=++,服从分布为 ( ) A. F 分布 B. t 分布 C. 2
χ分布 D. 标准正态分布
3. 随机变量X 的EX =μ,2
)(σ=X D ,则由切比雪夫不等式估计≥<-)2(σμX P ( ) A .
4
3 B .
4
1 C .
2
1 D . 以上都不对
4. 对于随机变量X ,Y ,若E (XY )=E (X )E (Y ),则 ( )
A. DY DX XY D ⋅=)(
B.DY DX Y X D +=+)(
C. X 与Y 独立
D. X 与Y 不独立
5. 两个相互独立的随机变量X 和Y 分别服从正态分布N (0, 1)和N (1, 1),则 ( )
A .21}0{=≤+Y X P
B .21}1{=≤+Y X P
C . 21}0{=≤-Y X P
D .2
1
}1{=≤-Y X P
6. 设随机事件A 与B 相互独立,A 发生B 不发生的概率与B 发生A 不发生的概率相等,且
41
)(=A P ,则()P B = ( )
A .32
B .41
C .3
1 D .以上都不对
学院 专业 级 班 姓 名 学 号
二.填空题(每空2分,共32分) 1. 某元件寿命ξ服从为λ)1000(1
小时=-λ
的指数分布,3个这样
的元件使用1000小时后,都没有损坏的概率为 .
2. 设随机变量X 的密度函数为,01
()0,
ax b x f x +<<⎧=⎨
⎩其它, 又已知}3
1{}31{>=<X P X P ,则
常数a = ;b = ;
3.估计量的三个最基本的评价标准是 ; ; 。
4.设二维随机变量(X , Y )的概率密度为⎩⎨
⎧>>=+-其他
,0),()
1(y x xe y x f y x ,
则X 与Y 的边缘密度分别为=)(x f X ________________, =)(y f Y ________________, 在Y y =)0(>y 的条件下,X 的条件密度=)|(|y x f Y X ________________。
5. 设二维随机变量(X , Y )
的分布密度为222(;
(,)0,
C R x y R f x y ⎧⎪+<=⎨⎪⎩其它则C = ;
(X , Y )落入圆)0(222R r r y x <<≤+内的概率为________________
6. 一个商店每星期四进货,以备星期五、六、日3天销售,根据多周统计,这3天销
售件数321,,ξξξ彼此独立,且有如下分布:
如果进货44件,不够卖的概率是
7.设X,Y 为随机变量,且D (X +Y )=7, DX =4, DY =1,则XY ρ= 。
8. 一个罐子里装有黑球和白球,有放回地取出一个容量为n 的样本,其中有k 个白球,求罐子里
黑球数和白球数之比R 的最大似然估计量为___________。
9. 掷20颗色子,则点数之和的数学期望为 ,方差为
三、计算题(每小题10分,共30分)
1.假设盒内有9个产品,其正品数为9,,1,0 个是等可能的,今向内放入一个正品,然后从盒内随机取出一个产品,求它是正品的概率是多少?
2.设随机变量)1,0(~N X ,求12
+=X Y 的概率密度()Y f y 。
3.设某车间有300台独立工作的车床,各台车床开工的概率都是0.6,每台车床开工时需功率1千瓦,问供电所至少要供给着车间多少功率的电,才能以99.9%的概率保证这个车间不会因为供电不足而影响生产?(用中心极限定理)(999.0)09.3(=Φ)
四、计算题(每小题10分,共20分)
1. 设X 服从参数为λ的指数分布,概率密度为⎩⎨
⎧≥=-其他
)(x e x f x
X λλ 试求参数λ的矩估计与极大似然估计。
2.设二维随机变量(X, Y )在区域D:12
2
≤+y x 上服从均匀分布,
求X 和Y 的相关系数并判别X 和Y 的独立性。
装 订 线 装 订 线 装 订 线
概率统计试题(20150111)参 考 答 案
一.选择题 1.D 2.A 3.A 4.B 5.B 6.B 二.填空题 1、3
-e
2.4
7
,
23- 3.无偏性,有效性,一致性 4.
⎩⎨
⎧≤>=-0
0)(x x e x f x
X
⎪⎩⎪
⎨⎧≤>+=0
0)1(1)(2
y y y y f Y
⎩⎨
⎧>+==+-其它
112x xe )y ()y (f )y ,x (f )y x (f )
y (x Y Y X 5.)321(3,3223R r R
r R -π 6.0.022 7.0.5 8. 1ˆ-=k n R 9.70,3175
三.计算题1. 设i A :9个产品中有i 个正品,i =0,1,…,9,B :任取一个是正品
则9,,1,0,101
)|(,101)( =+==i i A B P A P i i , 2011)|()()(9
=
=∑=i i i A B P A P B P 2.解:Y 的分布函数为(
)
y X P y Y P y F Y ≤+=≤=1)()(2
当1≤y 时,0)(=y F Y ;当1>y 时,
)
1()1()
11()()(----=-≤≤--=≤=y F y F y X y P y Y P y F X X Y 因此
Y
的概率密度
⎪⎩
⎪
⎨⎧>-=--其他
01)
1(21
)(21
y e y y f y Y π
3. 设X 为实际开工的车床数,则)6.0,300(~B X ,
由中心极限定理得X 近似服从)4.06.0300,6,0300(⨯⨯⨯N ,即)72,180(~N X 设b 为供电所供给着车间电的千瓦数,)(b X P <≈)72
180(
-Φb =0.999 ,999.0)09.3(=Φ
则
09.372
180=-b ,22.206=b
四 计算题1. ∵X ~)(λE ∴E(X)=λ
1 矩估计: X X E =)( X 1ˆ=λ
似然函数 n
i x n
i
e
L 1
)(=-=λλ
θ=
∑=-n
i i
x n
e
1
λ
λ,
故∑=-=n
i i x n L 1
ln ln λλ,0/ln 1=-=∑=n
i i x n L d d
λθ X x
n n
i i
/1/ˆ1
==∑=λ
2. ⎪⎩⎪⎨⎧≤+=其它,
01
,1
),(22y x y x f π
()(,)x f x f x y dy +∞
-∞
=⎰
=⎪
⎩
⎪⎨⎧<<--=
⎰---其他
01112122112
x x dy x x
ππ
()(,)y f y f x y dx +∞
-∞
=⎰
⎪
⎩
⎪⎨⎧<<--=
⎰---其他
01112122
112
y y dx y y ππ
1
)(1
1
112
2
==⎰⎰
----x x xdy dx X E π
1
)(1
1
112
2
==⎰⎰
----x x ydy dx Y E π
01
)(1
1
112
2
==⎰⎰
----x x xydy dx XY E π
,0)()()(),cov(=-=Y E X E XY E Y X
0=XY ρ
.),()(),(,,不独立与对任意Y X y f x f y x f y x Y X ∴⋅≠。