高中数学选修21空间向量与立体几何知识点讲义
新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

第三章 空间向量与立体几何单元小结[核心速填]1.空间向量的有关定理和推论(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共线向量定理的推论:若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →,且λ+μ=1.(3)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在惟一的有序实数对(x ,y ),使得p =x a +y b .(4)共面向量定理的推论:已知空间任意一点O 和不共线的三点A ,B ,C ,则P ,A ,B ,C 四点共面的充要条件是OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(5)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底.2.空间向量运算的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3.(2)重要结论:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.3.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则①|a |=a ·a②cos 〈a ,b 〉=a ·b |a ||b |=(2)设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|4.空间向量的结论与线面位置关系的对应关系(1)设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2), 则l ∥α⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔u ∥v ⇔u =k v ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)⇔a 1=ka 2,b 1=kb 2,c 1=kc 2(k ∈R ).(2)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ;α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 5.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小:(ⅰ)如图31①,AB ,CD 是二面角αl β的两个半平面α,β内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.图31(ⅱ)如图31②③,n 1,n 2分别是二面角αl β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.[体系构建][题型探究]类型一、空间向量的基本概念及运算例1、如图32,在四棱锥S ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2.给出以下结论:图32①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的序号是________. 【答案】 ③④【解析】容易推出SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2·2·cos∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确,其余三个都不正确,故正确结论的序号是③④.[规律方法] 1.空间向量的线性运算包括加、减及数乘运算,选定空间不共面的三个向量作为基向量,并用它们表示出目标向量,这是用向量法解决立体几何问题的基本要求,解题时可结合已知和所求,根据图形,利用向量运算法则表示所需向量.2.空间向量的数量积(1)空间向量的数量积的定义表达式a ·b =|a |·|b |·cos 〈a ,b 〉及其变式cos 〈a ,b 〉=a ·b|a | ·|b |是两个重要公式. (2)空间向量的数量积的其他变式是解决立体几何问题的重要公式,如a 2=|a |2,a 在b 上的投影a ·b|b |=|a |·cos θ等.[跟踪训练]1.如图33,已知ABCD A ′B ′C ′D ′是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD→+γAA ′→,则α+β+γ=________.图33【答案】32[连接BD ,则M 为BD 的中点,MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→)=12(-AD →+AB →)+34(AD →+AA ′→)=12AB →+14AD →+34AA ′→.∴α=12,β=14,γ=34.∴α+β+γ=32.]类型二、空间向量的坐标运算例2、(1)已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x =( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)(2)已知向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),a ∥b ,b ⊥C . ①求向量a ,b ,c ;②求a +c 与b +c 所成角的余弦值.【答案】(1)B [由b =12x -2a 得x =4a +2b ,又4a +2b =4(2,3,-4)+2(-4,-3,-2)=(0,6,-20), 所以x =(0,6,-20).](2)①∵向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),且a ∥b ,b ⊥c ,∴⎩⎪⎨⎪⎧x 1=1y =2-23+y -2z =0,解得⎩⎪⎨⎪⎧x =-1,y =-1,z =1,∴向量a =(-1,1,2),b =(1,-1,-2),c =(3,1,1). ②∵a +c =(2,2,3),b +c =(4,0,-1), ∴(a +c )·(b +c )=2×4+2×0+3×(-1)=5,|a +c |=22+22+32=17,|b +c |=42+02+(-1)2=17, ∴a +c 与b +c 所成角的余弦值为(a +c )·(b +c )|a +c ||b +c |=517.[规律方法] 熟记空间向量的坐标运算公式 设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2), (1)加减运算:a ±b =(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积运算:a ·b =x 1x 2+y 1y 2+z 1z 2. (3)向量夹角:cos 〈a ,b 〉=x 1x 2+y 1y 2+z 1z 2x 21+y 21+z 21x 22+y 22+z 22. (4)向量长度:设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则|M 1M 2→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. 提醒:在利用坐标运算公式时注意先对向量式子进行化简再运算. [跟踪训练]2.在空间直角坐标系中,已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C [∵AB →=(3,4,-8),AC →=(5,1,-7),BC →=(2,-3,1),∴|AB →|=32+42+(-8)2=89,|AC →|=52+12+(-7)2=75,|BC →|=22+(-3)2+1=14,∴|AC →|2+|BC →|2=|AB →|2,∴△ABC 一定为直角三角形.]类型三、利用空间向量证明平行、垂直问题例3、 在四棱锥P ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)平面PAD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定N 的位置;若不存在,说明理由.[思路探究] (1)证明向量BM →垂直于平面PAD 的一个法向量即可;(2)假设存在点N ,设出其坐标,利用MN →⊥BD →,MN →⊥PB →,列方程求其坐标即可. 【答案】以A 为原点,以AB ,AD ,AP 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,则B (1,0,0),D (0,2,0),P (0,0,2),C (2,2,0),M (1,1,1),(1)证明:∵BM →=(0,1,1),平面PAD 的一个法向量为n =(1,0,0), ∴BM →·n =0,即BM →⊥n ,又BM ⊄平面PAD ,∴BM ∥平面PAD . (2)BD →=(-1,2,0),PB →=(1,0,-2), 假设平面PAD 内存在一点N ,使MN ⊥平面PBD . 设N (0,y ,z ),则MN →=(-1,y -1,z -1), 从而MN ⊥BD ,MN ⊥PB , ∴⎩⎪⎨⎪⎧MN →·BD →=0,MN →·PB →=0,即⎩⎪⎨⎪⎧1+2(y -1)=0,-1-2(z -1)=0,∴⎩⎪⎨⎪⎧y =12,z =12,∴N ⎝ ⎛⎭⎪⎫0,12,12,∴在平面PAD 内存在一点N ⎝ ⎛⎭⎪⎫0,12,12,使MN ⊥平面PBD .[规律方法]利用空间向量证明空间中的位置关系(1)线线平行:证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直:证明两条直线垂直,只需证明两直线的方向向量垂直. (3)线面平行:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线的方向向量是共线向量;③利用共面向量定理,即证明直线的方向向量可用平面内两不共线向量线性表示.(4)线面垂直:①证明直线的方向向量与平面的法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行:①证明两个平面的法向量平行(即是共线向量);②转化为线面平行、线线平行问题.(6)面面垂直:①证明两个平面的法向量互相垂直;②转化为线面垂直、线线垂直问题.[跟踪训练]3.如图34,长方体ABCDA1B1C1D1中,点M,N分别在BB1,DD1上,且AM⊥A1B,AN⊥A1D.图34(1)求证:A1C⊥平面AMN.(2)当AB=2,AD=2,A1A=3时,问在线段AA1上是否存在一点P使得C1P∥平面AMN,若存在,试确定P的位置.【答案】(1)证明:因为CB⊥平面AA1B1B,AM⊂平面AA1B1B,所以CB⊥AM,又因为AM⊥A1B,A1B∩CB=B,所以AM⊥平面A1BC,所以A1C⊥AM,同理可证A1C⊥AN,又AM∩AN=A,所以A1C⊥平面AMN.(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立空间直角坐标系,因为AB =2,AD =2,A 1A =3,所以C (0,0,0),A 1(2,2,3),C 1(0,0,3),CA 1→=(2,2,3), 由(1)知CA 1⊥平面AMN ,故平面AMN 的一个法向量为CA 1→=(2,2,3).设线段AA 1上存在一点P (2,2,t ),使得C 1P ∥平面AMN ,则C 1P →=(2,2,t -3), 因为C 1P ∥平面AMN ,所以C 1P →·CA 1→=4+4+3t -9=0, 解得t =13.所以P ⎝⎛⎭⎪⎫2,2,13, 所以线段AA 1上存在一点P ⎝ ⎛⎭⎪⎫2,2,13,使得C 1P ∥平面AMN .类型四、利用空间向量求空间角例4、如图35,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′BCDE ,其中A ′O = 3.(1) (2)图35(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′CD B 的平面角的余弦值.[思路探究] (1)利用勾股定理可证A ′O ⊥OD ,A ′O ⊥OE ,从而证得A ′O ⊥平面BCDE ;(2)用“三垂线”法作二面角的平面角后求解或用向量法求两个平面的法向量的夹角.【答案】(1)证明:由题意,得OC =3,AC =32,AD =2 2. 如图,连接OD ,OE ,在△OCD 中,由余弦定理,得OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性,知A ′D =22,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE .(2)如图,过点O 作OH ⊥CD 交CD 的延长线于点H ,连接A ′H .因为A ′O ⊥平面BCDE ,OH ⊥CD , 所以A ′H ⊥CD .所以∠A ′HO 为二面角A ′CD B 的平面角. 结合图(1)可知,H 为AC 的中点,故OH =322,从而A ′H =OH 2+A ′O 2=302. 所以cos ∠A ′HO =OH A ′H =155. 所以二面角A ′CD B 的平面角的余弦值为155. [规律方法] 用向量法求空间角的注意点(1)异面直线所成角:两异面直线所成角的范围为0°<θ≤90°,需找到两异面直线的方向向量,借助方向向量所成角求解.(2)直线与平面所成的角:要求直线a 与平面α所成的角θ,先求这个平面α的法向量n 与直线a 的方向向量a 夹角的余弦cos 〈n ,a 〉,易知θ=〈n ,a 〉-π2或者π2-〈n ,a 〉.(3)二面角:如图36,有两个平面α与β,分别作这两个平面的法向量n 1与n 2,则平面α与β所成的角跟法向量n 1与n 2所成的角相等或互补,所以首先应判断二面角是锐角还是钝角.图36[跟踪训练]4.在如图37所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB是圆台的一条母线.图37(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC . (2)已知EF =FB =12AC =23,AB =BC ,求二面角F BC A 的余弦值.【答案】 (1)证明:设CF 的中点为I ,连接GI ,HI .在△CEF 中,因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H ,I 分别是FB ,CF 的中点, 所以HI ∥BC .又HI ∩GI =I ,BC ∩OB =B , 所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系. 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).11 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0可得⎩⎨⎧ -23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33.因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n|m |·|n |=77,所以二面角F BC A 的余弦值为77.。
高中数学第三章空间向量与立体几何1空间向量及其运算5空间向量运算的坐标表示3课件新人教A版选修2

变式训练
已知 a=(1,2,12),b=(12,-12,1),c=(-2,3, -12),d=(1,-32,14).
求证:a⊥b,c∥d.
证明: ∵ a= (1,2,12), b= (12,-12,1), ∴a·b=1×12+2×(-12)+12×1=0. ∴ a⊥ b. ∵ c= (- 2,3,-12), d= (1,-32,14), ∴ c=- 2(1,-32,14)=- 2d. ∴ c∥ d.
(1)求证:EF⊥CF; (2)求E→F与C→G所成角的余弦值; (3)求 CE 的长. [分析] 可建立空间直角坐标系,利用向量的坐 标形式解题.
[解] 建立如图 3 所示的空间直角坐标系 D-xyz, 则 D(0,0,0),E(0,0,12),C(0,1,0), F(12,12,0),G(1,1,12).
[解] (1)如图 1,以 D 为原点,DA,DC,DD1 所在的直线为 x,y,z 轴建立空间直角坐标系,设 AA1=a,
则 B(4,4,0),N(2,2,a), A(4,0,0),M(2,4,a2),
图1
∴B→N= (- 2,- 2, a), A→M= (- 2, 4,a),
2 由B→N⊥A→M得B→N·A→M = 0, ∴4-8+a2=0,a=2 2,
b32.
2.空间中向量的坐标及两点间的距离公式 在空间直角坐标系中,设 A(a1,a2,a3),B(b1, b2, b3),则: (1)A→B= (b1- a1, b2- a2, b3- a3); (2)AB= |A→B|=
b1- a1 2+ b2- a2 2+ b3- a3 2.
如何理解空间向量的坐标运算与平面向量的坐 标运算间的关系?
|E→F|= |C→G|=
(人教版)高中数学选修2-1课件:第3章空间向量与立体几何3.1.1

①(A→B+B→C)+C→C1=A→C+C→C1=A→C1; ②(A→A1+A→1D1)+D→1C1=A→D1+D→1C1=A→C1; ③(A→B+B→B1)+B→1C1=A→B1+B→1C1=A→C1; ④(A→A1+A→1B1)+B→1C1=A→B1+B→1C1=A→C1. 所以 4 个式子的运算结果都是A→C1. 答案: 4
• (3)注意零向量的书写,必须是0这种情势. • (4)两个向量不能比较大小.
空间向量的加减法与运算律
空间向 量的加 减法
类似平面向量,定义空间向量的加、减法运算 (如图):
O→B =O→A +A→B =_a_+__b___; C→A =O→A -O→C =_a_-__b___
加法运 (1)交换律:a+b=b+a;
◎在长方体 ABCD-A1B1C1D1 中,化简D→A-D→B+B→1C-
B→1B+A→1B1-A→1B. 【错解】 D→A-D→B+B→1C-B→1B+A→1B1-A→1B
=A→B+C→B+B→1B=D→C+D→A+B→1B=D→B+D→1D=D→1B.
【错因】 对向量减法的三角形法则理解、记忆错误,
中,老师从学校大门口回到住地方产生的总位 移就是三个位移的合成(如右图所示),它们是
不在同一平面内的位移,如何刻画这样的位移 呢?
• [问题1] • [提示1] • [问题2] 吗?
• [提示2]
老师的位移是空间向量吗? 是. 空间向量的加法与平面向量类似
类似.
空间向量
定义
长度 几何表 示法
在空间,把具有大___小__和_方__向__的量叫做空间向量 向量的_大__小__叫做向量的长度或_模__
6分
(3)在线段 CC1 上取中点 M,则有C→M=12C→C1, 则有:A→B+A→D+12C→C1=A→B+B→C+C→M=A→M. 9 分 (4)由(2)知13(A→B+A→D+A→A1)=13A→C1,在线段 AC1 上取点 G,使得 AG=13AC1,即:13(A→B+A→D+A→A1)=A→G. 12 分
【优教通,同步备课】高中数学(北师大版)选修2-1课件:第2章 空间向量与立体几何 复习课件

A1 A2 A2 A3 A3 A4 An A1 0
D1 A1 G D A B C B1
C1
M
始点相同的三个 不共面向量之和,等 于以这三个向量为棱 的平行六面体的以公 共始点为始点的对角 线所示向量
二.共线向量定理与共面向量定理
(一)、共线向量: 1.共线向量:空间两向量互相平行
向量a与b的夹角记作:<a,b>
a b
O
A
a
B
b
范围: 0 a, b 在这个规定下,两个向 量的夹角就
如果 a, b
被唯一确定了,并且 a, b=b, a
2
, 则称 a与b互相垂直,并记作: ab
2)两个向量的数量积
a b a b cos a, b
(三)、有关结论 设直线l,m的方向向量分别为a,b,平面α,β 的法向量分别为u,v,则 线线平行:l∥m a ∥b a=kb; u=0; a⊥u a· 面面平行:α∥β u ∥v u=kv. 线线垂直:l ⊥ m a ⊥ b a· b=0; 线面垂直:l ⊥ α a ∥ u a=ku; 面面垂直:α ⊥ β u ⊥ v u· v=0. 线面平行:l ∥α
n1 FC1 ,又FC1
FC1 //
平面ADE,
平面ADE
(2) n1 // n2
∴平面ADE//平面B1C1F 2、已知向量 a 1,2,2 则 a 上的单位向量为:
2 2 2 1 1 2 , 或 , , , 3 3 3 3 3 3
sin cos AB,n
AB n AB n
题型三:二面角
二面角的范围:
高中数学第二章空间向量与立体几何1从平面向量到空间向量ppt课件

→ —→ (2)〈AB,C1A1〉; 解答 〈A→B,C—1→A1〉=π-〈A→B,A—1→C1〉=π-π4=34π.
→ —→ (3)〈AB,A1D1〉.
解答
〈A→B,A—1→D1〉=〈A→B,A→D〉=π2.
引申探求 →→
在本例中,求〈AB1,DA1〉. 解答
如图,衔接B1C,那么B1C∥A1D, →→
梳理
间向量的夹角
(1)文字表达:a,b是空间中两个非零向量,过空间恣意一点O,作
→ OA
=a,O→B=b,那么∠AOB 叫作向量a与向量b的夹角,记作〈a,b〉 .
(2)图形表示:
角度
表示
〈a,b〉=__0_
〈a,b〉是_锐__角__
〈a,b〉是_直__角__ 〈a,b〉是_钝__角__〈a,b〉 Nhomakorabea_π__
第二章 空间向量与立体几何
§1 从平面向量到空间向量
学习目的 1.了解空间向量的概念. 2.了解空间向量的表示法,了解自在向量的概 念. 3.了解空间向量的夹角. 4.了解直线的方向向量与平面的法向量的概念.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 空间向量的概念
思索1
类比平面向量的概念,给出空间向量的概念. 答案 在空间中,把具有大小和方向的量叫作空间向量.
答案 解析
研讨长方体的模型可知,一切顶点两两相连得到的线段中,长度为1 的线段只需4条,故模为1的向量有8个.
12345
5.在直三棱柱ABC-A1B1C1中,以下向量可以作为平面ABC法向量的 是②__③____.(填序号)答案
No Image
12345
规律与方法
在空间中,一个向量成为某直线的方向向量的条件包含两个方面:一是 该向量为非零向量;二是该向量与直线平行或重合.二者缺一不可. 给定空间中恣意一点A和非零向量a,就可以确定独一一条过点A且平行 于向量a的直线.
高中数学空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
高二数学(人教A版)选修2-1课件第三章 空间向量与立体几何

(5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题.
6.运用空间向量求空间角 (1)求两异面直线所成角 a· b 利用公式 cos〈a,b〉= , |a|· |b| 但务必注意两异面直线所成角 θ
(3)求二面角 用向量法求二面角也有两种方法: 一种方法是利用平面角 的定义, 在两个面内先求出与棱垂直的两条直线对应的方向向 量, 然后求出这两个方向向量的夹角, 由此可求出二面角的大 小;另一种方法是转化为求二面角的两个面的法向量的夹角, 它与二面角的大小相等或互补.
7.运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、 点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度, 因此也就是 这两点对应向量的模.
二、利用空间向量求空间角 (1)求两异面直线所成的角 设 a,b 分别是异面直线 l1,l2 上的方向向量,θ 为 l1,l2 |a· b| 所成的角,则 cosθ=|cos〈a,b〉|=|a||b|. (2)求直线与平面所成的角 设 l 为平面 α 的斜线,a 为直线的方向向量,n 为平面 α 的法向量,θ 为 l 与 α 所成的角,则 sinθ=|cos〈a,n〉|= |a· n| . |a||n|
成才之路· 数学
人教A版 ·选修2-1
路漫漫其修远兮 吾将上下而求索
第三章
空间向量与立体几何
第三章
章末归纳总结
知识梳理
1.空间向量的概念及其运算与平面向量类似,向量加、 减法的平行四边形法则, 三角形法则以及相关的运算律仍然成 立.空间向量的数量积运算、共线向量定理、共面向量定理都 是平面向量在空间中的推广, 空间向量基本定理则是向量由二 维到三维的推广.
【精品】高二数学选修2-1空间向量与立体几何知识点及例题精讲

2018-2019学年高二数学选修2-1空间向量与立体几何知识点及例题精讲一、知识点总结1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b=+=+;BA OA OB a b=-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作ba //。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ= <=>)1(=++=y x y x 其中 (4)与a共线的单位向量为±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p,存在一个唯一的有序实数组,,x y z ,使p x a y b z =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
【尚择优选】最新高中数学选修2-1《空间向量与立体几何》知识点讲义.doc

第三章空间向量与立体几何一、坐标运算()()111222,,,,,a x y z b x y z ==()()()()121212121212111121212,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=⋅=⋅⋅⋅则 二、共线向量定理(),0,=.a b b a b a b λλ≠←−−→∃充要对于使 三、共面向量定理,,.a b p a b x y p xa yb ←−−→∃=+充要若与不共线,则与共面使,,, 1.O OP xOA yOB P A B x y =+←−−−→+=充要条件四、对空间任意一点,若则三点共线,1.P A B C O OP xOA yOB zOC P A B C x y z =++←−−→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点()()()11,1.P A B C AP x AB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性、、、四点共面,,,,令()()()1,1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理{},,a b c p x y z p xa yb zc a b c a b c ∃若,,不共面,对于任意,使=++,称,,做空间的一个基底,,,都叫做基向量.七、立体几何中的向量方法121212,,.n n l l v v αβ设平面和的法向量为和直线和的方向向量为 11121111121212121212n v l l l n v l l l v v l l v v n n n n αααβαβ⊥⇒⊂⇒⊥⇒⊥⇒⊥⇔⊥⇔⊥①或②若③④⑤⑥八、角、距离()1θ异面直线的夹角,cos cos ,AB CDAB CD AB CDθ⋅==⋅则 ()2,θ线与面的夹角sin cos a na nθα⋅==⋅则()3,θ二面角 1212cos cos n n n n θα⋅==⋅则 θ说明:只能由已知图观察锐钝. ()4,d 点到平面的距离cos PA n d PA n θ⋅=⋅=则cos cos d PA n PA n PA nd PA nθθ⋅=⋅⋅⋅∴=⋅=说明:由图可知为在方向上的投影的绝对值,。
(人教)高中数学选修2-1课件:第3章空间向量与立体几何3.1.3

•3.1空间向量及其运算•3.1.3空间向量的数量积运算自主学习新知突破目标导航•1.掌握空间向量的数量积的概念、有关简单性质以及数量积运算的运算律.•2.能运用向量的数量积,判断向量的共线与垂直,并用于证明两直线平行与垂直.入门答疑•为了帮助地震灾区重建家园,某施工队需要移动一个大型均匀的正三角形面的钢筋混凝土构件,已知它的质量为5 000 kg,在它的顶点处分别受大小相同的力件,F2,耳并且每两个力之间的夹角都是60°.(其中g=10N/kg)•[问题1]向量“和一巧夹角为多少?•[提示1]120°.•[问题2]每个力最小为多少时,才能提起这+41汩宦丄土皿片o块混凝土构件?[提示2]每个力大小为IFol,合力为IFI, .•.IFI2=(F1+F2+F3)-(F1+F2+F3)=(F1+F2+F3)2=6IF O I2・•・ \F\=y[6\F0\走进教材空间向量的夹角互相垂直日丄b•如果〈°,方〉=,那么向量a, b ___________ 记作❹思维启迪〕对空间向量夹角的认识⑴通常规定OW〈a, b) W TT,这样两个向量的夹角是唯一确定的,且〈a, b) = {b, a}.(2)作向量。
与〃的夹角时,必须使力,亦为同起点的向量,例如:在正四面体ABCD中,<AB, AC) =60°,而〈赢BC) =120°.空间向量的数量积❶思维启迪〕•对空间向量的数量积的理解-(1)数量积是数量(数值),可以为正,可以为负,也可以为零;•(2>力二Ooa丄〃(a , 〃为非零向量);•(3)向量a , 〃的夹角(a f b)与点的坐标(a z 6不同;•(4)a力的几何意义:a与方的数量积等于a的长度⑷与〃在a的方向上的投影血cos 0的乘积・自主练习1.下列各命题中,不正确的命题的个数为(②加(加)•方=(mX)a・b(m,久W R);③a・(b+c) = e+c)・a;®(Tb—lra.A・4 B・3C・2D・1•解析:•答案:命题①②③正确/④不正确•2・在如图所示的正方体中,下列各对向量的夹角为135°的是()A.历与dZB.石与cFC.布与4彷D.旋与B G解析:<AB, A f C f ) = {AB, AC) =45°,〉=180°- <AB, AC) =135°,〈赢4'力〉=〈赢AD) =90°,〈赢B f~A f〉= 180°・答案:B7T 7T3.设a丄b,〈a, c} =y {b, c) =g,且lal=l, I方1=2, lcl = 3,则向量a+b+c的模是 __________________ .解析:因为la+b+cF = (a+b+c)2= \a\2-\-\b\2~\~\c\2-\-2(a-b~\~a-c-\~b-c)( 1 、问)= l+4+9 + 2^0+lX3X-+2X3X^j= 17 + 6^3, 所以la+b+cl =寸17+6寸§.答案:寸17+6帝• 4・如图所示,平行六面^ABCD-A i B i C i D i 中,AB=l, AD=2, AA] = 3, ABAD—90° ,/BAA]=z£>AAi=60° ,求AC】的长.解析:因^AC X=AB+M)+AA X,所以AC\=(^+AD+AA^=葫+必+荷+2(ikib+葫萬+巫彼). 因为ZBAD=90°, ZBAAi = ZDAAi = 60。
高二数学人教版A版选修2-1课件:第三章 空间向量与立体几何 3.1.3

解析答
― → ― → ― → (2)| OA + OB + OC |.
解 = =
― → ― → ― → | OA + OB + OC | →+― →+― →2 ― OA OB OC →2 ― →2 ― →2 ― →― → ― →― → ― →― → OA + OB + OC +2 OA · OB + OB · OC + OA · OC
= 12+12+12+21×1×cos 60° ×3= 6.
解析答
类型二
例2
利用数量积求夹角
BB1⊥平面ABC,且△ABC是∠B=90°的等腰直角三角形,▱ABB1A1、▱BB1C1C的对角线都分
别相互垂直且相等,若AB=a,求异面直线BA1与AC所成的角.
反思与
解析答
跟踪训练2
且l⊥OA.
其中正确的有(
A.①② C.③④
)
D B.②③ D.②④
解析 结合向量的数量积运算律,只有②④正确.
解析答
1
2 3 4 5
― → ― → ― → 2.已知正方体 ABCD-A′B′C′D′的棱长为 a,设 AB =a,AD =b, AA′ ― ― → ― ― ― → =c,则〈A′B, B′D ′〉等于( A.30° C.90° B.60°
当堂训练
问题导学 知识点一 空间向量数量积的概念
思考
如图所示,在空间四边形 OABC 中,OA=8,
AB=6,AC=4,BC=5,∠OAC=45° ,∠OAB=60° , ― → ― → 类比平面向量有关运算,如何求向量 OA 与 BC 的数量 积?并总结求两个向量数量积的方法.
梳理
(1)定义:已知两个非零向量a,b,则|a||b|cos〈a,b〉叫做a,b的数量积,记作a·b.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 空间向量与立体几何
一、坐标运算
()()111222,,,,,a x y z b x y z ==
()
()
()
()121212121212111121212,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=⋅=⋅⋅⋅则
二、共线向量定理
(),0,=.a b b a b a b λλ≠←−−→∃充要对于使
三、共面向量定理
,,.a b p a b x y p xa yb ←−−→∃=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←−−−→+=充要条件四、对空间任意一点,若则三点共线
,1.P A B C O OP xOA yOB zOC P A B C x y z =++←−−→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点
()()()11,
1.
P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性
、、、四点共面,
,,,
令()()() 1,
1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理
{}
,,a b c p x y z p xa yb zc a b c a b c ∃若,,不共面,对于任意,使=++,称,,做空间的一个基底,,
,都叫做基向量.
七、立体几何中的向量方法
121212,,.n n l l v v αβ设平面和的法向量为和直线和的方向向量为
111211111212
1212
12
12n v l l l n v l l l v v l l v v n n n n α
α
αβαβ⊥⇒⊂⇒⊥⇒⊥⇒⊥⇔⊥⇔⊥①或②若③④⑤⑥
八、角、距离
()1θ异面直线的夹角,
cos cos ,AB CD AB CD AB CD θ⋅==⋅则
()2,θ线与面的夹角
sin cos a n a n θα⋅==
⋅则
()3,θ二面角
1212cos cos n n n n θα⋅==
⋅则
θ说明:只能由已知图观察锐钝.
()4,d 点到平面的距离
cos PA n d PA n θ⋅=⋅=则
cos cos d PA n PA n PA n
d PA n θ
θ⋅=⋅⋅⋅∴=⋅=说明:由图可知为在方向上的投影的绝对值,。