《金融理论与公司政策(第四版)》课后答案

合集下载

《金融理论与实务》课后试题及答案

《金融理论与实务》课后试题及答案

1第一章货币与货币制度1.马克思是怎样用完整的劳动价值理论富有逻辑地论证货币产生的客观性的?参考答案:按照马克思的货币起源学说,货币是伴随着商品价值形式的不断发展变化而最终产生的。

商品价值形式经历了四个不同的发展变化阶段: 1)简单的或偶然的价值形式阶段在这一阶段上,一种商品的价值仅仅是简单的或偶然的表现在与它相交换的另外一种商品上。

2)总和的或扩大的价值形式阶段在这一阶段上,一种商品的价值表现在了与它相交换的一系列商品上。

3)一般价值形式阶段在这一阶段,所有商品的价值都表现在了一个作为一般等价物的商品身上。

4)货币形式阶段在这一阶段,所有商品的价值都表现在了作为固定的一般等价物的金或银上。

当价值形式发展到第四个阶段时,货币就产生了。

2.推动货币形式由低级向高级不断演变的动力是什么?参考答案:推动货币形式由低级向高级不断演变的动力是商品生产和商品交换活动的不断发展。

3.什么是货币的交易媒介职能?货币为什么具有价值贮藏职能?参考答案:货币的交易媒介职能是指,当货币作为商品交换的媒介物时所发挥出的职能。

货币之所以具有价值贮藏职能是因为货币本身具有价值。

4.货币制度的构成要素有哪些?参考答案:货币制度的构成要素有五个方面:1)规定货币材料(币材) 2)规定货币单位3)规定流通中货币的种类 4)规定货币的法定支付能力 5)规定货币的铸造或发行。

5.不兑现信用货币制度的特点是什么?我国人民币制度的主要内容包括哪些?参考答案:不兑现的信用货币制度的基本特点是:一是流通中的货币都是信用货币,只要由现金和银行存款组成。

二是信用货币都是通过金融机构的业务活动投入到流通中去的。

三是国家通过中央银行的货币政策操作对信用货币的数量和结构进行管理调控。

我国人民币制度的三项主要内容:一是人民币是我国法定货币,以人民币支付中华人民共和国境内的一切公共的和私人的债务,任何单位和个人不得拒收。

人民币主币的单位是元,辅币的单位有“角”和“分”两种,分、角、元均为十进制。

金融理论与政策( 金融监管理论与实践)习题与答案

金融理论与政策( 金融监管理论与实践)习题与答案

一、单选题1、为满足企业和居民在财富增长之后,日益高涨的理财需求,金融机构推出的创新型工具叫做()A.规避风险型金融创新B.技术推动型的金融创新C.逃避金融管制型的金融创新D.迎合理财需要性的金融创新正确答案:D2、金融行业自律组织的基本功能:()A.充当金融业的自律管理机构B.充当金融业同业之间的协调机构C.充当金融业的服务机构D.充当监管当局的助手正确答案:A3、英国的“准双峰”金融监管体系属于()监管模式。

A.伞式监管B.双线多头C.单线多头D.准双峰正确答案:D4、2018年3月,组建中国银行保险监督管理委员会,我国形成“一委一行两会”的金融监管格局。

其中,统筹金融改革发展与监管的议事协调机构是()A.中国银行保险监督管理委员会B.中国人民银行C.金融监管协调部际联席会议D.金融稳定发展委员会正确答案:D5、20世纪30年代以前主要是自律监管阶段。

以下哪项属于自律型监管的主要观点?()A.金融市场具有不完全性,政府应当主动干预金融机构经营行为B.金融监管受到资源约束,监管成本需要与监管收益进行权衡C.金融机构发展没有任何外在的约束,应完全依靠内部自律和市场竞争维持金融机构和金融市场的运行D.政府部门活动的内在特点决定了政府监管也存在种种失灵,政府监管有效性值得怀疑正确答案:C6、宏观审慎监管框架分为()和宏观审慎监管工具。

前者通过指标体系识别和监测系统风险,后者侧重于研发干预系统风险的政策工具A.宏观审慎指标体系B.宏观审慎政策制度C.宏观审慎监测框架D.宏观审慎监管目标正确答案:C7、在MPA主要构成的七大方面中,()是评估体系的核心A.流动性B.资产负债情况C.定价行为D.资本充足率正确答案:D8、中国人民银行从2005年起开始定期发布(),对宏观经济形势和金融体系状况进行分析和判断A.《政府信息公开工作报告》B.《中国金融稳定报告》C.《货币政策执行报告》D.《金融统计数据报告》正确答案:B二、多选题1、金融风险的特征包括()A.客观存在性B.普遍性C.可度量性D.隐蔽性正确答案:A、B、C、D2、在历史上,对商业银行的市场准入的原则有()A.准则主义B.自由主义C.特许主义D.核准主义正确答案:A、B、C、D3、在金融危机改革后欧盟跨国银行监管新体系中,形式微观审慎监管的职能机构有()A.欧洲经济与金融理事会B.欧盟系统风险理事会C.欧洲央行D.欧洲银行监管局正确答案:A、D4、20世纪30年代到70年代,学术界主张政府主动干预金融机构经营行为,背后的理论支持有()A.公共产品理论B.信息不对称理论C.自然垄断理论D.负外部性效应理论正确答案:A、B、C、D5、2010年7月,美国颁布《多德-弗兰克法案》,建立了宏观审慎政策框架。

金融理论与政策(华南农业大学) 中国大学MOOC答案2023版

金融理论与政策(华南农业大学) 中国大学MOOC答案2023版

金融理论与政策(华南农业大学) 中国大学MOOC答案2023版5、现代全球金融业的资产结构变化主要表现为多元化和()答案:证券化6、中国金融体系在改革开放中迅速发展的标志之一是金融机构体系的()答案:多元化7、2017年中国大陆四类金融机构资产结构中,占比最高的是()。

答案:银行业8、整个金融市场连接所有金融基本要素的核心要素是()答案:利率9、下列哪个经济学派不属于经济自由主义?()答案:新古典综合派10、2018年3月,中央金融工作会议提出的四项基本原则是:回归本源、优化结构、强化监管和()答案:市场导向11、金融结构市场化变革的推动力量来自()的蓬勃发展?答案:资本市场12、全球金融业发展在产业结构上的变化主要是同质化与()13、以下选项哪个不是黄达教授2003年提出的大金融视角下的学科建设内涵()答案:方法上强调实证与历史的结合14、2018年3月中央金融工作会议提出了“服务实体经济、防控金融风险和()”三大任务答案:深化金融改革15、社会科学理论研究的两条基本线索是学说和()答案:理论16、中文宽口径“金融”形成的不包括()答案:财政17、默顿认为所有现代金融理论都将()作为核心答案:风险18、在金融研究概念的把握上应该是传统金融与现代金融并学,以现代金融为主,()答案:树立历史观念19、现代金融体系的构成要素中包含了由信用活动引起的债权债务或所有权关系及其形式、工具与()20、行为金融学的理论基础是()?答案:有限套利理论和投资者的非理性行为21、以下哪些理论运用了无套利思想?()答案: MM定理;布莱克-斯科尔斯期权定价模型;套利定价定理22、英文的“finance”的口径包括()答案:宽口径;窄口径;中口径23、在教学和研究中对宏观金融和微观金融的把握上,应该是()答案:以微观为基础;树立宏观思想24、金融理论需要解决的难点包括()答案:流动性与效率的平衡;金融促进与杠杆率的平衡;风险与收益的匹配;宏观金融向下与微观金融向上的理论基石与贯通;政府干预与市场机制的关系25、在全球金融业发展与结构变迁过程中,金融结构出现的重大变化涉及()等方面答案:金融产业结构;金融市场结构;金融资产结构;融资结构;金融开放结构26、中国金融从“大一统”计划金融转向多元市场金融的改革过程中,主要贡献有()答案:金融总量快速增长;多种类金融市场迅速发展;建立起金融宏观间接调控体系和金融监管体系;形成了多元化金融机构体系27、2017年,第五次中央金融工作会议提出的任务是()答案:服务实体经济;防控金融风险;深化金融改革28、现代经济学分析方法的特性是()答案:多样性;适应性;局限性29、金融学研究中常用的几对概念有()答案:宏观金融与微观金融;传统金融与现代金融;人文金融与数理金融30、中国大陆现行金融机构体系中,其他金融公司包括()答案:保险公司;信托投资公司;汽车金融公司;基金管理公司31、下列经济学派中,属于经济自由主义学派的是()答案:瑞典学派;货币学派;合理预期学派32、2004年诺贝尔经济学奖获得者是()答案:基德兰德;普雷斯科特33、“大金融”视角下金融学科建设应做到()答案:理论上强调宏观金融与微观金融结合;理念上强调金融与实体经济结合;实践上强调一般规律与国家特色结合;体现出高度复杂、综合与开放的特性;表现出多学科交融的“学科群”特征34、现代金融体系中的金融市场包括了()答案:货币市场;资本市场;外汇市场;黄金市场;衍生工具市场35、2017年中央金融工作会议提出的四项原则是()答案:回归本源,服从服务于经济社会发展除风险;优化结构,完善金融市场、金融机构、金融产品体系;强化监管,提高防范化解金融风险能力;市场导向,发挥市场在金融资源配置中的决定性作用36、金融理论植根于经济理论,从经济看金融需要把握经济学流派的()答案:主导型;转折点;对金融理论与政策的影响37、现代金融学常用的概念是()答案:宏观金融与微观金融;传统金融与现代金融;理论金融与应用金融;人文金融与数理金融38、现代全球金融产业结构出现的重大变化是()答案:同质化;集中化39、现代全球金融开放结构出现的重大变化是()答案:多极化;一体化40、目前我国商业银行体系的构成中除了大型商业银行外主要有()答案:股份制商业银行;城市商业银行;农村商业银行;村镇银行;民营银行41、现代金融产业已经成为最重要和最具影响力的行业。

朱叶《公司金融》(第4版)考研真题+章节题库(10-15章)【圣才出品】

朱叶《公司金融》(第4版)考研真题+章节题库(10-15章)【圣才出品】

第10章融资决策和价值评估一、简答题1.简述债券信用评级。

答:债券评级是由债券信用评级机构根据债券发行者的要求及提供的有关资料,通过调查、预测、比较、分析等手段,对拟发行的债券的风险,即债券发行者按期按量偿付债券本息的清偿能力和清偿愿望做出独立判断,并赋予债券相应的等级标志。

债券的等级反映了投资于该债券的安全程度,或该债券的风险大小。

目前国际上公认的最具权威性的信用评级机构,主要有标准普尔投资者服务公司和穆迪投资者服务公司。

国外通常根据债券的风险状况,由A至D分成不同的等级。

为进一步对债券的偿债能力做出更细致的评价,评级公司都在基本级别的基础上采用了更加细化的子级别。

债券级别是定性分析与定量分析相结合的结果,评级委员会的成员依靠自己的经验、学识和判断力,就评级对象的产业特点、经营状况、财务状况和债券合同等进行深入分析,以确定债券的信用级别。

债券评级的作用是通过一个简单的符号系统,向投资者提供一个关于债券信用风险的客观、独立的观点,这一观点可作为投资者进行债券风险研究的参考,但并不是投资者自身风险研究的替代。

债券评级衡量的是在债券有效期内发生损失的期望,它包括债券发行者违约的可能以及债券发行者违约后投资者损失的大小。

由于每种债券是否会违约与违约后给投资者造成的实际损失事前难以准确估计,因此,债券评级只是向投资者提供关于债券违约的参考。

2.请简述长期债券融资的特点。

答:(1)债券筹资的优点①资本成本低。

由于债券的利息具有抵税作用;另外债券投资人比股票投资人的投资风险低,因此其要求的报酬率也较低,故公司债券的资本成本要低于普通股。

②具有财务杠杆作用。

债券的利息是固定的费用,债券持有人除获取利息外,不能参与公司净利润的分配,因而具有财务杠杆作用,在息税前利润增加的情况下会使股东的收益以更快的速度增加。

③所筹集资金属于长期资金。

发行债券所筹集的资金一般属于长期资金,可供企业在1年以上的时间内使用,这为企业安排投资项目提供了有力的资金支持。

Copeland金融理论与公司政策习题答案04

Copeland金融理论与公司政策习题答案04

Chapter 4State Preference Theory1. (a)PayoffState 1 State 2 Price Security A $30 $10 P A = $5 Security B$20$40P B = $10(b) The prices of pure securities are given by the equations below:P 1Q A1 + P 2Q A2 = P A P 1Q B1 + P 2Q B2 = P BQ ij = dollar payoff of security i in state j P i = price of security i (i = A, B) P j = price of pure security j (j = 1, 2)Substituting the correct numbers,30P 1 + 10P 2 = 5 20P 1 + 40P 2 = 10Multiplying the first equation by 4 and subtracting from the second equation,20P 1 + 40P 2 = 10 1211[120P 40P 20]100P 10P .10−+=== Substituting into the first equation,20P 1 + 40P 2 = 10 2 + 40P 2 = 1040P 2 = 8 P 2 = .20 P 1 = .10 P 2 = .20Chapter 4 State Preference Theory 332. (a) The equations to determine the prices of pure securities, P 1 and P 2, are given below:P 1Q j1 + P 2Q j2 = P j P 1Q k1 + P 2Q k2 = P kwhere Q j1 is the payoff of security j in state 1; P 1 is the price of a pure security which pays $1 if state 1 occurs; and P j is the price of security j.Substitution of payoffs and prices for securities j and k in the situation given yields12P 1 + 20P 2 = 22 24P 1 + 10P 2 = 20Multiplying the first equation by two, and subtracting the second equation from the first,24P 1 + 40P 2 = 44 12[24P 10P 20]−+=230P 24= 2P 24/30.8==Substituting .8 for P 2 in the first equation,12P 1 + 20(.8) = 2212P 1 = 22 – 16 P 1 = 6/12 = .5(b) The price of security i, P i , can be determined by the payoff of i in states 1 and 2, and the prices ofpure securities for states 1 and 2. From part a) we know the prices of pure securities, P 1 = .5 and P 2 = .8. Thus,P i = P 1Q il + P 2Q i2 = .5(6) + .8(10) = 3 + 8 = $11.003. (a) The payoff table is:S 1 = Peace S 2 = War Nova Nutrients = j St. 6 St. 6 Galactic Steel = kSt. 4St. 36To find the price of pure securities, P 1 and P 2, solve two equations with two unknowns:6P 1 + 6P 2 = St. 10 4P 1 + 36P 2 = St. 2034 Copeland/Shastri/Weston • Financial Theory and Corporate Policy, Fourth EditionMultiplying the first equation by six, and subtracting it from the second equation,4P 1 + 36P 2 = St. 20 121[36P + 36P = St. 60]32P = 40−−−P 1 = St. 1.25 6(1.25) + 6P 2 = 10P 2 = .4167(b) L et n j = number of Nova Nutrients shares and n k = number of Galactic Steel shares. Thenn j = W 0/P j = 1,000/10 = 100 n k = W 0/P k = 1,000/20 = 50If he buys only Nova Nutrients, he can buy 100 shares. If he buys only Galactic Steel, he can buy50 shares.Let W 1 = his final wealth if peace prevails, and W 2 = his final wealth if war prevails.If he buys N.N.: W 1 = n j Q j1= 100(6) = 600 St. W 2 = n j Q j2 = 100(6) = 600 St.If he buys G.S.: W 1 = n k Q k1= 50(4) = 200 St. W 2 = n k Q k2= 50(36) = 1,800 St.(c) For sales of j (N.N.) and purchases of k (G.S.): If he sells –n j shares of j, he receives –n j P j , andwith his initial W 0 he will have –n j P j + W 0. With this he can buy at most (–n j P j + W 0)/P k shares of k, which will return at least [(–n j P j + W 0)/P k ]Q k1; he must pay out at most –n j Q j1. Therefore, the minimum –n j is determined byj j 0k1j j1k n P +W Q n Q P −=− −+=−j j (10n 1,000)46n 20–2n j + 200 = –6n jn j = –50 shares of j (N.N.)Chapter 4 State Preference Theory 35For sales of k and purchase of j: If he sells –n k shares of k, he receives –n k P k , and with his initial W 0 he will have –n k P k + W 0. With this he can buy at most (–n k P k + W 0)/P j shares of j, which will return at least [(–n k P k + W 0) /P j ]Q j2; he must pay out at most –n k Q k2. Therefore, the minimum –n k is determined byk k 0j2k k2j n P W Q n Q P −+=− k k (20n 1,000)636n 10−+=−–12n k + 600 = –36n kn k = –25 shares of k (G.S.)(d) L et P a = price of Astro Ammo. ThenP a = P 1Q a1 + P 2Q a2 = 1.25(28) + .4167(36) = 35 + 15 = 50 St.(e) See Figure S4.1 on the following page.(f) The slope of the budget line must equal the slope of the utility curve (marginal rate of substitution)at optimum, as given in the equation below:2112W /W [U /W U /W ]−∂∂=−∂∂÷∂∂With utility function .8.212U = W W , this equality results in.2.2.8.8112121221.8W W .2W W 4W W 4W /W −−−÷==36 Copeland/Shastri/Weston • Financial Theory and Corporate Policy,Fourth EditionFigure S4.1 State payoffs in peace and war In equilibrium,21122112W /W P /P 4W /W P /P (5/4)/(5/12)(12/4)3∂∂=====Therefore,4W 2 = 3W 1 W 1 = (4/3)W 2The wealth constraint is:W 0 = P 1W 1 + P 2W 2Substituting the correct numbers,1,000 = (5/4) (4/3)W 2 + (5/12)W 2= (20/12)W 2 + (5/12)W 2 = (25/12)W 2 W 2 = (1,000)(12/25) = $480 W 1 = (4/3)480 = $640Chapter 4 State Preference Theory 37To find optimal portfolio, solve the two simultaneous equationsW 1 = n j Q j1 + n k Q k1 W 2 = n j Q j2 + n k Q k2Substituting the correct numbers,640 = 6n j + 4n k 480 = 6n j + 36n kSubtracting the second equation from the first yields160 = –32n k n k = –5Substituting –5 for n k in equation 2 gives a value for n j :480 = 6n j – 36(5)= 6n j – 180 660 = 6n j n j = 110Hence (n j = 110, n k = –5) is the optimum portfolio; in this case the investor buys 110 shares of Nova Nutrients and issues five shares of Galactic Steel.4. et n j = the number of shares the investor can buy if she buys only j, and n k the number she can buy ifshe buys only k. Then(a)00j k j k W W 1,2001,200n 120;n 100P 10P 12====== If she buys j: W 1 = n j Q j1 = 120(10) = $1,200 final wealth in state 1W 2 = n j Q j2 = 120(12) = $1,440 final wealth in state 2If she buys k: W 1 = n k Q k1 = 100(20) = $2,000 final wealth in state 1W 2 = n k Q k2 = 100(8) = $800 final wealth in state 2(b) For sales of j and purchases of k: If she sells –n j shares of j, she receives –n j P j , and with her initialwealth W 0 she will have –n j P j + W 0; with this she can buy at most (–n j P j + W 0)/P k shares of k which will return at least [(–n j P j + W 0)/P k ]Q k2; she must pay out at most –n j Q j2. Therefore, the minimum –n j is determined by:j j 0k2j j2kn P +W (Q ) =n Q P −−j jj j j 10n 1,200(8)12n 1220n 2,40036n n 150−+=−−+=−=−38 Copeland/Shastri/Weston • Financial Theory and Corporate Policy, Fourth EditionFor sales of k and purchases of j: If she sells –n k shares of k, she receives –n k P k , and with her initialwealth W 0 she will have –n k P k + W 0; with this she can buy at most (–n k P k + W 0)/P j shares of j, which will return at least [(–n k P k + W 0)/P j ]Q j1; she must pay out at most –n k Q k1. Therefore, the minimum –n k is determined by:k k 0j1k k1j n P +W (Q )n Q P −=− −+=−k k 12n 1,200(10)20n 10=−k n 150Final wealth for sales of j and purchases of k:State 1: –150(10) + 225(20) = 3,000 State 2: –150(12) + 225(8) = 0Final wealth for sales of k and purchases of j:State 1: 300(10) – 150(20) = 0 State 2: 300(12) – 150(8) = 2,400(c) To find the price of pure securities, solve two equations for two unknowns as follows:10P 1 + 12P 2 = 10 20P 1 + 8P 2 = 12Multiplying the first equation by two, and subtracting the second equation from the first equation,20P 1 + 24P 2 = 20 1222[20P + 8P 12]16P 8 P .50−=== Substituting .50 for P 2 in equation 1,10P 1 + 12(.5) = 10P 1 = .40(d) The price of security i is given byP i = P 1Q i1 + P 2Q i2 = (.40)5 + (.50)12 = 2 + 6 = 8(e) (The state contingent payoffs of a portfolio invested exclusively in security i are plotted inFigure S4.2.)If the investor places all of her wealth in i, the number of shares she can buy is given by0i i W 1,200n =150P 8==Chapter 4 State Preference Theory 39Her wealth in state one would ben i Q i1 = 150(5) = $750Her wealth in state two would ben i Q i2 = 150(12) = $1,800If the investor sells k to purchase j, her wealth in state one will be zero. This portfolio plots as the W 2 intercept in Figure S4.2 on the following page. The W 1 intercept is the portfolio of j shares sold to buy k, resulting in zero wealth in state two.(f) Set the slope of the budget line equal to the slope of the utility curve in accordance with theequation below:2112W /W (U /W )(U /W )∂∂=∂∂÷∂∂Given utility function.6.412U W W =and substituting the correct numbers,.4.46.621221121W (.6W W )(.4W W )W 1.5W /W −−∂=÷∂=Figure S4.2 State payoffs for securities i, j, and k In equilibrium:dW 2/dW 1 = P 1/P 21.5W 2/W 1 = .4/.5 = 0.8 1.5W 2 = 0.8W 1 W 1 = 1.875W 240 Copeland/Shastri/Weston • Financial Theory and Corporate Policy, Fourth EditionWealth constraint:W 0 = P 1W 1 + P 2W 2 1,200 = .4(1.875W 2) + .5W 2W 2 = 1,200/1.25 = 960 W 1 = 1.875(960) = 1,800Optimal portfolio: Solve the two simultaneous equations for the final wealth in each state:W 1 = n j Q j1 + n k Q k1 W 2 = n j Q j2 + n k Q k2Solve for n k and n j , the number of shares of each security to be purchased.Substituting the correct numbers,W 1 = 1,800 = 10n j + 20n k W 2 = 960 = 12n j + 8n kSolving equation one for n k in terms of n j , and substituting this value into equation two:20n k = 1,800 – 10n j n k = (1,800 – 10n j ) ÷ 20 960 = 12n j + 8 [(1,800 – 10n j ) ÷ 20] 4,800 = 60n j + 3,600 – 20n j 1,200 = 40n j n j = 30n k = (1,800 – 10nj)/20 n k = 75The investor should buy 30 shares of j and 75 shares of k.5. (a) If we know the maximum payout in each state, it will be possible to determine what an equalpayout will be. If the individual uses 100 percent of his wealth to buy security j, he can buy$72090$8= shares with payout S 1 = $900, S 2 = $1,800 If he spends $720 on security k, he can obtain$72080$9= shares with payout S 1 = $2,400, S 2 = $800 Since both of these payouts lie on the budget constraint (see Figure S4.3 on page 42), we can use them to determine its equation. The equation for the line isW 2 = a + bW 1Chapter 4 State Preference Theory 41Substituting in the values of the two points, which we have already determined, we obtain two equations with two unknowns, “a” and “b.”1,800 = a + b(900) –[800 = a + b(2,400)] 1,000 = b(–1,500) 1,0002b 1,5003−==− Therefore, the slope is 23− and the intercept is1,800 = a 23−(900) a = 2,400The maximum wealth in state two is $2,400. The maximum wealth in state one is0 = 2,400 23−W 1 3/2(2,400) = W 1 = $3,600A risk-free asset is one which has a constant payout, regardless of the state of nature which occurs. Therefore, we want to find the point along the budget line where W 2 = W 1. We now have two equations and two unknowns212W 2,400W 3=−(the budget constraint) W 2 = W 1 (equal payout)Substituting the second equation into the first, the payout of the risk-free asset is112W 2,400W 3=− 122,400W $1,440W 5/3=== If you buy n j shares of asset j and n k shares of k, your payout in states one and two will beState 1: n j 10 + n k 30 = 1,440 State 2: n j 20 + n k 10 = 1,440Multiplying the first equation by 2 and subtracting, we haven j 20 + n k 60 = 2,880 j k [n 20+n 101,440]−=k n 501,440=n k = 28.8and n j = 57.642 Copeland/Shastri/Weston • Financial Theory and Corporate Policy,Fourth EditionFigure S4.3 The budget constraint(b) The risk-free portfolio contains 57.6 shares of asset j and 28.8 shares of asset k. It costs $720 andreturns $1,440 for sure. Therefore, the risk-free rate of return isff f 1,4407201r 1,4401r 2720r 100%=++=== (c) It would be impossible to find a completely risk-free portfolio in a world with more states ofnature than assets (if all assets are risky). Any attempt to solve the problem would require solving for three unknowns with only two equations. No feasible solution exists. In general, it is necessary to have at least as many assets as states of nature in order for complete capital markets to exist. 6. We to solveMax[log C + 2/3 log Q 1 + 1/3 log Q 2] (4.1)subject toC + .6Q 1 + .4Q 2 = 50,000 (4.2)We can solve for C in (4.2) and substitute for C in (4.1).Max[log (50,000 – .6Q 1 – .4Q 2) + 2/3 log Q 1 + 1/3 log Q 2]Take the partial derivative with respect to Q 1 and set it equal to zero:121.62050,000.6Q .4Q 3Q −+=−−or 1.8Q 1 = 100,000 – 1.2Q 1 – .8Q 2 (4.3)Take the partial derivative with respect to Q 2 and set it equal to zero:122.41050,000.6Q .4Q 3Q −+=−−or 1.2Q 2 = 50,000 – .6Q 1 – .4Q 2 (4.4)Chapter 4 State Preference Theory 43 Together, (4.3) and (4.4) imply1.8Q1= 2.4Q2, or Q1= 1.3333Q2Substituting into (4.3) yields2.4Q2= 50,000Q2= 20,833.33hence Q1= 27,777.78(a) The risk-averse individual will purchase 27,777.78 units of pure security 1 at $0.60 each for a totalof $16,666.67; and 20,833.33 units of pure security 2 at $0.40 each for a total of $8,333.33. (b) From (4.2) and (4.4),C = 1.2Q2 = 25,000also from (4.2), C = $50,000 – $16,666.67 – $8,333.33= $25,000Hence, the investor divides his wealth equally between current and future consumption (which we would expect since the risk-free rate is zero and there is no discounting in the utility functions), but he buys more of pure security 1 (because its price per probability is lower) than of puresecurity 2.。

金融企业会计(第4版)章末习题部分参考答案

金融企业会计(第4版)章末习题部分参考答案

金融企业会计(第4版)章末习题部分参考答案第四章贷款和贴现的核算案例分析1.义马工行扣除多少贴现息,将多少贴现净额付给了高某?贴现利息=汇票金额×贴现天数×日贴现率贴现天数如下:4月天数为4月19日至4月30日共计12天;5月天数为31天;6月天数为30天;7月天数为31天;8月天数为8月1日至5日共计5天所以总天数为12+31+30+31+5=109(天)所以本案例中的贴现利息=2000000×109×4.2/1000/30=30520(元)实付贴现金额=汇票金额-贴现利息=2000000-30520=1969480(元)2.义马工行在办理贴现业务时,如何进行账务核算?借:贴现资产——贴现——面值 2000000贷:吸收存款——活期存款——贴现申请人存款户 1969480贴现资产——贴现——利息调整 305203.义马工行的工作人员在办理该项贴现业务时,违反了哪些规定?(1)持票人到银行申请贴现时,由信贷部门进行审查,对符合条件的,按票据到期值扣除贴现利息后,将款项付给持票人。

本案例中,仅依靠所谓的熟人关系,就办理了贴现业务,并未由信贷部门进行审查。

(2)办理贴现必须具备的条件是:在银行开立存款账户的企业法人及其他组织;与出票人或者直接前手具有真实的商品交易关系;提供增值税发票和商品发运单据复印件。

本案例中,该行工作人员打保票称:没有增值税发票,可以随后补上;没有原始合同可以用空白合同;没有在义马工行开户,该行可以帮忙找背书单位。

以上均违反了银行办理贴现业务的相关规定。

第五章支付结算业务的核算案例分析案例分析一1. 小张为什么会遭到批评?小张之所以会遭到严厉的批评是因为他没有恪守支付结算的原则,按照银行支付结算的规定办理业务。

银行在办理客户的支付结算时应尊重客户的意愿,不得对其资金进行干扰和侵犯。

本案例中,机电公司提款数额大于存款额,超出5万元的部分属于空头支票,银行应拒绝接受支票,但银行无权干预机电公司对资金的使用。

Copeland金融理论与公司政策习题答案03

Copeland金融理论与公司政策习题答案03

Chapter 3The Theory of Choice: UtilityTheory Given Uncertainty1. The minimum set of conditions includes(a) The five axioms of cardinal utility• complete ordering and comparability • transitivity • strong independence • measurability • ranking(b) Individuals have positive marginal utility of wealth (greed).(c) The total utility of wealth increases at a decreasing rate (risk aversion); i.e., E[U(W)] < U[E(W)]. (d) The probability density function must be a normal (or two parameter) distribution.2. As shown in Figure3.6, a risk lover has positive marginal utility of wealth, MU(W) > 0, whichincreases with increasing wealth, dMU(W)/dW > 0. In order to know the shape of a risk-lover’s indifference curve, we need to know the marginal rate of substitution between return and risk. To do so, look at equation 3.19: U (E Z)Zf(Z)dZ dE d U (E Z)f(Z)dZ ′−+σ=σ′+σ∫∫(3.19) The denominator must be positive because marginal utility, U’ (E + σZ), is positive and because the frequency, f(Z), of any level of wealth is positive. In order to see that the integral in the numerator is positive, look at Figure S3.1 on the following page.The marginal utility of positive returns, +Z, is always higher than the marginal utility of equally likely (i.e., the same f(Z)) negative returns, −Z. Therefore, when all equally likely returns are multiplied by their marginal utilities, matched, and summed, the result must be positive. Since the integral in the numerator is preceded by a minus sign, the entire numerator is negative and the marginal rate of substitution between risk and return for a risk lover is negative. This leads to indifference curves like those shown in Figure S3.2.14 Copeland/Shastri/Weston • Financial Theory and Corporate Policy,Fourth EditionFigure S3.1Total utility of normally distributed returns for a risk loverFigure S3.2 Indifference curves of a risk lover3. (a)ln W 8.4967825E[U(W)].5ln(4,000).5ln(6,000).5(8.29405).5(8.699515)8.4967825e We $4,898.98W=+=+====Therefore, the individual would be indifferent between the gamble and $4,898.98 for sure. Thisamounts to a risk premium of $101.02. Therefore, he would not buy insurance for $125.(b) The second gamble, given his first loss, is $4,000 plus or minus $1,000. Its expected utility is=+=+====ln W 8.26178E[U(W)].5ln(3,000).5ln(5,000).5(8.006368).5(8.517193)8.26178e e $3,872.98WNow the individual would be willing to pay up to $127.02 for insurance. Since insurance costsonly $125, he will buy it.Chapter 3 The Theory of Choice: Utility Theory Given Uncertainty 154. Because $1,000 is a large change in wealth relative to $10,000, we can use the concept of risk aversionin the large (Markowitz). The expected utility of the gamble isE(U(9,000,11,000; .5)).5U(9,000).5U(11,000).5ln9,000.5ln11,000.5(9.10498).5(9.30565)4.55249 4.6528259.205315=+=+=+=+=The level of wealth which has the same utility isln W =9.205315W =e 9.205315=$9,949.87Therefore, the individual would be willing to pay up to$10,000 − 9,949.87 = $50.13 in order to avoid the risk involved in a fifty-fifty chance of winning or losing $1,000.If current wealth is $1,000,000, the expected utility of the gamble isE(U(999,000, 1,001,000; .5)).5ln 999,000.5ln1,001,000.5(13.81451).5(13.81651)13.81551=+=+=The level of wealth with the same utility is ln W =13.81551W =e 13.81551=$999,999.47Therefore, the individual would be willing to pay $1,000,000.00 − 999,999.47 = $0.53 to avoid the gamble.5. (a) The utility function is graphed in Figure S3.3.U(W)=−e −aW16 Copeland/Shastri/Weston • Financial Theory and Corporate Policy,Fourth EditionFigure S3.3 Negative exponential utility functionThe graph above assumes a = 1. For any other value of a > 0, the utility function will be amonotonic transformation of the above curve.(b) Marginal utility is the first derivative with respect to W.aW dU(W)U (W)(a)e 0dW−′==−−> Therefore, marginal utility is positive. This can also be seen in Figure S3.3 because the slope of a line tangent to the utility function is always positive, regardless of the level of wealth. Risk aversion is the rate of change in marginal utility.aW 2aW dMU(W)U (W)a(a)e a e 0dW−−′′==−=−< Therefore, the utility function is concave and it exhibits risk aversion.(c) Absolute risk aversion, as defined by Pratt-Arrow, is2aWaW U (W)ARA U (W)a e ARA a ae −−′′=−′−=−=Therefore, the function does not exhibit decreasing absolute risk aversion. Instead it has constant absolute risk aversion.(d) Relative risk aversion is equal toU (W)RRA W(ARA)WU (W)Wa′′==−′=Therefore, in this case relative risk aversion is not constant. It increases with wealth.Chapter 3 The Theory of Choice: Utility Theory Given Uncertainty 176. Friedman and Savage [1948] show that it is possible to explain both gambling and insurance if anindividual has a utility function such as that shown in Figure S3.4. The individual is risk averse todecreases in wealth because his utility function is concave below his current wealth. Therefore, he will be willing to buy insurance against losses. At the same time he will be willing to buy a lottery ticket which offers him a (small) probability of enormous gains in wealth because his utility function isconvex above his current wealth.Figure S3.4 Gambling and insurance7. We are given thatA >B >C >D Also, we know thatU(A) + U(D) = U(B) + U(C) Transposing, we have U(A) − U(B) = U(C) − U(D) (3.1) Assuming the individual is risk-averse, then 22U U 0 and 0W W∂∂><∂∂ (3.2) Therefore, from (1) and (2) we know that −−<−−U(A)U(B)U(C)U(D)A B C D(3.3) Using equation (3.1), equation (3.3) becomes11A B C DA B C DA D C B1111A D C B 22221111U (A)(D)U (C)(B)2222<−−−>−+>++>+ +>+In general, risk averse individuals will experience decreasing utility as the variance of outcomes increases, but the utility of (1/2)B + (1/2)C is the utility of an expected outcome, an average.18 Copeland/Shastri/Weston • Financial Theory and Corporate Policy, Fourth Edition8. First, we have to compute the expected utility of the individual’s risk.i i E(U(W))p U(W ).1U(1).1U(50,000).8U(100,000).1(0).1(10.81978).8(11.51293)10.292322==++=++=∑ Next, what level of wealth would make him indifferent to the risk?10.292322ln W 10.292322W e W 29,505=== The maximum insurance premium isRisk premium = E (W) – certainty equivalent$85,000.1$29,505$55,495.1=−= 9. The utility function is U(W)=−W −1Therefore, the level of wealth corresponding to any utility isW = –(U(W))–1Therefore, the certainty equivalent wealth for a gamble of ±1,000 is W.−−−=−−++−−111W [.5((W 1,000)).5((W 1,000))]The point of indifference will occur where your current level of wealth, W, minus the certainty equivalent level of wealth for the gamble is just equal to the cost of the insurance, $500. Thus, we have the condition−= −−= −− + +−−−= − =−−+= −−+==2222W W 5001W 50011.5.5W 1,000W 1,0001W 500W W 1,000,000W 1,000,000W 500W W W 1,000,000500WW 2,000Chapter 3 The Theory of Choice: Utility Theory Given Uncertainty 19Therefore, if your current level of wealth is $2,000, you will be indifferent. Below that level of wealth you will pay for the insurance while for higher levels of wealth you will not.10. Table S3.1 shows the payoffs, expected payoffs, and utility of payoffs for n consecutive heads.Table S3.1Number of Consecutive Heads = N Probability = (1/2)n +1 Payoff = 2NE(Payoff) U(Payoff)E U(Payoff) 0 1/2 1 $.50 ln 1 = .000 .0001 1/42 .50 ln 2 = .693 .1732 1/8 4 .50 ln 4 = 1.386 .1733 1/16 8 .50 ln 8 = 2.079 .130N (1/2)N +1 2N .50 ln 2N = N ln 2 N ln 22+=0 The gamble has a .5 probability of ending after the first coin flip (i.e., no heads), a (.5)2probability of ending after the second flip (one head and one tail), and so on. The expected payoff of the gamble is the sum of the expected payoffs (column four), which is infinite. However, no one has ever paid an infinite amount to accept the gamble. The reason is that people are usually risk averse. Consequently, they would be willing to pay an amount whose utility is equal to the expected utility of the gamble. The expected utility of the gamble isN i 1i12i 0Ni 1122i 0N 12ii 0E(U)()ln 2E(U)()i ln 2i E(U) ln 22+======∑∑∑ Proof that i i 0i 22∞==∑follows: First, note that the infinite series can be partitioned as follows: ∞∞∞∞====+−−==+∑∑∑∑i i i i i 0i 0i 0i 0i 1i 11i 12222 Evaluating the first of the two terms in the above expression, we have∞==++++⋅⋅⋅∑1124i i 011182 =+=−1/21211/220 Copeland/Shastri/Weston • Financial Theory and Corporate Policy, Fourth Edition Evaluating the second term, we havei i 0i 11234104816322∞=−=−++++++⋅⋅⋅∑ The above series can be expanded as−=−++++⋅⋅⋅=+++⋅⋅⋅=++⋅⋅⋅=+⋅⋅⋅=1 111111 48163221111 816324111 1632811 3216Therefore, we havei i 0i i 0i 111111248162i 11102∞=∞=−=−+++++⋅⋅⋅−=−+=∑∑ Adding the two terms, we have the desired proof thati i i i 0i 0i 0i 1i 1202222∞∞∞===−=+=+=∑∑∑ Consequently, we have=====∑∑NN i i i 0i 0i i E(U) 1/2ln2 ln2, since 222 If the expected utility of wealth is ln2, the corresponding level of wealth isln2U(W)ln2e W $2===Therefore, an individual with a logarithmic utility function will pay $2 for the gamble.11. (a) First calculate AVL from the insurer’s viewpoint, since the insurer sets the premiums.AVL 1 ($30,000 insurance)=0(.98)+5,000(.01)+10,000(.005)+30,000(.005)=$250AVL 2 ($40,000 insurance)=0(.98)+5,000(.01)+10,000(.005)+40,000(.005)=$300AVL 3 ($50,000 insurance)=0(.98)+5,000(.01)+10,000(.005)+50,000(.005)=$350Chapter 3 The Theory of Choice: Utility Theory Given Uncertainty 21We can now calculate the premium for each amount of coverage:Amount of Insurance Premium$30,000 30 + 250 = $280$40,000 27 + 300 = $327$50,000 24 + 350 = $374Next, calculate the insuree’s ending wealth and utility of wealth in all contingencies (states). Assume he earns 7 percent on savings and that premiums are paid at the beginning of the year. The utility of each ending wealth can be found from the utility function U(W) = ln W. (See Table S3.2a.)Finally, find the expected utility of wealth for each amount of insurance,i i i E(U(W))P U(W )=∑and choose the amount of insurance which yields the highest expected utility.Table S3.2a Contingency Values Of Wealth And Utility of Wealth (Savings = $20,000) End-of-Period Wealth (in $10,000’s) Utility ofWealthU(W) = ln WWith no insuranceNo loss (P = .98) 5 + 2(1.07) = 7.141.9657 $5,000 loss (P = .01) 5 +2.14 − .5 = 6.641.8931 $10,000 loss (P = .005) 5 +2.14 − 1.0 = 6.141.8148 $50,000 loss (P = .005) 5 +2.14 − 5.0 = 2.140.7608 With $30,000 insuranceNo loss (P = .995) 5 + 2.14 − .0280(1.07) ≅ 7.111.9615 $20,000 loss (P = .005) 5 +2.14 − .03 − 2 ≅ 5.111.6312 With $40,000 insuranceNo loss (P = .995) 5 + 2.14 − .0327(1.07) ≅ 7.1051.9608 $10,000 loss (P = .005) 5 +2.14 − .035 − 1.0 ≅ 6.1051.8091 With $50,000 insuranceNo loss (P = 1.0) 5 + 2.14 − .0374(1.07) ≅ 7.10 1.9601 With no Insurance: E(U(W)) = 1.9657(.98) + 1.8931(.01) + 1.8148(.005)+ 0.7608(.005)= 1.9582With $30,000 insurance: E(U(W)) = 1.9615(.995) + 1.6312(.005)= 1.9598With $40,000 insurance: E(U(W)) = 1.9608(.995) + 1.8091(.005)= 1.9600With $50,000 insurance: E(U(W)) = 1.9601Therefore, the optimal insurance for Mr. Casadesus is $50,000, given his utility function.22 Copeland/Shastri/Weston • Financial Theory and Corporate Policy, Fourth EditionTable S3.2b Contingency Values of Wealth and Utility of Wealth(Savings = $320,000)End-of-Period Wealth (in $10,000’s)Utility ofWealthU(W) = ln W (Wealth in $100,000’s)With no insuranceNo loss (P = .98) 5 + 32.00(1.07) = 39.24 1.3671$5,000 loss (P = .01) 5 + 34.24 − .5 = 38.74 1.3543$10,000 loss (P = .005) 5 + 34.24 − 1.0 = 38.24 1.3413$50,000 loss (P = .005) 5 + 34.24 − 5.0 = 34.24 1.2308 With $30,000 insuranceNo loss (P = .995) 5 + 34.24 − .028(1.07) ≅ 39.21 1.3663$20,000 loss (P = .005) 5 + 34.24 − .03 − 2 ≅ 37.21 1.3140 With $40,000 insuranceNo loss (P = .995) 5 + 34.24 − .0327(1.07) ≅ 39.205 1.3662$10,000 loss (P = .005) 5 + 34.24 − .035 − 1.0 ≅ 38.205 1.3404 With $50,000 insuranceNo loss (P = 1.0) 5 + 34.24 − .0374(1.07) ≅ 39.20 1.3661(b) Follow the same procedure as in part a), only with $320,000 in savings instead of $20,000. (SeeTable S3.2b above for these calculations.)With no Insurance: E(U(W)) = .98(1.3671) + .01(1.3543)+ .005(1.3413) + .005(1.2308)= 1.366162With $30,000 insurance: E(U(W)) = .995(1.3663) + .005 (1.3140)= 1.366038With $40,000 insurance: E(U(W)) = .995(1.3662) + .005(1.3404)= 1.366071With $50,000 insurance: E(U(W)) = (1)1.366092 = 1.366092The optimal amount of insurance in this case is no insurance at all. Although the numbers are close with logarithmic utility, the analysis illustrates that a relatively wealthy individual may choose no insurance, while a less wealthy individual may choose maximum coverage.(c) The end-of-period wealth for all contingencies has been calculated in part a), so we can calculatethe expected utilities for each amount of insurance directly.With no insurance:E (U(W)) = .98(U(71.4)) + .01(U(66.4)) + .005(U(61.4)) + .005U(21.4)= –.98(200/71.4) – .01(200/66.4) – .005(200/61.4) – .005(200/21.4)= –2.745 – .030 – .016 – .047= –2.838With $30,000 insurance:E(U(W)) = .995(U(71.1)) + .005(U(51.1))= – .995 (200/71.1) – .005(200/51.1)= –2.799 – .020= –2.819With $40,000 insurance:E(U(W)) = .995(U(71.05) + .005(U(61.05))= – .995(200/71.05) – .005(200/61.05)= –2.8008 – .0164= –2.8172With $50,000 insurance:E(U(W)) = (1)( −200/71) = −2.8169Hence, with this utility function, Mr. Casadesus would renew his policy for $50,000.Properties of this utility function, U(W) = −200,000W −1:=>′=−<′−==>∂=−<∂==>∂=∂-2W -3W -1W W -2MU 200,000W 0 nonsatiationMU 400,000W 0 risk aversionMU ARA 2W 0MU ARA 2W 0 decreasing absolute risk aversion WRRA W(ARA)20RRA 0 Wconstant relative risk aversion Since the individual has decreasing absolute risk aversion, as his savings account is increased he prefers to bear greater and greater amounts of risk. Eventually, once his wealth is large enough, he would prefer not to take out any insurance. To see this, make his savings account = $400,000.12. Because returns are normally distributed, the mean and variance are the only relevant parameters.Case 1(a) Second order dominance—B dominates A because it has lower variance and the same mean. (b) First order dominance—There is no dominance because the cumulative probability functionscross.Case 2(a) Second order dominance—A dominates B because it has a higher mean while they both have thesame variance.(b) First order dominance—A dominates B because its cumulative probability is less than that of B. Itlies to the right of B.Case 3(a) Second order dominance—There is no dominance because although A has a lower variance it alsohas a lower mean.(b) First order dominance—Given normal distributions, it is not possible for B to dominate Aaccording to the first order criterion. Figure S3.5 shows an example.Figure S3.5 First order dominance not possible13. (a)Prob X X pi XiXi− E(X) pi(Xi− E(X))2.1 −10 −1.0 −16.4 .1(268.96)= 26.896 .4 5 2.0 −1.4 .4(1.96) = .784 .3 10 3.0 3.6 .3(12.96) = 3.888 .2 12 2.4 5.6 .2(31.36) = 6.272 E(X)= 6.4 var (X) = 37.840Prob Y Y pi YiYi− E(Y) pi(Yi− E(Y))2.2 2 .4 −3.7 .2(13.69) = 2.738.531.5 −2.7 .5(7.29) =3.645.2 4 .8 −1.7 .2(2.89) = .578.1 303.0 24.3 .1(590.49) = 59.049E(Y) = 5.7 var(Y) = 66.010 X is clearly preferred by any risk averse individual whose utility function is based on mean and variance, because X has a higher mean and a lower variance than Y, as shown in Figure S3.6. (b) Second order stochastic dominance may be tested as shown in Table S3.3 on the following page.Because Σ(F − G) is not less than (or greater than) zero for all outcomes, there is no second order dominance.Table S3.3Outcome Prob(X) Prob(Y) Σ Px = F Σ Py= G F − G Σ (F − G)−10 .1 0 .1 0 .1 .1−9 0 0 .1 0 .1 .2−8 0 0 .1 0 .1 .3−7 0 0 .1 0 .1 .4−6 0 0 .1 0 .1 .5−5 0 0 .1 0 .1 .6−4 0 0 .1 0 .1 .7−3 0 0 .1 0 .1 .8−2 0 0 .1 0 .1 .9−1 0 0 .1 0 .1 1.00 0 0 .1 0 .1 1.11 0 0 .1 0 .1 1.22 0 .2 .1 .2 −.1 1.13 0 .5 .1 .7 −.6 .54 0 .2 .1 .9 −.8 −.35 .4 0 .5 .9 −.4 −.76 0 0 .5 .9 −.4 –1.17 0 0 .5 .9 −.4 −1.58 0 0 .5 .9 −.4 –1.99 0 0 .5 .9 −.4 –2.310 .3 0 .8 .9 −.1 –2.411 0 0 .8 .9 −.1 –2.512 .2 0 1.0 .9 .1 –2.413 0 0 1.0 .9 .1 –2.314 0 0 1.0 .9 .1 –2.215 0 0 1.0 .9 .1 −2.116 0 0 1.0 .9 .1 –1.917 0 0 1.0 .9 .1 –1.818 0 0 1.0 .9 .1 –1.719 0 0 1.0 .9 .1 –1.620 0 0 1.0 .9 .1 –1.521 0 0 1.0 .9 .1 –1.422 0 0 1.0 .9 .1 –1.323 0 0 1.0 .9 .1 –1.224 0 0 1.0 .9 .1 –1.125 0 0 1.0 .9 .1 –1.026 0 0 1.0 .9 .1 –.927 0 0 1.0 .9 .1 –.828 0 0 1.0 .9 .1 –.729 0 0 1.0 .9 .1 –.630 0 .1 1.0 1.0 0 –.61.0 1.0Because Σ (F − G) is not less than (or greater than) zero for all outcomes, there is no second order dominance.Figure S3.6 Asset X is preferred by mean-variance risk averters14. (a) Table S3.4 shows the calculations.Table S3.4p i Co. A Co. B p i A i p i [A − E(A)]2 p i B i p i [B − E(B)]2.1 0 −.50 0 .144 −.05 .4000 .2 .50 −.25 .10 .098 −.05 .6125 .4 1.00 1.50 .40 .016 .60 0.2 2.00 3.00 .40 .128 .60 .4500.1 3.00 4.00 .30 .324 .40 .62501.20 .710 1.502.0875=σ==σ=A B E(A) 1.20, .84E(B) 1.50, 1.44(b) Figure S3.7 shows that a risk averse investor with indifference curves like #1 will prefer A, whilea less risk averse investor (#2) will prefer B, which has higher return and higher variance.Figure S3.7 Risk-return tradeoffs (c) The second order dominance criterion is calculated in Table S3.5 on the following page.15. (a) False. Compare the normally distributed variables in Figure S3.8 below. Using second orderstochastic dominance, A dominates B because they have the same mean, but A has lower variance. But there is no first order stochastic dominance because they have the same mean and hence thecumulative probability distributions cross.Figure S3.8 First order stochastic dominance does not obtain (b) False. Consider the following counterexample.Table S3.5 (Problem 3.14) Second Order Stochastic DominanceReturn Prob(A) Prob(B) F(A) G(B) F − G Σ (F − G) −.50 0 .1 0 .1−.1 −.1−.25 0 .2 0 .3−.3 −.40 .1 0 .1 .3−.2 −.6.25 0 0 .1 .3−.2 −.8.50 .2 0 .3 .3 0 −.8.75 0 0 .3 .3 0 −.81.00 .4 0 .7 .3 .4 −.41.25 0 0 .7 .3 .4 01.50 0 .4 .7 .7 0 01.75 0 0 .7 .7 0 02.00 .2 0 .9 .7 .2 .22.25 0 0 .9 .7 .2 .42.50 0 0 .9 .7 .2 .62.75 0 0 .9 .7 .2 .83.00 .1 .2 1.0 .9 .1 .9 3.25 0 0 1.0 .9 .1 1.0 3.50 0 0 1.0 .9 .1 1.13.75 0 0 1.0 .9 .1 1.24.00 0 .1 1.0 1.0 0 1.21.0 1.0Because Σ (F − G) is not always the same sign for every return, there is no second order stochastic dominance in this case.Payoff Prob (A) Prob (B) F (A) G (B) G (B) − F(A)$1 0 .3 0 .3 .3$2 .5 .1 .5 .4 −.1$3 .5 .31.0 .7 −.3$4 0 .31.0 1.0 01.0 1.0E(A) = $2.50, var(A) = $.25 squaredE(B) = $2.60, var(B) = $1.44 squaredThe cumulative probability distributions cross, and there is no first order dominance.(c) False. A risk neutral investor has a linear utility function; hence he will always choose the set ofreturns which has the highest mean.(d) True. Utility functions which have positive marginal utility and risk aversion are concave. Secondorder stochastic dominance is equivalent to maximizing expected utility for risk averse investors.16. From the point of view of shareholders, their payoffs areProject 1 Project 2Probability Payoff Probability Payoff.2 0 .4 0.6 0 .2 0.2 0 .4 2,000Using either first order or second order stochastic dominance, Project 2 clearly dominatesProject 1.If there were not limited liability, shareholder payoffs would be the following:Project 1 Project 2Probability Payoff Probability Payoff.2 −4000 .4 −8000.6 −3000 .2 −3000.2 −2000 .4 2,000In this case shareholders would be obligated to make debt payments from their personal wealthwhen corporate funds are inadequate, and project 2 is no longer stochastically dominant.17. (a) The first widow is assumed to maximize expected utility, but her tastes for risk are not clear.Hence, first order stochastic dominance is the appropriate selection criterion.E(A) = 6.2 E(D) = 6.2E(B) = 6.0 E(E) = 6.2E(C) = 6.0 E(F) = 6.1One property of FSD is that E(X) > E(Y) if X is to dominate Y. Therefore, the only trusts which might be inferior by FSD are B, C, and F. The second property of FSD is a cumulative probability F(X) that never crosses but is at least sometimes to the right of G(Y). As Figure S3.9 shows, A >C andD > F, so the feasible set of trusts for investment is A, B, D, E.Figure S3.9 First order stochastic dominance(b) The second widow is clearly risk averse, so second order stochastic dominance is the appropriateselection criterion. Since C and F are eliminated by FSD, they are also inferior by SSD. The pairwise comparisons of the remaining four funds, Σ(F(X) − G(Y)) are presented in Table S3.6 on the following page and graphed in Figure S3.10. If the sum of cumulative differences crosses the horizontal axis, as in the comparison of B and D, there is no second order stochastic dominance. By SSD, E > A, E > B, and E > D, so the optimal investment is E.Table S3.6 Second Order Stochastic DominanceRet. P(A)* P(B) P(D) P(E) SSD**(BA)SSD(DA)SSD(EA)SSD(DB)SSD(EB)SSD(ED)−2 −.1 −.1−1 0 .1 .2 0 .2 .2 0 0 −.2 −.20 0 .2 .2 0 .4 .4 0 0 −.4 −.41 0 .3 .2 0 .7 .6 0 −.1 −.7 −.62 0 .3 .4 0 1.0 1.0 0 0 −1.0 −1.03 0 .4 .4 0 1.4 1.4 0 0 −1.4 −1.44 0 .5 .4 0 1.9 1.8 0 −.1 −1.9 −1.85 .4 .5 .4 .4 2.0 1.8 0 −.2 −2.0 −1.86 .6 .5 .5 .4 1.9 1.7 −.2 −.2 −2.1 −1.97 .8 .5 .6 1.0 1.6 1.5 0 −.1 −1.6 −1.58 1.0 .6 .6 1.0 1.2 1.1 0 −.1 −1.2 −1.19 1.0 .6 .7 1.0 .8 .8 0 0 −.8 −.810 1.0 .7 .8 1.0 .5 .6 0 .1 −.5 −.611 1.0 .8 .8 1.0 .3 .4 0 .1 −.3 −.412 1.0 .9 .8 1.0 .2 .2 0 0 −.2 −.213 1.0 1.0 .8 1.0 .2 0 0 −.2 −.2 014 1.0 1.0 1.0 1.0 .2 0 0 −.2 −.2 0A >B A > D A < E no2ndorderdominance B < ED< E** SSD calculated according to Σ (F(X) − G(Y)) where F(X) = cumulative probability of X and G(Y) = cumulative probability of Y.18. (a) Mean-variance ranking may not be appropriate because we do not know that the trust returns havea two-parameter distribution (e.g., normal).To dominate Y, X must have higher or equal mean and lower variance than Y, or higher mean and lower or equal variance. Means and variances of the six portfolios are shown in Table S3.7. Bymean-variance criteria, E > A, B, C, D, F and A > B, C, D, F. The next in rank cannot bedetermined. D has the highest mean of the four remaining trusts, but also the highest variance. The only other unambiguous dominance is C > B.Figure S3.10 Second order stochastic dominanceTable S3.7E(X) var(X)B 6.0 26.80C 6.0 2.00D 6.2 28.36E 6.2 0.96F 6.1 26.89(b) Mean-variance ranking and SSD both select trust E as optimal. However, the rankings ofsuboptimal portfolios are not consistent across the two selection procedures.Optimal Dominance R elationshipsFSD A, B, D, E A > C, D > FSSD E A > B, A > DM-V E A > B, C, D, F; C > B。

朱叶《公司金融》第4版答案

朱叶《公司金融》第4版答案

第一章导论1.大公司选择公司这一企业组织形式的主要理由有哪些?【参考答案】企业选择公司制的理由可能有以下三个方面:第一,大型企业要以个体业主制或合伙制存在是非常困难的。

个体业主制与合伙制这两个组织形式具有无限责任、有限企业寿命和产权转让困难三个重大的缺陷,这些缺陷决定了这两类企业难以筹集大量资金。

显然,大企业采取这两种组织形式将难以为继第二,公司具有得天独厚的融资灵活性。

企业潜在的增长机会需要资金支持,包括权益资本和债务资本。

个体业主制企业和合伙制企业的权益资本融资方面的能力非常有限,而公司在资本市场上能够左右逢源,尽显融资优势第三,公司拥有更多的再投资机会。

因为公司比合伙制企业和个体业主企业更容易留存企业的当期收益,因此,更有利于今后再投资于有利可图的投资机会2.公司有哪些重要的活动或行为?【参考答案】资产负债表是反映公司财务状况的载体,因此,我们可以在某一时间点上借助资产负债表总览公司财务状况以及金融活动,进而我们能够借助资产负债表来理解公司金融的基本内容。

资产负债表的左边列示了公司的资产,包括流动资产、长期资产(固定资产、无形资产等),公司的资产状况反映了公司的流动资产管理水平以及长期资产投资状况,资产负债表的右边列示了公司的资金来源,包括流动负债、长期负债和股东权益,公司负债和股东权益的结构则反映了公司在融资方式、融资结构方面的偏好或无奈。

公司主要的金融活动主要分为三大类一一投资决策、融资决策和营运资本管理。

①投资决策公司在创立之初以及面对未来成长机会时,会面临同样的问题:公司应该采取什么样的长期投资战略?长期资产投资决策便成了公司金融的重要问题之一,这一问题涉及资产负债表的左边。

长期资产尤其是固定资产投资往往具有不可逆的特征,一旦发现投资失误,很难变现和收回,因此,财务经理的职责在于,使用资本预算来描述和揭示固定资产的投资过程。

②融资决策如何筹集投资所需要的资金或解决资金缺口(融资决策)将是公司面临的第二个公司金融问题。

孟昊《国际金融理论与实务》(第4版)-习题答案 (12)

孟昊《国际金融理论与实务》(第4版)-习题答案 (12)

第十二章一、填空1、支出调整政策支出转移政策2、丁伯根法则政策指派与有效市场原则合理搭配原则3、货币政策财政政策4、大于5、贬值二、不定项选择题1、ABC ;2、AD ;3、BD4、CD ;5、ABCD;6、AB ;7、ACD ;8、ABCD三、判断1、√2、×在封闭经济下,经济增长、充分就业与物价稳定是政府追求的主要经济目标。

3、×在固定汇率制下,当经济内部处于衰退且失业增加,外部处于国际收支逆差时,追求内外均衡目标的方向不一致。

财政应扩张,货币应紧缩。

4、√5、×斯旺模型是建立在不考虑国际资本流动的假设前提之上的。

四、名词解释略,见教材。

五、简答题1、(1)调节社会总需求的工具:包括支出增减型政策和支出转换型政策。

支出增减性政策主要包括财政政策与货币政策。

支出转换型政策主要包括汇率政策与直接管制政策。

(2)调节社会总供给的工具,它包括产业政策和科技政策等。

(3)提供融资的工具,其政策工具包括官方储备和国际信贷。

2、(1)在通胀与顺差并存时,若考虑以支出增加政策平衡国际收支,就会加剧国内的通货膨胀程度;若以支出减少政策稳定国内物价水平,则会进一步扩大国际收支的顺差规模。

在失业和逆差并存时,政策当局也必然陷入同样的两难境地。

换言之,在开放经济的特定运行状态下,可能会出现内外均衡难以兼顾的情形,即出现内外部均衡目标冲突(即米德冲突)。

(2)没有详细分析资本流动对内外均衡关系的影响,也没有将这一点在政策措施中明确提出。

此外,米德的分析主要针对的是固定汇率制度,但实际上,无论是在固定汇率制度还是在浮动汇率制度,内外均衡冲突的问题是始终存在的。

3、(1)画图解释。

当出现通货膨胀/国际收支逆差,失业/国际收支顺差区域时出现内外均衡的冲突,对内需使用支出增减政策,对外需使用支出转换政策。

(2)未考虑国际资本流动对各国经济和外部均衡冲击的影响,其次,仍然无法解决固定汇率制度下或者可调整固定汇率制度下因汇率政策失效或效力较弱而出现的米德冲突;最后,通常情况下,决策当局很难准确知道内部均衡线与外部均衡线的相对位置,使得确定政策搭配远在的可行性不佳。

最新《公司金融学》全本课后习题参考答案

最新《公司金融学》全本课后习题参考答案

《公司金融》课后习题参考答案各大重点财经学府专业教材期末考试考研辅导资料第一章导论第二章财务报表分析与财务计划第三章货币时间价值与净现值第四章资本预算方法第五章投资组合理论第六章资本结构第七章负债企业的估值方法第八章权益融资第九章债务融资与租赁第十章股利与股利政策第十一章期权与公司金融第十二章营运资本管理与短期融资第一章导论1.治理即公司治理(corporate governance),它解决了企业与股东、债权人等利益相关者之间及其相互之间的利益关系。

融资(financing),是公司金融学三大研究问题的核心,它解决了公司如何选择不同的融资形式并形成一定的资本结构,实现企业股东价值最大化。

估值(valuation),即企业对投资项目的评估,也包括对企业价值的评估,它解决了企业的融资如何进行分配即投资的问题。

只有公司治理规范的公司,其投资、融资决策才是基于股东价值最大化的正确决策。

这三个问题是相互联系、紧密相关的,公司金融学的其他问题都可以归纳入这三者的范畴之中。

2.对于上市公司而言,股东价值最大化观点隐含着一个前提:即股票市场充分有效,股票价格总能迅速准确地反映公司的价值。

于是,公司的经营目标就可以直接量化为使股票的市场价格最大化。

若股票价格受到企业经营状况以外的多种因素影响,那么价值确认体系就存在偏差。

因此,以股东价值最大化为目标必须克服许多公司不可控的影响股价的因素。

第二章财务报表分析与财务计划1.资产负债表;利润表;所有者权益变动表;现金流量表。

资产= 负债+ 所有者权益2.我国的利润表采用“多步式”格式,分为营业收入、营业利润、利润总额、净利润、每股收益、其他综合收益和综合收益总额等七个盈利项目。

3.直接法是按现金收入和支出的主要类别直接反映企业经营活动产生的现金流量,一般以利润表中的营业收入为起算点,调整与经营活动有关项目的增减变化,然后计算出经营活动现金流量。

间接法是以净利润为起算点,调整不涉及现金的收入、费用、营业外收支以及应收应付等项目的增减变动,据此计算并列示经营活动现金流量。

金融学第四版课后答案

金融学第四版课后答案

金融学第四版课后答案【篇一:金融市场学高教社第四版课后参考答案】lass=txt>习题二1.b、e、f2.略3.同传统的定期存款相比,大额可转让定期存单具有以下几点不同:(1)定期存款记名、不可转让;大额可转让定期存单是不记名的、可以流通转让的。

(2)定期存款金额不固定,可大可小;大额可转让定期存单金额较大。

(3)定期存款;利率固定;大额可转让定期存单利率有固定的也有浮动的,且一般高于定期存款利率。

(4)定期存款可以提前支取,但要损失一部分利息;大额可转让定期存单不能提前支取,但可在二级市场流通转让。

4.回购利息=1,001,556-1,000,000=1,556rmb设回购利率为x,则:解得:x=8%回购协议利率的确定取决于多种因素,这些因素主要有:(1)用于回购的证券的质地。

证券的信用度越高,流动性越强,回购利率就越低,否则,利率相对来说就会高一些。

(2)回购期限的长短。

一般来说,期限越长,由于不确定因素越多,因而利率也应高一些。

但这并不是一定的,实际上利率是可以随时调整的。

(3)交割的条件。

如果采用实物交割的方式,回购利率就会较低,如果采用其他交割方式,则利率就会相对高一些。

(4)货币市场其他子市场的利率水平。

它一般是参照同业拆借市场利率而确定的。

真实年收益率为:[1+(100-98.01)/98.01]365/316 -1=2.35%6.平均收益率=2.91%*35%+3.2%*25%+3.85%*15%+3%*12.5%+2.78%*12.5%=3.12% 习题三答案1.(1)从理论上说,可能的损失是无限的,损失的金额随着x股票价格的上升而增加。

(2)当股价上升超过22元时,停止损失买进委托就会变成市价买进委托,因此最大损失就是2 000元左右。

2.(1)该委托将按最有利的限价卖出委托价格,即40.25美元成交。

(2)下一个市价买进委托将按41.50美元成交。

(3)我将增加该股票的存货。

《金融理论与公司政策(第四版)》课后答案

《金融理论与公司政策(第四版)》课后答案

300 = 3,000 .1 350 NPV (cost cutting perpetuity) = = 3,500 .1 NPV (sale) = $11,000
Chapter 13
The Role of the CFO, Performance Measurement, and Incentive Design
4. EPS (earnings per share) and the growth in EPS are uncorrelated with the total return to shareholders because they ignore balance sheet information and because they fail to capture the changes in expectations that drive TRS. EVA and the change in EVA contain information about earnings, invested capital and the cost of capital, but omit expectations. Consequently, they also have a very low correlation with TRS. 5. The facts are summarized in Table S13.5. Let’s assume that ROIC is after tax. Table S13.5 Announced Capital $5 million $30 million $5 million $30 million Announced ROIC 30% 40% 30% 40% Revised ROIC 30% 30% 30% 10% Expected EBIT Announced Revised $1.5 million $1.5 million $12.0 million $9.0 million $13.5 million $10.5 million 1.5 million 1.5 million 12.0 million 3.0 million $13.5 million $4.5 million

金融理论与政策(利率与公司金融理论)习题与答案

金融理论与政策(利率与公司金融理论)习题与答案

一、单选题1、根据托宾的Q理论,当市场利率下降,Q值(企业市场价值比企业重置成本)通常会如何变化()A.不变B.先上升后下降C.下降D.上升正确答案:D解析: D、具体的传导机制:货币供给增加,市场利率下降导致企业市场价值上升(融资成本下降导致现金流上升,再加上贴现率下降,使得反映企业市场价值的现金流贴现价值上升),当企业市场价值与企业重置成本的比值上升且大于1时,则实际投资支出相应增加(产业资本和金融资本之间的套利),国民收入随之上升。

2、利率市场化将会使银行竞争(),系统性风险()A.不变,减少B.增加,增加C.增加,减少D.减少,增加正确答案:B3、新古典学派的可贷资金理论关注货币资金供求的()对利率的影响A.增加B.流量C.存量D.减少正确答案:B4、中国人民银行决定开放贷款利率下限的时间是()A.2013年7月B. 2012年6月C.还未确定开放时间D.2012年7月正确答案:A解析: A、经国务院批准,中国人民银行决定,自2013年7月20日起全面放开金融机构贷款利率管制。

一、取消金融机构贷款利率0.7倍的下限,由金融机构根据商业原则自主确定贷款利率水平。

二、取消票据贴现利率管制,改变贴现利率在再贴现利率基础上加点确定的方式,由金融机构自主确定。

三、对农村信用社贷款利率不再设立上限。

四、为继续严格执行差别化的住房信贷政策,促进房地产市场健康发展,个人住房贷款利率浮动区间暂不作调整。

5、下列关于权益性融资与债务性融资表述正确的是()A.债务性融资的成本一般高于权益性融资,但融资风险却低于权益性融资B.债务性融资成本是不断变化的C.作为外源融资,权益性融资与债务性融资都不需要对外支付融资成本D. 权益性融资没有固定偿还日期正确答案:D解析: A、债务性融资成本一般低于权益性融资 B、债务性融资成本根据债务合同规定利息偿付,一般不会变化 C、债务性融资需要对外支付融资成本6、某公司债务利息为200000元,债务的税前成本为8%,公司的债务价值为()A.3000000元B.7500000元C.2500000元D.6000000元正确答案:C解析: C、债务价值为200000/8%=25000007、根据优序融资理论,融资顺序应该为()A.内部留存收益、公开增发新股、发行可转换债券、发行公司债券B.内部留存收益、公开增发新股、发行公司债券、发行可转换债券C.内部留存收益、发行可转换债券、发行公司债券、公开增发新股D.内部留存收益、发行公司债券、发行可转换债券、公开增发新股正确答案:D8、央行的货币政策工具不包括下列哪一项()A.财政支出B.再贴现C.公开市场操作D.法定存款准备金正确答案:A二、多选题1、利率发挥作用的基础性条件有哪些()A.具有固定的期限利差B.合理的利率弹性C.独立决策的市场主体D.市场化的利率决定机制正确答案:B、C、D2、莫迪利亚尼的利率传导机制理论认为利率传导机制通过财富变动对消费者支出产生影响,进而影响实体经济发展,而决定消费者支出的是消费者毕生的资财,消费者毕生的资财包括()A.人力资本B.日常消费品C.金融财富D.实物资本正确答案:A、C、D3、根据凯恩斯的流动性偏好理论,当货币供给增加时,会引起那些变化()A.引起总需求减少B.利率下降C.投资需求增加D.利率上升正确答案:B、C解析: B、凯恩斯认为,利率取决于货币供求数量的对比。

公司金融第四版参考答案

公司金融第四版参考答案

公司金融第四版参考答案公司金融是一门研究企业财务管理和金融决策的学科,它涉及到公司的资金筹集、投资决策、资本结构和分红政策等方面。

对于学习者来说,参考答案是一个重要的学习工具,可以帮助他们更好地理解和应用所学的知识。

本文将为大家提供公司金融第四版的参考答案,帮助读者更好地掌握这门学科。

第一章:公司金融概述在公司金融的概述部分,主要介绍了公司金融的定义、目标和作用。

参考答案中提到,公司金融是指企业通过资金的筹集和运用,以实现企业目标并最大化股东财富的一门学科。

它对企业的经营决策和财务管理起着重要的指导作用。

第二章:公司金融环境在公司金融环境的部分,参考答案中涉及到了宏观经济环境、市场环境和法律环境对公司金融决策的影响。

它强调了宏观经济环境对企业经营和金融决策的重要性,以及市场环境和法律环境对企业的影响。

第三章:企业投资决策在企业投资决策的部分,参考答案中详细介绍了投资决策的基本原理和方法。

它强调了企业在进行投资决策时需要考虑的因素,如现金流量、风险和回报等,以及投资评价指标的应用。

第四章:资本预算在资本预算的部分,参考答案中提到了资本预算的概念和方法。

它介绍了资本预算的基本步骤,包括项目评估、项目选择和项目实施等,以及资本预算的风险分析和灵敏度分析。

第五章:资本结构与成本在资本结构与成本的部分,参考答案中涉及到了企业的资本结构和成本的决策。

它介绍了资本结构的理论和影响因素,以及资本成本的计算和决策。

第六章:分红政策在分红政策的部分,参考答案中提到了企业的分红政策和决策。

它介绍了不同的分红政策和方法,如现金分红和股票分红,以及分红决策的影响因素。

第七章:公司估值在公司估值的部分,参考答案中详细介绍了公司估值的方法和应用。

它强调了不同的估值方法,如贴现现金流量模型和市场多元回归模型,以及估值的实际应用。

第八章:公司并购与重组在公司并购与重组的部分,参考答案中涉及到了企业的并购与重组决策。

它介绍了并购与重组的类型和目的,以及并购与重组的过程和影响。

金融理论与实务课后习题及答案.

金融理论与实务课后习题及答案.

第一章货币与货币制度一、单选题1.被看做是我国最早的货币的是(B)。

A.兽皮B.贝壳C.畜生D.粮食2.下列属于足值货币的是(C)。

A.纸币B.银行券C.金属货币D.电子货币3.实物货币与金属货币都属于(B)。

A.不定值货币B.商品货币C.信用货币D.电子货币4.迄今为止,货币的主要存在形式是(D)。

A.实物货币B.金属货币C.商品货币D.信用货币5.在电子技术迅速发展的情况下,货币的主要形态呈现为(D)。

A.不兑现信用货币B.存款货币C.银行信用卡D.电子货币6.推动货币形式演变的真正动力是(D)。

A.国家对货币形式的强制要求B.发达国家的引领C.经济学家的设计D.商品的生产、交换的发展对货币产生的需求7.货币作为计价单位,是指用货币计量商品和劳务的(B)。

A.价格B.价值C.单位D.数量8.以货币形式贮藏财富的最大缺点是(D)。

A.收益较高B.风险较高C.使用不方便D.收益较低9.货币作为补充交换的一个独立的环节时发挥的是(C)。

A.计价单位职能B.交易媒介职能C.财富贮藏职能D.支付手段职能10.金属货币制度不包括(B)。

A.金本位制B.不兑现的信用货币制度C.银本位制D.金银复本位制11.布雷顿森林体系确定的国际储备货币是(A)。

A.美元B.日元C.英镑D.人民币12.人民币不规定含金量,是不兑现的(D)。

A.金属货币B.实物货币C.代用货币D.信用货币13.标志着欧洲货币制度正是建立的事件是(B)。

A.美元诞生B.欧元诞生C.欧元盛行D.布雷顿森林体系的建立二、名词解释实物货币:实物货币是指以自然界中存在的某种物品或人们生产的某种商品来充当货币。

足值货币:即作为货币商品的各类实物和金、银、铜等金属的自身商品价值与其作为货币的购买价值相等。

信用货币:是不足值货币,即作为货币商品的实务,其自身的商品价值低于其作为货币的购买价值。

电子货币:指处于电磁信号形态,通过电子网络进行支付的货币。

货币单位:是指当货币作为计价单位为商品和劳务标价时,其自身也需要一个可以比较不同货币数量单位。

金融理论与政策(金融风险与金融危机)习题与答案

金融理论与政策(金融风险与金融危机)习题与答案

一、单选题1、现代金融创新使金融机构表外业务快速发展,由此引发()迅速增加A.流动性风险B.市场风险C.表外风险D.信用风险正确答案:C解析: C、现代金融创新使金融机构表外业务快速发展,由此引发的表外风险迅速增加。

如备用信用证担保形成的或有负债,可能由于借款人违约而成为资产负债表上真实的负债。

表外业务引发的重大损失,有可能导致金融机构破产。

2、()是原有金融稳态被破坏,实体经济衰退,福利损失,短期内难以恢复的状态A.贸易危机B.金融危机C.经济危机D.货币危机正确答案:B解析: B、金融危机是在系统内发生的危机,表现为原有金融稳态被破坏,实体经济衰退,福利损失,短期内难以恢复的状态。

金融风险可能是局部的个体风险,也可能是系统性风险。

3、系统性金融风险传导途径的源头是()A.汇率风险B.信用风险C.市场风险D.利率风险正确答案:D解析: D、金融风险常常在某一类市场首先发生,然后经过感染机制的作用,向其他市场传导,以致形成整个系统的风险。

普遍违约是系统性风险的最终表现,源头是利率风险。

利率风险可能引起资产价格泡沫破裂,转化为资本市场、房地产市场的风险,同时,利率风险会传递到外汇市场,形成汇率风险,汇率波动或形成的市场预期会引起资本跨境流动,冲击国内资产市场;利率变化也可能引发通货膨胀或通货紧缩,同样会传递给汇率。

4、金融机构的基本功能包括经纪人功能和资产转换功能。

履行资产转换功能的机构包括()A.基金公司B.影子银行C.证券公司D.保险公司正确答案:B解析: B、经纪人功能的机构主要是提供全面服务的证券公司、保险公司和基金公司等。

资产转换功能的机构主要有银行、影子银行等机构。

5、在国际业务中,金融机构还面临(),这是由债务人所在国家因外汇短缺而终止支付或限制支付到期债务而带来的损失A.表外风险B.信用风险C.市场风险D.国家或主权风险正确答案:D解析: D、在国际业务中,金融机构还面临国家或主权风险,这是由债务人所在国家因外汇短缺而终止支付或限制支付到期债务而带来的损失。

金融理论与公司政策(第四版)

金融理论与公司政策(第四版)
金融理论与公司政策(第四版)
20xx年中国人民大学出版社出版的图书
01 推荐
03 作者简介
目录
02 内容简介 04 目录
《金融理论与公司政策(第四版)》是2012年08月中国人民大学出版社出版的图书,作者是(美)科普兰。
ห้องสมุดไป่ตู้
推荐
托马斯·E·科普兰、J·弗雷德·韦斯顿、库尔迪普·夏斯特里所著的《金融理论与公司政策(第四版)》一 书将金融理论、经验证据和公司实践融为一体,从一个独特的视角准确阐述了现代金融学的主要内容,向读者展 示了金融学和公司财务学的前沿研究成果和广阔发展前景。该书问世以来,内容不断拓展更新,已出版至第四版, 成为世界公认的金融学经典著作。该书不仅在美国颇受青睐,还被翻译为德语和葡萄牙语等,被亚欧很多高校选 定为金融学博士教育及MBA教育的重要教科书,深受学者及金融实务界人士的欢迎。
谢谢观看
作者简介
托马斯E科普兰(Thomas E. Copeland),现任摩立特集团(Monitor Group)首席公司财务官以及公司理财 部总经理。他在约翰霍普金斯大学取得学士学位,沃顿商学院取得工商管理硕士学位,宾夕法尼亚大学取得应用 经济学博士学位。曾在加利福尼亚大学洛杉矶分校任金融学专职教授,并担任系主任一职。后在纽约麦肯锡公司 担任合伙人及公司理财部负责人。并曾在纽约大学、麻省理工学院及哈佛商学院担任兼职教授。
目录
第一部分金融理论第1章导论:资本市场、消费和投资 A.引言 B.不存在资本市场时的消费和投资 C.存在资 本市场时的消费和投资 D.市场与交易成本 E.交易成本及其分类小结参考文献第2章投资决策:基于确定状况 A. 引言 B.费雪分离定理:投资决策中的个人效用偏好分离 C.代理问题 D.股东财富最大化 E.资本预算法 F.净现 值和内部收益率的比较 G.基于资本预算的现金流 H.放松假设小结参考文献第3章选择理论:不确定状况下的效 用理论 A.不确定状况下的选择五公理 B.且构建效用函数 C.风险规避的定义 D.低风险与高风险下风险规避程度 的比较 E.随机占优 F.决策标准:均值与方差 G.均值一方差悖论 H.近期研究与经验证据小结参考文献第4章选 择目标:均值一方差投资组合理论 A.单项资产风险与收益的度量 B.投资组合风险与收益的度量 C.两项风险资 产(不含无风险资产)构成的有效集 D.一项风险资产和一项无风险资产构成的有效集 E.最优投资组合选择:多项 资产 F.投资组合多元化与单项资产风险小结参考文献第5章市场均衡:资本资产定价模型和套利定价理论 A.引 言 B.市场投资组合的有效性 C.CAPM的推导 D.CAPM的性质 E.运用CAPM估值:不确定状况下的单期模型 F.CAPM 在公司政策中的应用 G.CAPM的扩展 H.CAPM的实证检验 I.市场风险溢价 J.实证市场线 K.评价业绩问题:罗尔 的批评 L.套利定价理论 M.套利定价理论的实证检验小结参考文献第6章或有要求权定价:期权定价理论与证据 A.引言 B.影响欧式期权价格的因素 C.组合期权:图形表示 D.股权即是看涨期权 E.看跌与看涨期权的平价关系 F.看涨期权边界值的占优定理 G.期权定价公式的推导——二项式方法 H.不支付股利的股票看涨期权定价 L.美 式看跌期权定价 J.期权定价模型的扩展 K.期权定价模型的实证分析小结参考文献第7章不确定状况下的多期资 本预算:实物期权分析 A.引言 D.净现值与决策树和实物期权的比较 C.实物期权定价的三个关键假设 D.

金融学第四版课后答案

金融学第四版课后答案

金融学第四版课后答案篇一:金融市场学高教社第四版课后参考答案】lass=txt> 习题二1. b 、e 、f2. 略3. 同传统的定期存款相比,大额可转让定期存单具有以下几点不同:(1)定期存款记名、不可转让;大额可转让定期存单是不记名的、可以流通转让的。

(2)定期存款金额不固定,可大可小;大额可转让定期存单金额较大。

(3)定期存款;利率固定;大额可转让定期存单利率有固定的也有浮动的,且一般高于定期存款利率。

(4)定期存款可以提前支取,但要损失一部分利息;大额可转让定期存单不能提前支取,但可在二级市场流通转让。

4. 回购利息=1,001,556 -1,000,000=1,556rmb 设回购利率为x, 则:解得:x=8% 回购协议利率的确定取决于多种因素,这些因素主要有:(1)用于回购的证券的质地。

证券的信用度越高,流动性越强,回购利率就越低,否则,利率相对来说就会高一些。

(2)回购期限的长短。

一般来说,期限越长,由于不确定因素越多,因而利率也应高一些。

但这并不是一定的,实际上利率是可以随时调整的。

(3)交割的条件。

如果采用实物交割的方式,回购利率就会较低,如果采用其他交割方式,则利率就会相对高一些。

(4)货币市场其他子市场的利率水平。

它一般是参照同业拆借市场利率而确定的。

真实年收益率为:[1+ (100-98.01 )/98.01]365/316 -1=2.35%6. 平均收益率=2.91%*35%+3.2%*25%+3.85%*15%+3%*12.5%+2.78%*12.5%=3 .12% 习题三答案1. (1)从理论上说,可能的损失是无限的,损失的金额随着x 股票价格的上升而增加。

(2)当股价上升超过22 元时,停止损失买进委托就会变成市价买进委托,因此最大损失就是 2 000 元左右。

2. (1)该委托将按最有利的限价卖出委托价格,即40.25 美元成交。

(2)下一个市价买进委托将按41.50 美元成交。

《金融理论与公司政策(第四版)》课后答案

《金融理论与公司政策(第四版)》课后答案

= .18 d2 = .18 – ( .0961) (.6538) = –.02 Substituting these values into the Black-Scholes Formula, C = 44.375N(.18) – 45e N(–.02)
–.03
Using the Table of Normal Areas, we can determine N(.18) and N(–.02). Substituting these values into the formula yields C = 44.375(.5714) – 45(.9704)(.4920) = 25.3559 – 21.4847 = $3.87 5. Compare the payoffs at maturity of two portfolios. The first is a European put option with exercise price X1, and the second is a European put option written on the same stock, with the same time to maturity, but with exercise price X2 < X1. The payoffs are given in Table S7.1. Because portfolio A has a value either greater than or equal to the value of portfolio B in every possible state of nature, the put with a higher exercise price is more valuable. P(S, T, X1) > P(S, T, X2) Table S7.1 Portfolio a) P(S, T, X1) b) P(S, T, X2) Comparative Value of A and B S < X2 X1 – S X2 – S VA > VB if X2 < X1. X1 ≤ S 0 0 VA = VB

金融理论与公司政策

金融理论与公司政策

资本市场、消费和投资第一章主要介绍个体及其代理人如何在多个时期、收益不确定的多种可能的选择中做出决策。

人们可以将利率视为推迟消费的价格或是投资的回报率,每个人都有不同的主观利率,从而也就有不同的消费/投资决策。

如何证明资本市场是否有益于社会?我们需要对有无资本市场的社会进行比较,并说明:在存在资本市场的社会中,没有一个人的处境会恶化,并且至少有一个人的状况将得到改善。

区分边际效应为正与边际效应递减。

当不怎么理解图像的时候,我们可以从函数的角度来理解图像。

MRS(marginal rate of substitution)边际替代率。

为保持相同的总效用,放弃当前一个单位的消费量必须要多少单位额外的未来消费量来补偿。

(此一般为主观的)MRT(marginal rate of transformation)生产的边际转换率。

(此一般为客观的)时间偏好:人们对现在的满意程度与对将来的满意程度的比值。

消费集之间的跨期交换可以用借贷机会来加以说明。

金融市场可以使资金得以在贷款人和借款人之间相互转移。

在图1.7的A点,个人的主观时间偏好的斜率明显低于资本市场线的斜率。

此时,我们愿意将资金贷出,因为资本市场报酬率高于我们心目中所要求的报酬率(即时间偏好率)。

沿着资本市场线移动不会改变个人财富,但它的确可以提供获得更高效用的消费模式。

在具有生产机会和资本市场交换机会的情况系下,决策过程包括以下两个独立且互异的步骤:选择最优的生产决策进行投资,直到其边际报酬率等于客观市场利率;利用资本市场线进行借款或贷款,从而选择最优的消费模式,使主观时间偏好率等于市场报酬率。

投资决策(步骤1)和消费决策(步骤2)可分离的理论就是著名的费雪分离定理。

费雪分离定律:给定完善的资本市场,生产决策由客观的市场标准(表述为可获得财富的最大化)唯一决定,而与影响个人消费决策的个人主观偏好无关。

投资者1和投资者2,在没有资本市场的情况下,他们分别在Y处、X处进行生产,但如果有资本市场,则此时它们会选择在D点进行生产,很明显D处的效用均大于x和y 处的效用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E(r) = ∑piri = .009 Range = rmax – rmin = .38 – (–1.0) = 1.38 Semi-interquartile range = 1/2(r.75 – r.25) = 1/2(.10 – (–.16)) = 0.13 The expected return and semi-interquartile range are the same, because future possible prices are drawn from the same probability distribution as in part a). Only n, the number of observations, has increased. The range increases with n. Semi-variance is given by E[(x i − − E(x)) 2 ] where xi − = xi if x i < E(x); x i + = 0 if x i ≥ E(x)
Chapter 5
Objects of Choice: Mean-Variance Portfolio Theory
45
cov(x, y) = cov(x, a – bx) = E[(x – E(x)) (a – bx – E(a – bx))] = E[x(a – bx) – xE(a – bx) – E(x) (a – bx) + E(x)E(a– bx)] = E[ax – bx2 – ax – x(–b) E(x) – E(x)a – (–b)xE(x) + aE(x) – b(E(x))2] = E[(–b)(x2 – 2xE(x) + (E(x))2] = –b E(x – E(x))2 = –b var(x) Substitution into the correlation equation yields rxy = cov(x, y) − b var(x) = = −1 σx σy b var(x)
requires the calculation of var(x), var(y), and cov(x, y). Given y = a – bx, var(y) = var(a – bx) = E{[a – bx – E(a – bx)]2} = E{[a – bx – a – E(–bx)]2} = E{[–bx + bE(x)]2} = (–b)2E{[x – E(x)]2} = b2 var(x) Therefore, because the standard deviation must be positive σ y = bσ x and σ x σ y = bσ x 2
48
Copeland/Shastri/Weston. • Financial Theory and Corporate Policy, Fourth Edition
(b) The covariance is 24 −10 25 1.25 cov = [.1 .8 .1] −10 75 32 −.10 25 32 12 −.15 27.25 cov = [.1 .8 .1] −24.80 26.25 cov = [.1(27.25) – .8(24.80) + .1(26.25)] = –14.49 7. (a) pi .2 .2 .2 .2 .2 Xi 18 5 12 4 6 piXi 3.6 1.0 2.4 .8 1.2 E(X) = 9.0 Yi – E(Y) –5 –8 10 7 –4 [Yi – E(Y)] 25 64 100 49 16
Thus, x and y are perfectly negatively correlated. 3. (a) Table S5.1 Prob. .15 .10 .30 .20 .25 ri –.30 –.16 0 .10 .20 piri –.045 –.016 0 .020 .050 ∑ = .009 where
var(X) = 28.0 pi[Yi – E(Y)] 5.0 12.8 20.0 9.8 3.2 var(Y) = 50.8
2
pi[Xi – E(X)][Yi – E(Y)] –9.0 6.4 6.0 –7.0 2.4 cov(X, Y) = –1.2
(b) Mean = aE(X) + (1 – a)E(Y)
2 2 Variance = a 2 σ2 x + 2ab cov(X, Y) + (1 − a) σ y
% in X 125 100 75 50 25 0 –25
% in Y –25 0 25 50 75 100 125
E(Rp) 10.0 9.0 8.0 7.0 6.0 5.0 4.0
var(Rp) 47.675 28.000 18.475 19.100 29.875 50.800 81.875
r = P1 − P0 , P0 P0 = 50
pi(ri – E(r)) .014 .003 .000 .002 .009 ∑ = .028
2
E(r) = Var(r) =
∑p r
i
i i
= .009
i
∑ p (r
- E(r))2 = .028
Range (r) = rmax – rmin = .20 – (–.30) = .50 Semi-interquartile range = 1/2(r.75 – r.25) = 1/2(.10 – (–.16)) = .13
2 var = σ2 x − 2 cov(x, x) + σ x 2 2 σ2 x − 2σ x + σ x = 0
and the position is perfectly risk free. 6. Using matrix notation, the variance is V = X' Σ X where V = variance X = vector of weights X’ = transpose of the vector of weights Σ = the variance-covariance matrix (a) Therefore, the variance of an equally weighted portfolio is 24 −10 25 1/ 3 V = [1/ 3 1/ 3 1/ 3] −10 75 32 1/ 3 25 32 12 1/ 3 − 10 / 3 + 25/ 3 8 V = [1/ 3 1/ 3 1/ 3] −10 / 3 + 25 + 32 / 3 25/ 3 + 32 / 3 + 4 13 V = [1/ 3 1/ 3 1/ 3] 321/ 3 23 V = 13 321/ 3 23 + + = 22.78 3 3 3
Chapter 5
Objects of Choice: Mean-Variance Portfolio Theory
1.
Figure S5.1 Skewed distribution of stock prices The reason stock prices are skewed right is because theoretically there is no upper bound to the price level a stock can attain, while, with limited liability, the probability distribution is bounded on the left by P = 0. 2. The equation for correlation between x and y, rx,y = cov(x, y) σx σy
2 2 var = a 2 σ2 x + 2ab cov(x, x) + b σ x
The long position means 100% in X and the short position means –100% in X. Therefore, a=1 b = –1 Therefore, the variance is
In the example above, semi-variance = ∑ pi (ri− − E(r))2 = 0.023 . Semi-variance is important to risk-averse investors who are more concerned with downside risk (losses) than gains. 4. First, recall the definition of covariance. cov(x, y) = E[(x – E(x))(y – E(y))] Multiplying the factors in brackets on the right-hand side, we have cov(x, y) = E[(xy – xE(y) – yE(x) + E(x)E(y)] and taking the expectation of the right-hand side we have cov(x, y) = E(xy) – E(x)E(y) – E(y)E(x) + E(x)E(y) cov(x, y) = E(xy) – E(x)E(y) Therefore, E(xy) = cov(x, y) + E(x)E(y)
Chapter 5
Objects of Choice: Mean-Variance Portfolio Theory
47
5. Let σ2 x be the variance of the stock. The variance of a perfectly hedged portfolio is
相关文档
最新文档