角平分线练习题(1)

合集下载

利用角平分线性质解决问题练习题

利用角平分线性质解决问题练习题

利用角平分线性质解决问题练习题角平分线是初中数学中一个重要的概念,它有着广泛的应用。

在解决一些几何问题时,我们可以利用角平分线的性质来简化计算,提高解题效率。

下面我将给出一些角平分线的问题练习题并逐一解答。

1. 题目:在三角形ABC中,角A的角平分线交BC边于点D,若AB=AC,AD=5cm,BD=3cm,求BC的长度。

解析:根据角平分线的性质,我们知道BD/DC = AB/AC。

代入已知条件,可得3/DC = 1,解得DC=3cm。

由此可以知道,BC = BD+DC = 3+3 = 6cm。

2. 题目:在平行四边形ABCD中,角A的角平分线交BC边于点E,若AB=8cm,AD=10cm,BE=6cm,求CE的长度。

解析:由于平行四边形的特性,我们可以得知AE=AD=10cm。

根据角平分线的性质,可以得到BE/EC = AB/AC,代入已知条件可得6/EC = 8/(10+AC),解得EC=16cm。

因此,CE的长度为16cm。

3. 题目:在正方形ABCD中,角A的角平分线交BC边于点E,知AE=5cm,求BE的长度。

解析:由于正方形的特性,我们知道BE=BC。

根据角平分线的性质,我们可以得到AE/EC = AB/AC,即5/EC = 1。

解得EC=5cm,因此BE也等于5cm。

4. 题目:在三角形ABC中,角A的角平分线交BC边于点D,且AD=BD,若AC=6cm,BD=2cm,求AB的长度。

解析:根据角平分线的性质,我们知道BD/DC = AB/AC。

代入已知条件可得2/DC = AB/6。

由于AD=BD,即DC=2cm。

代入可得2/2 = AB/6,解得AB=6cm。

5. 题目:在梯形ABCD中,AB∥DC,角BAD的角平分线交BC边于点E,若BE=6cm,ED=9cm,求CD的长度。

解析:根据梯形的特性,我们可以得知AD∥BC。

根据角平分线的性质,可以得到BE/EC = BA/AD。

代入已知条件可得6/EC =AB/(AD+ED),即6/EC = BA/CD。

角平分线性质和判定专题练习

角平分线性质和判定专题练习

角平分线性质和判定1. 如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,BE=CF 。

求证:AD 是△ABC 的角平分线。

FEA2、如图,AD 是△ABC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF 。

EF 与AD 交于G 。

AD 与EF 垂直吗证明你的结论。

GFE3、在△ABC 中,BD=DC ,∠1=∠2,求证:AD 平分∠BAC 。

4、 如图, 90=∠=∠C B ,M 是BC 中点,DM 平分ADC ∠。

求证:AM 平分DAB ∠|5、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠,求证:0180=∠+∠C AD6、如图,在△ABC 中,∠ACB=90°,AC=BC ,AD 是角平分线,求证:AB=AC+CDDA7、在△ABC 中,∠A=90°,BD 平分∠ABC ,交AC 于点D,BC 边上有一点E ,连接DE ,则AD 与DE 的关系为( ) A . AD >DE B. AD=DE C. AD ≦DE D. 不能确定D21 A?CEDAB~8、△ABC 中,∠B=60°,角平分线AF 、CE 相交于点O,试判断线段OE 、OF 之间的数量关系,并说明理由9.已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E 。

求证:(1)△BFC ≌△DFC ;(2)AD=DE%10.已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB =OC 。

(1) 如图1,若点O 在BC 上,求证:AB =AC ; (2) 如图2,若点O 在△ABC 的内部,求证:AB =AC ;11.图1,OP 是MON ∠的平分线,请利用该图形画一对以OP 所在直线为对称轴的全等三角形.)请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在ABC △中,ACB ∠是直角,60B ∠=,AD ,CE 分别是BAC ∠,BCA ∠的平分线,AD ,CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图3,在ABC △中,如果ACB ∠不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立若成立,请证明;若不成立,请说明理由.<OO BCAACB图2图1图1图2PN[O CD A图312.将两个全等的直角三角形ABC和DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE 所在的直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图1中的△DEB绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图2中画出变换后的图形,并直接写出(1)中的结论是否仍然成立;(3)若将图1中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图3.你认为(1)中的结论还成立吗若成立,请证明;若不成立,请说明此时它们满足的关系,并说明理由.~。

角平分线练习题

角平分线练习题

角平分线练习题一.选择题(共22小题)1.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,的长度是( )则DFA.2B.3C.4D.62.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则( )∠MAB=A.30°B.35°C.45°D.60°.观察图中尺规作图痕迹,下列说法错误的是( )3A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等D.∠AOE=∠BOE4.如图,OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,∠A=45°,若BD=2,则AB长为( )A .2B .2C .2D .35.如图,在△ABC 中,∠C=90°,AD 是∠BAC 的角平分线,若CD=2,AB=8,则△ABD的面积是( )A .6B .8C .10D .126.如图,Rt △ABC 中,∠C=90°,AD 是∠BAC 的平分线,CD=3,AB=10,则△ABD的面积等于( )A .30B .24C .15D .107.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD的长为( )A .3B .4C .5D .68.如图,BP 为∠ABC 的平分线,过点D 作BC 、BA 的垂线,垂足分别为E 、F,则下列结论中错误的是( )A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若长为( )ON=8cm,则OMA.4cm B.5cm C.8cm D.20cm10.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是( )A.M点B.N点C.P点D.Q点11.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处B.二处C.三处D.四处12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是( )A.6B.12C.18D.2413.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是( )个.A.1B.2C.3D.414.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE 全等的理由是( )A.SAS B.AAA C.SSS D.HL16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm,CD=3cm,则点D到AB的距离是( )A.2cm B.3cm C.4cm D.5cm17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是( )A.1B.2C.3D.418.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90° ②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.②③④D.①③19.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有( )t h i nA .2个B .3个C .4个D .1个21.如图,Rt △ABC 中,∠C=90°,BD 平分∠ABC 交AC 于点D ,AB=12,CD=3,则△DAB 的面积为( )A .12B .18C .20D .2422.如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,S △ABC =10,DE=2,AB=4,则AC 长是( )A .9B .8C .7D .6 评卷人得 分二.填空题(共13小题)23.如图,BD 平分∠ABC 交AC 于点D ,DE ⊥BC 于点E ,若AB=5,BC=6,S △ABC =9,则DE 的长为 .24.如图,OC 为∠AOB 的平分线,CM ⊥OB ,OC=5,OM=4,则点C 到射线OA 的距离为 .25.如图,已知△ABC的周长是32,OB,OC分别平分∠ABC和 .∠ACB,OD⊥BC于D,且OD=6,△ABC的面积是 26.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和 .∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是 27.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为  .28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB边的距离是 .n29.如图,在△ABC 中,∠BAC=60°,AD 平分∠BAC ,若AD=6,DE ⊥AB ,则DE的长为  .30.如图,直线a 、b 、c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有  处.31.如图,点O 在△ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC= .32.如图,在Rt △ABC 中,∠B=90°,CD 是∠ACD 的平分线,若BD=2,AC=8,则△ACD 的面积为  .33.如图,已知BD ⊥AE 于点B ,DC ⊥AF 于点C ,且DB=DC ,∠BAC=40°,∠ADG=130°,则∠DGF= .34.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果…,那么…、”的形式:如果 ,那么 .35.已知Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若BC=32,且BD :CD=9:7,则D 到AB 的距离为 . 评卷人得 分三.解答题(共5小题)36.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD=CD 、BE=CF .(1)求证:AD 平分∠BAC ;(2)直接写出AB +AC 与AE 之间的等量关系.37.如图已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C、D .求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.38.如图,四边形ABCD 中,AC 为∠BAD 的角平分线,AB=AD ,E 、F 两点分别在AB 、AD 上,且AE=DF .请完整说明为何四边形AECF 的面积为四边形ABCD的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC 于E、F.且BE=EO.(1)说明OF与CF的大小关系;的面积.(2)若BC=12cm,点O到AB的距离为4cm,求△OBC40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:AC=AE;(2)若点E为AB的中点,CD=4,求BE的长.2018年09月23日tcq372的初中数学组卷参考答案与试题解析一.选择题(共22小题)1.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是( )A.2B.3C.4D.6【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,故选:D.2.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则( )∠MAB=A.30°B.35°C.45°D.60°【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,.故选:B3.观察图中尺规作图痕迹,下列说法错误的是( )A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等D.∠AOE=∠BOE【解答】解:根据尺规作图的画法可知:OE是∠AOB的角平分线.A、OE是∠AOB的平分线,A正确;B、OC=OD,B正确;C、点C、D到OE的距离相等,C不正确;D、∠AOE=∠BOE,D正确.故选:C.4.如图,OP 是∠AOC 的平分线,点B 在OP 上,BD ⊥OC 于D ,∠A=45°,若BD=2,则AB长为( )A .2B .2C .2D .3【解答】 解:如图,过B 点作BE ⊥OA 于E ,∵OP 是∠AOC 的平分线,点B 在OP 上,BD ⊥OC 于D ,BD=2,∴BE=BD=2,在直角△ABE 中,∵∠AEB=90°,∠A=45°,∴AB=BE=2.故选:C.5.如图,在△ABC 中,∠C=90°,AD 是∠BAC 的角平分线,若CD=2,AB=8,则△ABD的面积是( )A .6B .8C .10D .12【解答】解:如图,过点D 作DE ⊥AB 于E ,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=AB•DE=×8×2=8.故选:B.6.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD的面积等于( )A.30B.24C.15D.10【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,∴DE=DC=3,∵AB=10,∴△ABD的面积=AB•DE=×10×3=15.故选:C.7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△的长为( )=15,则CDABDA.3B.4C.5D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD =AB•DE=×10•DE=15,解得DE=3..故选:A8.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为,则下列结论中错误的是( )E、FA.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF【解答】解:∵BP为∠ABC的平分线,DE⊥AC,DF⊥AB,∴DE=DF,B正确,不符合题意;在Rt△DBE和Rt△DBF 中,,∴Rt△DBE≌Rt△DBF,∴∠DBE=∠DBF,∠BDE=∠BDF,A、D正确,不符合题意,2DF不一定等于DB,C错误,符合题意,故选:C.9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为( )A.4cm B.5cm C.8cm D.20cm【解答】解:∵OA是∠BAC的平分线,OM⊥AC,ON⊥AB,∴OM=ON=8cm,故选:C.10.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是( )A.M点B.N点C.P点D.Q点【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB 的平分线上.所以点M到∠AOB两边的距离相等.故选A.11.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处B.二处C.三处D.四处【解答】解:如图所示,加油站站的地址有四处.故选:D.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是( )A.6B.12C.18D.24【解答】解:过D作DE⊥AB于E,∵点D到边AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=6,∵CD=DB,∴DB=12,∴BC=6+12=18,.故选:C13.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是( )个.A.1B.2C.3D.4【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE,故①正确;在Rt△ACD和Rt△AED 中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∠ADC=∠ADE,∴AC+BE=AE+BE=AB,故②正确;AD平分∠CDE,故④正确;∵∠B+∠BAC=90°,∠B+∠BDE=90°,∴∠BDE=∠BAC,故③正确;综上所述,结论正确的是①②③④共4个.故选:D.14.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【解答】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在∠A、∠B、∠C的角平分线的交点处.故选:C.15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE 全等的理由是( )A.SAS B.AAA C.SSS D.HL【解答】解:∵PD⊥AB,PE⊥AC,∴∠ADP=∠AEP=90°,在Rt△ADP和△AEP 中,∴Rt△ADP≌△AEP(HL),故选:D.16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若的距离是( )BC=4cm,CD=3cm,则点D到ABA.2cm B.3cm C.4cm D.5cm【解答】解:过D作DE⊥AB于E,∵在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,∴DE=DC=3cm,故选:B.17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是( )A.1B.2C.3D.4【解答】解:如图,过点P作PE⊥OB,∵OC是∠AOB的平分线,点P在OC上,且PD⊥OA,PE⊥OB,∴PE=PD,又PD=2,∴PE=PD=2.故选:B.18.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90° ②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.②③④D.①③【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选:A.19.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选:B.20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有( )A.2个B.3个C.4个D.1个【解答】解:∵AD平分∠BAC∴∠DAC=∠DAE∵∠C=90°,DE⊥AB∴∠C=∠E=90°∵AD=AD∴△DAC≌△DAE∴∠CDA=∠EDA∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC∴BE+AC=AB∴④BE+AC=AB正确;∵∠BDE=90°﹣∠B,∠BAC=90°﹣∠B∴∠BDE=∠BAC∴②∠BAC=∠BDE正确.故选:B.21.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,则的面积为( )△DABA.12B.18C.20D.24【解答】解:过D作DE⊥AB,∵Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,∴DE=DC=3,∴△DAB的面积=,故选:B.22.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC长是( )A.9B.8C.7D.6【解答】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∵S△ADB=AB×DE=×4×2=4,∵△ABC的面积为10,∴△ADC的面积为10﹣4=6,∴AC×DF=6,∴AC×2=6,∴AC=6故选:D.二.填空题(共13小题)23.如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,若AB=5,BC=6,S△ .=9,则DE 的长为 ABC【解答】解:作DF⊥AB于F,∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,∴×AB×DF +×BC×DE=S△ABC ,即×5×DE +×6×DE=9,解得,DE=,.故答案为:24.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA .的距离为 3【解答】解:过C作CF⊥AO,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=5,OM=4,∴CM=3,∴CF=3,故答案为:3.25.如图,已知△ABC的周长是32,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=6,△ABC的面积是 96 .【解答】解:过O作OM⊥AB,ON⊥AC,连接AO,∵OB,OC分别平分∠ABC和∠ACB,∴OM=ON=OD=6,∴△ABC 的面积为:×AB×OM +BC×DO +NO=(AB+BC+AC)×DO=32×6=96.故答案为:96.26.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和 .∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是 42【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE +×AC×OF +×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.27.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为 4cm .【解答】解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到 .AB边的距离是 16【解答】解:过D作DE⊥AB于E,则DE的长度就是D到AB边的距离.∵AD平分∠CAB,∠ACD=90°,DE⊥AB,∴DC=DE=16(角平分线性质),.故答案为:1629.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE 的长为 3 .b【解答】解:∵∠BAC=60°,AD 平分∠BAC ,∴∠DAE=∠BAC=30°.在Rt △ADE 中,DE ⊥AB ,∠DAE=30°,∴DE=AD=3.故答案为:3. 30.如图,直线a 、b 、c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 4 处.【解答】解:∵△ABC 内角平分线的交点到三角形三边的距离相等,∴△ABC 内角平分线的交点满足条件;如图:点P 是△ABC 两条外角平分线的交点,过点P 作PE ⊥AB ,PD ⊥BC ,PF ⊥AC ,∴PE=PF ,PF=PD ,∴PE=PF=PD ,∴点P 到△ABC 的三边的距离相等,∴△ABC 两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.t h 故答案为:4.31.如图,点O 在△ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC= 120° .【解答】解:∵点O 在△ABC 内,且到三边的距离相等,∴点O 是三个角的平分线的交点,∴∠OBC +∠OCB=(∠ABC +∠ACB )=(180°﹣∠A )=(180°﹣60°)=60°,在△BCO 中,∠BOC=180°﹣(∠OBC +∠OCB )=180°﹣60°=120°.故答案为:120°.32.如图,在Rt △ABC 中,∠B=90°,CD 是∠ACD 的平分线,若BD=2,AC=8,则△ACD 的面积为 8 .【解答】解:作DH ⊥AC 于H ,∵CD 是∠ACD 的平分线,∠B=90°,DH ⊥AC ,∴DH=DB=2,∴△ACD 的面积=×AC ×DH=×8×2=8,l 故答案为:8.33.如图,已知BD ⊥AE 于点B ,DC ⊥AF 于点C ,且DB=DC ,∠BAC=40°,∠ADG=130°,则∠DGF= 150° .【解答】解:∵BD ⊥AE 于B ,DC ⊥AF 于C ,且DB=DC ,∴AD 是∠BAC 的平分线,∵∠BAC=40°,∴∠CAD=∠BAC=20°,∴∠DGF=∠CAD +∠ADG=20°+130°=150°.故答案为:150° 34.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果…,那么…、”的形式:如果 一个点在角的平分线上 ,那么 它到这个角两边的距离相等 .【解答】解:如果一个点在角平分线上,那么它到角两边的距离相等.35.已知Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若BC=32,且BD :CD=9:7,则D 到AB 的距离为 14 .【解答】解:如图,过点D 作DE ⊥AB 于E ,∵BC=32,BD :CD=9:7,∴CD=32×=14,∵∠C=90°,AD平分∠BAC,∴DE=CD=14,即D到AB的距离为14..故答案为:14三.解答题(共5小题)36.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.【解答】(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵∴△BDE≌△CDF,∴DE=DF,即AD平分∠BAC;(2)AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∵,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.37.如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;的垂直平分线.(2)OE是CD【解答】证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=DE,∴∠ECD=∠EDC;(2)在Rt△OCE和Rt△ODE 中,,∴Rt△OCE≌Rt△ODE(HL),∴OC=OD,又∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.38.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD 的一半.【解答】解:分别作CG⊥AB与G,CH⊥AD与H,∵AC为∠BAD的角平分线,∴CG=CH,∵AB=AD,∴△ABC面积=△ACD面积,又∵AE=DF,∴△AEC面积=△CDF面积,∴△BCE面积=△ABC面积﹣△AEC面积,△BCE面积=△ACD面积﹣△CDF面积,∴△BCE面积=△ACF面积,∵四边形AECF面积=△AEC面积+△ACF面积,四边形AECF面积=△AEC面积+△BCE面积,∴四边形AECF面积=△ABC面积,又∵四边形ABCD面积=△ABC面积+△ACD面积,又∵四边形ABCD面积=2△ABC面积,∴四边形AECF面积为四边形ABCD面积的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC 于E、F.且BE=EO.(1)说明OF与CF的大小关系;(2)若BC=12cm,点O到AB的距离为4cm,求△OBC的面积.【解答】解:(1)OF=CF.理由:∵BE=EO,∴∠EBO=∠EOB,∵△ABC中,∠ABC与∠ACB的平分线交于点O,∴∠EBO=∠OBC,∴∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;(2)过点O作OM⊥BC于M,作ON⊥AB于N,∵△ABC中,∠ABC与∠ACB的平分线交于点O,点O到AB的距离为4cm,∴ON=OM=4cm,∴S△OBC=BC•OM=×12×4=24(cm2).40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:AC=AE;(2)若点E为AB的中点,CD=4,求BE的长.【解答】(1)证明:∵在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∠AED=∠C=90°,∠CAD=∠EAD,在△ACD和△AED中∴△ACD≌△AED,∴AC=AE;(2)解:∵DE⊥AB,点E为AB的中点,∴AD=BD,∴∠B=∠DAB=∠CAD,∵∠C=90°,∴3∠B=90°,∴∠B=30°,∵CD=DE=4,∠DEB=90°,∴BD=2DE=8,由勾股定理得:BE==4. 。

角的平分线典型试题

角的平分线典型试题

角的平分线典型试题一.选择题(共13小题)1.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于1/2 CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD 是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称2.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于1/2MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.43.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°4.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6 B.7 C.8 D.95.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1 B.2 C.3 D.46.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.57.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=30,BD:CD=3:2,则点D到AB的距离为()A.18 B.12 C.15 D.不能确定8.三角形内到三条边的距离相等的点是()三角形的三条角平分线的交点B.三角形的三条高的交点C.三角形的三条中线的交点D.三角形的三边的垂直平分线的交点9.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则 S△ABD:S△ACD=()A.4:3 B.3:4 C.16:9 D.9:1611.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.512.如图,三角形ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③S⊿BFD/S⊿CED=BF/CE ;④EF一定平行BC.其中正确的是()A.①②③B.②③④C.①③④D.①②③④13.如图所示,若AB∥CD,AP,CP分别平分∠BAC和∠ACD,PE⊥AC于E,且PE=3cm,则AB与CD之间的距离为()A.3cm B.6cm C.9cm D.无法确定14.已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10,BC=8,CA=6,则点O到三边AB、AC和BC的距离分别等于()A.2、2、2B.3、3、3C.4、4、4D.2、3、515.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,则∠MAB的度数是()A.35°B.45°C.55°D.65°16.如图.△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到AC的距离为2,则点P到AB的距离为()A.1 B.2 C.3 D.417.如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F,则下列结论正确的是()A.点F在BC边的垂直平分线上B.点F在∠BAC的平分线上C.△BCF是等腰三角形D.△BCF是直角三角形18.如图所示,AC平分∠BAD,CE⊥AB,且2AE=AB+AD,则∠ADC于∠B的关系为()A.相等B.互补C.和为165°D.和为150°19.如图所示,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.正确的是()A.①和②B.②和③C.①和③D.全对20.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°21.在△ABC中,如图,CD平分∠ACB,BE平分∠ABC,CD与BE交于点F,若∠DFE=120°,则∠A=()A.30°B.45°C.60°D.90°22.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是()A.10 B.15 C.20 D.3023.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.424.如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为45°.25.如图,在△ABC中,∠B=∠C=60°,点D、E分别在边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠GEC= 40°.26.如图,△BEF的内角∠EBF平分线BD与外角∠AEF的平分线交于点D,过D作DH∥BC 分别交EF、EB于G、H两点.下列结论:①S△EBD:S△FBD=BE:BF;②∠EFD=∠CFD;③HD=HF;④BH-GF=HG,其中正确结论的个数有()A.只有①②③ B.只有①②④C.只有③④ D.①②③④二.填空题(共10小题)1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为.2.如图,∠BAC=30°,P是∠BAC平分线上一点,PM∥AC,PD⊥AC,若AM=8cm,则PD= .3.如图,△ABC中,∠C=90°,DE为AB的垂直平分线,E为垂足,且EC=DE,则∠B 的度数为.4.如图,已知△ABC中,∠B,∠C的平分线相交于点F,过点F作DE∥BC交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为.5.如图,在Rt△ABC中,∠C=90°,AM、BN分别平分∠CAB、∠ABC,AM与BN相交于点O,OD⊥AB,AB=10,AC=8,BC=6,则OD= .6.在△ABC中,∠BAC=80°,点P是△ABC的外角∠DBC、∠BCE的平分线的交点,连接AP,则∠DAP= 度.7.已知:如图,△ABC中,AD平分∠BAC,BD⊥AD于D,点E是BC边的中点,AB=8,AC=12,则DE长为.8.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,有下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD;⑤BE=CH.其中你认为正确的有.(填序号就可以)9.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(1,1)的点共有个.10.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在∠A的角平分线上,且距A1cm处,理由是.三.解答题(共7小题)1.已知△ABC的角平分线AP与边BC的垂直平分线PM相交于点P,作PK⊥AB,PL⊥AC,垂足分别是K、L,求证:BK=CL.2.作图题:要求尺规作图,不写作法,保留作图痕迹,写出结论.(1)如图所示,104国道OA和327国道OB在曲阜市相交于O点,在∠AOB的内部有工厂C和D,现要建一个货站P,使P到OA和OB的距离相等,且使PC=PD,用尺规作出P 点的位置.(2)在图中直线上找到一点M,使它到A、B两点的距离和最小.3.如图,△ABC的角平分线AD、BE相交于点P,(1)在图1中,分别画出点P到边AC、BC、BA的垂线段PF、PG、PH,这3条线段相等吗?为什么?(2)在图2中,∠ABC是直角,∠C=60°,其余条件都不变,请你判断并写出PE与PD之间的数量关系,并说明理由.4.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.5.已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A 的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA.6.已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.7.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.8.如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线EF分别交AB,BC的延长线于点F,E.试说明:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.9.如图,△ABC中,角平分线BO与CO相交于点O,OE∥AB交BC于E,OF∥AC交BC 于F,BC=10,求△OEF的周长.10.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB 于点E.如果点M是OP的中点,则DM的长是()A.211.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15212.如图,在△ABC中,∠A=90°,∠C=45°,AB=6cm,∠ABC的平分线交AC于点D,DE⊥BC,垂足为E,则DC+DE= 6cm.13.如图所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC 的度数.14.如图,AD是△ABC的外角平分线,CD⊥AD于D,E是BC的中点.求证:(1)DE∥AB;(2)DE= 1/2(AB+AC).15.如图,已知AD∥BC,CD⊥AD于D点,交BC于C,点E是CD上一点.(1)若AE=BE,∠AEB=90°,求证:AD+BC=CD;(2)若AE,BE分别平分∠BAD和∠ABC,求证:AD+BC=AB.16.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.17.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).。

尺规作图:角平分线专项训练(含解析)印刷版

尺规作图:角平分线专项训练(含解析)印刷版

尺规作图:角平分线专项训练一.选择题(共8小题)1.数学课上,小丽用尺规这样作图:(1),以点O为圆心,任意长为半径作弧,交OA,OB于D,E两点;(2)分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于点C;(3)作射线OC并连接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCD C.OD=CD D.OC垂直平分DE2.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上.A.0 B.1 C.2 D.35.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.O、E两点关于CD所在直线对称D.C、D两点关于OE所在直线对称6.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB、AC于E、F两点;再分别以E、F为圆心,大于EF长为半径作圆弧,两条圆弧交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC的大小是()A.20°B.25°C.30°D.40°7.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(3a﹣1,b),则a与b的数量关系为()A.3a+b=1 B.3a+b=﹣1 C.3a﹣b=1 D.a=b8.如图,AE与BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是()A.AE、BF是△ABC的内角平分线B.CG也是△ABC的一条内角平分线C.AO=BO=CO D.点O到△ABC三边的距离相等二.填空题(共3小题)9.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为.10.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为.11.如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F为圆心,大于EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H.若∠D=116°,则∠DHB 的大小为度.三.解答题(共4小题)12.如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.13.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.14.在学完全等三角形后,李老师给出了下列题目:求证:角的内部到角的两边距离相等的点在角的平分线上.已知:求证:证明:15.在本学期我们学习了角平分线的性质定理和判定定理,那么,你还是否记得它们的具体内容.(1)请把下面两个定理所缺的内容补充完整:角平分线性质定理:角平分线上的点到的距离相等.角平分线判定定理:到角的两边距离相等的点在.(2)老师在黑板上画出了图形,把判定定理的已知、求证写在了黑板上,可是有些内容不完整,请你把内容补充完整已知:如图1,点P是∠AOB内一点,PD⊥AO,PE⊥OB,垂足分别为D、E,且PD=,求证:点P在∠AOB的上(3)请你完成证明过程:(4)知识运用:如图2,三条公路两两相交,现在要修建一加油站,使加油站到三条公路的距离相等,加油站可选择的位置共有处.尺规作图:角平分线专项训练参考答案与试题解析一.选择题(共8小题)1.数学课上,小丽用尺规这样作图:(1),以点O为圆心,任意长为半径作弧,交OA,OB于D,E两点;(2)分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于点C;(3)作射线OC并连接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCD C.OD=CD D.OC垂直平分DE【分析】利用画法可判定OE=OD,CE=CD,则根据“SSS”可判定△OCE≌△OCD,于是可对A、B、C进行判断;然后根据线段垂直平分线的判定方法可对D进行判断.【解答】解:由作法得OE=OD,CE=CD,而OC为公共边,所以可根据“SSS”可判定△OCE≌△OCD,所以∠1=∠2,S△OCE=S△OCD,因为OE=OD,CE=CD,所以OC垂直平分DE.故选C.2.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据作图得出符合全等三角形的判定定理SSS,即可得出答案.【解答】解:在△OEC和△ODC中,∵,∴△OEC≌△ODC(SSS),故选D.3.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°【分析】根据角平分线的作法可得AG是∠CAB的角平分线,然后再根据角平分线的性质可得∠CAD=∠CAB=25°,然后再根据直角三角形的性质可得∠CDA=90°﹣25°=65°.【解答】解:根据作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选:C.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上.A.0 B.1 C.2 D.3【分析】由角平分线的作法可知AD是BAC的平分线,由直角三角形两锐角互余可知∠CAB=60°,从而可知∠BAD=30°,由此可将∠BAD=∠B=30°,从而得到AD=DB,根据到线段两端距离相等的点在线段的垂直平分线上可判断③;由三角形的外角的性质可知∠ADC=∠B+∠BAD可判断.【解答】解:由角平分线的作法可知①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°.∵AD是∠BAC的平分线,∴∠BAD=30°.∴∠BAD=∠B=30°.∴AD=DB.∴点D在AB的垂直平分线上.∴③正确.∵∠ADC=∠B+∠BAD,∴∠ADC=30°+30°=60°.故②正确.故选:D.5.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.O、E两点关于CD所在直线对称D.C、D两点关于OE所在直线对称【分析】连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图不能得出CD平分OE,判断C错误;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE 是CD的垂直平分线,判断D正确.【解答】解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意;D、根据作图得到OC=OD,射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;故选C.6.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB、AC于E、F两点;再分别以E、F为圆心,大于EF长为半径作圆弧,两条圆弧交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC的大小是()A.20°B.25°C.30°D.40°【分析】根据题意可得AH平分∠CAB,再根据平行线的性质可得∠CAB的度数,再根据角平分线的性质可得答案.【解答】解:由题意可得:AH平分∠CAB,∵AB∥CD,∴∠C+∠CAB=180°,∵∠ACD=140°,∴∠CAB=40°,∵AH平分∠CAB,∴∠HAB=20°,∴∠AHC=20°.故选A.7.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(3a﹣1,b),则a与b的数量关系为()A.3a+b=1 B.3a+b=﹣1 C.3a﹣b=1 D.a=b【分析】由题意知点P在第二象限角平分线上,即可得3a﹣1=﹣b,从而得出答案.【解答】解:由题意知,点P在第二象限角平分线上,∴3a﹣1=﹣b,则3a+b=1,故选:A.8.如图,AE与BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是()A.AE、BF是△ABC的内角平分线B.CG也是△ABC的一条内角平分线C.AO=BO=CO D.点O到△ABC三边的距离相等【分析】根据三角形角平分线的性质:三角形三条角平分线交于一点,且到三边的距离相等可以作判断.【解答】解:A、由尺规作图的痕迹可知:AE、BF是△ABC的内角平分线,所以选项A正确;B、根据三角形三条角平分线交于一点,且点O在CG上,所以CG也是△ABC的一条内角平分线,所以选项B正确;C、三角形三边中垂线的交点到三个顶点的距离相等,所以选项C不正确;D、因为角平分线的点到角两边的距离相等得:点O到△ABC三边的距离相等,所以选项D正确;本题选择说法不正确的,故选C.二.填空题(共3小题)9.如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为115°.【分析】利用角平分线的作法可得出答案.【解答】解:∵根据作法可得AG是∠CAB的角平分线,∴∠DAC=∠CAB=×50°=25°,∴∠ADB=∠DAC+∠ACD=25°+90°=115°。

角平分线专题

角平分线专题

角平分线专题练习1、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE2、如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .3、已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。

求证:∠B+∠ADC=180°4、在△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q ,求证:AB+BP=BQ+AQ 。

P E DCB AD A B C D A B C5、如图,已知在△ABC中(AB>AC),D为BC的中点,AE平分∠BAC,,过点D的直线DE⊥AE,交AB于G,交AC延长线于H。

求证:(1)AG=AH;(2)BG=CH=12(A B-AC)6、如图,已知在△ABC中,AD平分∠BAC,AD的垂直平分线交BC的延长线于点F。

求证:∠BAF=∠ACF7、如图,AD平分∠BAC,EF垂直平分AD交BC延长线于F。

求证:∠B=∠EAF8、如图,△ABC中,BC的垂直平分线DF与∠BAC的角平分线交于点F,DM⊥AB于M,DN⊥AC于N。

求证:BM=CN。

F E D C B A 9、如图,△ABC 中,AB=AC ,且∠BAC=120°,AB 的垂直平分线EF 交BC 于F 。

求证:CF=2BF10、如图,△ABC 中,D 为BC 边上一点,BE ⊥AD 的延长线于E ,CF ⊥AD 于F ,BE=CF. 求证:D 为BC 的中点.11、如图所示,ABC 中,D 为BC 的中点,过D 点直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连接EG 、EF 。

(1)求证:BG=CF ;(2)请你判断BE+CF 的大小关系,并说明理由。

12、如图,∠ABC=90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD=DE ,点F 是AE 的中点,FD 与AB 相交于点M 。

角的平分线问题专项训练(30道)

角的平分线问题专项训练(30道)

角的平分线问题专项训练(30道)【题型1 单角平分线型】1.如图,已知∠AOB=90°,∠BOC=60°,OD平分∠AOC.求∠BOD的度数.2.如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=17°,求∠AOC 的度数.∠EOC,若∠DOE=3.如图,OB,OE是∠AOC内的两条射线,OD平分∠AOB,∠BOE=1255°,∠AOC=140°,求∠EOC的度数.4.如图,O是直线AB上的一点,∠AOE=∠FOD=90°,OB平分∠COD,且∠BOC=28°.(1)求∠DOE和∠BOF的度数;(2)求∠COE+∠DOE的度数.5.如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=40°,求∠DOE的度数;∠DOB,求∠AOC的度数.(2)如图2,若∠COE=136.如图,已知∠AOB﹣∠COD=60°,OB是∠DOE的平分线.设∠AOC的度数为x,(1)用含x的式子表示∠BOD的度数;(2)若∠DOE+∠AOC=97°16',求∠AOC的度数.7.如图,点A、O、C在一直线上,OE是∠BOC的平分线,∠EOF=90°,∠1比∠2大75°.(1)求∠2的度数.(2)求∠COF的度数.8.如图,∠AOB=∠DOC=90°,OE平分∠AOD,反向延长射线OE至F.(1)∠AOD和∠BOC;(填“互余”“相等”“互补”或“没有特殊关系”)(2)OF是∠BOC的平分线吗?为什么?(3)反向延长射线OA至G,∠COG与∠FOG的度数比为2:5,求∠AOD的度数.9.已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=10°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数;(3)试猜想∠AOM与∠NOC之间的数量关系,并说明理由.10.如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON 的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.【题型2 双角平分线(不交叉型)】11.如图,∠AOC:∠COD:∠DOB=3:4:5,OM平分∠AOC,ON平分∠DOB,且∠MON =96°,求∠AOB的度数.12.如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=70°,求∠COD和∠EOC的度数;(2)写出∠COD与∠EOC具有的数量关系并说明理由.13.如图,已知∠AOD=156°,∠DON=48°,射线OB,OM,ON在∠AOD内部,OM平分∠AOB,ON平分∠BOD.(1)求∠MON的度数;(2)若射线OC在∠AOD内部,∠NOC=23°,求∠COM的度数.14.已知:OC,OD是∠AOB内部的射线,OE平分∠AOC,OF平分∠BOD.(1)若∠AOB=120°,∠COD=30°,如图∠,求∠EOF的度数;(2)若∠AOB=α,∠COD=β,如图∠,如图∠,请直接用含α、β的式子表示∠EOF的大小;图∠结论:;图∠结论:.15.已知OD、OE分别是∠AOB、∠AOC的角平分线.(1)如图1,OC是∠AOB外部的一条射线.∠若∠AOC=32°,∠BOC=126°,则∠DOE=°;∠若∠BOC=164°,求∠DOE的度数;(2)如图2,OC是∠AOB内部的一条射线,∠BOC=n°,用n的代数式表示∠DOE的度数.16.如图,已知∠AOB内部有三条射线,若OE平分∠AOD,OC平分∠BOD.(1)若∠AOB=100°,求∠EOC的度数;(2)若∠AOB=70°,如果将题中“平分”的条件改为∠EOA=14∠AOD,∠DOC=23∠DOB且∠DOE:∠DOC=3:2,求∠EOC的度数.17.已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON 的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM 的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.18.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.19.将一副三角尺OAB与OCD进行如下按摆放,其中两三角尺的一顶点重合于点O,∠AOB =60°,∠COD=45°,OM平分∠AOD,ON平分∠COB.(1)当点D在OB边上时(如图1),求∠MON的度数;(2)当点D不在OB边上时(如图2或3),其中∠BOD=a,求∠MON的度数.20.已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)(1)如图1摆放,点O、A、C在一直线上,则∠BOD的度数是多少?(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【题型3 双角平分线(交叉型)】21.如图,O为直线AB上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,若∠BOC=54°,求∠COE和∠DOF的度数.22.如图,OC在∠AOB外部,OM、ON分别是∠AOC、∠BOC的平分线.(1)若∠AOB=100°,∠BOC=60°,求∠MON的度数.(2)如果∠AOB=α,∠BOC=β,其它条件不变,请直接写出∠MON的值(用含α,β式子表示).23.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,求∠MON的度数.(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=°.(直接写出结果)(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?请说明理由.24.如图,∠AOC=5∠BOC,OD平分∠AOB,OE平分∠AOD,且∠COE=70°.(1)求∠AOB的度数;(2)若∠BOD+∠BOF=90°,求∠BOF的度数.25.如图,已知∠AOB是直角,∠BOC在∠AOB的外部,且OF平分∠BOC,OE平分∠AOC.(1)当∠BOC=60°时,求∠EOF的度数;(2)当∠BOE=20°,求∠BOC的度数.26.已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE.(1)如图1,若OC平分∠AOD,且∠BOE=3∠DOE,∠COE=70°,求∠BOE的度数.(2)如图2,若∠BOD:∠COD=3:2,过点O引射线OF平分∠COD,OE是∠BOC的平分线,且∠DOE=12°,求∠EOF的度数.27.已知:如图∠所示,OC是∠AOB内部一条射线,且OE平分∠AOC,OF平分∠BOC.(1)若∠AOC=80°,∠BOC=50°,则∠EOF的度数是.(2)若∠AOC=α,∠BOC=β,求∠EOF的度数,并根据计算结果直接写出∠EOF与∠AOB 之间的数量关系.(写出计算过程)(3)如图∠所示,射线OC在∠AOB的外部,且OE平分∠AOC,OF平分∠BOC.试着探究∠EOF与∠AOB之间的数量关系.(写出详细推理过程)28.如图,已知O为直线AD上一点,OB是∠AOC内部的一条射线且满足∠AOB与∠AOC 互补,OM,ON分别为∠AOC,∠AOB的平分线.(1)∠COD与∠AOB相等吗?请说明理由;(2)∠AOB=30°,试求∠MON的度数;(3)若∠MON=α,请直接写出∠AOC的度数.(用含α的式子表示)29.如图,已知∠AOB=58°,∠AOC在∠AOB外部,ON、OM分别平分∠AOC、∠BOC.(1)若∠AOC=32°,则∠MON=;(2)若∠AOC=n°(0<n<90°),ON、OM依旧分别平分∠AOC、∠BOC,∠MON的大小是否改变?;(3)试说明(2)的结论的理由.30.已知∠AOD=160°,OB为∠AOD内部的一条射线(1)如图1,若OM平分∠AOB,ON平分∠BOD,∠MON的度数为;(2)如图2,∠BOC在∠AOD内部(∠AOC>∠AOB),且∠BOC=20°,OF平分∠AOC,OG平分∠BOD(射线OG在射线OC左侧),求∠FOG的度数;(3)在(2)的条件下,∠BOC绕点O运动过程中,若∠BOF=8°,求∠GOC的度数.。

角平分线的性质专项练习(含解析)

角平分线的性质专项练习(含解析)

角平分线的性质专项练习一、单选题知识点一:角平分线的有关证明1.在Rt ABC 中,90B ︒∠=,AD 平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若3BD =,则DE 的长为( )A .3B .32C .2D .62.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .53.如图,在ABC 中,90,C AD ∠=平分,BAC DE AB ∠⊥于点,E 给出下列结论.CD ED =①;,AC BE AB +=② ③BDE BAC ∠=∠, DA ④平分CDE ∠,::BDE ACD S S AB AC =⑤其中正确的有( )个A .5B .4C .3D .2知识点二:角平分线的性质定理4.如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .525.如图,在△ABC 中,AB =AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB ,AC 的距离相等;③∠BDE =∠CDF ;④∠1=∠2;其中正确的有( )A .1个B .2个C .3个D .4个6.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .27.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A.24 B.30 C.36 D.42知识点三:角平分线判定定理=,则()8.如图,AC AD=,BC BDA.CD垂直平分AD B.AB垂直平分CDC.CD平分ACB∠D.以上结论均不对9.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别E、F、G,且PF=PG=PE,则∠BPD=().A.60°B.70°C.80°D.90°10.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等11.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点知识点四:角平分线性质的实际应用12.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .113.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,若AB=14,S △ABD=14,则CD=( )A .4B .3C .2D .114.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .6B .5C .4D .3知识点五:尺规作图-角平分线15.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS16.如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为()A .40︒B .45︒C .50︒D .60︒17.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长18.如图,观察图中尺规作图痕迹,下列说法错误的是( )A .OE 是AOB ∠的平分线B .OC OD =C .点C,D 到OE 的距离不相等D .AOE BOE ∠=∠二、填空题 知识点一:角平分线的有关证明19.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.20.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。

《角平分线》计算题及答案(提高)

《角平分线》计算题及答案(提高)

《角平分线》计算题及答案(提高)1.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC度数是α,∠MON的大小是否发生改变?为什么?2.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.3.如图,BD平分∠ABC,BE把∠ABC分成2:5的两部分,∠DBE=21°,求∠ABC的度数.4.(1)如图①,∠AOB和∠COD都是直角,请你写出∠AOD和∠BOC之间的数量关系,并说明理由;(2)当∠COD绕点O旋转到如图②所示的位置时,上述结论还成立吗?并说明理由.(3)如图③,当∠AOB=∠COD=β(0°<β<90°)时,请你直接写出∠AOD和∠BOC之间的数量关系.(不用说明理由)5.小丽将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,求∠CBD的度数.6.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.7.小倩把一副三角板的直角顶点O重叠在一起.(1)如图1,当OB平分∠COD时,∠AOD与∠BOC的和是多少度?(2)如图2,当OB不平分∠COD时,∠AOD和∠BOC的和是多少度?8.如图,点C 为线段AB 上一点, AC ︰CB =3︰2,D 、E 两点分别为AC 、AB 的中点,若线段DE =2cm ,求AB 的长.9.如图,点C 是线段AB 上一点,线段AC =8,BC =20,点N 为AC 的中点,点M 是线段CB 上一点,且CM :BM =1:4,求线段MN 的长.10.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB.若AB =24 cm ,求线段CE 的长.《角平分线》计算题参考答案1.解:(1)∵∠AOB 是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM 是∠BOC 的平分线,ON 是∠AOC 的平分线,∴,.∴∠MON=∠MOC ﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小不发生改变.∵=,又∠AOB 是直角,不改变,∴. 2.解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =45°. (2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =12α. (3)∠MON =12α.理由:∠MON =∠MOC -∠NOC =12(α+β)-12β=12α.3.解:设∠ABE =2x°,则∠CBE =5x°,∠ABC =7x°.因为BD 为∠ABC 的平分线,所以∠ABD =12∠ABC =72x°, 所以∠DBE =∠ABD -∠ABE =72x°-2x°=32x°=21°. 所以x =14,所以∠ABC =7x°=98°.4.解:(1)∠AOD 与∠BOC 互补.理由:因为∠AOB ,∠COD 都是直角,所以∠AOB =∠COD =90°,所以∠BOD =∠AOD -∠AOB =∠AOD -90°,∠BOD =∠COD -∠BOC =90°-∠BOC ,所以∠AOD -90°=90°-∠BOC ,所以∠AOD +∠BOC =180°,所以∠AOD 与∠BOC 互补.(2)成立.理由:因为∠AOB ,∠COD 都是直角,所以∠AOB =∠COD =90°.因为∠AOB +∠BOC +∠COD +∠AOD =360°,所以∠AOD +∠BOC=180°,所以∠AOD与∠BOC互补.(3)∠AOD+∠BOC=2β.5. 90°6.解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°﹣x,∴∠AOB=90°+60°﹣x=150°﹣x,∵∠AOB是∠DOC的3倍,∴150°﹣x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.7.解:(1)∵OB平分∠COD,∴∠COB=∠BOD=45°,∴∠COA=90°﹣45°=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°,∴∠AOD和∠BOC的和是180°.(2)∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC∴∠AOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=90°+90°=180°.∴∠AOD和∠BOC的和是180°.8. 8cm9.解:因为点N 是AC 的中点,所以NC =12AC =12×8=4. 因为点M 是线段CB 上一点,且CM :BM =1:4,所以CM =15BC =15×20=4. 所以MN =MC +CN =4+4=8.即线段MN 的长为8.10.解:因为点C 是AB 的中点,所以AC =BC =12AB =12×24=12(cm). 所以AD =23AC =23×12=8(cm).所以CD =AC -AD =12-8=4(cm).因为DE =35AB =35×24=14.4(cm), 所以CE =DE -CD =14.4-4=10.4(cm).。

角平分线性质练习题

角平分线性质练习题

一、选择题1. 在三角形ABC中,AD是∠BAC的角平分线,若∠BAD = 30°,则∠CAD的度数是()A. 30°B. 60°C. 45°D. 90°A. BD=CDB. BD=BCC. AD=BDD. AD=CD3. 在三角形ABC中,AD是∠BAC的角平分线,若AB=6cm,AC=8cm,BD=4cm,则CD的长度是()A. 3cmB. 4cmC. 5cmD. 6cm二、填空题1. 在三角形ABC中,AD是∠BAC的角平分线,若∠B=50°,∠C=60°,则∠BAD=______°。

2. 在等边三角形ABC中,AD是∠BAC的角平分线,则∠ADB=______°。

3. 在三角形ABC中,AD是∠BAC的角平分线,若AB=5cm,AC=7cm,BD=3cm,则CD=______cm。

三、解答题1. 在三角形ABC中,AD是∠BAC的角平分线,已知∠B=40°,∠C=60°,求∠BAD和∠CAD的度数。

2. 在等腰三角形ABC中,AB=AC,AD是∠BAC的角平分线,已知BD=6cm,求AD的长度。

3. 在三角形ABC中,AD是∠BAC的角平分线,已知AB=8cm,AC=12cm,BD=5cm,求CD的长度。

4. 在三角形ABC中,AD是∠BAC的角平分线,已知∠B=30°,∠C=45°,求∠BAD和∠CAD的度数。

5. 在等边三角形ABC中,AD是∠BAC的角平分线,求∠ADB的度数。

四、判断题1. 在三角形ABC中,如果AD是∠BAC的角平分线,那么AB和AC的长度一定相等。

()2. 在三角形ABC中,AD是∠BAC的角平分线,若∠BAD = ∠CAD,则三角形ABC一定是等腰三角形。

()3. 在三角形ABC中,AD是∠BAC的角平分线,若BD=CD,则∠B=∠C。

角平分线

角平分线

角平分线练习题1.已知:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,则∠AOC的度数为.2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.3.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,则M到OB的距离为_________.4.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.5.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,则BC=_____cm.第4题第5题8.三角形的三条角平分线相交于一点,并且这一点到________________相等.11.三角形中到三边距离相等的点是()A、三条边的垂直平分线的交点B、三条高的交点C、三条中线的交点D、三条角平分线的交点12.如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A、PD=PEB、OD=OEC、∠DPO=∠EPOD、PD=OD 13.如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A 、1处B 、2处C 、3处D 、4处14.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A 、4㎝B 、6㎝C 、10㎝D 、不能确定 21D A PO E Bl 2l 1l 3 D C A E B12题 13题 14题15如图,DABC 中 C=90°,AD 平分 BAC ,点D 在BC 上,且BC=24,CD:DB=3:5。

求:D 到AB 的距离。

16、如图,BD ∠ABC 的平分线,DE ⊥AB 于点E ,DF ⊥BC 于点F ,S △ABC =36㎝2,AB=18㎝,BC=12㎝。

角平分线练习

角平分线练习

角平分线(练习)
1、如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立
的是()
A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP
(第1题)(第2题)(第3题)
2、如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB 的距离是______________。

3、如图,△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等;∠A=40°,则∠BOC=________
4、如图:△ABC中,AB=AC,AD是△ABC的中线,过D分别作D E⊥AB,DF⊥AC,
求证:DE=DF
5、如图,在△ABC中,AD平分∠BAC,AB=6,AC=4,△ABD的面积等于9.
求:△ADC的面积.
6、已知∠A=∠B=90°,∠BCD、∠ADC的平分线交AB于E.求证:AE=BE.
7、如图,E是∠APB内的一点,CE⊥PA于点C,ED⊥PB于点D,CE=ED,点F在PA上,∠APB=60°,∠PEF=15°.求∠CFE的度数.
如图:某地要在三条公路围成的一块平地上修建一个公园,要使公园到三条公路的距离相等,应在何处修建?(使用尺规作图,保留作图痕迹)
数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.。

角平分线的性质知识点小结及练习题

角平分线的性质知识点小结及练习题

B A O EPDB DC A (第3题) (第2题)角的平分线的性质及其练习题1、尺规作图画角平分线(1)、以O 为圆心,适当长为半径画弧,交OA 于M ,交OB 于N 。

(2)、分别以M 、N 为圆心,大于1/2MN 的长为半径画弧,两弧在∠AOB 的内部交于点C 。

(3)、画射线OC 。

射线OC 即为所求。

2、角的平分线的性质:角的平分线上的点到角的两边的距离相等。

图形表示:若CD 平分∠ADB,点P 是CD 上一点PE ⊥AD 于点E ,PF ⊥BD 于点F ,则PE=PF 。

3、角的平分线的性质推论:角的内部到角的两边的距离相等的点在角的平分线上。

图形表示:若PE ⊥AD 于点E ,PF ⊥BD 于点F ,PE=PF ,则PD 平分∠ADB4、证明命题的步骤:(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用数学符号表示已知和求证; (3)经过分析,找出由已知推出求证的途径,写出证明过程。

角平分线的性质(1)一、选择题1.用尺规作已知角的平分线的理论依据是( )A .SASB .AASC .SSSD .ASA2.如图,OP 平分∠AOB , PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A .PD =PE B .OD =OE C .∠DPO =∠EPO D .PD =OD二、填空题 3.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点D 到AB 的距离为______㎝. 三、解答题4.已知:如图,AM 是∠BAC 的平分线,O 是AM 上一点,过点O 分别作AB ,AC 的垂线,垂足为F ,D ,EF C BA D (第3题)DEAFBC(第2题)且分别交AC 、AB 于点G ,E . 求证:OE=OG .5.如图,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,且BD=CD .求证:BE=CF .6.如图,△ABC 中,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB 于E ,AD =BD . (1)求证:AC =BE ;(2)求∠B 的度数。

角平分线(练习)(解析版)-八年级数学 下册

 角平分线(练习)(解析版)-八年级数学 下册

第一章三角形的证明第四节角平分线精选练习一、单选题1.(2022秋·河北石家庄·八年级校考期末)小丽同学要找到到三角形三个顶点距离相等的点,根据下列各图中圆规作图的痕迹,可用直尺成功找到此点的是()A.B.C.D.【答案】B【分析】根据角平分线的作图,三角形的高的作图,线段的垂直平分线的作图,逐一分析各选项即可.【详解】解:∵到三角形三个顶点距离相等的点是三角形三边的垂直平分线的交点,∴选项B中的作图是作的三角形的两边的垂直平分线,符合题意,选项A中的作图,作的一个内角的平分线,作的一边的垂直平分线,不符合题意;选项C中的作图作的是两个内角的平分线,不符合题意,选项D中的作图作的一边的垂直平分线,作的一边上的高,不符合题意;故选B .【点睛】本题考查的是线段的垂直平分线的性质,根据垂直平分线的性质再判断作图是解本题的关键.2.(2022秋·浙江宁波·八年级统考期中)如图,已知在ABC 中,CD 是AB 边上的高线,BE 平分ABC 交CD 于点E ,8,3BC DE ,则BCE 的面积等于()A .24B .12C .8D .4∵CD 是AB 边上的高线,∴DE BD ,∵BE 平分ABC ,3.(2022秋·湖北襄阳·八年级统考期末)如图,在ABC 中,AD 平分BAC ,DE 平分ADC ,55B ,35C ,则ADE ()A .50B .55C .60D .62.5123货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A .1处B .2处C .3处D .4处【答案】D 【分析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路所围成部分三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.由此即可求解.【详解】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.故选D .【点睛】本题考查了角平分线的性质定理的应用,熟练运用角平分线的性质定理是解决问题的关键.5.(2022秋·北京平谷·八年级统考期末)如图,Rt ABC △中,90A ,BP 平分ABC 交AC 于点P ,若4cm PA ,13cm BC ,则BCP 的面积是()A .252cm B .213cm C .245cm D .226cm 【答案】D 【分析】根据角平分线的性质,角平分线上的点到线段两端的距离相等,可得4cm PH PA ,即可直接求得BCP 的面积.【详解】解:过点P 作PH BC 于点H ,∵BP 平分ABC ,4cm PH PA ,∵13cm BC ,2113426cm 2BCP S△.故选:D .【点睛】本题考查了角平分线的性质,解决本题的关键是作出垂线求得BCP 的高..(秋八年级单元测试)如图,是ABC 的角平分线,于点,且DE DG ,52ADG S ,38AED S △,则DEF 的面积为()A .7B .12C .8D .14【答案】A 【分析】过点D 作DH AC 于H ,根据角平分线上的点到角的两边距离相等可得DF DH ,然后利用“HL ”证明Rt DEF △和Rt DGH △全等,根据全等三角形的面积相等可得EDF GDH S S ,设面积为S ,然后根据ADF ADH S S V V 列出方程求解即可.【详解】解:如图,过点D 作DH AC 于H ,∵AD 是ABC 的角平分线,DF AB ,∴DF DH ,在Rt DEF △和Rt DGH △中,DE DG DF DH,∴ Rt Rt HL DEF DGH ≌ ,∴EDF GDH S S ,设面积为S ,同理Rt Rt ADF ADH ≌ ,∴ADF ADH S S V V ,即3852S S ,解得7 S ,故A 正确.故选:A .【点睛】本题主要考查了角平分线的性质,三角形全等的判定和性质,解题的关键是作出辅助线,证明Rt Rt DEF DGH ≌ .二、填空题7.(2022秋·上海青浦·八年级校考期末)如图,点P 是AOB 的平分线上的一点,过点P 作PC OA ∥交OB 于点C ,PD OA ,若60AOB ,8OC ,则PD ___________为圆心,任意长为半径作弧,分别交AB BC 、于点D 、E ;②分别以点D 、E 为圆心,大于12DE 的同样长为半径作弧,两弧交于点F ;③作射线BF 交AC 于点G .如果6AB ,8BC ,ABG 的面积为12,则CBG 的面积为________.【答案】16【分析】由作图步骤可知:BG 为ABC 的角平分线,过G 作,GH BC GM AB ,可得GM GH ,然后再结合已知条件和三角形的面积公式解答即可.【详解】解:由作图作法可知:BG 为ABC 的角平分线过G 作,GH BC GM AB ,∴GM GH∴16218ABG AB GM S AB S BC为OC 上一点,过D 作直线DE ⊥OA ,垂足为点E ,且直线DE 交OB 于点F ,如图所示,若DE =3,则DF =_______.【答案】6【分析】过点D 作 DM OB ,垂足为M ,则3DM DE ,在Rt OEF △中,利用三角形内角和定理可求出30 DFM ,在Rt DMF △中,由30 角所对的直角边等于斜边的一半可求出DF 的长,此题得解.【详解】解:过点D 作 DM OB ,垂足为M ,如图所示.OC ∵是AOB 的平分线,3DM DE .在Rt OEF △中,90OEF ,60EOF ,30OFE ,即30 DFM .在Rt DMF △中,90DMF ,30 DFM ,26DF DM .故答案为:6.【点睛】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30 角所对的直角边等于斜边的一半,求出DF 的长是解题的关键.10.(2021春·贵州贵阳·八年级贵阳市第十七中学校考期中)如图,在ABC 中,90B Ð=°,AD 平分BAC ,10BC ,6CD ,则点D 到AC 的距离为______.【答案】4【分析】过点D 作DE AC 于点E ,再根据角平分线的性质,即可进行解答.【详解】解:过点D 作DE AC 于点E ,∵10BC ,6CD ,∴1064BD BC CD ,∵AD 平分BAC ,90B Ð=°,DE AC ,∴4DE BD ,即点D 到AC 的距离为4,故答案为:4.【点睛】本题主要考查了角平分线的性质,解题的关键是掌握角平分线上的点到两边的距离相等.三、解答题11.(2022秋·天津南开·八年级校考期末)如图,DE AB 于E ,DF AC 于F ,AD 平分BAC ,若BD CD ,10AB ,18AC ,求BE 的长.【答案】4BE ,【分析】先证明Rt BDE 与Rt CDF 全等得BE CF ,再证明Rt ADE △与Rt ADF 全等得AE AF ,设=BE CF x ,通过等量代换列方程即可求解.【详解】解:DE AB DF AC ∵,,AD 平分BACDE DF在Rt BDE 与Rt CDF 中DE DF BD CDRt BDE Rt CDF HL BE CF在Rt ADE △与Rt ADF 中DE DF AD ADRt ADE Rt ADF HL AE AF设=BE CF x ,18AC ∵,10AB ,∴18AF AC FC x ,10AE AB BE x1810x x4x 即4BE 【点睛】本题考查了角平分线的性质、全等三角形的判定与性质,解题关键是熟练掌握角平分线的性质和直角三角形全等的判定.12.(2022秋·广东江门·九年级统考阶段练习)已知:如图,AD 为ABC 的角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,连接EF 交AD 于点O ,求证:AD 垂直平分EF【答案】见解析【分析】根据AD 平分BAC ,DE AB ,DF AC ,可得DE DF ,90DEA DFA ,则可证DEF DFE ,并得AEF AFE ,可证得AE AF ,根据DE DF ,AE AF ,得到点D 、点A 在EF 的垂直平分线上,可证AD 垂直平分EF .【详解】证明∵AD 平分BAC ,DE AB ,DF AC ,∴DE DF ,90DEA DFA ,∴DEF DFE ,∴DEA DEF DFA DFE ,∴AEF AFE∴AE AF ,∵DE DF ,AE AF ,∴点D 、点A 在EF 的垂直平分线上,∴AD 垂直平分EF .【点睛】本题考查了等腰三角形的判定和性质,角平分线的性质,熟悉相关性质是解题的关键.一、填空题1.(2022秋·河南安阳·八年级统考期中)如图,AD 平分CAB ,若:4:5ACD ABD S S △△,则:AB AC ________.【答案】5:4【分析】根据角平分线上的点到两边的距离相等可得两个三角形的高一样,再根据三角形面积公式即可求得.【详解】∵AD 平分CAB ,∴D 到AC 、AB 的距离相等,又∵:4:5ACD ABD S S △△根据三角形面积等于底乘以高,∴:5:4AB AC ,答案为∶5:4.【点睛】此题考查了角平分线的性质和三角形面积,解题的关键是熟悉角平分线的性质和三角形面积公式.2.(2021秋·四川绵阳·八年级校考阶段练习)如图,在ABC中,E为AC的中点,AD平分23BAC BA CA,::,AD与BE相交于点O,若OAE△的面积比BOD的面积大2,则ABC的面积是_____∵AD平分BAC,∴DM DN,∴121ABDAB DN S BD△是线段BC 的中垂线交AE 于E ,EF AF ,若26ACB ,25CBE ,则AED ∠___________.【答案】39°【分析】连接CE ,过E 作ER AC 于R ,交CD 于Q ,AE 交BC 于O ,根据角平分线性质和线段垂直平分线的性质得出CE BE ,ER EF ,根据全等求RCE EBF ,求出26ACB QED ,求出65BED CED ,求出REF 的度数,再求出CAB ,求出CAE ,根据三角形的外角性质求出DOE ,再求出答案即可.【详解】解:连接CE ,过E 作ER AC 于R ,交CD 于Q ,AE 交BC 于O ,∵DE 是线段BC 的中垂线,∴90EDC ,CE BE ,∴ECB CBE ,∵25CBE ,∴25ECB ,∴902565DEB CED ,∵ER AC ED BC ,,∴90QRC QDE ,9090ACB CQR EQD QED ,,CQR EQD ∵,ACB QED ,26ACB ∵,26QED ,AE ∵平分CAM ER AC EF AM ,,,ER EF ,在Rt ERC 和Rt EFB △中,CE BE ER EFRt ERC Rt EFB HL ≌(),262551EBF ACE ACB ECD ,90EFB ∵,90905139BEF EBF ,266539130REF RED BED BEF ,90ARE AFE ∵,360909013050CAM ,AE ∵平分CAM ,252651DOE CAE ACB ,ED BC ∵,90EDB ,90905139AED DOE ,故答案为:39°.【点睛】本题考查角平分线性质、中垂线性质、三角形内角和180°、三角形外角等于与它不相邻内角和、全等三角形的性质与判定,掌握这些并正确添加辅助线才能解答正确.4.(2022秋·江苏宿迁·八年级统考阶段练习)如图,在AOB 和COD △中,OA OB ,OC OD ,OA OC ,40AOB COD .连接AC ,BD 交于点M ,连接OM .下列结论:①40AMB ,②AC BD ,③OM 平分AOD ,④MO 平分AMD ∠.其中正确的结论有______.(填序号)【答案】①②④【分析】由SAS 证明AOC BOD △△≌得出OCA ODB ,AC BD ,②正确;由全等三角形的性质得出OAC OBD ,由三角形的外角性质得:AMB OBD OAC AOB ,得出40 AMB AOB ,①正确;作OG AM 于G ,OH DM 于H ,如图所示:则90OGA OHB ,利用全等三角形对应边上的高相等,得出OG OH ,由角平分线的判定方法得出MO 平分AMD ∠,④正确;假设MO 平分AOD ,则 DOM AOM ,由全等三角形的判定定理可得AMO DMO ≌ ,得AO OD ,而OC OD ,所以OA OC ,而OA OC <,故③错误;即可得出结论.【详解】解:∵40AOB COD ,∴AOB BOC COD BOC ,即AOC BOD ,在AOC 和BOD 中,OA OB AOC BOD OC OD,∴AOC BOD △△≌ SAS ,∴OCA ODB ,AC BD ,故②正确;同时OAC OBD ,由三角形的外角性质得:AMB OBD OAC AOB ,∴40 AMB AOB ,故①正确;作OG AM 于G ,OH DM 于H ,如图所示,则90OGA OHB ,∵AOC BOD △△≌,∴OG OH ,∴MO 平分AMD ∠,故④正确;假设MO 平分AMD ∠,则 DOM AOM ,在AMO 与DMO 中,AOM DOM OM OM AMO DMO,∴AMO DMO ≌ SAS ,∴AO OD ,∵OC OD ,∴OA OC ,而OA OC <,故③错误;正确的个数有3个,故答案为:①②④.【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.5.(2022秋·山东聊城·八年级校考期末)如图,BAC 的角平分线与线段BC 的垂直平分线DG 交于点D ,DE AB ,DF AC ,垂足分别为点E 、F .若10=AB ,8AC =,则BE ______.【答案】1【分析】先根据角平分线性质定理得到DF DE ,再利用中垂线性质得到CD BD .进而证明 Rt Rt CDF BDE HL ≌,通过线段之间的数量关系即可求解.【详解】解:如图,连接CD ,∵AD 是BAC 的平分线,DE AB ,DF AC ,∴DF DE ,90F DEB ,ADF ADE ,∴AF AE ,∵DG 是BC 的垂直平分线,∴CD BD ,在Rt CDF △和Rt BDE △中,CD BD DF DE,∴ Rt Rt CDF BDE HL ≌,∴BE CF ,∴2AB AE BE AF BE AC CF BE AC BE ,∵10AB ,8AC ,∴1BE 故答案为:1【点睛】本题考查了三角形中垂线的性质,角平分线的性质定理,还有用HL 证明两三角形全等.综合性较强,中等难度.合理的作出辅助线是解决这类图形问题的有效方法和解题关键.二、解答题6.(2022秋·辽宁大连·八年级统考期中)如图,点C 是MAN 的平分线上一点,CE AB 于E ,B 、D 分别在AM 、AN 上,且2AE AD AB .求证:12180 .34 ∵,CE AM ,CF CE ,CFD CEB 1AE AD AB∵,AD AF ACE ,BD 交AC 于点F ,连接AD .(1)当40BAC =时,求BDC 的度数.(2)请直接写出BAC 与BDC 的数量关系,并给出证明.(3)求证:AD BE ∥.【答案】(1)20(2)12BDC BAC ,证明见解析(3)见解析【分析】(1)利用等腰三角形的性质和三角形内角和可计算出70ABC ACB ,再利用邻补角的定义得到110ACE ,然后根据角平分线的定义可计算出1352DBC ABC ,1552ECD ACE ,再利用三角形外角性质可计算出BDC ;(2)由外角的性质得到1122BDC ABC ACE ,BAC ABC ACE ,即可得出12BDC BAC ;(3)作DM BG 于M ,DN AC 于N ,DH BE 于H ,根据角平分线的定义以及平行线的判定即可得到结论.【详解】(1)解:∵AB AC ,40BAC ,∴ 118040702ABC ACB,∴110ACE ,∵BD ,CD 分别平分EBA ,ECA ,形的性质,角平分线的定义与性质与判定,平行线的判定,熟练的利用角平分线的性质与判定进行证明是解本题的关键.8.(2022秋·湖北襄阳·八年级统考期末)己知ABC 为等边三角形,取ABC 的边,AB BC 中点,D E ,连接DE ,如图1,易证DBE 为等边三角形,将DBE 绕点B 顺时针旋转,设旋转的角度ABD ,其中080I .(1)如图2,当60 时,连接,AD CE ,求证:AD CE ;(2)在DBE 旋转过程中,当 超过一定角度时,如图3,连接,AD CE 会交于一点,记交点为点F ,AD 交BC 于点P ,CE 交BD 于点Q ,连接BF ,求证:FB 平分AFE ;(3)在第(2)问的条件下,试猜想线段,AF BF 和CF 之间的数量关系,并说明理由.【答案】(1)证明见解析(2)证明见解析(3)AF CF BF ,理由见解析【分析】(1)根据等边三角形性质,利用两个三角形全等的判定定理得到SAS ABD CBE V V ≌,利用全等性质即可得到答案;(2)过点B 作BN AD 于N ,过点B 作BH CE 于H ,如图所示,根据等边三角形性质,利用两个三角形全等的判定定理得到 SAS ABD CBE V V ≌,利用全等性质即可得到AD CE ,ABD CBE S S ,BAD BCE ,利用等面积得到BN BH ,再根据角平分线的判定定理即可得到答案;(3)在AF 上截取MF BF ,连接BM ,如图所示,根据等边三角形的判定与性质,利用两个三角形全等的判定定理得到 SAS ABM CBF △≌△,利用全等的性质即可得到答案.ABC ∵ ,DBE 都是等边三角形,AB BC ,BD BE ,ABC ABD CBE ,在ABD △和CBE △中,FB 平分AFE ;(3)解:AF CF BF .理由如下:在AF 上截取MF BF ,连接BM ,如图所示:60AFB ∵,MF FB ,MFB △是等边三角形,MB BF ,60MBF ABC ,ABM CBF ,在ABM 和CBF V 中,CB AB ABM CBF BM BFSAS ABM CBF △≌△,AM CF ,AF AM MF ∵,AF CF BF .【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质、等边三角形的判定和性质、角平分线的判定等知识,根据题意,添加恰当辅助线构造全等三角形是解决本题的关键.。

角平分线性质定理典型问题综合训练(含解析)

角平分线性质定理典型问题综合训练(含解析)

角平分线性质定理典型问题综合训练(含解析)一.选择题(共12小题)1.下列各图中,OP 是∠MON 的平分线,点E,F,G 分别在射线OM,ON,OP 上,则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是()A.B.C.D.2.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.1 B.2 C.D.43.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤34.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.605.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:56.如图,点P是△ABC内一点,且PD=PE=PF,则点P是()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点7.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③9.如图,已知点P到BE、BD、AC的距离恰好相等,则点P的位置:①在∠B的平分线上;②在∠DAC 的平分线上;③在∠EAC的平分线上;④恰是∠B,∠DAC,∠EAC三个角的平分线的交点.上述结论中,正确结论的个数有()A.1个B.2个C.3个D.4个10.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为()A.25 B.5.5 C.7.5 D.12.511.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PN B.PM<PN C.PM=PN D.不能确定12.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)二.填空题(共6小题)13.如图,∠A=90°,BC边的中垂线DE分别交BC于点D,交AB于点E,且DE=AE,则∠B=.14.如图所示,在△ABC中,∠C=90°,BE平分∠ABC,ED⊥AB于D,若AC=6cm,则AE+DE=.15.如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,点O到BC边的距离为3,且△ABC的周长为20,则△ABC的面积为.16.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE=cm.17.如图,在△ABC中,∠A=90°,BD平分∠ABC,∠C=30°,AD=2,AB=2,那么S△ABC=.18.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④DA平分∠CDE;⑤S△ABD:S△ACD=AB:AC.其中,正确的有个.三.解答题(共7小题)19.要在两个城镇A、B的附近修建一个加油站.如图,按设计要求,加油站到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等,加油站应修建在什么位置?(尺规作图,不写画法,保留作图痕迹)20.如图,有三幢公寓楼分别建在点A、点B、点C 处,AB、AC、BC 是连接三幢公寓楼的三条道路,要修建一超市P,按照设计要求,超市要在△ABC的内部,且到A、C的距离必须相等,到两条道路AC、AB的距离也必须相等,请利用尺规作图确定超市P的位置.(不要求写出作法、证明,但要保留作图痕迹).21.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.22.已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.(1)求∠B的度数.(2)如果AC=3cm,求AB的长度.(3)猜想:ED与AB的位置关系,并证明你的猜想.23.已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D,PC和PD有怎样的数量关系,请说明理由.24.(1)如图1,在△ABC中,AD平分∠BAC交BC于D,DE⊥AB于E,DF⊥AC于F,则有相等关系DE=DF,AE=AF.(2)如图2,在(1)的情况下,如果∠MDN=∠EDF,∠MDN的两边分别与AB、AC相交于M、N两点,其它条件不变,那么又有相等关系AM+ =2AF,请加以证明.(3)如图3,在Rt△ABC中,∠C=90°,∠BAC=60°,AC=6,AD平分∠BAC交BC于D,∠MDN=120°,ND ∥AB,求四边形AMDN的周长.25.已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.角平分线性质定理典型问题综合训练参考答案与试题解析一.选择题(共12小题)1.下列各图中,OP 是∠MON 的平分线,点E,F,G 分别在射线OM,ON,OP 上,则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是()A.B.C.D.【分析】角的平分线上的点到角的两边的距离相等,这里的距离是指点到角的两边垂线段的长.【解答】解:∵OP是∠MON 的平分线,且GE⊥OM,GF⊥ON,∴GE=GF,(角的平分线上的点到角的两边的距离相等)故选:D.2.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.1 B.2 C.D.4【分析】作PE⊥OA于E,根据角平分线的性质解答.【解答】解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,故选:B.3.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤3【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【解答】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选:C.4.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.5.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C.故选C.6.如图,点P是△ABC内一点,且PD=PE=PF,则点P是()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点【分析】根据角平分线的性质即可得出结论.【解答】解:∵点P是△ABC内一点,且PD=PE=PF,∴点P是△ABC三条角平分线的交点.故选B.7.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处【分析】根据角平分线上的点到角的两边的距离相等作出图形即可得解.【解答】解:如图所示,加油站站的地址有四处.故选D.8.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③【分析】过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选A.9.如图,已知点P到BE、BD、AC的距离恰好相等,则点P的位置:①在∠B的平分线上;②在∠DAC 的平分线上;③在∠EAC的平分线上;④恰是∠B,∠DAC,∠EAC三个角的平分线的交点.上述结论中,正确结论的个数有()A.1个B.2个C.3个D.4个【分析】利用平分线性质的逆定理分析.由已知点P到BE,BD,AC的距离恰好相等进行思考,首先到到两边距离相等,得出结论,然后另外两边再得结论,如此这样,答案可得.【解答】解:由角平分线性质的逆定理,可得①②③④都正确.故选D.10.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为()A.25 B.5.5 C.7.5 D.12.5【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根据全等三角形的面积相等列方程求解即可【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△ADF和Rt△ADH中,,∴Rt△ADF≌Rt△ADH(HL),∴S Rt△ADF=S Rt△ADH,在Rt△DEF和Rt△DGH中,∴Rt△DEF≌Rt△DGH(HL),∴S Rt△DEF=S Rt△DGH,∵△ADG和△AED的面积分别为60和35,∴35+S Rt△DEF=60﹣S Rt△DGH,∴S Rt△DEF=.故选D.11.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PN B.PM<PN C.PM=PN D.不能确定【分析】作PE⊥OB于E,PF⊥OA于F,根据角平分线的性质定理证明PE=PF,根据三角形全等的判定定理证明△PFN≌△PEM,得到答案.【解答】解:作PE⊥OB于E,PF⊥OA于F,∵OQ平分∠AOB,∴PE=PF,∵∠PNO+∠PNA=180°,∠PNO+∠PMO=180°,∴∠PNA=∠PMO,在△PFN和△PEM中,,∴△PFN≌△PEM,∴PM=PN.故选:C.12.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)【分析】根据角平分线的性质分析,作∠E的平分线,点P到AB和CD的距离相等,即可得到S△PAB=S△PCD.【解答】解:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.二.填空题(共6小题)13.如图,∠A=90°,BC边的中垂线DE分别交BC于点D,交AB于点E,且DE=AE,则∠B=30°.【分析】由于∠A=90°,ED⊥DC,DE=AE,根据角平分线的判定可得到EC平分∠ACD,即∠DCE=∠ACE,再根据线段垂直平分线的性质得到EB=EC,则∠B=∠ECB,所以∠B=∠ACB,然后根据三角形内角和定理可计算出∠B.【解答】解:连结CE,如图,∵∠A=90°,∴EA⊥AC,∵ED⊥DC,而DE=AE,∴EC平分∠ACD,即∠DCE=∠ACE,∵DE为BC边的中垂线,∴EB=EC,∴∠B=∠ECB,∴∠B=∠ACB,∴∠B=30°.故答案为30°.14.如图所示,在△ABC中,∠C=90°,BE平分∠ABC,ED⊥AB于D,若AC=6cm,则AE+DE=6cm.【分析】根据角平分线的性质得到DE=CE,结合图形计算即可.【解答】解:∵BE平分∠ABC,ED⊥AB,∠C=90°,∴DE=CE,∴AE+DE=AE+CE=AC=6cm.故答案为:6cm.15.如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,点O到BC边的距离为3,且△ABC的周长为20,则△ABC的面积为30.【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质求出OE=OD=3和OF=OD=3,根据三角形面积公式计算即可.【解答】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=3,同理OF=OD=3,△ABC的面积=×AB×3+×AC×3+×BC×3=30.故答案为:30.16.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE= 2.4cm.【分析】首先过点D作DF⊥BC于点F,由BD是∠ABC的平分线,DE⊥AB,根据角平分线的性质,可得DE=DF,然后由S△ABC=S△ABD+S△BCD=AB•DE+BC•DF,求得答案.【解答】解:过点D作DF⊥BC于点F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴DE=2.4(cm).故答案为:2.4.17.如图,在△ABC中,∠A=90°,BD平分∠ABC,∠C=30°,AD=2,AB=2,那么S△ABC=6.【分析】作DE⊥BC于E,根据角平分线的性质得到DE=DA=2,根据直角三角形的性质得到BC=2AB=4,根据三角形的面积公式计算即可.【解答】解:作DE⊥BC于E,∵BD平分∠ABC,∠A=90°,DE⊥BC,∴DE=DA=2,∵∠A=90°,∠C=30°,∴BC=2AB=4,∴S△ABC=S△ABD+S△DBC=×AB×AD+×BC×DE=6,故答案为:6.18.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④DA平分∠CDE;⑤S△ABD:S△ACD=AB:AC.其中,正确的有5个.【分析】由在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E.可得CD=DE,继而可得∠ADC=∠ADE,又由角平分线的性质,证得AE=AD,由等角的余角相等,可证得∠BDE=∠BAC,由三角形的面积公式,可证得S△ABD:S△ACD=AB:AC.【解答】解:∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,∴CD=ED,故①正确;∴∠CDE=90°﹣∠BAD,∠ADC=90°﹣∠CAD,∴∠ADE=∠ADC,即AD平分∠CDE,故④正确;∴AE=AC,∴AB=AE+BE=AC+BE,故②正确;∵∠BDE+∠B=90°,∠B+∠BAC=90°,∴∠BDE=∠BAC,故③正确;∵S△ABD=AB•DE,S△ACD=A C•CD,∵CD=ED,∴S△ABD:S△ACD=AB:AC,故⑤正确.故答案为:①②③④⑤.三.解答题(共7小题)19.要在两个城镇A、B的附近修建一个加油站.如图,按设计要求,加油站到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等,加油站应修建在什么位置?(尺规作图,不写画法,保留作图痕迹)【分析】分别作出线段AB的中垂线;作角分线OP,进而得出其交点P即为所求.【解答】解:如图所示,P点即为所求.20.如图,有三幢公寓楼分别建在点A、点B、点C 处,AB、AC、BC 是连接三幢公寓楼的三条道路,要修建一超市P,按照设计要求,超市要在△ABC的内部,且到A、C的距离必须相等,到两条道路AC、AB的距离也必须相等,请利用尺规作图确定超市P的位置.(不要求写出作法、证明,但要保留作图痕迹).【分析】如图,由于P按照设计要求,在△ABC的内部,且到A、C的距离必须相等,因此确定P在线段AC的垂直平分线上,又P到两条道路AC、AB的距离也必须相等,由此确定P在∠CAB的平分线上,所以P是线段AC的垂直平分线和∠CAB的平分线的交点.【解答】解:如图所示21.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.【分析】根据角平分线上的点到角的两边的距离相等可得AM=BM,然后利用“HL”证明Rt△AOM和Rt△BOM全等,根据全等三角形对应边相等可得OA=OB,再根据等边对等角的性质即可得证.【解答】证明:∵OM平分∠POQ,MA⊥OP,MB⊥OQ,∴AM=BM,在Rt△AOM和Rt△BOM中,,∴Rt△AOM≌Rt△BOM(HL),∴OA=OB,∴∠OAB=∠OBA.22.已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.(1)求∠B的度数.(2)如果AC=3cm,求AB的长度.(3)猜想:ED与AB的位置关系,并证明你的猜想.【分析】(1)先由角平分线的定义及已知条件得出∠CAE=∠EAB=∠B,再根据直角三角形两锐角互余得出∠CAE+∠EAB+∠B=3∠B=90°,那么∠B=30°;(2)根据30°角所对的直角边等于斜边的一半得出AB=2AC=6cm;(3)先由∠EAB=∠B,根据等角对等边得出EB=EA,又ED平分∠AEB,根据等腰三角形三线合一的性质得到ED⊥AB.【解答】解:(1)∵AE是△ABC的角平分线,∴∠CAE=∠EAB,∵∠CAE=∠B,∴∠CAE=∠EAB=∠B.∵在△ABC中,∠C=90°,∴∠CAE+∠EAB+∠B=3∠B=90°,∴∠B=30°;(2)∵在△ABC中,∠C=90°,∠B=30°,AC=3cm,∴AB=2AC=6cm;(3)猜想:ED⊥AB.理由如下:∵∠EAB=∠B,∴EB=EA,∵ED平分∠AEB,∴ED⊥AB.23.已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D,PC和PD有怎样的数量关系,请说明理由.【分析】过P分别作PE⊥OB于E,PF⊥OA于F,由角平分线的性质易得PE=PF,然后由同角的余角相等证明∠1=∠2,即可由ASA证明△CFP≌△DEP,从而得证.【解答】答:PC=PD.证明:过P分别作PE⊥OB于E,PF⊥OA于F,∴∠CFP=∠DEP=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠1+∠FPD=90°,∠AOB=90°,∴∠FPE=90°,∴∠2+∠FPD=90°,∴∠1=∠2,在△CFP和△DEP中,,∴△CFP≌△DEP(ASA),∴PC=PD.24.(1)如图1,在△ABC中,AD平分∠BAC交BC于D,DE⊥AB于E,DF⊥AC于F,则有相等关系DE=DF,AE=AF.(2)如图2,在(1)的情况下,如果∠MDN=∠EDF,∠MDN的两边分别与AB、AC相交于M、N两点,其它条件不变,那么又有相等关系AM+ AN=2AF,请加以证明.(3)如图3,在Rt△ABC中,∠C=90°,∠BAC=60°,AC=6,AD平分∠BAC交BC于D,∠MDN=120°,ND ∥AB,求四边形AMDN的周长.【分析】(1)根据角平分线的定义可得∠BAD=∠CAD,然后利用“角角边”证明△ADE和△ADF全等,根据全等三角形对应边相等证明即可;(2)由(1)得DE=DF,再求出∠MDE=∠NDF,然后利用“角边角”证明△MDE和△NDF全等,根据全等三角形对应边相等可得ME=NF,然后求AM+AN=AE+AF,再求解即可;(3)根据(2)求出AM+AN=2AC,根据角平分线的定义求出∠BAD=∠CAD=30°,根据两直线平行,内错角相等可得∠ADN=∠BAD=30°,从而得到∠CAD=∠ADN,再根据等角对等边可得AN=DN,根据直角三角形30°所对的直角边等于斜边的一半可得DN=2CN,然后求出DN,【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在△ADE和△ADF中,,∴△ADE≌△ADF(AAS),∴DE=DF,AE=AF;(2)解:AM+AN=2AF;证明如下:由(1)得DE=DF,∵∠MDN=∠EDF,∴∠MDE=∠NDF,在△MDE和△NDF中,,∴△MDE≌△NDF(ASA),∴ME=NF,∴AM+AN=(AE+ME)+(AF﹣NF)=AE+AF=2AF;(3)由(2)可知AM+AN=2AC=2×6=12,∵∠BAC=60°,AD平分∠BAC交BC于D,∴∠BAD=∠CAD=30°,∵ND∥AB,∴∠ADN=∠BAD=30°,∴∠CAD=∠ADN,∴AN=DN,在Rt△CDN中,DN=2CN,∵AC=6,∴DN=AN=×6=4,∵∠BAC=60°,∠MDN=120°,∴∠CDE=∠MDN,∴DM=DN=4,∴四边形AMDN的周长=12+4×2=20.25.已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【分析】(1)得到∠ACD=∠ACB=30°后再可以证得AD=AB=AC从而,证得结论;(2)过点C分别作AM、AN的垂线,垂足分别为E、F,证得△CED≌△CFB后即可得到AD+AB=AE﹣ED+AF+FB=AE+AF,从而证得结论.【解答】(1)关系是:AD+AB=AC(1分)证明:∵AC平分∠MAN,∠MAN=120°∴∠CAD=∠CAB=60°又∠ADC=∠ABC=90°,∴∠ACD=∠ACB=30°(2分)则AD=AB=AC(直角三角形一锐角为30°,则它所对直角边为斜边一半)(4分)∴AD+AB=AC(5分);(2)仍成立.证明:过点C分别作AM、AN的垂线,垂足分别为E、F(6分)∵AC平分∠MAN ∴CE=CF(角平分线上点到角两边距离相等)(7分)∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°∴∠CDE=∠ABC又∠CED=∠CFB=90°,∴△CED≌△CFB(AAS)(10分)∵ED=FB,∴AD+AB=AE﹣ED+AF+FB=AE+AF(11分)由(1)知AE+AF=AC(12分)∴AD+AB=AC(13分)。

角平分线练习题 (1)

角平分线练习题 (1)

角平分线练习一、选择题1.已知:如图1,B E,C F是△ABC的角平分线,B E,CF相交于D,若∠A=50°,则∠BDC=()A.70°B.120°C.115°D.130°2.已知:如图2,△ABC中,AB = AC,BD为∠ABC的平分线,∠BDC = 60°,则∠A =()A. 10°B. 20°C. 30°D. 40°3.三角形中,到三边距离相等的点是()A.三条高线交点B.三条中线交点C.三条角平分线的交点D.三边的垂直平分线的交点4.已知P点在∠AOB的平分线上,∠AOB = 60°,OP = 10 cm,那么P点到边OA、OB的距离分别是()A. 5cm 、cmB. 4cm、5cmC. 5cm、5cmD. 5cm、10cm5.下列四个命题的逆命题是假命题的是()A.直角三角形的两个锐角互余B.等腰三角形的两个底角相等C.全等三角形的对应角相等D.相等的两个角是对顶角6.已知:如图3,△ABC中,∠C = 90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB = 10cm,BC = 8cm,CA = 6cm,则点O到三边AB,AC和BC的距离分别等于()cmA. 2、2、2B.3、3、3C. 4、4、4D. 2、3、5 二、填空题1.命题:“两直线平行,同旁内角互补”的逆命题是,它是命题。

2.角平分线可以看作是的点的集合。

3.已知:△ABC中,∠C = 90°,角平分线AD分对边BD:DC = 3:2,且BC = 20cm,则点到AB的距离是cm。

4.命题“如果a = b,那么| a| = | b |”的命题是,它是命题。

三、简答题1.已知:如图4,△ABC的外角∠FAC的平分线为AE,∠1=∠2,AD = AC求证:DC∥AE2.已知:如图5,△ABC中,∠C= 90°,点D是斜边AB的中点,AB = 2BC, DE⊥AB交AC于E求证:BE平分∠ABC3.已知线段AB,求线段AB的四等分点。

角平分线(一)

角平分线(一)

1.4角平分线(一)一、提出问题:1.角平分线的定义:______________________________________2.问题1:还记得角平分线上的点有什么性质吗?你是怎样得到的?你能证明它吗?定理归纳:问题2:你能写出这个定理的逆命题?它是真命题吗?如果是,你能证明它?定理归纳:二、基础训练:用尺规怎样做已知角的平分线呢?并对自己的做法加以证明.三、例题解释:例:如图,已知AD为△ABC的角平分线,∠ABC=90°,EF⊥AC,交BC于点D,垂足为F,DE=DC,求证:BE=CF.FE DCB A四、课堂检测1.OM平分∠BOA,P是OM上的任意一点,PD⊥OA,PE⊥OB,垂足分别为D.E,下列结论中错误的是()A:PD=PE B:OD=OE C:∠DPO=∠EPO D:PD=OD2、如图所示,AD平分∠BAC,DE⊥AB,垂足为E,DF⊥AC,垂足为F,则下列结论不正确的是()A:△AEG≌△AFG B:△AED≌△AFDC:△DEG≌△DFG D:△BDE≌△CDF3.△ABC中, ∠ABC.∠ACB的平分线交于点O,连结AO,若∠OBC=25°,∠OCB=30°,则∠OAC=_____________°4.与相交的两直线距离相等的点在()A:一条直线上B:一条射线上C:两条互相垂直的直线上D:以上都不对5.∠AOB的平分线上一点M,M到OA的距离为2CM,则M到OB的距离为____________.6.在RT△ABC中,∠C=90°,AD是∠BAC的平分线,若BC=16,BD=10,则D到AB 的距离是________.7.如图在两条交叉的公路L1与L2之间有两家工厂A.B,现在要修一个货物中转站,使它到两条公路的距离相等,以及到两个工厂距离相等,你能帮助确定中转站的地址吗?请试试.中考真题:如图,梯形ABCD,ABCD,AD=DC=CB,AD.BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F,(1)请写出图中4组相等的线段(已知的相等线段除外)(2)选择(1)中你所写的一组相等的线段,说说它们相等的理由.。

【中考数学】《角的平分线》专项练习题2套含答案

【中考数学】《角的平分线》专项练习题2套含答案

角的平分线第1课时角的平分线的性质01基础题知识点1角的平分线的作法1.如果要作已知∠AOB的平分线OC,合理的顺序是(C)①作射线OC;②在OA、OB上分别截取OD、OE,使OD=OE;③分别以D、E为圆心,大于12DE长为半径作弧,两弧在∠AOB内交于点C. A.①②③B.②①③C.②③①D.③②①2.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是(A)A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等3.已知△ABC,用尺规作图作出∠ABC的角平分线,保留作图痕迹,不写作法.解:作图略.知识点2角的平分线的性质4.(茂名中考)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P 到边OB的距离为(A)A .6B .5C .4D .35.(怀化中考)如图,OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C ,D ,则下列结论错误的是(B )A .PC =PDB .∠CPD =∠DOPC .∠CPO =∠DPOD .OC =OD6.已知:如图所示,点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB ,垂足分别为D ,E ,求证:OB =OC.证明:∵点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB , ∴OE =OD ,∠BEO =∠CDO =90°. 在△BEO 和△CDO 中,⎩⎨⎧∠BEO =∠CDO ,OE =OD ,∠EOB =∠DOC ,∴△BEO ≌△CDO(ASA ). ∴OB =OC.知识点3 文字命题的证明7.命题“全等三角形对应边上的高相等”的已知是两个三角形全等,结论是这两个三角形对应边上的高相等.8.(咸宁中考)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E . 求证:PD =PE .请你补全已知和求证,并写出证明过程.证明:∵PD ⊥OA ,PE ⊥OB , ∴∠PDO =∠PEO =90°. 在△PDO 和△PEO 中,⎩⎨⎧∠PDO =∠PEO ,∠AOC =∠BOC ,OP =OP ,∴△PDO ≌△PEO(AAS ). ∴PD =PE. 02 中档题9.(淮安中考)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积为(B )A .15B .30C .45D .6010.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是(A) A.M点B.N点C.P点D.Q点11.(湖州中考)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是(C)A.8 B.6 C.4 D.212.已知,如图,△ABC的角平分线AD交BC于D,BD∶DC=2∶1,若AC=3 cm,则AB=6_cm.13.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB,垂足为E,且AB=10 cm,求△DEB的周长.解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED.∴AE=AC.∴△DEB 的周长为DE +DB +EB =CD +DB +BE =BC +BE =AC +BE =AE +BE =AB =10 cm .14.求证:有两个角及其中一个角的角平分线对应相等的两个三角形全等.已知:如图,在△ABC 和△A′B′C′中,∠B =∠B′,∠BAC =∠B′A′C′,AD ,A ′D ′分别是∠BAC ,∠B ′A ′C ′的平分线,且AD =A′D′.求证:△ABC ≌△A′B′C′.证明:∵∠BAC =∠B′A′C′,AD ,A ′D ′分别是∠BAC ,∠B ′A ′C ′的角平分线, ∴∠BAD =∠B′A′D′. ∵∠B =∠B′,AD =A′D′, ∴△ABD ≌△A ′B ′D ′(AAS ). ∴AB =A′B′.在△ABC 和△A′B′C′中,⎩⎨⎧∠B =∠B′,AB =A′B′,∠BAC =∠B′A′C′,∴△ABC ≌△A ′B ′C ′(ASA ). 03 综合题15.(长春中考)感知:如图1,AD 平分∠BAC ,∠B +∠C =180°,∠B =90°.易知:DB =DC.探究:如图2,AD 平分∠BAC ,∠ABD +∠ACD =180°,∠ABD <90°.求证:DB =DC.证明:过点D 分别作DE ⊥AB 于E ,DF ⊥AC 于F. ∵DA 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF.∵∠B +∠ACD =180°, ∠ACD +∠FCD =180°, ∴∠B =∠FCD. 在△DFC 和△DEB 中,⎩⎨⎧∠F =∠DEB ,∠FCD =∠B ,DF =DE ,∴△DFC ≌△DEB. ∴DC =DB.第2课时 角的平分线的判定01 基础题知识点1 角的平分线的判定1.如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB.下列条件中:①∠AOC =∠BOC ;②PD =PE ;③OD =OE ;④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有(D )A .1个B .2个C .3个D .4个2.如图,∠AOB =70°,QC ⊥OA 于点C ,QD ⊥OB 于点D ,若QC =QD ,则∠AOQ =35°.3.如图,BE =CF ,DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC ,求证:AD 是∠BAC 的平分线.证明:∵DE ⊥AB ,DF ⊥AC , ∴∠BED =∠DFC =90°.在Rt △DEB 和Rt △DFC 中,⎩⎨⎧BE =CF ,DB =DC ,∴Rt △DEB ≌Rt △DFC.∴DE =DF. ∴AD 是∠BAC 的平分线.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O.求证:(1)当∠1=∠2时,OB =OC ; (2)当OB =OC 时,∠1=∠2.证明:(1)∵∠1=∠2,OD ⊥AB ,OE ⊥AC , ∴OE =OD ,∠ODB =∠OEC =90°. 在△BOD 和△COE 中,⎩⎨⎧∠BOD =∠COE ,OD =OE ,∠ODB =∠OEC ,∴△BOD ≌△COE(ASA ). ∴OB =OC.(2)在△BOD 和△COE 中,⎩⎨⎧∠ODB =∠OEC ,∠BOD =∠COE ,OB =OC ,∴△BOD ≌△COE(AAS ). ∴OD =OE.又∵OD ⊥AB ,OE ⊥AC , ∴AO 平分∠BAC ,即∠1=∠2.知识点2 三角形的角平分线5.到△ABC 的三条边距离相等的点是△ABC 的(B )A .三条中线的交点B .三条角平分线的交点C .三条高的交点D .以上均不对6.如图,△ABC 的三边AB ,BC ,CA 的长分别为40,50,60,其三条角平分线交于点O ,则S △ABO ∶S △BCO ∶S △CAO =4∶5∶6.知识点3角的平分线的性质与判定的实际应用7.如图,铁路OA和铁路OB交于O处,河道AB与铁路分别交于A处和B处,试在河岸上建一座水厂M,要求M到铁路OA,OB的距离相等,则该水厂M应建在图中什么位置?请在图中标出M点的位置.解:图略.提示:∠AOB的平分线与AB的交点即为点M的位置.8.如图,某市有一块由三条公路围成的三角形绿地,现准备在其中建一小亭子,供人们休息,而且要使小亭中心到三条公路的距离相等,试确定小亭的中心位置.解:△ABC的角平分线的交点就是小亭的中心位置,图略.02中档题9.(永州中考)如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△=S△PCD,则满足此条件的点P(D)PABA.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10.如图,已知△ABC的周长是20 cm,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,若OD=3 cm,则△ABC的面积为30_cm2.11.如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.证明:过点D分别作DE⊥AB,DG⊥AC,DF⊥BC,垂足分别为E,G,F.又∵BD平分∠ABC,CD平分∠ACF,∴DE=DF,DG=DF.∴DE=DG.∴AD平分∠EAC,即AD是∠BAC的外角平分线.12.如图所示,△ABC中,∠B=∠C,D是BC边上一动点,过D作DE⊥AB,DF⊥AC,E,F分别为垂足,则当D移动到什么位置时,AD恰好平分∠BAC,请说明理由.解:当D移动到BC的中点时,AD恰好平分∠BAC.理由:∵D是BC的中点,∴BD=CD.∵DE⊥AB,DF⊥AC,∴∠DEB =∠DFC =90°.又∵∠B =∠C ,∴△DEB ≌△DFC(AAS ).∴DE =DF.又∵DE ⊥AB ,DF ⊥AC ,∴AD 平分∠BAC.03 综合题13.如图,在四边形ABDC 中,∠D =∠B =90°,O 为BD 的中点,且AO 平分∠BAC.求证:(1)CO 平分∠ACD ;(2)OA ⊥OC ;(3)AB +CD =AC.证明:(1)过点O 作OE ⊥AC 于点E ,∵∠B =90°,AO 平分∠BAC ,∴OB =OE.∵点O 为BD 的中点,∴OB =OD.∴OE =OD.又∵∠D =90°,∠OEC =90°.∴CO 平分∠ACD.(2)在Rt △ABO 和Rt △AEO 中,⎩⎨⎧AO =AO ,OB =OE ,∴Rt △ABO ≌Rt △AEO(HL ).∴∠AOB =∠AOE =12∠BOE. 同理,∠COD =∠COE =12∠DOE.∵∠AOC =∠AOE +∠COE ,∴∠AOC =12∠BOE +12∠DOE =12×180° =90°.∴OA ⊥OC.(3)∵Rt △ABO ≌Rt △AEO ,∴AB =AE.同理可得CD =CE.∵AC =AE +CE ,∴AB +CD =AC.。

角平分线练习题(答案)

角平分线练习题(答案)

巩固练习1. 在Rt A ABC 中,/ C= 90°, AD 是角平分线,若BC= 10, BD : CD = 3 :2,则点D到AB的距离是()A. 4B. 62. 到三角形三边距离相等的点是(A.三条高的交点C.三条角平分线的交点3. 如图所示,三条公路两两相交,交点分别为要求到三条公路的距离相等,可供选择的地址有(4如图,AB // CD,点P到AB,BC,CD距离都相等,则/ P=5、如图,已知AB // CD, 0为/CAB、/ ACD的平分线的交点.OE=2,则两平行线AB、CD间的距离等于6、BD是/ ABC的平分线交AC于D , DE丄AB于点E, AB=36 , BC=24,S A ABC=144 贝U DE=7、在四边形ABCD中,AC平分/ BAD,且BC=CD,求证/ B+ / D = 180°B. 二处 D.四C. 处第5题图C. 8D. 10)B.三条中线的交点D.不能确定A、B、C,现计划修一个油库, )OE 丄AC,8. (上一题变式)如图:△ ABC 中,AD 是/BAC 的平分线,E 、F 分别为AB 、 AC 上的点,且/ EDF + Z BAF = 180°.求证:DE = DF ;10.如图,已知在厶ABC 中,/ B=60°A ABC 的角平分线AD 、CE 相交于点O ,求证:AE+CD=AC .9.如图,/ C=900, AC=BC , AD 是/BAC 的角平分线.求证: AC+CD=AB .证明:过点G作CM丄AB于B,CN丄AD交AD的延长住于点N V CL1 丄AB,CN 丄AD..zBMC = zDNC = 90;AG 平分/BAD.■.CM = CN\BC=CD/.-BMC^-DNC (HL )/.zB = zCDNvzADC+zCDN = 180/.zB+zADC-180^彳乍DM丄AB于M,DN丄A C于N/■□M=DN【根据角分线定理:角平分线上的点到两边的距离相等】'.vEDF+zBAF=180°;.zAED+zAFD=180°;,zCFD=180°-AFD=zAEDX'.-zEMD=zFND=90<>)DM=DNQEMD业FND ( AAS ).\DE=DF作DE丄AB交AB于E-AD是ZB赴C;的居平分线・・DE二DC (角平分线上的点倒角的两边S巨离相等)*.'AC=BC*\zB=ZBAG=45°在Rt-BDE中应是ZB二45。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线练习题一.选择题(共22小题)1.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.62.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°3.观察图中尺规作图痕迹,下列说法错误的是()A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等 D.∠AOE=∠BOE4.如图,OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,∠A=45°,若BD=2,则AB长为()A.2 B.2 C.2 D.35.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.126.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD 的面积等于()A.30 B.24 C.15 D.107.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.68.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则下列结论中错误的是()A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为()A.4cm B.5cm C.8cm D.20cm10.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点 D.Q点11.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是()A.6 B.12 C.18 D.2413.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是()个.A.1 B.2 C.3 D.414.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是()A.三条高线的交点 B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE 全等的理由是()A.SAS B.AAA C.SSS D.HL16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm,CD=3cm,则点D到AB的距离是()A.2cm B.3cm C.4cm D.5cm17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是()A.1 B.2 C.3 D.418.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③19.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有()A.2个 B.3个 C.4个 D.1个21.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,则△DAB的面积为()A.12 B.18 C.20 D.2422.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC长是()A.9 B.8 C.7 D.6评卷人得分二.填空题(共13小题)23.如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,若AB=5,BC=6,S△ABC=9,则DE的长为.24.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA 的距离为.25.如图,已知△ABC的周长是32,OB,OC分别平分∠ABC和∠ACB,OD⊥BC 于D,且OD=6,△ABC的面积是.26.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC 于D,且OD=4,△ABC的面积是.27.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为.28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB 边的距离是.29.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE 的长为.30.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有处.31.如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=.32.如图,在Rt△ABC中,∠B=90°,CD是∠ACD的平分线,若BD=2,AC=8,则△ACD的面积为.33.如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=.34.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果…,那么…、”的形式:如果,那么.35.已知Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=32,且BD:CD=9:7,则D到AB的距离为.评卷人得分三.解答题(共5小题)36.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.37.如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线.38.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC 于E、F.且BE=EO.(1)说明OF与CF的大小关系;(2)若BC=12cm,点O到AB的距离为4cm,求△OBC的面积.40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE ⊥AB于点E.(1)求证:AC=AE;(2)若点E为AB的中点,CD=4,求BE的长.2018年09月23日tcq372的初中数学组卷参考答案与试题解析一.选择题(共22小题)1.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.6【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,故选:D.2.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故选:B.3.观察图中尺规作图痕迹,下列说法错误的是()A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等 D.∠AOE=∠BOE【解答】解:根据尺规作图的画法可知:OE是∠AOB的角平分线.A、OE是∠AOB的平分线,A正确;B、OC=OD,B正确;C、点C、D到OE的距离相等,C不正确;D、∠AOE=∠BOE,D正确.故选:C.4.如图,OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,∠A=45°,若BD=2,则AB长为()A.2 B.2 C.2 D.3【解答】解:如图,过B点作BE⊥OA于E,∵OP是∠AOC的平分线,点B在OP上,BD⊥OC于D,BD=2,∴BE=BD=2,在直角△ABE中,∵∠AEB=90°,∠A=45°,∴AB=BE=2.故选:C.5.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.12【解答】解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=AB•DE=×8×2=8.故选:B.6.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD 的面积等于()A.30 B.24 C.15 D.10【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,∴DE=DC=3,∵AB=10,∴△ABD的面积=AB•DE=×10×3=15.故选:C.7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S=AB•DE=×10•D E=15,△ABD解得DE=3.故选:A.8.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则下列结论中错误的是()A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF【解答】解:∵BP为∠ABC的平分线,DE⊥AC,DF⊥AB,∴DE=DF,B正确,不符合题意;在Rt△DBE和Rt△DBF中,,∴Rt△DBE≌Rt△DBF,∴∠DBE=∠DBF,∠BDE=∠BDF,A、D正确,不符合题意,2DF不一定等于DB,C错误,符合题意,故选:C.9.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为()A.4cm B.5cm C.8cm D.20cm【解答】解:∵OA是∠BAC的平分线,OM⊥AC,ON⊥AB,∴OM=ON=8cm,故选:C.10.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点 D.Q点【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB 的平分线上.所以点M到∠AOB两边的距离相等.故选A.11.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处【解答】解:如图所示,加油站站的地址有四处.故选:D.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是()A.6 B.12 C.18 D.24【解答】解:过D作DE⊥AB于E,∵点D到边AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=6,∵CD=DB,∴DB=12,∴BC=6+12=18,故选:C.13.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;其中正确的是()个.A.1 B.2 C.3 D.4【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE,故①正确;在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∠ADC=∠ADE,∴AC+BE=AE+BE=AB,故②正确;AD平分∠CDE,故④正确;∵∠B+∠BAC=90°,∠B+∠BDE=90°,∴∠BDE=∠BAC,故③正确;综上所述,结论正确的是①②③④共4个.故选:D.14.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是()A.三条高线的交点 B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【解答】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在∠A、∠B、∠C的角平分线的交点处.故选:C.15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE 全等的理由是()A.SAS B.AAA C.SSS D.HL【解答】解:∵PD⊥AB,PE⊥AC,∴∠ADP=∠AEP=90°,在Rt△ADP和△AEP中,∴Rt△ADP≌△AEP(HL),故选:D.16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm,CD=3cm,则点D到AB的距离是()A.2cm B.3cm C.4cm D.5cm【解答】解:过D作DE⊥AB于E,∵在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,∴DE=DC=3cm,故选:B.17.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是()A.1 B.2 C.3 D.4【解答】解:如图,过点P作PE⊥OB,∵OC是∠AOB的平分线,点P在OC上,且PD⊥OA,PE⊥OB,∴PE=PD,又PD=2,∴PE=PD=2.故选:B.18.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选:A.19.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三边的中垂线的交点【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选:B.20.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有()A.2个 B.3个 C.4个 D.1个【解答】解:∵AD平分∠BAC∴∠DAC=∠DAE∵∠C=90°,DE⊥AB∴∠C=∠E=90°∵AD=AD∴△DAC≌△DAE∴∠CDA=∠EDA∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC∴BE+AC=AB∴④BE+AC=AB正确;∵∠BDE=90°﹣∠B,∠BAC=90°﹣∠B∴∠BDE=∠BAC∴②∠BAC=∠BDE正确.故选:B.21.如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,则△DAB的面积为()A.12 B.18 C.20 D.24【解答】解:过D作DE⊥AB,∵Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,∴DE=DC=3,∴△DAB的面积=,故选:B.22.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC长是()A.9 B.8 C.7 D.6【解答】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,=AB×DE=×4×2=4,∵S△ADB∵△ABC的面积为10,∴△ADC的面积为10﹣4=6,∴AC×DF=6,∴AC×2=6,∴AC=6故选:D.二.填空题(共13小题)23.如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,若AB=5,BC=6,S△ABC=9,则DE的长为.【解答】解:作DF⊥AB于F,∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,∴×AB×DF+×BC×DE=S,即×5×DE+×6×DE=9,△ABC解得,DE=,故答案为:.24.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA 的距离为3.【解答】解:过C作CF⊥AO,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=5,OM=4,∴CM=3,∴CF=3,故答案为:3.25.如图,已知△ABC的周长是32,OB,OC分别平分∠ABC和∠ACB,OD⊥BC 于D,且OD=6,△ABC的面积是96.【解答】解:过O作OM⊥AB,ON⊥AC,连接AO,∵OB,OC分别平分∠ABC和∠ACB,∴OM=ON=OD=6,∴△ABC的面积为:×AB×OM+BC×DO+NO=(AB+BC+AC)×DO=32×6=96.故答案为:96.26.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC 于D,且OD=4,△ABC的面积是42.【解答】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC ,∴OE=OD ,OD=OF ,即OE=OF=OD=4,∴△ABC 的面积是:S △AOB +S △AOC +S △OBC =×AB ×OE +×AC ×OF +×BC ×OD =×4×(AB +AC +BC ) =×4×21=42,故答案为:42.27.如图,在△ABC 中,∠ACB=90°,AD 是△ABC 的角平分线,BC=10cm ,BD :DC=3:2,则点D 到AB 的距离为 4cm .【解答】解:∵BC=10cm ,BD :DC=3:2,∴DC=4cm ,∵AD 是△ABC 的角平分线,∠ACB=90°,∴点D 到AB 的距离等于DC ,即点D 到AB 的距离等于4cm .故答案为4cm.28.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB 边的距离是16.【解答】解:过D作DE⊥AB于E,则DE的长度就是D到AB边的距离.∵AD平分∠CAB,∠ACD=90°,DE⊥AB,∴DC=DE=16(角平分线性质),故答案为:16.29.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE 的长为3.【解答】解:∵∠BAC=60°,AD平分∠BAC,∴∠DAE=∠BAC=30°.在Rt△ADE中,DE⊥AB,∠DAE=30°,∴DE=AD=3.故答案为:3.30.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有4处.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故答案为:4.31.如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=120°.【解答】解:∵点O在△ABC内,且到三边的距离相等,∴点O是三个角的平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣60°)=60°,在△BCO中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故答案为:120°.32.如图,在Rt△ABC中,∠B=90°,CD是∠ACD的平分线,若BD=2,AC=8,则△ACD的面积为8.【解答】解:作DH⊥AC于H,∵CD是∠ACD的平分线,∠B=90°,DH⊥AC,∴DH=DB=2,∴△ACD的面积=×AC×DH=×8×2=8,故答案为:8.33.如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=150°.【解答】解:∵BD⊥AE于B,DC⊥AF于C,且DB=DC,∴AD是∠BAC的平分线,∵∠BAC=40°,∴∠CAD=∠BAC=20°,∴∠DGF=∠CAD+∠ADG=20°+130°=150°.故答案为:150°34.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果…,那么…、”的形式:如果一个点在角的平分线上,那么它到这个角两边的距离相等.【解答】解:如果一个点在角平分线上,那么它到角两边的距离相等.35.已知Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=32,且BD:CD=9:7,则D到AB的距离为14.【解答】解:如图,过点D作DE⊥AB于E,∵BC=32,BD:CD=9:7,∴CD=32×=14,∵∠C=90°,AD平分∠BAC,∴DE=CD=14,即D到AB的距离为14.故答案为:14.三.解答题(共5小题)36.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.【解答】(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴△BDE与△CDE均为直角三角形,∵∴△BDE≌△CDF,∴DE=DF,即AD平分∠BAC;(2)AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∵,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.37.如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线.【解答】证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=DE,(2)在Rt△OCE和Rt△ODE中,,∴Rt△OCE≌Rt△ODE(HL),∴OC=OD,又∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.38.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.【解答】解:分别作CG⊥AB与G,CH⊥AD与H,∵AC为∠BAD的角平分线,∴CG=CH,∵AB=AD,∴△ABC面积=△ACD面积,又∵AE=DF,∴△AEC面积=△CDF面积,∴△BCE面积=△ABC面积﹣△AEC面积,△BCE面积=△ACD面积﹣△CDF面积,∴△BCE面积=△ACF面积,∵四边形AECF面积=△AEC面积+△ACF面积,四边形AECF面积=△AEC面积+△BCE面积,∴四边形AECF面积=△ABC面积,又∵四边形ABCD面积=△ABC面积+△ACD面积,又∵四边形ABCD面积=2△ABC面积,∴四边形AECF面积为四边形ABCD面积的一半.39.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC 于E、F.且BE=EO.(1)说明OF与CF的大小关系;(2)若BC=12cm,点O到AB的距离为4cm,求△OBC的面积.【解答】解:(1)OF=CF.理由:∵BE=EO,∴∠EBO=∠EOB,∵△ABC中,∠ABC与∠ACB的平分线交于点O,∴∠EBO=∠OBC,∴∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;(2)过点O作OM⊥BC于M,作ON⊥AB于N,∵△ABC中,∠ABC与∠ACB的平分线交于点O,点O到AB的距离为4cm,∴ON=OM=4cm,∴S=BC•OM=×12×4=24(cm2).△OBC40.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE ⊥AB于点E.(1)求证:AC=AE;(2)若点E为AB的中点,CD=4,求BE的长.【解答】(1)证明:∵在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∠AED=∠C=90°,∠CAD=∠EAD,在△ACD和△AED中∴△ACD≌△AED,∴AC=AE;(2)解:∵DE⊥AB,点E为AB的中点,∴AD=BD,∴∠B=∠DAB=∠CAD,∵∠C=90°,∴3∠B=90°,∴∠B=30°,∵CD=DE=4,∠DEB=90°,∴BD=2DE=8,由勾股定理得:BE==4.。

相关文档
最新文档