五年级数学数论与整除性
整除的性质和特征
整除的性质和特征整除是数论中的一个重要概念,它描述了一个整数能够被另一个整数整除,也就是除法运算的结果是整数。
整除有着许多重要的性质和特征,下面将详细介绍。
1.定义:整数a能够被整数b整除,即b是a的因数,记作b,a,当且仅当存在一个整数c,使得a=b·c。
其中,c称为a除以b的商,b称为a的约数,a称为b的倍数。
2.可加性:如果c是a的一个约数,那么c也是a的倍数。
换句话说,如果一个整数能够整除a,那么它也能够整除a的倍数。
3.可乘性:如果b,a且c,a,那么b·c也,a。
换句话说,如果一个整数能够整除a和b,那么它也能够整除a与b的乘积。
4.整除的传递性:如果b,a且c,b,那么c,a。
换句话说,如果一个整数能够整除a和b,那么它也能够整除a。
5.算术基本定理:任意一个大于1的整数,都可以表达为多个质数的积。
这意味着,如果一个整数可以整除另一个整数,那么它必然可以整除这个整数的所有质因数。
6. 两个非零整数的最大公约数和最小公倍数:两个非零整数a和b的最大公约数(记作gcd(a,b))是能够同时整除a和b的最大正整数。
两个非零整数a和b的最小公倍数(记作lcm(a,b))是能够同时被a和b整除的最小正整数。
于是有gcd(a,b)·lcm(a,b)=a·b。
7.唯一分解定理:任何一个整数都能够唯一地分解为几个质数的乘积。
这个定理也说明了一个数的因数有限,不会无限增多。
8. 整除与除法的关系:一个整数a能够被b整除,相当于a除以b 的余数为0。
对于任意的整数a和b,总能够找到唯一的两个整数商q和余数r,使得a=bq+r,其中r满足0≤r<,b。
9. 整除与模运算的关系:一个整数a能够被b整除,等价于a除以b的余数为0,即a mod b = 0。
在模运算中,a mod b表示a除以b的余数。
10. 除法的消去律:如果一个整数a能够被b整除,那么对于任意的整数c,ac也能够被bc整除。
数论中的整除性问题研究
数论中的整除性问题研究数论是一门研究整数的学科,其中一个重要的研究方向是整除性问题。
整除性是数论中的核心概念之一,它描述了两个数之间的整除关系。
在这篇文章中,我们将探讨数论中的整除性问题,并介绍一些与之相关的重要定理和应用。
一、整除的定义和性质在数论中,我们首先需要明确整除的定义。
对于两个整数a和b,如果存在一个整数c使得a = b * c,我们就说a可以整除b,或者说b被a整除。
用数学符号表示为a | b,读作a整除b。
反之,如果a不能整除b,则记作a ∤ b。
整除具有一些重要的性质。
首先,任何整数a都可以整除0,即a | 0。
其次,所有整数都可以整除自身,即a | a。
最后,如果a | b且b | c,则a | c,这个性质称为传递律。
这些性质对于整除的研究和应用非常重要。
二、最大公约数和最小公倍数最大公约数(Greatest Common Divisor,简称GCD)和最小公倍数(Least Common Multiple,简称LCM)是整除性问题中的重要概念。
对于两个整数a和b,它们的最大公约数表示为GCD(a, b),最小公倍数表示为LCM(a, b)。
最大公约数是能够同时整除a和b的最大正整数,最小公倍数是能够同时被a和b整除的最小正整数。
最大公约数和最小公倍数具有一些重要的性质。
首先,对于任何整数a和b,它们的乘积等于最大公约数与最小公倍数的积,即a * b = GCD(a, b) * LCM(a, b)。
其次,对于任何整数a、b和c,有GCD(a * b,a * c) = a * GCD(b, c),LCM(a * b, a * c) = a * LCM(b, c)。
最后,如果a和b互质(即它们的最大公约数为1),则它们的最小公倍数等于它们的乘积,即LCM(a, b) = a * b。
三、欧几里得算法和扩展欧几里得算法欧几里得算法(Euclidean Algorithm)是一种计算最大公约数的常用方法。
五年级上册数学试题-奥数:数论之数的整除性(解析版)全国通用
第三讲 数论之数的整除性卷Ⅰ 1. 熟练掌握整除性质及特殊数的整除特征; 2. 巧妙运用整除性质及特殊数的整除特征解决数的整除问题;答案:因为432165a a a a a a 能被5整除,所以4a 是5;由于165432a a a a a a 、321654a a a a a a 和543216a a a a a a 分别能被2、4、6整除,因此1a 、3a 、5a 是偶数,取值为2、4、6,进而知道2a 、6a 是1和3;上述能被4整除的那个六位数的末两位32a a 应是4的倍数,而2a 是奇数,所以3a 只能为2和6.根据上面的分析,为使原六位数最大,1a 可取最大的数字6,2a 取1、3中的大数3,这样其余各数分别是3a =2,4a =5,5a =4,6a =1,所以最大值为632541.教学目标专题精讲 想 挑 战 吗?用数字1、2、3、4、5、6排列成一个六位数654321a a a a a a ,将1a 移到最后,所得的六位数165432a a a a a a 能被2整除;再将2a 移到最后,所得的六位数216543a a a a a a 能被3整除;……;最后把5a 移到最后,所得的六位数543216a a a a a a 能被6整除,那么654321a a a a a a 的最大可能值是多少? 数的整除性质: [性质1] 如果a 能被b 整除,b 能被c 整除,那么a 一定能被c 整除. 例如,48能被16整除,16能被8整除,那么48一定能被8整除. [性质2] 如果a 、b 都能被c 整除,那么(a ±b ) 也一定能被c 整除. 例如,21与15都能被3整除,那么21+15及21-15都能被3整除. [性质3] 如果c 能分别被两个互质的自然数a 、b 整除,那么c 一定能被ab 整除. 例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除.①一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……②一个数各位数数字和能被3整除,这个数就能被9整除;一个数各位数数字和能被9整除,这个数就能被9整除;③如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.④如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.⑤部分特殊数的分解:111=3×37;1001=7×11×13;11111=41×271;10001=73×137;10101=3×7×13×37;1995=3×5×7×19;1998=2×3×3×3×37;2007=3×3×223;2008=2×2×2×251;2007+2008=4015=5×11×73.(一)整除的性质【例1】某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是多少?分析:可以表示成连续9个自然数的和说明该数能被9整除,可以表示成连续10个自然数的和说明该数能被5整除,可表示成连续11个自然数的和说明该数能被11整除,因此该数是[9,5,11]=495,因此符合条件的最小自然数是495.注意:本题易错答案为990,提醒同学们注意.(拓展)一个各位数字均不为零的三位数能被8整除,将其百位数字、十位数字、个位数字分别划去后可以得到3个两位数(例如,按此方法由247将得到47、27、24).已知这些两位数中一个能被5整除,另一个能被6整除,还有一个能被7整除.那么原来的三位数是多少?分析:那个能被5整除的两位数的个位数字是0或5,且应是原三位数的十位数字或个位数字.注意到各位数字均不为零且本身是偶数,故必须有原三位数的是十位数字是5.三位数能被8整除意味着末两位数应能被4整除.在51~59之间只有52、56是4的倍数,但52不是5、6、7中任何一个数的倍数,故题设中的三位数个位数字一定是6.由上述分析可知,百位数字和6组成的两位数是6的倍数,可能为36、66、96,则得到三个三位数:356、656、956,经检验只有656是8的倍数.【例2】1)从1~3998这3998个自然数中,有多少个能被4整除?(2)从1~3998这3998个自然数中,有多少个数的各位数字之和能被4整除?分析:(1)第一问比较简单,3998÷4=999…6所以1~3998中有996个能被4整除的(2)考虑数字和,如果一个一个找规律我们会发现规律是不存在的,因此我们考虑分组的方法,我们补充2个数,0000和3999,此外所有的一位两位三位数都在前面加上0补足4位,然后对这4000个数做如下分组:(0000,1000,2000,3000),(0001,1001,2001,3001),(0002,1002,2002,3002),…(0999,1999,2999,3999),共1000组,容易发现每一组恰好有个数字和是4的倍数,因此共有1000个数字和是4的倍数,但注意到我们补充了一个0000进去.所以原来的3998个数里,有999个数字和是4的倍数.【例3】在1、2、3、4……2007这2007个数中有多少个自然数a能使2008+a能被2007-a整除?分析:如果2008+a 能被2007-a 整除,那么2008+a 2007-a 为自然数,2008+a 2008200712007-a 2007a++=-也是自然数, 4015能被(2007-a )整除,所以4015=5×11×73,4015的约数中小于2007的数有1、5、11、73、55、365、803, 所以当a 取2006、2002、1996、1934、1952、1642、1204能使2008+a 能被2007-a 整除.【例4】 已知两个三位数abc 与def 的和abc def +能被37整除,证明:六位数abcdef 也能被37整除. 分析:abcdef =abc ×1000+def =abc ×999+(abc +def ),因为999能被37整除,所以abc ×999能被37整除,而(abc +def )也能被37整除,所以其和叶能被37整除.(前铺)已知□△×△□×□〇×☆△=□△□△□△,其中□、△、〇、☆分别表示不同的数字,那么四位数〇△□☆是多少?分析:因为□△□△□△=□△10101⨯,所以在题述等式的两边同时约去□△即得△□×□〇×☆△=10101.作质因数分解得37137310101⨯⨯⨯=,由此可知该数分解为3个两位数乘积的方法仅有371321⨯⨯.注意到两位△□的十位数字和个位数字分别和另外的两位数□〇和☆△中出现,所以△□=13,□〇=37,☆△=21.即〇=7,△=1,□=3,☆=2,所求的四位数是7132.(前铺)证明:形如abcabc 的六位数一定能被7,11,13整除. 分析:1001,100171113abcabc abc =⨯=⨯⨯,所以得证.(拓展)若4b+2c+d=32.试问abcd 能否被8整除?请说明理由.分析:由能被8整除的特征知,只要后三位数能被8整除即可.10010bcd b c d =++,有(42)9688(12)bcd b c d b c b c -++=+=+,所以abcd 能被8整除.(拓展)已知a ,b 是整数,求证a+b,ab 、a-b 这三个数之中,至少有一个是3的倍数.分析:若a,b 之一是3的倍数,则ab 是3的倍数;若a,b 都不是3的倍数:1)a=b=3k+1或3k-1 (都余1或都余2),则a-b 是3的倍数;2)a,b 一个是3k+1 一个是3k-1 (一个余1,一个余2),则a+b 是3的倍数;所以a+b,ab,a-b 这三个数之中,至少有一个是3的倍数.(拓展)五位数abcde 是9的倍数,其中abcd 是4的倍数,那么abcde 的最小值是_______.分析:1)若a、b、c、d、e不同的字母代表相同的数值时,abcde=abcd×10+e=(abcd+e)+ abcd ×9,因为abcde是9的倍数,所以(abcd+e)是9的倍数,要abcde最小,我们希望abcd和e都能取最小,这样和也就最小.abcd是4的倍数,所以最小是1000,要让(abcd+e)是9的倍数,e最小是8,所以abcde最小值是10008.2)若a、b、c、d、e不同的字母代表不同的数值时,abcd是4的倍数,所以最小是1024,但e为2,矛盾,所以abcd最小是1028,即abcde最小值是10287.(二)整除的特征【例5】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?分析:乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.5,15=5×3,20=5×4,25=5×5,30=5×6,35=5×7,40=5×8,45=5×9,50=5×5×2,55=5×11,发现只有25、50、75、100、……这样的数中才会出现多个5,写到55时共出现11+1+1=13个因数5,所以至少应当写到55,最多可以写到59.[前铺] 从50到100的这51个自然数的乘积的末尾有多少个连续的0?分析:首先,50、60、70、80、90、100中共有7个0.其次,55、65、85、95和任意偶数相乘都可以产生一个0,而75乘以偶数可以产生2个0,50中的数字5乘以偶数又可以产生1个0,所以一共有++147=+个0.124[巩固] 11个连续两位数的乘积能被343整除,且乘积的末4位都是0,那么这11个数的平均数是多少?343=,则可知,在11个连续的两位数种,至多只能有2个数是7的倍数,所以其中有一分析:因为37个必须是49的倍数,那就只能是49或98.又因为乘积的末4位都是0,就是说这连续的11个自然数应该“含有”4个5.连续的11个自然数中至多只能有3个是5的倍数,至多只能有1个是25的倍数,所以其中有一个必须是25的倍数,那么就只能是25、50或75.所以这11个数是40,41,42,43,44,45,46,47,48,49,50,它们的平均数即为它们的中间项45.[拓展] 975×935×972×□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?分析:积的最后4个数字都是0,说明乘数里至少4个2和4个5.975=5×5×39,935=5×187,972=2×2×243,共有3个5,2个2,方框内至少是2×2×5=20 答:在方框内最小应填20.卷Ⅱ【例6】 已知四十一位数55…55□99…99(其中5和9各20个)能被7整除,那么中间方格内的数字是多少?分析:因为555555和999999都是7的倍数,如果原数是能被7整除,那么由5个205555□ 9个209999=5个205555□99999910999969个14+⨯知 5个205555□ 9个149999也能被7整除;又 5个205555□ 9个149999可以表示成 5555552910⨯+ 5个145555□ 9个149999,说明 5个145555□9个149999也能被7整除, 相当于将原数的前后分别去掉555555和999999后整除性不变,依次下去,得到55□99.因此□44是7的倍数,□3是7的倍数,所以得□=6.[前铺1] 已知10□8971能被13整除,求□中的数.分析:10□8-971=1008-971+□0=37+□0.上式的个位数是7,若是13的倍数,则必是13的9倍,由13×9-37=80,推知□中的数是8.[前铺2] 在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?分析:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除.[巩固1] 在六位数11□□11中的两个方框内各填入一个数字,使得这个六位数能够被17和19整除,那么方框中的两位数是多少?分析:(法1)这个六位数能够被17和19整除,那么也应当能被17×19=323整除,因为119911减去某个数□□00就可能是323的倍数.119911=323×371+78,说明119911应当减去的四(三)位数满足□□00除以323也余78,也就是满足□□22除以323应当能够除尽.说明□□22是4522,那么□□00是4600,因此所求的六位数是119911-4600=115300.[巩固2] 应当在如下的问号“?”的位置上填上哪一个数码,才能使得所得的整数可被7整除?(其中数码6和5各重复了50次)666...66?555 (55)分析:可在“?”的位置上填上2或9.事实上,111111(6个1)可被7整除,因此如果将我们的数的头和尾各去掉48个数码,并不改变其对7的整除性,于是还剩下66?55.从中减去63035,并除以10,即得3?2.此时不难验证,具有此种形式的三位数中,只有322和392可被7整除.所以?上填2或9.[拓展] 应当在如下的“□□”的位置上填上哪两个数码,才能使得所得的整数可被63整除?(其中数码2和7都重复了25次.222...22□□77 (777)分析:63=7×9,所以中间□□两个数的和能被9整除,又111111(6个1)可被7整除,所以去掉首尾24个数字后,剩下的2□□7,也能被7整除,2007=7×286+5,所以□□5也能被7整除,□□5-35能被7整除,所以两位数□□被7除余3,在两位数中被7除余3,且能被9整除的只有45. □□中所填的数是45.【例7】 (★★全国小学数学奥林匹克)200820082008200808n 个能被99整除,那么,n 的最小值为多少?分析:由于99=9×11,所以200820082008200808n 个能被11和9整除,200820082008200808n 个中奇位数减偶位数的差为(8-2)n+8=6n+8,当n=6、17、28……时,(3n+1)是11的倍数,所以n 的最小值是6. 200820082008200808n 个各位数字之和为(2+8)×n+8=10n+8,所以当n=1、10、19、28……等数时,能被9整除,所以n 的最小值为28.[前铺] 如果200520052005200501n 个能被11整除,那么n 的最小值是 .分析:200520052005200501n 个中奇数位减偶数位的差为(5-2)n +1=3n +1,当n=7时,(3n +1)是11的倍数,所以n 的最小值是7.【例8】 已知多位数55…5599…99□□(其中5和9各n 个)能被7整除,那么当n 取值为什么时,方格内的数字的不同的情况数为定值,并求出这个定值?分析:由例题1知当n=6k (k 为自然数),100÷7=14…2,所以共有15种不同的情况;当n ≠6k (k 为自然数),情况不定.[前铺1] 如果六位数1992□□能被105整除,那么它的最后两位数是多少?分析:199300÷105余10,199300-10=199290,即它的最后两位数是90.[前铺2] 已知200520052005□□是72的倍数,求末两位数是多少?分析:72=8×9,因为被9整除,所以末两位数字和是被9除余6的,因为被8整除,注意到百位是奇数,所以末两位被8除余4,满足这2个条件的2位数就只有60.[拓展] 已知多位数□□55…5599…99(其中5和9各n 个)能被77整除,那么方格内的数字是多少?分析:由例题知当n=6k (k 为自然数),100÷77=1…23,方格内的数字是77;当n ≠6k (k 为自然数),情况不定.【例9】 已知四十一位数55…55□7□99…99(其中5和9各19个)能被77整除,那么方格内的数字分别是多少?分析:由上题知可化为5□7□9能被7整除,50709÷77=658…43,所以□0□0+43=7 k (k 为自然数),即□0□0+1=7 k (k 为自然数),又21+□+□=11 k (k 为自然数),所以□+□=10,设第一个□为x ,则第二个□为(10-x ),有1000x+10(10-x )+1=7 k (k 为自然数),,所以x=6,即第一个□为6,所以第二个□为4,即所求的数为56749.[前铺1] 五位数329A B 能被72整除,问:A 与B 各代表什么数字?分析:已知329A B 能被72整除.因为72=8×9,8和9是互质数,所以329A B 既能被8整除,又能被9整除.根据能被8整除的数的特征,要求29B 能被8整除,由此可确定B =6.再根据能被9整除的数的特征,329A B 的各位数字之和为A +3+2+9+B =A +3-f -2+9+6=A +20,因为l ≤A ≤9,所以21≤A +20≤29.在这个范围内只有27能被9整除,所以A =7.[前铺2] 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除.分析:分别由能被9,25和8整除的数的特征,很难推断出这个七位数.因为9,25,8两两互质,由整除的性质知,七位数能被 9×25×8=1800整除,所以七位数的个位,十位都是0;再由能被9整除的数的特征,推知首位数应填4.这个七位数是4735800.[拓展1] 买28支价格相同的钢笔共付人民币9□.2□元.已知□处数字相同,请问每支钢笔多少元?分析:∵9□.2□元=9□2□分,28=4×7,∴根据整除“性质2”可知4和7均能整除9□2□.4|2□可知□处能填0或4或8.因为79020,79424,所以□处不能填0和4;因为7|9828,所叫□处应该填8.又∵9828分=98.28元,98.28÷28=3.51(元),即每支钢笔3.51元.[拓展2] 仓库有两个箱子,其中一个装了74个大杯子,另一个装了75个小杯子.地上有两个价格牌,一个写着总价“132.××元”,另一个写着“总价123.××元”.已知这两个价格牌原来贴在箱子上,但现在已经弄不清楚哪个价格牌贴在哪个箱子上了,唯一知道的是大杯子的单价比小杯子的贵,那么小杯子的单价是多少元?分析:设大杯子和小杯子的价格分别为S和s.如果s×75=132.××,S×74=123.××,因为S>s,所以s>132.××-123.×× > 8元.可是如此小杯子的总价格大于8×75=300元,不符合题目要求.所以123.××是小杯子的总价钱.由此可得出123××是75=3×25的倍数,则××可以为00、25、50、75,经实验12300和12375是75的倍数.相应的s分别为:12300÷75=1.64元、12375÷75=1.65元.【例10】求最小的自然数,它的各位数字之和等于56,它的末两位数是56,它本身还能被56所整除.分析:所求的数写成100a+56的形式.由于100a+56能被56整除,所以a能被14整除,所以a应是14的倍数.而且a的数字和等于56-5-6=45.具有数字和45的最小偶数是199998,但这个数不能被7整除.接下来数字和为45的偶数是289998和298998,但前者不能被7除尽,后者能被7整除,所以本题的答数就是29899856.[前铺] 求最小的偶数,它的各位数数字之和为40.分析:各位数数字之和为40的数,至少有5位,万位上的数至少为4,否则,各位数数字之和最多为3+9+9+9+9=39,当万位数上的数为4是,这个数只能是49999,不是偶数,所以最小的偶数只能是59998.[拓展]在五位数中,能被11整除且各位数字和等于43,这样的数有多少?分析:因为5×8=40,5个数字的和等于43时,其中至少有3个9,并且只有以下两种情况.(1)数字中4个9、1个7,则奇数位数字和减去偶数位数字和只能是3×9-(9+7)=11,这样的书有99979和97999,(2)数字中3个9,一个7,则奇数位数字和减去偶数位数字的和只可能是3×9-2×8=11,这样的数有98989.专题展望数的整除性是数论中最基本的内容,在数论问题中经常被用到,而奇偶性质是数的整除性中的特殊情形,有关奇偶数性质的运用将在下一讲中详细教授.练习三1. (例1)有些数既能表示成3个连续自然数的和,又能表示成4个连续自然数的和;还能表示成5个连续自然数的和,例如:30满足上述要求,因为30=9+10+11;30=6+7+8+9;30=4+5+6+7+8.请你找出700至1000之间,所有满足上述要求的数,并简述理由.分析:3个连续自然数的和,一定能够被3整除;4个连续自然数的和,一定能够被2整除,且除以2所得的商是奇数,也就是说它不能被4整除,也即除以4所得余数为2;5个连续自然数的和,一定能够被5整除.3、4、5的最小公倍数是60.60以内满足上述三个条件的数是30,所以60的整数倍加上30就可以满足条件.700=60×11+40,所以第一个符合题意的数是750=60×12+30,最大的一个数是990=60×16+30,共计16-12+1=5个数,分别为750、810、870、930、960.关键是让学生把该问题转化到整除问题,也可简单复习连续自然数求和与项数的关系.2. (例3)在1,2,3,……,1995,这1995个数中找出所有满足下面条件的数a 来:(1995+a )能整除1995×a.分析:1995a 1995+a ⨯是自然数,所以1995a 199519951995-=1995+a 1995+a⨯⨯也是自然数,即1995+a 是1995×1995的约数.因为:1995×1995=32×52×72×192,,它在1995与2×1995之间的约数有32×192=3249,7×192=2527,3×72×19=2793,52×7×19=3325,32×5×72=2205,3×52×72=3675,于是a 的值有6个,即3249-1995=1254,2527-1995=532,2793-1995=798,3325-1995=1330,2205-1995=210,3675-1995=1680.3. (例4)已知p 、q 都是大于1的整数,并且qp 12-和p q 12-都是整数,那么p +q 的值是多少? 分析:根据对称性,不妨设p q ≥,于是21q p-为大于0、小于2的整数,只能等于1.由于21q p -=,可将21p q -化为34q-,这样3q =,5p =,所以8p q +=.4. (例5)把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末53位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?分析:1到10的乘积里会出现2×5和10两次末尾添零的情况,估算从200开始,是49个0,还要扩大至220时加4个0,所以最小的数应该是220,而最大应该是224.5. (例6)二百零一位数11…1□22…2(其中1和2各有100个)能被13整除,那么中间方格内应填什么数?分析:由111111被13整除,而100=6×16+4,故原来被13整除的算式即变为13|1111□2222;还可变为13|333-1□2,即可知方格应填1.6. (例7)已知数022983298329832983个 n 能被18整除,那么n 的最小值是多少?分析:13n+2=9k ,所以k=6 时,n=4位最小值.人生要学会遗忘人生在世,忧虑与烦恼有时也会伴随着欢笑与快乐的.正如失败伴随着成功,如果一个人的脑子里整天胡思乱想,把没有价值的东西也记存在头脑中,那他或她总会感到前途渺茫,人生有很多的不如意.所以,我们很有必要对头脑中储存的东西,给予及时清理,把该保留的保留下来,把不该保留的予以抛弃.那些给人带来诸方面不 利的因素,实在没有必要过了若干年还值得回味或耿耿于怀.这样,人才能过得快乐洒脱一点.众所周知,在社会这个大家庭里,你要想赢得别人的尊重,你首先必须尊重别人,多记住别人的优点,而学会遗忘别人的过失.其次,一个人要学会遗忘自己的成绩,有些人稍微做了一点成绩就骄傲起来,沾沾自喜,这显然是造成失败的一个原因.成绩只是过去,要一切从零开始,那样才能跨越人生新的境界.同时,一个人自己对他人的帮助,应该看作是一件微不足道小事,以至于遗忘.这样,你的处事之道方能获得他人的赞许.人生需要反思,需要不断总结教训,发扬优点,克服缺点.要学会遗忘,用理智过滤去自己思想上的杂质,保留真诚的情感,它会教你陶冶情操.只有善于遗忘,才能更好地保留人生最美好的回忆.成长故事。
数论概念与问题pdf
数论概念与问题pdf数论是研究整数及其性质的数学分支。
它涉及到整数的因子、素数、同余关系、数列、数论函数等概念和问题。
以下是一些常见的数论概念和问题:1. 整除性:整数a能够整除整数b,即a|b,表示b可以被a整除。
2. 因子与倍数:对于整数a和b,如果a能够整除b,则a 是b的因子,b是a的倍数。
3. 素数与合数:大于1的整数,如果只有1和自身两个因子,则称其为素数;否则称其为合数。
4. 最大公约数与最小公倍数:对于两个整数a和b,最大公约数(GCD)是能够同时整除a和b的最大整数,最小公倍数(LCM)是能够同时被a和b整除的最小整数。
5. 同余关系:对于整数a、b和正整数m,如果a-b能够被m整除,则称a与b对模m同余,记作a≡b(mod m)。
6. 欧拉函数:对于正整数n,欧拉函数φ(n)表示小于等于n且与n互质的正整数的个数。
7. 质数分解:将一个正整数n表示为若干个质数的乘积的形式,即n = p1^k1 * p2^k2 * ... * pm^km。
8. 模运算:在同余关系下进行的基本运算,包括模加、模减、模乘和模幂等。
常见的数论问题包括:1. 素数判定:给定一个整数,判断其是否为素数。
2. 最大公约数与最小公倍数计算:给定两个整数,求其最大公约数和最小公倍数。
3. 同余方程求解:给定一个同余方程,找到满足条件的整数解。
4. 欧拉函数计算:给定一个正整数,计算其欧拉函数的值。
5. 费马小定理的应用:利用费马小定理解决一些与同余关系相关的问题。
6. 数论函数的性质:研究数论函数如欧拉函数、莫比乌斯函数等的性质及其应用。
7. 素数分布问题:研究素数在整数序列中的分布规律,如素数定理、伪素数等。
这只是数论领域的一小部分概念和问题,数论在密码学、编码理论、离散数学等领域都有广泛的应用。
五年级奥数.数论.整除性(A级).教师版
九 进 制乔治·兰伯特是美国加利福尼亚州一所中学的数学教师,他对数学特别敏感而且有极大的研究兴趣。
他常年与数字、公式打交道,深感数学的神秘与魅力。
他开始注意一些巧合的事件,力图用数学的方式来破解巧合。
他发现:法国皇帝拿破仑与纳粹元首希特勒相隔一个多世纪,但是他们之间有很多数字巧合。
拿破仑1804年执政,希特勒1933年上台,相隔129年。
拿破仑1816年战败,希特勒1945年战败,相隔129年。
拿破仑1809年占领维也纳,希特勒在1938年攻人维也纳,也是相隔129年。
拿破仑1812年进攻俄国,希特勒在相隔129年后进攻苏联。
美国第16届总统林肯于1861年任总统,美国第35届总统肯尼迪于1961年任总统,时隔100年。
两人同在星期五并在女人的参与下被刺遇害。
接任肯尼迪和林肯的总统的名字都叫约翰逊。
更巧的是,杀害林肯的凶手出生于1829年,杀害肯尼迪的凶手出生于1929年,相隔又是100年。
兰伯特被这些数字迷住了,他经常将这些数字翻来覆去地分解组合。
他惊奇地发现,拿破仑和希特勒的巧合数129与林肯和肯尼迪的巧合数100,把它们颠倒过去分别是921和001,用921减去129,用100减去001,得数都能被9除尽:921-129=792,100-001=99;792+9=88,99÷9=11,结果都有一个十位和个位都相同的两位数的商。
兰伯特非常吃惊,他对9着了迷。
他发现将l 、2、3、4、5、6、7、8、9加在一起是45,而4+5=9。
他还发现,用9乘以任何一个数,将所得到的积的各位数字相加,所得到的和总是9。
取任何一个数,比如说2004,将每位数加起来是2+0+0+4=6,用2004减去6结果得到1998,而1998÷9=222,能被9除尽。
他还总结出这样一个规律:把一个大数的各位数字相加得到一个和,再把这个和的各位数字相加又得到一个和。
这样继续下去,直到最后的数字之和是一个一位数为止。
五年级数的整除
数的整除一、整除的概念:a÷b=c,整数a除以整数b(b≠0),除得的商正好是整数而没有余数(或者余数为零)就叫做a能被b整除,或者说b能整除a,a是b的倍数,b是a的因数二、整除的性质(1)如果数a是b的倍数,c是整数,那么积ac也是b的倍数例:24是8的倍数,5是整数,5×24的积也是8的倍数(2)如果数a和b都是c的倍数,那么(a+b)与(a-b)也是c的倍数例:24和30都是6的倍数,那么(24+30)与(30—24)也是6的倍数(3)如果a是b的倍数,b又是c的倍数,那么a也是c的倍数例:24是12的倍数,12又是6的倍数,那么24也是6的倍数(4)如果a同时是b、c的倍数,而且b和c是互质数,那么a一定是bc的倍数例:24是2、3的倍数,2、3互质,24也是2×3的倍数(5)如果数b是a的因数,或者a含有因数b,那么a就是b的倍数例:60含有因数15,那么60就是15的倍数三、整除的特征(1)4或25的倍数的特征:如果一个自然数的末两位的数字所组成的数能被4、25整除,那么这个数就是4或25的倍数例:58372的末两位是72, 72是4的倍数,那么58372就是4的倍数57325的末两位是25,25是25的倍数,那么58325就是25的倍数(2)8或125的倍数特征:如果一个自然数的末三位的数字所组成的数能被8、125整除,那么这个数就是8或125的倍数例:58272的末三位是272, 272是8的倍数,那么58272就是8的倍数57375的末三位是375,375是125的倍数,那么58375就是125的倍数(3)7,11,13的倍数的特征:如果一个自然数的末三位上数字所组成的数与末三位以前的数字所组成的数之差(大减小)能被7,11,13整除,那么这个数就是7,11,13的倍数例:1059282是否是7的倍数:把1059282分成1059和282两个数,因为1059-282=777,又777能整除7,所以1059282是7的倍数若一个数奇数位上的数字和与偶数位上的数字和的差(大减小)能被11整除,那么这个数就是11,的倍数例:123456789的奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20,因为25—20=5,因为5不能被11整除,所以123456789不能被11整除1.判断3546725能否被13整除?2.一个四位数9()2()既有因数2,又是3的倍数,同时又能被5整除,这四个数最大是多少?3.378287、ABCABC这两个数能否被7,11,13整除?4.一个六位数()6879()首尾不祥,只知道这个六位数能被72整除,这个六位数是多少?5.一个整数能被13整除,这个数的最后三位数是339,那么这样的整数中最小的是多少?6.同时被3、4、5整除的最大四位数是多少?7.从1到9这九个数字中任选六个数字组成36的倍数,这样的六位数中最大的数是多少?最小的数是多少?8.已知A是一个自然数,并且它的各数位上的数字只有0和8两数,已知这个数是6 的倍数,A最小是多少?9.在257后面补上三个数字组成一个各数位上的数字都不相同的六位数,使它能被60整除,这样的六位数中最小的是多少?10.3()6()5是一个五位数,且是75的倍数,若想使3()6()5无重复数字,这个五位数是多少?答案:1.能 2.9720 3. 78287不能能 4.468729 5.1339 6.9960 7.987652 123768 8.8088 9.257160 10.30625 38675 39675。
五年级上册数的整除
五年级上册数的整除在我们五年级上册的数学学习中,“数的整除”可是一个非常重要的知识板块。
它就像是一把神奇的钥匙,能帮助我们打开数学世界里一扇又一扇神秘的大门。
什么是数的整除呢?简单来说,就是一个整数除以另一个整数,如果商是整数且没有余数,我们就说第一个整数能被第二个整数整除。
比如说,12÷3 = 4,商 4 是整数,没有余数,所以 12 能被 3 整除。
整除有很多有趣的性质和规律。
首先,能被 2 整除的数,个位上一定是 0、2、4、6、8。
比如 10、12、14 等等。
那能被 5 整除的数呢?个位上一定是 0 或 5,像 15、20 都能被 5 整除。
能被 3 整除的数就有点特别啦。
它不是看个位,而是要看这个数各个数位上的数字之和。
如果数字之和能被 3 整除,那么这个数就能被 3 整除。
比如 123,1 + 2 + 3 = 6,6 能被 3 整除,所以 123 也能被 3 整除。
还有能被 9 整除的数,也是看各个数位上的数字之和。
如果数字之和能被 9 整除,这个数就能被 9 整除。
在数的整除中,还有一些重要的概念,比如因数和倍数。
如果 a×b = c(a、b、c 都是非 0 的整数),那么 a 和 b 就是 c 的因数,c 就是 a 和 b 的倍数。
比如 2×3 = 6,2 和 3 是 6 的因数,6 是 2 和 3 的倍数。
一个数的因数是有限的,其中最大的因数就是它本身;而一个数的倍数是无限的,其中最小的倍数也是它本身。
质数和合数也是数的整除中很关键的概念。
一个数,如果只有 1 和它本身两个因数,这样的数叫做质数。
像 2、3、5、7 都是质数。
一个数,如果除了 1 和它本身还有别的因数,这样的数叫做合数。
比如 4、6、8、9 都是合数。
1 既不是质数也不是合数,这是个很特殊的存在,一定要记住哦。
了解了这些知识,我们在解决数学问题时就会更加得心应手。
比如,要判断一个数能不能被另一个数整除,或者找出一个数的因数和倍数,再或者判断一个数是质数还是合数。
数论中的数的整除性与素数判断的应用
数论中的数的整除性与素数判断的应用数论是研究整数的性质和其间的相互关系的数学分支。
在数论中,数的整除性和素数判断是两个重要的概念与方法。
本文将探讨数的整除性的基本定义和相关性质,并介绍素数的判断方法及其在实际问题中的应用。
一、数的整除性数的整除性是数论中一个基本的概念。
对于任意两个整数a和b,若存在整数c使得a = b*c,则称a能被b整除,记作b|a。
如果a不能被b整除,则记作b∤a。
我们来简单讨论一下整除性的性质。
1. 整除性的传递性:对于任意三个整数a、b、c,如果b|a且c|b,则c|a。
这意味着若一个数能整除另外两个数,它必然也能够整除这两个数的乘积。
2. 整除性与倍数的关系:如果a能够整除b,那么b是a的倍数。
这是因为整除性的定义中,存在一个整数c使得a = b*c,即b是a的倍数。
3. 整除性与加法的关系:如果a能够整除b,那么对于任意整数k,a也能够整除b + k*a。
这是因为可以将b + k*a表示为b + c*a的形式,其中c = k + 1。
二、素数的判断方法及应用素数是指除了1和自身外,没有其他因数的正整数。
素数的判断是数论中的一个重要问题。
目前常用的素数判断方法有试除法和素数筛法。
接下来我们将分别介绍这两种方法,并探讨它们在实际问题中的应用。
1. 试除法:试除法是最简单的判断一个数是否为素数的方法。
其原理是对待判断的数n,从2到√n进行逐一试除,如果存在一个小于√n的整数能够整除n,则n不是素数;反之,如果所有小于√n的整数都不能整除n,则n是素数。
试除法的时间复杂度为O(√n),简单易行,适用于较小的数的素数判断。
例如,判断一个数是否为质数,可以使用试除法。
2. 素数筛法:素数筛法是一种高效的寻找一定范围内素数的方法。
其中最著名的方法是埃拉托斯特尼筛法(筛法)。
筛法的基本原理是从2开始,将2的倍数全部筛去,然后再筛去3的倍数,以此类推,直到筛子中只剩下大于√n的数为止。
五年级数论:第2讲 整除特征(二)生
第二讲整除特征(2)【知识提要】1. 被3(或9)整除的数的特征:这个数的各位上数字之和是3(或9)的倍数。
2. 被7、11、13整除的数的特征:这个数的末三位与末三位以前的数字的差(以大减小)是7、11、13的倍数。
(割尾法)3. 能被11整除的数的特征还有:一个数的奇数位的数字之和与偶数位的数字之和的差(以大减小)是11的倍数。
4、整除的性质:(1)如果a能被b整除,b能被c整除,那么a也能被c整除。
(传递性)如:8|40,40|120,则。
(2)如果a和b(a>b)都能被c整除,那么a与b的和(a+b)及差(a-b)也能被c整除。
如:3|18,3|12,则,。
(3)如果数a能被数b整除,那么a和c的积(a×c)也能被b整除。
如:5|25,3为整数,则。
【基础训练】1、在□中填入适当的数字,使所组成的数既能被9整除,又有因数5。
23□5□ 57□3□ 7□832□2、判断102030405060708090能否被9整除。
3、判断。
(1)4932796与4392976分别除以11,它们能被11整除么?(2)把192992与192929分别除以11,它们能被11整除吗?4、判断。
(1)试判断20592,25092能否被99整除?(2)试判断2385,3825能否被45整除?(3)试判断12346578,12356784能否被44整除?【拓展提高】【例1】填空。
(1)有一个四位数13AA是9的倍数,A是。
(2)要使□3478□能被9整除,□是。
(3)已知自然数2*3*4*5*1能被11整除,问*是。
(4)一个六位数□8919□能被11整除,那么这个六位数是。
【例2】在□内填上合适的数字,使五位数□679□能同时被8和9整除。
【例3】在□内填入适当的数字,使□8□52能被72整除?【例4】要使六位数15□□□6能被36整除,这样的数中最小的是多少?【例5】在□内填上适当的数,使五位数29□7□能被12整除。
小学奥数经典讲义五年级秋季 第三讲数论之数的整除性提高
第三讲 数论之数的整除性数的整除性是数论的基础内容,学生能否熟练掌握该内容对以后进一步深入学习数论至关重要. 本讲需要教授的内容有:,方框教学目标分析:因为36=4×9,所以C6能被4整除,从而C只可能是1,3,5,7,9.要使商最小,A、B应尽可能小,先取A=0,又1+5+6+A+B+C=12+B+C=9+3+B+C,所以3+B+C是9的倍数,B=1,C=5时,取得最小值.[拓展]要使15ABC6能被36整除,而且所得的商最大,那么A、B、C分别是多少?分析:先取A=9,则3+B+C是9的倍数,B=8,C=7时,取得最大值.【例4】(★★★祖冲之杯小学数学邀请赛)一个数的20倍减1能被153整除,这样的自然数中最小的是 .分析:设这样的数为x,则20x-1=153a,a是整数,即20x=153a+1,因为20x的末位数一定是0,所以a最小取3,从而x最小是23.[巩固](这一类型的题虽然也被分入Ⅰ类,但非常特殊,应当注意).一个数的20倍加7能被59整除,这样的自然数最小的是多少?分析:20x=59a-7,59a个位是7,所以a的个位是3,a=3时,x不能取整数,a=13时,x=38.【例5】(★★★★)求最小的自然数,它的各位数字之和等于56,它的末两位数是56,它本身还能被56所整除.分析:所求的数写成100a+56的形式.由于100a+56能被56整除,所以a能被14整除,所以.应是14的倍数.而且a的数字和等于56-5-6=45.具有数字和45的最小偶数是199998,但这个数不能被7整除.接下来数字和为45的偶数是289998和298998,但前者不能被7除尽,后者能被7整除,所以本题的答数就是29899856.[前铺]:求最小的偶数,它的各位数数字之和为40.分析:各位数数字之和为40的数,至少有5位,万位上的数至少为4,否则,各位数数字之和最多为3+9+9+9+9=39,当万位数上的数为4是,这个数只能是49999,不是偶数,所以最小的偶数只能是59998. [拓展]在五位数中,能被11整除且各位数字和等于43,这样的数有多少?分析:因为5×8=40,5个数字的和等于43时,其中至少有3个9,并且只有以下两种情况.(1)数字中4个9、1个7,则奇数位数字和减去偶数位数字和只能是3×9-(9+7)=11,这样的书有99979和97999,(2)数字中3个9,一个7,则奇数位数字和减去偶数位数字的和只可能是3×9-2×8=11,这样的数有98989.Ⅱ、整除与数字组合【例6】(★★★2002年南京市少年数学智力冬令营)一个十位数,如果各位上的数字都不相同,那么就称为“十全数”,例如,3 785 942 160就是一个十全数.现已知一个十全数能被1,2,3, (18)除,并且它的前四位数是4876,那么这个十全数是 .分析:这个十全数能被10整除,个位数必为0;能被4整除,十位数必为偶数,末两位只能是20.设这个十全数为4876abcd20.由于它能被11整除,必有b+d-(a+c)=10,所以b、d是9和5;a、c是3和1,这个十全数只能是4 876 391 520,4 876 351 920,4 876 193 520,4 876 153 920中的一个.经检验,它是4 876 391 520.【例7】(★★)用数字6,7,8各两个,组成一个六位数,使它们能被168整除,这个六位数是 .分析:168=2×2×2×3×7,由于这个六位数被8整队,后三位只能是688,768或者776三种情况,分别验证这个6位数被7除的情况可知,只有768768满足要求.[拓展]:用数字4、5、6各两个,组成一个六位数,使它们能被165整除,这样的六位数有多少个?分析:165=3×5×11,所以,这样的六位数的个位数为5,且各位数数字之和为3的倍数(已满足),奇偶数位之和的差为11的倍数,4+4+5+5+6+6=30,30拆成两个差为11的倍数的数和有两种方法:30=15+15或4+26,显然后一种是无法达到的,而15只能等于4+5+6,所以,万位数和百位数上一个是4,一个是6,十万位、千位、十位上是4、5、6的某个排列,所以一共有2×3×2×1=12个.【例8】(★★★)用1,9,8,8这四个数字能排成几个被11除余8的四位数?分析:现在要求被11除余8,我们可以这样考虑:这样的数加上3后,就能被11整除了.所以我们得到“一个数被11除余8”的判定法则:将偶位数字相加得一个和数,再将奇位数字相加再加3,得另一个和数,如果这两个和数之差能被¨除尽,那么这个数是被11除余8的数;否则就不是.要把1,9,8,8排成一个被11除余8的四位数,可以把这4个数分成两组,每组2个数字.其中一组作为千位和十位数,它们的和记作A;另外一组作为百位和个位数,它们之和加上3记作B.我们要适当分组,使得能被11整除.现在只有下面4种分组法:(1) 1,8 9,8(2) 1,9 8,8(3) 9,8 1,8(4) 8,8 1,9经过验证,第(1)种分组法满足前面的要求:A=1+8=9,B=9+8+3=20,B -A=11能被11除尽.但其余三种分组都不满足要求.根据判定法则还可以知道,如果一个数被11除余8,那么在奇位的任意两个数字互换,或者在偶位的任意两个数字互换得到的新数被11除也余8.于是,上面第(1)分组中,1和8任一个可以作为千位数,9和8中任一个可以作为百位数.这样共有4种可能的排法:1988,×[;③×Ⅲ、多位数整除【例10】(★★★香港圣公会小学数学奥林匹克)下面这个199位整数:19910010010011001位被13除,余数是多少?[拓展]199100000位被13除余多少?分析:19910010010011001位-199100000位=19610010011001位显而易见19610010011001位也是1001的倍数,所以也是13的倍数,所以199100000位与19910010010011001位被13除所得的余数相同,余数是1.【例11】(★★)200820082008200808n 个能被11整除,那么,n 的最小值为多少 分析:200820082008200808n 个中奇位数减偶位数的差为(8-2)n+8=6n+8,当n=6时,(3n+1)是11的倍数,所以n 的最小值是6.[巩固](★★全国小学数学奥林匹克)如果200520052005200501n 个能被11整除,那么n 的最小值是 .分析:200520052005200501n 个中奇数位减偶数位的差为(5-2)n +1=3n +1,当n=7时,(3n +1)是11的倍数,所以n 的最小值是7.【例12】(★★★)应当在如下的问号“?”的位置上填上哪个数码,才能使得所得的整数可被7整除?(其中数码2和7都重复了50次)222...22?77 (777)分析:事实上,111111(6个1)可被7整除,因此如果将我们的数的头和尾各去掉48个数码,并不改变其对7的整除性,于是还剩下“22?77”.从中减去21077,并除以100,即得“1?”.此时不难验证,具有此种形式的二位数中,只有14可被7整除.所以?上填4.专题展望数的整除性是数论中最基本的内容,在数论问题中经常被用到,而奇偶性质是数的整除性中的特殊情形,有关奇偶数性质的运用将在下一讲中详细教授.1、(★例1)六位数20□□08能被99整除,□□是 .72×是0的末尾数一定是9,所以a 最小取7,从而x 最小是17.5、(★★★例9)已知ABABAB 是154的倍数,求AB 的最小值.分析:事实上ABABAB =AB ×10101,而10101=3×7×13×37,所以只要保证AB 能被22整除,所以AB 的最小值为22.练习三数学知识时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系.可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢?我们仔细研究一下,就知道这两种量是紧密联系着的.原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了.譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的.因为历法需要的精确度较高,时间的单位"小时"、角度的单位"度"都嫌太大,必须进一步研究它们的小数.时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍.以1/60作为单位,就正好具有这个性质.譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60……数学上习惯把这个1/60的单位叫做"分",用符号"′"来表示;把1分的1/60的单位叫做"秒",用符号"″"来表示.时间和角度都用分、秒作小数单位.这个小数的进位制在表示有些数字时很方便.例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数.这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天.。
五年级奥数培优专题第四章 数论与整除
五年级奥数培优专题第四章数论与整除第一讲数字趣味题【专题导引】0、1、2、3、4、5、6、7、8、9是我们最常见的国际通用的阿拉伯数字(或称为数码)。
数是由十个数字中的一个或几个根据位值原则排列起来,表示事物的多少或次序。
数字和数是两个不同的概念,但它们之间有密切的联系。
这里所讲的数字问题是研究一个若干位数与其他各位数字之间的关系。
数字问题可采用下面的方法:1、根据已知条件,分析数或数字的特点,寻找其中的规律。
2、将各种可能一一列举,排除不符合题意的部分,从中找出符合题意的结论。
3、找出数中数字之间的相差关系和倍数关系,转化成“和倍”、“差倍”等问题。
4、条件复杂时,可将题中条件用文字式、竖式表示,然后借助文字式、竖式进行分析推理。
【典型例题】【例1】一个两位数的两个数字和是10。
如果把这个两位数的两个数字对调位置,组成一个新的两位数(我们称新数为原数的倒转数),就比原数大72。
求原来的两位数。
【试一试】1、一个两位数,十位上的数字是个位上数字的3倍。
如果把这两个数字对调位置,组成一个新的两位数,与原数的差为54。
求原数。
2、一个两位数,十位上的数字是个位上数字的2倍。
如果把这两个数字对调位置,组成一个新的两位数,与原数的和为132。
求原数。
【例2】把数字6写到一个四位数的左边,再把得到的五位数加上8000,所得的和正好是原来四位数的35倍。
原来的四位数是多少?【试一试】1、有一个三位数,如果把数字4写在它的前面可得到一个四位数,写在它的后面也能得到一个四位数,已知这两个四位数相差2889,求原来的三位数。
2、把数字8写在一个三位数的前面得到一个四位数,这个四位数恰好是原三位数的21倍。
原三位数是多少?【例3】如果一个数,将它的数字倒排后所得的数仍是这个数,我们称这个数为对称数。
例如22、565、1991、20702等都是对称数。
求在1~1000中共有多少个对称数?【试一试】1、有一个四位数的对称数,四位数字之和为10,十位数字比个位数字多3,求这个四位数。
五年级数论_整除
整除知识点精讲整除的性质(1)末尾判断:2、5末位数字能被2、5整除;4、25末两位数字组成的两位数能被4、25整除;8、125末三位数字组成的三位数能被8、125整除.(2)截断求和:9(或3),一位截断后,各段之和能被9(或3)整除;99(或11、33),两位截断后,各段之和能被99(或11、33)整除;9(或3),乱切后,各段之和能被9(或3)整除.这种方法又叫乱切法.(3)截断作差法:11,一位截断后,奇数位之和与偶数位之和的差能被11整除;101,两位截断后,奇数段之和与偶数段之和的差能被101整除;1001(或7、11、13),三维截断后,奇数段之和与偶数段之和的差能被1001(或7、11、13)整除.课堂例题与练习<珍惜有限,创造无限>一、整除1.判断306371能否被7整除?能否被13整除?2.已知10□8971能被13整除,求□中的数.3.在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除.4.现有四个数:76550,76551,76552,76554.能不能从中找出两个数,使它们的乘积能被12整除?5. 在所有五位数中,各位数字之和等于43且能够被11整除的数有哪些?6. 求满足下面条件的整数a 、b :1)8|375a a 2)72|761a b 3)99|14758a b7. 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是 。
8.设六位数N=y x 3795,又知N 是4的倍数,且被11除余3,那么x +y 等于几?9. 有0~9十个数字组成的十位数成为“十全数”. 那么:(1)能被11整除的最小十全数为 ;(2)能被11整除的最大十全数为 。
10. 将自然数1,2,3,……,依次写下去形成一个多位数“12345678910111213…”.当写到某个数N 时,所形成的多位数恰好第一次被45整除.请问:N 是多少?课后复习与检测课后总结:练习题A B.1.求无重复数字,能被75整除的五位数3652.将自然数1、2、3、4、5、6、7、8、9依次重复写下去组成一个1993位数,试问这个数能否被3整除?x y同时是11与25的倍数,求这个五位数.3.一个五位数4754.(1)一个多位数(两位及两位以上),它的各位数字互不相同,并且含有数字0.如果它能被11整除,那么这个多位数最小是多少?(2)一个多位数,它的各位数字之和为13,如果它能被11整除,那么这个多位数最小是多少?5.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?思考题6.黑板上写有两个多位数123457和14569,如果从两个数中个取出一个数字并且将它们对调位置,可以使得新的两个数中有一个是9的倍数而另一个是11的倍数,请写出调换后的两位数。
数论中的整除性质与除法算法
数论中的整除性质与除法算法数论是数学的一个分支,研究的是整数的性质和它们之间的关系。
在数论中,整除性质是一个非常重要的概念,它与除法算法密切相关。
本文将介绍数论中的整除性质和除法算法,并探讨它们在数学和实际应用中的意义。
一、整除性质在数论中,我们使用符号“|”表示整除关系。
如果一个整数a除以另一个整数b,得到的商为整数且余数为0,我们就说a可以被b整除,记作b|a。
例如,4|12表示4可以被12整除。
整除性质有以下几个重要性质:1. 传递性:如果a|b且b|c,那么a|c。
这表示如果一个整数可以整除另外两个整数,则它也可以整除它们的乘积。
2. 反对称性:如果a|b且b|a,那么a=b或a=-b。
这表示如果两个整数互相整除,则它们必须相等或相反。
3. 整除的性质:如果a|b且a|c,那么a|(bx+cy),其中x和y是任意整数。
这表示如果一个整数同时整除两个整数,则它也可以整除它们的线性组合。
4. 整除的性质:如果a|b且a|c,那么a|(b±c),其中±表示加法或减法。
这表示如果一个整数同时整除两个整数,则它也可以整除它们的和或差。
二、除法算法除法算法是从给定的被除数和除数中计算商和余数的方法。
在数论中,我们常用的算法有两种:带余除法和终止除法。
1. 带余除法带余除法是最基本的除法算法,它描述了如何计算商和余数。
给定两个整数a和b(b≠0),我们要找到整数q和r,使得a=bq+r,其中0≤r<|b|。
带余除法的步骤如下:步骤1:令r=a。
步骤2:找到一个整数q,满足0≤r<|b|。
步骤3:计算商q和余数r。
例如,我们要计算15÷4的商和余数:步骤1:令r=15。
步骤2:找到一个整数q,使得0≤r<4。
我们找到的q=3。
步骤3:根据商q和余数r,计算15÷4的商为3,余数为3。
2. 终止除法终止除法是一种更高效的除法算法,它使用整除性质来求解商和余数。
五年级数论整除
整除知识点精讲整除的性质(1)末尾判断:2、5末位数字能被2、5整除;4、25末两位数字组成的两位数能被4、25整除;8、125末三位数字组成的三位数能被8、125整除.(2)截断求和:9(或3),一位截断后,各段之和能被9(或3)整除;99(或11、33),两位截断后,各段之和能被99(或11、33)整除;9(或3),乱切后,各段之和能被9(或3)整除.这种方法又叫乱切法.(3)截断作差法:11,一位截断后,奇数位之和与偶数位之和的差能被11整除;101,两位截断后,奇数段之和与偶数段之和的差能被101整除;1001(或7、11、13),三维截断后,奇数段之和与偶数段之和的差能被1001(或7、11、13)整除.课堂例题与练习<珍惜有限,创造无限>一、整除1.判断306371能否被7整除?能否被13整除?2.已知10□8971能被13整除,求□中的数.3.在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除.4.现有四个数:76550,76551,76552,76554.能不能从中找出两个数,使它们的乘积能被12整除?5.在所有五位数中,各位数字之和等于43且能够被11整除的数有哪些?6. 求满足下面条件的整数a 、b :1)8|375a a 2)72|761a b 3)99|14758a b7.如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是 。
8.设六位数N=y x 3795,又知N 是4的倍数,且被11除余3,那么x +y 等于几?9. 有0~9十个数字组成的十位数成为“十全数”. 那么:(1)能被11整除的最小十全数为 ;(2)能被11整除的最大十全数为 。
10. 将自然数1,2,3,……,依次写下去形成一个多位数“12345678910111213…”.当写到某个数N 时,所形成的多位数恰好第一次被45整除.请问:N 是多少?课后复习与检测课后总结:练习题A B.1.求无重复数字,能被75整除的五位数3652.将自然数1、2、3、4、5、6、7、8、9依次重复写下去组成一个1993位数,试问这个数能否被3整除?x y同时是11与25的倍数,求这个五位数.3.一个五位数4754.(1)一个多位数(两位及两位以上),它的各位数字互不相同,并且含有数字0.如果它能被11整除,那么这个多位数最小是多少?(2)一个多位数,它的各位数字之和为13,如果它能被11整除,那么这个多位数最小是多少?5.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?思考题6.黑板上写有两个多位数123457和14569,如果从两个数中个取出一个数字并且将它们对调位置,可以使得新的两个数中有一个是9的倍数而另一个是11的倍数,请写出调换后的两位数。
小学5年级整除的性质
2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。
a÷c b÷c (a±b) ÷c性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。
性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。
3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为2564,所以1864不能被25整除.⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
例如:29375=29000+375,因为1000是8与125的倍数,所以29000是8与125的倍数.又因为125|375,所以29375能被125整除.但因为8375,所以829375。
⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。
例如:判断123456789这九位数能否被11整除?解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为115,所以11 123456789。
再例如:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0.因为0是任何整数的倍数,所以11|0.因此13574是11的倍数。
五年级数论_整除
整除知识点精讲整除的性质(1)末尾判断:2、5末位数字能被2、5整除;4、25末两位数字组成的两位数能被4、25整除;8、125末三位数字组成的三位数能被8、125整除.(2)截断求和:9(或3),一位截断后,各段之和能被9(或3)整除;99(或11、33),两位截断后,各段之和能被99(或11、33)整除;9(或3),乱切后,各段之和能被9(或3)整除.这种方法又叫乱切法.(3)截断作差法:11,一位截断后,奇数位之和与偶数位之和的差能被11整除;101,两位截断后,奇数段之和与偶数段之和的差能被101整除;1001(或7、11、13),三维截断后,奇数段之和与偶数段之和的差能被1001(或7、11、13)整除.课堂例题与练习<珍惜有限,创造无限>一、整除1.判断306371能否被7整除?能否被13整除?2.已知10□8971能被13整除,求□中的数.3.在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除.4.现有四个数:76550,76551,76552,76554.能不能从中找出两个数,使它们的乘积能被12整除?5. 在所有五位数中,各位数字之和等于43且能够被11整除的数有哪些?6. 求满足下面条件的整数a 、b :1)8|375a a 2)72|761a b 3)99|14758a b7. 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是 。
8.设六位数N=y x 3795,又知N 是4的倍数,且被11除余3,那么x +y 等于几?9. 有0~9十个数字组成的十位数成为“十全数”. 那么:(1)能被11整除的最小十全数为 ;(2)能被11整除的最大十全数为 。
10. 将自然数1,2,3,……,依次写下去形成一个多位数“12345678910111213…”.当写到某个数N 时,所形成的多位数恰好第一次被45整除.请问:N 是多少?课后复习与检测课后总结:练习题A B.1.求无重复数字,能被75整除的五位数3652.将自然数1、2、3、4、5、6、7、8、9依次重复写下去组成一个1993位数,试问这个数能否被3整除?x y同时是11与25的倍数,求这个五位数.3.一个五位数4754.(1)一个多位数(两位及两位以上),它的各位数字互不相同,并且含有数字0.如果它能被11整除,那么这个多位数最小是多少?(2)一个多位数,它的各位数字之和为13,如果它能被11整除,那么这个多位数最小是多少?5.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?思考题6.黑板上写有两个多位数123457和14569,如果从两个数中个取出一个数字并且将它们对调位置,可以使得新的两个数中有一个是9的倍数而另一个是11的倍数,请写出调换后的两位数。
五年级思维拓展- 数的整除特征
数的整除特征知识要点整数是人类最早接触的最简单、最基础的数,因此,也是最早开始研究的数。
研究整数的性质及其运算的科学叫数论。
数的整除是数论的基础知识,熟悉和掌握有关数的整除概念、性质及其特征,为我们解决整除问题带来了方便。
1、整除的概念如果一个自然数a被一个非0自然数b除,余数为0,则称a能被b整除,记作a|b,如15能被3整除,记作3|15。
2、整除的性质性质1 如果数a,b都能被c整除,则(a+b)与(a-b)也能被c 整除。
性质2 如果数a能被b整除,c为整数,则积ac也能被b整除。
性质3 如果数a能被b整除,b又能被c整除,则a也能被c整除。
性质4 如果数a能同时被b,c整除,且b,c互质,则a能被b,c之积整除。
1、数的整除特征①任何数都不能被0整除,0能被任何数整除。
②任何自然数都能被1整除。
③能被2或5整除的数的特征:个位数字能被2或5整除。
④能被3或9整除的数的特征:各位数字之和能被3或9整除。
如123的各位数字之和是1+2+3=6,6能被3整除,不能被9整除,则123能被3整除,不能被9整除。
⑤能被4或25整除的数的特征:末两位数能被4或25整除。
如7684的末两位是84,84能被4整除,则7684能被4整除,再如7150的末两位是50,,50能被25整除,则7150能被25整除.⑥能被8、125整除的数的特征:末三位数能被8、125整除。
⑦一个数能够被11整除的特征:如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差(大数减小数)能被11整除,那么这个自然数能被11整除,否则这个数不能被11整除。
⑧能被7、11、13整除的数的特征:如果一个整数的奇千位数之和与偶千位数的数之和的差(大数减小数)能被7、11、13整除,那么这个数就能被7、11、13整除,否则这个数不能被7、11、13整除。
延伸:对于没有给出的一些数的整除特征,如6,12,15,……如何判断一个数能否被这些数整除呢,显然6=2×3,12=3×4,……等号右边的两个因数之间除1外没有相同因数,于是可以把一个数能否被6整除转化为同时能被2和3整除,把一个数能否被12整除转化为同时能被3和4整除.☜精选例题【例1】:五位数b a135能被9整除,这个五位数是多少?☝思路点拨:由一个数能被9整除的特征,应该有9|(5+a+1+3+b),即要9|(a+b)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数论之整除性课前预习九进制乔治·兰伯特是美国加利福尼亚州一所中学的数学教师,他对数学特别敏感而且有极大的研究兴趣。
他常年与数字、公式打交道,深感数学的神秘与魅力。
他开始注意一些巧合的事件,力图用数学的方式来破解巧合。
他发现:法国皇帝拿破仑与纳粹元首希特勒相隔一个多世纪,但是他们之间有很多数字巧合。
拿破仑1804年执政,希特勒1933年上台,相隔129年。
拿破仑1816年战败,希特勒1945年战败,相隔129年。
拿破仑1809年占领维也纳,希特勒在1938年攻人维也纳,也是相隔129年。
拿破仑1812年进攻俄国,希特勒在相隔129年后进攻苏联。
美国第16届总统林肯于1861年任总统,美国第35届总统肯尼迪于1961年任总统,时隔100年。
两人同在星期五并在女人的参与下被刺遇害。
接任肯尼迪和林肯的总统的名字都叫约翰逊。
更巧的是,杀害林肯的凶手出生于1829年,杀害肯尼迪的凶手出生于1929年,相隔又是100年。
兰伯特被这些数字迷住了,他经常将这些数字翻来覆去地分解组合。
他惊奇地发现,拿破仑和希特勒的巧合数129与林肯和肯尼迪的巧合数100,把它们颠倒过去分别是921和001,用921减去129,用100减去001,得数都能被9除尽:921-129=792,100-001=99;792+9=88,99÷9=11,结果都有一个十位和个位都相同的两位数的商。
兰伯特非常吃惊,他对9着了迷。
他发现将l、2、3、4、5、6、7、8、9加在一起是45,而4+5=9。
他还发现,用9乘以任何一个数,将所得到的积的各位数字相加,所得到的和总是9。
取任何一个数,比如说2004,将每位数加起来是2+0+0+4=6,用2004减去6结果得到1998,而1998÷9=222,能被9除尽。
他还总结出这样一个规律:把一个大数的各位数字相加得到一个和,再把这个和的各位数字相加又得到一个和。
这样继续下去,直到最后的数字之和是一个一位数为止。
最后这个数称为最初那个数的“数字根”,这个数字等于原数除;29的余数,这个计算过程被称作是“弃9法”。
懂得了弃9法,蓝伯特醒悟了不少,他进而想到,人类不应该10个10个地数数,也不应该12个12个数数,而应该9个9个地数数,实行9进制。
科学家认为,使用九进制,能使加减乘除运算变得更快更准确。
但目前对9的研究还很不够,9对人类来说极具神秘性。
包括兰伯特在内的数学家们正努力探索9的奥秘,希望在不久的将来对9的研究有更大的突破。
考试要求1、熟悉常见数的整除性质2、对于整除含义的理解,求解一些特定问题知识框架整除性质(1)2:个位是偶数的自然数(2)5:个位是0或5的自然数注:若一个数同时是2和5的倍数,则此数的个位一定为0(3)4、25:末两位能被4、25整除(4)8、125:末三位能被8、125整除(5)3、9:各个数位上的数之和能被3、9整除(6)7、11、13通用性质:①一个数如果是1001的倍数,即能被7、11、13整除.如201201=201×1001,则其必能被7、11、13整除②从末三位开始,三位一段,奇数段之和与偶数段之和的差如果是7、11、13的倍数,则其为7、11、13的倍数③末三位一段,前后均为一段,用较大的减去较小的,如果差为7、11、13的倍数,则其为7、11、13的倍数(7)11:奇数位数字之和与偶数位数字之和的差能被11整除(8)99:两位一段(从右往左),各段的和能被99整除(9)999:三位一段(从右往左),各段的和能被999整除注意:当同时能被多个数整除时,一般优先顺序为2和5确定个位,再4、25、8、125来确定十位、百位,接着考虑3和9,最后7、11、13,重难点1、熟记整除性质,若遇未学过的,则尽量分解成互质的几个数相乘,如:72=8×92、已知一个多位数的前半部分求后半部分时,可用估算,把原数看大些,利用除法求出余数,再把余数减去,如例93、看几个数相乘后末尾有多少个0,主要是看所有数中能分解出多少个2和5,如例8例题精讲【例1】在□内填上适当的数字,使五位数23□6□既能被3整除又能被5整除.【解析】五位数能被3和5整除,可先考虑5的整除性质,则个位为0或5,当个位为0时,根据3的整除性质,则百位可填1、4、7,当个位为5时,百位可填2154能被72整除,求x+y的值.【巩固】已知五位数xy【解析】能被72整除则一定是8和9的倍数,根据9的整除性质,则x+y=8或17;根据8的整除性质,则4xy必是8的倍数;当x+y=8时,可求出x=0,y=8;x=8,y=0;当x+y=17时,x=9,y=8,不可能是8的倍数,则x+y只能等于82、六位数3ABABAB是6的倍数,其中A、B表示不同的数字,这样的六位数共有多少个?【解析】六位数是6的倍数,则必为2和3的倍数,先考虑2的性质,可得B=0、2、4、6、8,再考虑3的性质,则3+3A+3B=3×(1+A+B),因3×(1+A+B)一定是3的倍数,则当B=0时,则A可取1-9(因A、B不同),共9个,从中可看出,当B取其他值时,A都有9种可能性,则六位数有5×9=45个【巩固】七位数17562□的末位数字是的时候,不管千位上是0到9中得哪一个数字,这个七位数都不是11的倍数【解析】若175a62b是11的倍数,则1+5+6+b的和与7+a+2的和差为11的倍数,即12+b与9+a的差,等于3+b-a或是a-b-3,则b可取0—7,当b=0时,a=3时,七位数是11的倍数;当b=1时,a=4时,七位数是11的倍数……经验证,b=7时七位数不是11的倍数3、由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【解】:各位数字和为1+3+4+5+7+8=28所以偶数位和奇数位上数字和均为14为了使得该数最大,首位必须是8,第2位是7,14-8=6那么第3位一定是5,第5位为1该数最大为875413.【巩固】求出一个最大的十位数,它由0,1,2,3,…,9这十个不同的数字组成,并且能被11整除?【解析】各位数字和为0+1+2+3+……+9=45所以偶数位和奇数位上数字和分别为17和28为了使得该数最大,首位必须是9,第2位是8该数最大为9876524134、从0,3,5,7四个数字中任选三个,排成能同时被2、3、5整除的三位数,这样的三位数共有几个?【解析】三位数能被2和5整除,则个位一定为0,能被3整除,则只能取0、5、7,所有的可能有507、570、705、750,共4个【巩固】一个三位数能同时被2、5、7整除,这样的三位数按从小到大的顺序排成一列,中间的一个是 .【解析】三位数能被2和5整除,则个位一定为0,【2、5、7】=70,则满足条件的三位数是140、210、280、350、420、490、560、630、700、770、840、910、980共13个,中间的一个是5605、求被11整除且数字和等于43的五位数[思路]:现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性质的运用要具体的数字,而现在没有,所以我们选择先从数字和入手【解析】:5位数数字和最大的为9×5=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8.这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989符合条件.【巩固】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?【解析】 两位数字中能被 11 整除的数字是 11、22、……99 这些数字中显然没有这样的数.(1) 三位数,设这个 三位数为 abc ,有 a+ b+ c= 13 和 a+ c- b= 11 ,显然有 a+ c= 12 , b= 1 ,所以就有 913 ,814,715, 616 ,517 , 418 , 319 这 7 个 .(2) 四 位 数 , 设 这 个 四 位 数 为 abcd , ⑴ 有 a+ b+c+ d= 13 和( a+ c )- ( b+ d )= 11 中,若a+ c= 12 , b+ d=1 则 a =3 或 4 有 2 种组合,b 和 d 有 2 种.因此有 4种;⑵ 有 a+b+c+d=13 和( b+ d )- ( a+ c )= 11 , a+ c= 1 , b+ d= 12 ,则只能 a= 1 , c= 0 , b 和 d 有 7 种组合.综上所述,这样的数有 7 +4 +7 =18 个.6、(2008解题能力展示六年级初赛)已知九位数2007□12□2既是9的倍数,又是11的倍数,那么,这个九位数是【解析】 九位数2007□12□2既是9的倍数,又是11的倍数,则一定是99的倍数,根据99的整除性质,可得2+00+7□+12+□2=99,可得九位数为2007112327、把三位数3ab 接连重复的写下去,共写1993个,所得的数3ab3ab3ab ……3ab ⏟ 1993个3ab恰是91的倍数,求【解析】91=13×7,则根据13、7的整除性质3ab 是91的倍数,则ab=64【巩固】如果200520052005200501n 个能被11整除,那么n 的最小值是 .分析: 20052005……200501⏟ n 个2005中奇数位减偶数位的差为(5-2)n +1=3n +1,当n=7时,(3n +1)是11的倍数,所以n 的最小值是7.8、2005×684×375×□最后4位都是0,请问□里最小是几?【解】:先分析1×2×3×4××10的积的末尾共有多少个0.由于分解出2的个数比5多,这样我们可以得出就看所有数字中能分解出多少个5这个质因数.而能分解出5的一定是5的倍数.注意:5的倍数能分解一个5,25的倍数分解出2个5,125的倍数能分解出3个5……最终转化成计数问题,如5的倍数有[10/5]=2个.2005=5×401 684=2×2×171 375=3×5×5×5前三个数里有2个质因子2,4个质因子5,要使得乘积的最后4位都是0,应该有4个质因子2和4个质因子5,还差2个质因子.因此□里最小是4.注意:看几个数相乘后末尾有多少个0,主要是看所有数中能分解出多少个2和5【巩固】从1到101这101个自然数连乘的末尾共有多少个连续的数码0?【解析】从1到101,看所有数中能分解出多少个5和2,2的个数够用,则5的倍数有100÷5=20个,25的倍数有100÷25=4个,则共有20+4=24个9、某个七位数1993□□□能够同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数是【解析】七位数能被2、3、4、5、6、7、8、9整除,则一定能被【2、3、4、5、6、7、8、9】=2520整除,把七位数看成1994000,1994000÷2520……680,则七位数为1994000-680=1993320【巩固】(2009年101中学小升初试题)在2009后面补上三个数字,组成一个七位数2009□□□,使得这个七位数能被2、3、4、5、6整除,那么当补上的三个数字的和最大时,所补的三个数字是【解析】七位数能被2、3、4、5、6整除,则一定能被【2、3、4、5、6】=60整除,把七位数看成2010000,2010000÷60……60,则七位数最大为2010000-60=2009940,9+4+0=13,要使补上的三个数字的和最大,则当七位数为2009880时,和最大为8+8+0=1610、某商场向顾客发出9999张购物券,每张上面印有一个四位数的号码,从0001到9999.如果号码的前面两位之和等于后面两位数字之和,则称为“幸运券”.例如号码0826,因0+8=2+6,所以叫做“幸运券”,试说明:商场发出的所有“幸运券”中,所有的“幸运券”的号码之和能被101整除.解:“配位求和法”,即号码为0000和9999的和一定能被101整除(9999=99×101),再接着应该是后两位增加1的,这样有四组数1001,0101,1010,0110;对应后面的为8998,9898,8989,9889这样每组数的和为1001+8998=9999,也能被101整除,因为总共有10000个号码(加上0000),所以肯定是对称出现的,所以肯定能被101整除.【巩固】求1~9999的所有数码和?【解析】在1~9999 前面补上0,共10000个数,利用“配位求和法”,则0+9999=9999,数码之和是0+9+9+9+9=36,同理1+9998=9999,数码之和是1+9+9+9+8=36……,共10000÷2=5000组,则所有的数码之和是36×5000=180000课堂检测1、(2003年一零一中学入学摸底考试第11题)既能被3整除,又能被7整除的最小三位数是 . 【解析】既能被3整除,又能被7整除,则一定能被21整除,则最小三位数是1052、(2003年一零一中学入学摸底考试第20题)一个五位数中各个数位上的数字和是42,则其中能被4整除的五位数是哪几个?【解析】五位数各个数位上的数字和是42,而五位数最大是99999,数字和是45,多了3,则五位数可由9、9、9、9、6或9、9、8、8、8或9、9、9、8、7组成,又因能被4整除的数个位一定是偶数,且末两位一定是4的倍数,即只有88、96满足,则五位数有99996、99888、98988、89988共4个3、(北京市一零一中学计算机培训班六年级04~05学年一学期第一次随堂测试第12题)在1~1000之间的自然数,能同时被2、3、5整除的数共有个.【解析】能同时被2、3、5整除的数一定能被60整除,则1000之内有1000÷60=16……40,共16+1=17个4、(2006年“我爱数学杯”数学竞赛)2006年6月11日是小明的生日.在2006的前边和后边各添上一个数,组成一个六位数,这个六位数正好能被他的出生月份数和日期数整除.这个六位数是 .【解析】这个六位数应能被2、3、11整除.由能被2整除,推知个位数是偶数.如果个位数是0,由能被11整除,推知首位是7,720060能被3整除,所以720060是解.如果个位数是2,由能被11整除,推知首位是9,920062不能被3整除,所以920062不是解.同理,由个位数4、6、8都得不到解.综上所述,这个六位数是720060.5、(06年十一学校选拔考试真题)一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有个.【解析】原两位数为10a+b,则交换个位与十位以后,新两位数为10b+a,两者之差为(10a+b)-(10b+a)=9(a-b)=27,即a-b=3,a、b为一位自然数,即96,85,74,63,52,41满足条件.6、(“祖冲之”杯数学邀请赛试题)求1,2,3,…,9999998,9999999这9999999个数中所有数码的和. 【解析】在这些数前面添一个数0,并不影响所有数码的和.将这1000万个数两两配对,因为0与9999999,1与9999998,…,4999999与5000000各对的数码和都是9×7=63.这里共有5000000对,故所有数码的和是63×5000000=315000000.复习总结1、重点掌握2、3、5、9、11、99的整除性质2、重点掌握求数码和的方法,如例10,此内容是杯赛常考类型,也可与余数问题结合起来家庭作业1、 在25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填 .【解析】能被11整除,则填12、 一个六位数23□56□是88的倍数,这个数除以88所得的商是 或 .【解析】是88的倍数,则是8和11的倍数,根据8的性质个位可填0或8,则千位可填0或8,则商可为2620或27113、 有一个首位数字是8的六位数,它能被9整除,并且各个数位上的数字都不相等.这样的六位数最小是几?【解析】最小为8012354、(2008走美五年级初赛)2871a a 是2008的倍数,那么a=【解析】是2008的倍数,则是4和8的倍数,则a=1、5、9,经验证,a=95、已知九位数2005□□□□是2010的倍数,这样的九位数共有多少个?【解析】九位数2005□□□□是2010的倍数,则20060000÷2010……200,则满足条件最大的数是20059800,最小的是20051760,共有(20059800-20051760)÷2010+1=5个6、把30个自然数1、2、3……30乘到一起,那么这个乘积的末尾会有 个0【解析】看2和5的倍数的个数,共7个7、三位数中能被11整除,且数字之和是11的有 个【解析】三位数,设这个 三位数为 abc ,有 a+ b+ c= 11 和 a+ c-b= 11 ,显然有 a+ c= 11 , b= 0 ,所以就有 209、308、407、506、605、704、803、902 共8 个 .8、(三帆培训班)一个四位数能被45整除,千位数字与个位数字之积是20,百位数字与十位数字组成的两位数是9的4倍,求这个四位数【解析】43659、(2005人大附中小升初真题)有 个四位数满足以下条件:它的各位数都是互不相同的奇数;它的每个数字都能整除它本身.【解析】各位数都是互不相同的奇数,则组成的数只能是1、3、5、7、9,每个数字都能整除它本身,则只能由1、3、5、9组成,个位必须是5,则共有3×2×1=6个10、李老师带领一班学生去种树,学生恰好被平分成4个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生 人.【分析】6672329=⨯,由于学生加上老师的总人数除以4余1,而23-1=22,不能被4整除.说明学生的人数是29-1=28(人).注:例题、巩固、检测、以及家庭作业均用此格式【巩固】奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.已知去时用了4天,回来时用了3天.问:学校距离百花山多少千米?【考点】等差数列应用题 【难度】☆☆☆ 【题型】解答【解析】解法一:这道题目关键是弄清题意,发现关键是要求出第一天拉练的距离,在这里可以用方程的思想来帮助解题,可以给四年级学生一个方程的初步认识,来回的距离是相同的,通过这点来做方程求解,设第一天拉练的距离是x ,则第二天为2x +,第三天为4x +,第四天6x +,第五天的距离为8x +,第六天的距离为10x +,第七天的12x +.且去时和来时的路程一样,则24681012x x x x x x x ++++++=+++++()()()()()(),则18x =,学校距离百花山84千米.解法二:七天所走路程形成了一个等差数列,公差为 2. 五、六、七三天合走路程比二、三、四三天合走路程多(8+10+12)-(2+4+6)=18. 来回路程相等,所以第一天走了18千米,学校距百花山18+20+22+24=84千米.【答案】84。