基于单片机控制的电子时钟设计(完整版图纸直接可用)

合集下载

电子时钟基于某AT89c51单片机设计电路图及程序

电子时钟基于某AT89c51单片机设计电路图及程序

电子时钟基于AT89c51单片机的设计电子时钟原理图开机显示仿真图: 当按下仿真键时电子时钟开机页面显示第一行显示JD12102Class--16,第二行显示动态TINE:12:00:04。

电子时钟调时间仿真图:当按下K1为1次时,光标直接跳到电子时钟的秒,可以按下K2进行调节。

当按下K1为2次时,光标直接跳到电子时钟的分,可以按下K2进行调节。

当按下K1为3次时,光标直接跳到电子时钟的时,可以按下K2进行调节。

当按下K1为4次时,光标直接跳完,电子时钟可以进行正常计时。

电子时钟闹钟调节仿真:当按下K3为1次时,直接跳到闹钟显示界面00:00:00,按下K2可以对闹钟的秒进行调节。

当按下K3为2次时,可以调到分,按下K2可以对闹钟的分进行调节。

当按下K3为3次时,可以调到时,按下K2可以对闹钟的时进行调节。

当按下K3为4次时,直接跳到计时界面,对闹钟进行到计时,时间到可以发出滴滴声。

#include<reg51.h>#define uchar unsigned char //预定义一下#define uint unsigned intuchar table[]="JD12102Class--21"; //显示内容sbit lcden=P3^4; //寄存器EN片选引脚sbit lcdrs=P3^5; //寄存器RS选择引脚sbit beep=P3^6; //接蜂鸣器extern void key1();extern void key2();extern void key3();uchar num,hour=12,minite,second,ahour,aminite,asecond,a,F_k1,F_k2,F_k3; //定义变量void delay(uint z) //延时{uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}void write_com(uchar com){lcdrs=0;P0=com; //送出指令,写指令时序delay(5);lcden=1;delay(5);lcden=0;}void write_data(uchar date){lcdrs=1;P0=date; //送出数据,写指令程序delay(5);lcden=1;delay(5);lcden=0;}void write_add(uchar add,uchar date){uchar aa,bb;aa=date/10;bb=date%10;write_com(0x80+add);write_data(0x30+aa);write_data(0x30+bb);}void init() //初始化{lcden=0;write_com(0x38); //设置16*2显示,5*7点阵write_com(0x0c); //开显示,不显示光标write_com(0x06); //地址加1,写入数据是光标右移1位write_com(0x01); //清屏write_com(0x80); //起点为第一行第一个字符开始}void display(uchar h,uchar m,uchar s) //显示设计程序{{write_com(0x80+0x16);}{write_com(0xC0+0x00);write_data('T');write_data('I');write_data('M');write_data('E');write_data(':');write_data(0x30+(h/10));write_data(0x30+(h%10));write_data(':');write_data(0x30+(m/10));write_data(0x30+(m%10));write_data(':');write_data(0x30+(s/10));write_data(0x30+(s%10));write_data(' ');write_data(' ');write_data(' ');} }void main(){init();TMOD=0X01; //设置T0定时方式1TH0=(65535-50000)/256; //设置初值TL0=(65535-50000)%256;EA=1; //开总中断TR0=1; //启动T0ET0=1;for(num=0;num<16;num++) //依次读出数据{write_data(table[num]);}while(1){key1();key2();key3();if(ahour==hour&&aminite==minite&&second<10) //时间到闹钟响{beep=~beep;}if(F_k1==0&F_k3==0) //K1和K3按下次数为零就直接显示时分秒display(hour,minite,second);}}void timer0() interrupt 1 //T0中断函数{TH0=(65535-50000)/256; //装载计数器初值TL0=(65535-50000)%256;a++;if(a==20){ //进位设置60秒进1分,60分进1时,24时进0时a=0;second++;if(second==60){second=0;minite++;if(minite==60){minite=0;hour++;if(hour==24){hour=0;}}}}}#include <reg51.h> //调时间程序#define uchar unsigned char#define uint unsigned intsbit k1=P1^0; //定义3个变量sbit k2=P1^1;sbit k3=P1^2;extern uchar F_k1,F_k3,second,minite,hour,ahour,aminite,asecond; //预定义变量extern void write_com(uchar com);extern void write_add(uchar add,uchar date);extern void display(uchar h,uchar m,uchar s);void delay_key(int i){while(i--);}void key1(){if(k1==0) //按下K1零次时,直接计时与开机显示{delay_key(100);if(k1==0){TR0=0;while(!k1);F_k1++;if(F_k1==4){F_k1=0;write_com(0x0c);TR0=1;}}}if(F_k1==1|F_k3==1){write_com(0xC0+0x0c);write_com(0x0f);}if(F_k1==2|F_k3==2)write_com(0xC0+0x09);if(F_k1==3|F_k3==3)write_com(0xC0+0x06);}void key2(){if(k2==0){delay_key(100);{while(!k2);if(F_k1==1) //按下K1一次时设置闹钟的秒{second++;if(second==60)second=0;write_add(0x4b,second);}if(F_k1==2) //按下K3两次时设置闹钟的分{minite++;if(minite==60)minite=0;write_add(0x48,minite);}if(F_k1==3) // 按下K1三次时设置闹钟的时{hour++;if(hour==24)hour=0;write_add(0x45,hour);}if(F_k3==1) //按下K3一次时设置闹钟的秒{asecond++;if(asecond==60)asecond=0;write_add(0x4b,asecond);}if(F_k3==2) //按下K3两次时设置闹钟的分{aminite++;if(aminite==60)aminite=0;write_add(0x48,aminite);}if(F_k3==3) //按下K3三次时设置闹钟的时{ahour++;if(ahour==24)ahour=0;write_add(0x45,ahour);}}}}void key3(){if(k3==0){delay_key(100);if(k3==0){while(!k3);F_k3++;if(F_k3==4) //K3等于四次时直接跳入闹钟显示{F_k3=0;write_com(0x0c);}if(F_k3==1)display(ahour,aminite,asecond);}}}。

单片机制作数字钟(含万年历、秒表功能)

单片机制作数字钟(含万年历、秒表功能)

数字钟、万年历制作(基于单片机)电路原理图:程序://********************20131206****数字钟程序#pragma SMALL#include <reg51.h>#include <absacc.h>#include <intrins.h>//********************************************************* *********编译预处理void display(unsigned char *p); //显示函数,P为显示数据首地址unsigned char keytest(); //按键检测函数unsigned char search(); //按键识别函数void alarm(); //闹钟判断启动函数void ftion0(); //始终修改函数void ftion1(); //闹钟修改函数void ftion3(); //日期修改函数void cum(); //加1修改函数void minus(); //减1修改函数void jinzhi(); //进制修改函数void riqi(); //日期void stopwatch(); //秒表函数//********************************************************* *******函数声明sbit P2_7=P2^7;//********************************************************* *******端口定义unsigned char clockbuf[3]={0,0,0};unsigned char bellbuf[3]={0,0,0};unsigned char date[3]={1,1,1}; //日期存放数组unsigned char stop[3]={0,0,0};unsigned char msec1,msec2;unsigned char timdata,rtimdata,dtimdata;unsigned char count;unsigned char *dis_p;unsigned char or; //12进制控制标志unsigned char ri; //日期显示控制标志位unsigned char mb; //秒表控制标志位bit arm,rtim,rhour,rmin,hour,min,sec,day,mon,year; //定义位变量//********************************************************* *****全局变量定义void main(){unsigned char a;or=0; //12进制修改标志清零ri=0;mb=0;P2_7=0;arm=0;msec1=0;msec2=0;timdata=0;rtimdata=0;count=0;TMOD=0x12;TL0=0x06;TH0=0x06;TH1=(65536-10000)/256;TL1=(65536-10000)%256;EA=1;ET0=1;ET1=1;TR0=1;TR1=0;dis_p=clockbuf;while(1){a=keytest();if(a==0x78) //判断是否有键按下{display(dis_p);if(arm==1) alarm();}else{display(dis_p);a=keytest();if(a!=0x78){a=search();switch(a){case 0x00:ftion0();break;case 0x01:ftion1();break;case 0x02:cum();break;case 0x06:jinzhi();break;case 0x03:riqi();break;case 0x04:ftion3();break;case 0x05:minus();break;case 0x07:stopwatch();break;case 0x09:TR1=1;break;case 0x0a:TR1=0;break;case 0x0b:stop[0]=0;stop[1]=0;stop[2]=0;break;default:break;}}}}}//********************************************主函数【完】void display(unsigned char *p){unsigned char buffer[]={0,0,0,0,0,0};unsigned char k,i,j,m,temp;unsigned char led[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};buffer[0]=p[0]/10;buffer[1]=p[0]%10;buffer[2]=p[1]/10;buffer[3]=p[1]%10;buffer[4]=p[2]/10;buffer[5]=p[2]%10;if((sec==0)&&(min==0)&&(hour==0)&&(rmin==0)&&(rhour==0)&&( day==0)&&(mon==0)&&(year==0)) //没有修改标志,正常显示{for(k=0;k<3;k++){temp=0x01;for(i=0;i<6;i++){P0=0x00; //段选端口j=buffer[i];P0=led[j];P1=~temp; //位选端口temp<<=1;for(m=0;m<200;m++);}}}else //若有修改标志,则按以下标志分别显示{if(sec==1||day==1){P1=0x1f;i=buffer[5];P0=led[i];for(m=0;m<200;m++);P1=0x2f;j=buffer[4];P0=led[j];for(m=0;m<200;m++);}if(min==1||rmin==1||mon==1){P1=0x3b;i=buffer[2];P0=led[i];for(m=0;m<200;m++);P1=0x37;j=buffer[3];P0=led[j];for(m=0;m<200;m++);}if(hour==1||rhour==1||year==1) {P1=0x3e;i=buffer[0];P0=led[i];for(m=0;m<200;m++);P1=0x3d;j=buffer[1];P0=led[j];for(m=0;m<200;m++);}}}//**********************************LED显示函数【完】unsigned char keytest(){unsigned char c;P2=0x78; //检测是否有键按下c=P2;c=c&0x78;return(c);}//******************************************键盘检测函数【完】unsigned char search(){unsigned char a,b,c,d,e;c=0x3f;a=0; //行号while(1){P2=c;d=P2;d=d&0x07;if(d==0x03){b=0;break;} //列号else if(d==0x05){b=1;break;}else if(d==0x06){b=2;break;}a++;c>>=1;if(a==5){a=0;c=0x3f;}}e=a*3+b;do{display(dis_p);}while((d=keytest())!=0x78);return(e);}//***********************************************查键值函数【完】void alarm(){if((clockbuf[0]==bellbuf[0])&&(clockbuf[1]==bellbuf[1])){P2_7=1;rtim=1;if(count==10){count=0;P2_7=0;arm=0;rtim=0;}}}//****************************************闹钟判断启动函数【完】void ftion0(){TR0=0;rhour=0;rmin=0;dis_p=clockbuf;rtimdata=0;timdata++;switch(timdata){case 0x01:sec=1;break;case 0x02:sec=0;min=1;break;case 0x03:min=0;hour=1;break;case 0x04:timdata=0;hour=0;TR0=1;break;default:break;}}//*********************************************时钟设置函数【完】void ftion1(){if(TR0==0) TR0=1;sec=0;min=0;hour=0;dis_p=bellbuf;timdata=0;rtimdata++;switch(rtimdata){case 0x01:rmin=1;break;case 0x02:rmin=0;rhour=1;break;case 0x03:rtimdata=0;rhour=0;arm=1;dis_p=clockbuf;break;default:break;}}//*********************************************闹钟设置函数【完】void ftion3(){if(TR0==0) TR0=1;day=0;mon=0;year=0;dis_p=date;timdata=0;rtimdata=0;dtimdata++;switch(dtimdata){case 0x01:day=1;break;case 0x02:day=0;mon=1;break;case 0x03:mon=0;year=1;break;case 0x04:dtimdata=0;year=0;dis_p=clockbuf;break;default:break;}}//*************************************************日期修改函数【完】void minus(){if(sec==1){if(0==clockbuf[2]) clockbuf[2]=59;else clockbuf[2]--;}else if(min==1){if(0==clockbuf[1]) clockbuf[1]=59;else clockbuf[1]--;}else if(hour==1){if(or==0) //判断进制{if(0==clockbuf[0]) clockbuf[0]=23;else clockbuf[0]--;}if(or==1){if(1==clockbuf[0]) clockbuf[0]=12;else clockbuf[0]--;}}else if(rmin==1){if(bellbuf[1]==0) bellbuf[1]=59;else bellbuf[1]--;}else if(rhour==1){if(or==0){if(bellbuf[0]==0) bellbuf[0]=23;else bellbuf[0]--;}if(or==1){if(bellbuf[0]==1) bellbuf[0]=12;else bellbuf[0]--;}}else if(day==1){if(date[2]==1) date[2]=31;else date[2]--;}else if(mon==1){if(date[1]==1) date[1]=12;else date[1]--;}else if(year==1){if(date[0]==1) date[0]=99;else date[0]--;}}//*************************************减1修改功能函数【完】void cum(){if(sec==1){if(59==clockbuf[2]) clockbuf[2]=0;else clockbuf[2]++;}else if(min==1){if(59==clockbuf[1]) clockbuf[1]=0;else clockbuf[1]++;}else if(hour==1){if(or==0) //判断进制{if(23==clockbuf[0]) clockbuf[0]=0;else clockbuf[0]++;}if(or==1){if(12==clockbuf[0]) clockbuf[0]=1;else clockbuf[0]++;}}else if(rmin==1){if(bellbuf[1]==59) bellbuf[1]=0;else bellbuf[1]++;}else if(rhour==1){if(or==0){if(bellbuf[0]==23) bellbuf[0]=0;else bellbuf[0]++;}if(or==1){if(bellbuf[0]==12) bellbuf[0]=1;else bellbuf[0]++;}}else if(day==1){if(date[2]==31) date[2]=1;else date[2]++;}else if(mon==1){if(date[1]==12) date[1]=1;else date[1]++;}else if(year==1){if(date[0]==99) date[0]=0;else date[0]++;}}//*************************************加1修改功能函数【完】void jinzhi(){if(or==0) or=1;else or=0;}//***********************************进制修改控制函数【完】void riqi(){if(ri==0){dis_p=date;}if(ri==1){dis_p=clockbuf;}ri++;if(ri==2) ri=0;}//********************************日期控显示函数【完】void stopwatch(){if(mb==0){dis_p=stop;mb=1;}else{mb=0;dis_p=clockbuf;}}//************秒表**********秒表**********秒表函数【完】void clock() interrupt 1{EA=0;if(msec1!=0x14) msec1++; //6MHz晶振定时10mselse{msec1=0;if(msec2!=100) msec2++; //定时1selse{if(rtim==1) count++; //闹钟启动标志计时10smsec2=0;if(clockbuf[2]!=59) clockbuf[2]++;else{clockbuf[2]=0;if(clockbuf[1]!=59) clockbuf[1]++;else{clockbuf[1]=0;if(or==0){if(clockbuf[0]!=23) clockbuf[0]++;else{clockbuf[0]=0;if((date[1]==1)||(date[1]==1)||(date[1]==1)||(date[1]==3)||(date[ 1]==5)||(date[1]==7)||(date[1]==8)||(date[1]==10)||(date[1]==12)){if(date[2]!=30) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}if((date[1]==4)||(date[1]==6)||(date[1]==9)||(date[1]==11)){if(date[2]!=29) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}if(date[1]==2){if((((date[0]%4==0)&&(date[0]%100!=0))||(date[0]%400==0))){if(date[2]!=28) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}else{if(date[2]!=27) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}}}}if(or==1){if(clockbuf[0]!=12) clockbuf[0]++;else{clockbuf[0]=0;if((date[1]==1)||(date[1]==1)||(date[1]==1)||(date[1]==3)||(date[ 1]==5)||(date[1]==7)||(date[1]==8)||(date[1]==10)||(date[1]==12)){if(date[2]!=30) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}if((date[1]==4)||(date[1]==6)||(date[1]==9)||(date[1]==11)){if(date[2]!=29) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}if(date[1]==2){if((((date[0]%4==0)&&(date[0]%100!=0))||(date[0]%400==0))){if(date[2]!=28) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}else{if(date[2]!=27) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}}}}}}}}EA=1;}//*******************************定时器0中断函数【完】void miaobiao() interrupt 3{TH1=(65536-10000)/256;TL1=(65536-10000)%256;if(stop[2]!=99) stop[2]++;else{stop[2]=0;if(stop[1]!=59) stop[1]++;else{stop[1]=0;if(stop[0]!=59) stop[0]++;else stop[0]=0;}}}//***********************************定时器1中断函数【完】。

电子时钟单片机设计图

电子时钟单片机设计图

基础设计proteus仿真原理图仿真结果:D1灯亮频率为1秒,即灭0.5秒,亮0.5秒。

D2灯亮频率为2秒,即灭1秒,亮1秒。

D1接管脚P1.18,D2接管脚P1.19。

D1由OneTask控制,D2由TwoTask控制。

电子钟设计proteus仿真原理图仿真结果:串口UART0输出:LED显示:LCD显示:串口,LED,LCD同步输出时间,时分秒。

按键1(EINT1 P0.3)和按键2(P1.16)可以实现调整时间。

在正常计时是按一下按键1,计时停止,按一下按键2可以实现秒加1,即此时按键2可以实现秒调整,再按一下按键1,按键2就可以实现分调整,再按一下按键1,按键2就可以实现时调整,在按一下按键1,时钟正常计时。

在调整过程中,串口,LED,LCD会同步显示调整后的时间。

const unsigned char LEDTable[]={ 0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0xff};const unsigned int ASCTable[]={ 0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a};uint8dat0[]={0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,0x00,0x0F,0x10,0x20,0x20,0x10,0x0F,0x00}; //0 uint8dat1[]={0x00,0x10,0x10,0xF8,0x00,0x00,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00}; //1 uint8dat2[]={0x00,0x70,0x08,0x08,0x08,0x88,0x70,0x00,0x00,0x30,0x28,0x24,0x22,0x21,0x30,0x00}; //2 uint8dat3[]={0x00,0x30,0x08,0x88,0x88,0x48,0x30,0x00,0x00,0x18,0x20,0x20,0x20,0x11,0x0E,0x00}; //3 uint8dat4[]={0x00,0x00,0xC0,0x20,0x10,0xF8,0x00,0x00,0x00,0x07,0x04,0x24,0x24,0x3F,0x24,0x00}; //4 uint8dat5[]={0x00,0xF8,0x08,0x88,0x88,0x08,0x08,0x00,0x00,0x19,0x21,0x20,0x20,0x11,0x0E,0x00}; //5 uint8dat6[]={0x00,0xE0,0x10,0x88,0x88,0x18,0x00,0x00,0x00,0x0F,0x11,0x20,0x20,0x11,0x0E,0x00}; //6 uint8dat7[]={0x00,0x38,0x08,0x08,0xC8,0x38,0x08,0x00,0x00,0x00,0x00,0x3F,0x00,0x00,0x00,0x00}; //7 uint8dat8[]={0x00,0x70,0x88,0x08,0x08,0x88,0x70,0x00,0x00,0x1C,0x22,0x21,0x21,0x22,0x1C,0x00}; //8uint8dat9[]={0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,0x00,0x00,0x31,0x22,0x22,0x11,0x0F,0x00}; //9 uint8dat[]={0x00,0x00,0x00,0xC0,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x30,0x30,0x00,0x00,0x00};//:void count (void ) //time change{if(sec==60){ sec=0;min++;}if(min==60){min=0;hour++;}if(hour==24)hour=0;}int main(void){OSInit();PINSEL2=PINSEL2&(~0x08); // p1.16~p1.25 is GPIOIO1DIR=LEDSET; //P1.18 ~P1.25 is outputIO1CLR=LEDSET; //p1.18~p1,25 is lowOSTaskCreate(StartTask,(void *)0,&StartTaskStk[TASK_STK_SIZE - 1],);OSStart();}void OneTask (void *pdata){uint32 led1;pdata = pdata;for(;;){led1=0x01<<18;IO1CLR=0X01<<18; //p1.18 is lowOSTimeDlyHMSM(0,0,0,500); //灭0.5秒IO1SET=led1; //p1.18 is highOSTimeDlyHMSM(0,0,0,500); //亮0.5秒}}void TwoTask (void *pdata){uint32 led2;pdata = pdata;for(;;){led2=0x01<<19;IO1CLR=led2; //p1.19 is lowOSTimeDlyHMSM(0,0,1,0); // 灭1秒IO1SET=led2; //p1.19 is hghOSTimeDlyHMSM(0,0,1,0); //亮1秒}}省略了任务StartTask,在此任务中初始化目标板TargetInit();并创建OneTask和TwoTask。

基于单片机控制的智能定时闹钟设计(含完整程序仿真图)

基于单片机控制的智能定时闹钟设计(含完整程序仿真图)

摘要本设计是定时闹钟的设计,由单片机AT89C51芯片和LED数码管为核心,辅以必要的电路,构成的一个单片机电子定时闹钟。

电子钟设计可采用数字电路实现,也可以采用单片机来完成。

数字电子钟是用数字集成电路构成的,用数码管显示“时”,“分”,“秒”的现代计时装置。

若用数字电路完成,所设计的电路相当复杂,大概需要十几片数字集成块,其功能也主要依赖于数字电路的各功能模块的组合来实现,焊接的过程比较复杂,成本也非常高。

若用单片机来设计制作完成,由于其功能的实现主要通过软件编程来完成,那么就降低了硬件电路的复杂性,而且其成本也有所降低,所以在该设计中采用单片机利用AT89C51,它是低功耗、高性能的CMOS型8位单片机。

片内带有4KB的Flash存储器,且允许在系统内改写或用编程器编程。

另外, AT89C51的指令系统和引脚与8051完全兼容,片内有128B 的RAM、32条I/O口线、2个16位定时计数器、5个中断源、一个全双工串行口等。

AT89C51单片机结合七段显示器设计的简易定时闹铃时钟,可以设置现在的时间及显示闹铃设置时间,若时间到则发出一阵声响,进—步可以扩充控制电器的启停。

设计内容包括了秒信号发生器、时间显示电路、按键电路、供电电源以及闹铃指示电路等几部分的设计。

采用四个开关来控制定时闹钟的工作状态,分别为:K1、设置时间和闹钟的小时;K2、设置小时以及设置闹钟的开关;K3、设置分钟和闹钟的分钟;K4、设置完成退出。

课设准备中我根据具体的要求,查找资料,然后按要求根据已学过的时钟程序编写定时闹钟的程序,依据程序利用proteus软件进行了仿真试验,对出现的问题进行分析和反复修改源程序,最终得到正确并符合要求的结果。

设计完成的定时闹钟达到课程设计的要求,在到达定时的时间便立即发出蜂鸣声音,持续一分钟。

显示采用的六位数码管电路,如果亮度感觉不够,可以通过提升电阻来调节,控制程序中延迟时间的长短,可以获得不同的效果。

基于单片机的数字电子钟设计(含完整程序+PCB图)--课程设计

基于单片机的数字电子钟设计(含完整程序+PCB图)--课程设计

基于单片机的数字电子钟设计(含完整程序+PCB图)--课程设计1 课题设计任务、功能要求及总体方案1.1 课题设计任务本课程设计选题目为:数字电子钟。

设计一个具有特定功能的电子钟。

1.2 功能要求设计的数字电子钟上电或按键复位后能自动显示系统提示符“P.”,进入时钟准备状态;第一次按数字电子钟启动/调整键,数字电子钟从0时0分0秒开始运行,进入时钟运行状态;再次按数字电子钟启动/调整键,则数字电子钟进入时钟调整状态,并且时间停止不动,此时可分别利用各调整键调整时、分、秒,调整结束后可按启动/调整键再次进入时钟运行状态。

1.3 设计总体方案介绍及工作原理说明本课程设计采用AT89S52单片机设计一个数字电子钟,通过两个4位LED数码管显示时、分、秒,并设有9个按键。

其中一个用于单片机的复位;一个为启动/调整键;两个分别为加,减键;其他键本课题暂不用。

电路分为5部分,分别为复位电路、键盘电路、时钟电路、显示电路和控制电路。

复位电路采用按键复位方式。

键盘电路采用独立式键盘。

时钟电路用12MHz的晶振产生时钟信号。

显示电路采用8个三极管驱动两个4位LED显示。

控制电路采用8位的AT89S52单片机作为CPU;原理是:时钟用T0为时钟秒加1中断,时间常数位50MS,每20次加1S,T0用为时间加1中断,时间常数为50MS,中断20次时间加1。

其设计框图如图1.1所示:复位电路AT89S52 显示时钟电路键盘电路下载电路图1.1 设计方案框图42 数字电子钟硬件系统的设计2.1 硬件系统各模块功能简要介绍2.1.1 复位电路复位是单片机的硬件初始化操作。

经复位操作后,单片机系统才能开始正常工作。

单片机上有复位引脚RST,用于外接复位电路,这里复位电路采用按键电平复位。

2.1.2 时钟电路单片机工作所需的同步时钟信号由以下两种方法获得:由单片机片内时钟电路结合外部晶振、电容产生和直接从单片机外部引入脉冲信号。

电子时钟基于AT89c51单片机设计电路图及程序

电子时钟基于AT89c51单片机设计电路图及程序

电子时钟基于AT89c51单片机的设计电子时钟原理图开机显示仿真图: 当按下仿真键时电子时钟开机页面显示第一行显示JD12102Class--16,第二行显示动态TINE:12:00:04。

电子时钟调时间仿真图:当按下K1为1次时,光标直接跳到电子时钟的秒,可以按下K2进行调节。

当按下K1为2次时,光标直接跳到电子时钟的分,可以按下K2进行调节。

当按下K1为3次时,光标直接跳到电子时钟的时,可以按下K2进行调节。

当按下K1为4次时,光标直接跳完,电子时钟可以进行正常计时。

电子时钟闹钟调节仿真:当按下K3为1次时,直接跳到闹钟显示界面00:00:00,按下K2可以对闹钟的秒进行调节。

当按下K3为2次时,可以调到分,按下K2可以对闹钟的分进行调节。

当按下K3为3次时,可以调到时,按下K2可以对闹钟的时进行调节。

当按下K3为4次时,直接跳到计时界面,对闹钟进行到计时,时间到可以发出滴滴声。

#include<reg51.h>#define uchar unsigned char //预定义一下#define uint unsigned intuchar table[]="JD12102Class--21"; //显示内容sbit lcden=P3^4; //寄存器EN片选引脚sbit lcdrs=P3^5; //寄存器RS选择引脚sbit beep=P3^6; //接蜂鸣器extern void key1();extern void key2();extern void key3();uchar num,hour=12,minite,second,ahour,aminite,asecond,a,F_k1,F_k2,F_k3; //定义变量void delay(uint z) //延时{uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}void write_com(uchar com){lcdrs=0;P0=com; //送出指令,写指令时序delay(5);lcden=1;delay(5);lcden=0;}void write_data(uchar date){lcdrs=1;P0=date; //送出数据,写指令程序delay(5);lcden=1;delay(5);lcden=0;}void write_add(uchar add,uchar date){uchar aa,bb;aa=date/10;bb=date%10;write_com(0x80+add);write_data(0x30+aa);write_data(0x30+bb);}void init() //初始化{lcden=0;write_com(0x38); //设置16*2显示,5*7点阵write_com(0x0c); //开显示,不显示光标write_com(0x06); //地址加1,写入数据是光标右移1位write_com(0x01); //清屏write_com(0x80); //起点为第一行第一个字符开始}void display(uchar h,uchar m,uchar s) //显示设计程序{{write_com(0x80+0x16);}{write_com(0xC0+0x00);write_data('T');write_data('I');write_data('M');write_data('E');write_data(':');write_data(0x30+(h/10));write_data(0x30+(h%10));write_data(':');write_data(0x30+(m/10));write_data(0x30+(m%10));write_data(':');write_data(0x30+(s/10));write_data(0x30+(s%10));write_data(' ');write_data(' ');write_data(' ');} }void main(){init();TMOD=0X01; //设置T0定时方式1 TH0=(65535-50000)/256; //设置初值TL0=(65535-50000)%256;EA=1; //开总中断TR0=1; //启动T0ET0=1;for(num=0;num<16;num++) //依次读出数据{write_data(table[num]);}while(1){key1();key2();key3();if(ahour==hour&&aminite==minite&&second<10) //时间到闹钟响{beep=~beep;}if(F_k1==0&F_k3==0) //K1和K3按下次数为零就直接显示时分秒display(hour,minite,second);}}void timer0() interrupt 1 //T0中断函数{TH0=(65535-50000)/256; //装载计数器初值TL0=(65535-50000)%256;a++;if(a==20){ //进位设置60秒进1分,60分进1时,24时进0时a=0;second++;if(second==60){second=0;minite++;if(minite==60){minite=0;hour++;if(hour==24){hour=0;}}}}}#include <reg51.h> //调时间程序#define uchar unsigned char#define uint unsigned intsbit k1=P1^0; //定义3个变量sbit k2=P1^1;sbit k3=P1^2;extern uchar F_k1,F_k3,second,minite,hour,ahour,aminite,asecond; //预定义变量extern void write_com(uchar com);extern void write_add(uchar add,uchar date);extern void display(uchar h,uchar m,uchar s);void delay_key(int i){while(i--);}void key1(){if(k1==0) //按下K1零次时,直接计时与开机显示{delay_key(100);if(k1==0){TR0=0;while(!k1);F_k1++;if(F_k1==4){F_k1=0;write_com(0x0c);TR0=1;}}}if(F_k1==1|F_k3==1){write_com(0xC0+0x0c);write_com(0x0f);}if(F_k1==2|F_k3==2)write_com(0xC0+0x09);if(F_k1==3|F_k3==3)write_com(0xC0+0x06);}void key2(){if(k2==0){delay_key(100);while(!k2);if(F_k1==1) //按下K1一次时设置闹钟的秒{second++;if(second==60)second=0;write_add(0x4b,second);}if(F_k1==2) //按下K3两次时设置闹钟的分{minite++;if(minite==60)minite=0;write_add(0x48,minite);}if(F_k1==3) // 按下K1三次时设置闹钟的时{hour++;if(hour==24)hour=0;write_add(0x45,hour);}if(F_k3==1) //按下K3一次时设置闹钟的秒{asecond++;if(asecond==60)asecond=0;write_add(0x4b,asecond);}if(F_k3==2) //按下K3两次时设置闹钟的分{aminite++;if(aminite==60)aminite=0;write_add(0x48,aminite);}if(F_k3==3) //按下K3三次时设置闹钟的时{ahour++;if(ahour==24)ahour=0;write_add(0x45,ahour);}}}void key3(){if(k3==0){delay_key(100);if(k3==0){while(!k3);F_k3++;if(F_k3==4) //K3等于四次时直接跳入闹钟显示{F_k3=0;write_com(0x0c);}if(F_k3==1)display(ahour,aminite,asecond);}}}。

基于单片机控制的电子时钟设计(完整版图纸直接可用)

基于单片机控制的电子时钟设计(完整版图纸直接可用)

中图分类号:基于单片机控制的电子时钟设计专业名称:应用电子技术学生姓名:王明宗导师姓名:王春霞职称:讲师焦作大学机电工程学院2012年 12 月中图分类号:密级:UDC:单位代码:基于单片机控制的电子时钟设计Based on single-chip microcomputer control the design of the electronic clock焦作大学机电工程学院摘要现代生活的人们越来越重视起了时间观念,可以说是时间和金钱划上了等号。

对于那些对时间把握非常严格和准确的人或事来说,时间的不准确会带来非常大的麻烦,所以以数码管为显示器的时钟比指针式的时钟表现出了很大的优势。

数码管显示的时间简单明了而且读数快、时间准确显示到秒。

所以数字电子钟的精度、稳定度远远超过老式机械钟。

而机械式的依赖于晶体震荡器,可能会导致误差。

在这次设计中,我们采用LED数码管显示时、分、秒,以24小时计时方式,根据数码管动态显示原理来进行显示,以AT89S51芯片为核心,辅以必要的电路,设计了一个简易的电子时钟,它由4.5V直流电源供电,通过数码管能够准确显示时间,调整时间,并在数码管上显示相应的时间。

关键词:单片机 AT89S51 电子时钟ABSTRACTModern life people pay more and more attention to up the concept of time, can say time and money off the equal sign. For those who grasp of time is very strict and accurate person or thing, it is not accurate time will bring very big trouble, so to digital tube for display clock than pointer clock showed a lot of advantages. Digital tube display time simple and fast reading, time accurate display to seconds. So the digital clock accuracy, stability is far more than the old mechanical clock. And mechanical dependent on the crystal oscillators, may lead to error. In this design, we adopt LED digital tube display, points, SEC to 24 hours time way, according to the principle of dynamic display of digital tube to show that AT89S51 chip as the core, with the necessary circuit, design a simple electronic clock, it consists of 4.5 V dc power supply, through the digital tube can accurately display the time, adjusting time, and in the digital tube display the corresponding time.Key word:SCM AT89S51 electronic clock目录第一章引言 (1)1.1数字电子钟的背景 (1)1.2数字电子钟的意义 (1)1.3数字电子钟的应用 (1)第二章设计方案 (3)2.1数字时钟方案 (3)2.2数码管显示方案 (3)第三章系统设计 (4)3.1总体设计 (4)3.2单片机外围控制电路 (4)3.2.1单片机的选择 (4)3.2.2控制电路 (6)3.2.3电源部分 (7)3.2.4复位电路 (8)3.2.5程序下载接口 (8)3.2.6位选部分 (9)3.2.7数码管的连接电路 (9)第四章软件设计 (11)4.1程序流程图 (11)4.2源程序 (13)第五章使用调试 (20)第六章设计总结 (21)参考文献 (22)附录 (23)致谢 (24)第一章引言1.1数字电子钟的背景20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。

电子综合设计(附完整程序版)基于单片机多功能数字时钟[1]

电子综合设计(附完整程序版)基于单片机多功能数字时钟[1]

课题:基于51单片机的多功能数字时钟系统设计一、概述、设计思路该设计方案是以MC51单片机为核心,采用LCD液晶屏幕显示系统,辅以闹钟模块,温度采集模块、日期提醒、键盘时间调整预设置等模块,所构建的数字时钟系统,能动态显示实时时钟的时、分、秒,数据显示(误差限制在30每天),对闹铃方式与温度调节模块进行了重点设计实现SB0、SB1、SB2、SB3四个键实现时钟正常显示,调时,及闹钟时间设置。

本系统设计大部分功能有软件来实现,使电路简单明了,系统稳定性也得大大提高。

二、系统组成与工作原理1、工作原理:本设计采用STC89C51单片机作为本次课程设计的控制模块。

单片机可把由DS18B20、DS1302、AT24C02中的数据利用软件来进行处理,从而把数据传输到显示模块,实现温度、日历和闹铃的显示。

以LCD液晶显示器为显示模块,把单片机传来的的数据显示出来,并且显示多样化,在显示电路中,主要靠按键来实现各种显示要求的选择与切换。

2、总是设计框架图:图二:系统总体电路图三、单元电路的设计与分析整个电子时钟系统电路可分为六大部分:中央处理单元(CPU)、复位电路部分、显示部分、键盘输入部分、温度采集部分。

1、MCS-51单片机VCC:89S51 电源正端输入,接+5V。

VSS:电源地端。

XTAL1:单芯片系统时钟的反相放大器输入端。

XTAL2:系统时钟的反相放大器输出端,一般在设计上只要在XTAL1 和XTAL2 上接上一只石英振荡晶体系统就可以动作了,此外可以在两引脚与地之间加入一20PF 的小电容,可以使系统更稳定,避免噪声干扰而死机。

RESET:89S51的重置引脚,高电平动作,当要对晶片重置时,只要对此引脚电平提升至高电平并保持两个机器周期以上的时间,A T89S51便能完成系统重置的各项动作,使得内部特殊功能寄存器之内容均被设成已知状态,并且至地址0000H处开始读入程序代码而执行程序。

EA/Vpp:"EA"为英文"External Access"的缩写,表示存取外部程序代码之意,低电平动作,也就是说当此引脚接低电平后,系统会取用外部的程序代码(存于外部EPROM中)来执行程序。

(完整)基于51单片机电子时钟设计

(完整)基于51单片机电子时钟设计

(完整)基于51单片机电子时钟设计编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)基于51单片机电子时钟设计)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)基于51单片机电子时钟设计的全部内容。

基于51单片机的电子时钟设计摘要本电子时钟以STC89C52单片机作为主控芯片,采用DS12C887时钟芯片,使用1602液晶作为显示输出.该时钟走时精确,具有闹钟设置,以及可同时显示时间、日期等多种功能。

本文将详细介绍该电子时钟涉及到的一些基本原理,从硬件和软件两方面进行分析.【关键词】STC89C52单片机 DS12C887时钟芯片 1602液晶蜂鸣器目录一、绪论 (4)1.1 电子时钟功能 (4)1.2设计方案 (4)二、硬件设计 (4)2。

151单片机部分设计 (4)2.2 USB供电电路设计 (5)2.3 串行通信电路设计 (6)2.4 DS12C887时钟芯片电路的设计 (6)2。

5 1602LCD液晶屏显示电路设计 (7)2。

6蜂鸣器电路设计 (8)2。

7按键调整电路设计 (8)三、软件设计 (9)3.1系统程序流程图设计 (9)3。

2程序设计 (11)四、心得体会 (22)参考文献 (23)一、绪论1。

1电子时钟功能(1)在1602液晶上显示年、月、日、星期、时、分、秒,并且按秒实时更新显示。

(2)具有闹铃设定即到时报警功能,报警响起时按任意键可取消报警。

(3)能够使用实验板上的按键随时调节各个参数,四个有效键分别为功能选择键、数值增大键、数值减小键和闹钟查看键。

(4)每次有键按下时,蜂鸣器都以短“滴”声报警.(5)利用DS12C887自身掉电可继续走时的特性,该时钟可实现断电时间不停、再次上电时时间仍准确显示在液晶上的功能。

单片机课程设计-新颖60个LED旋转电子时钟_图文(精)

单片机课程设计-新颖60个LED旋转电子时钟_图文(精)
⑸写出详细的设计报告。
⑹给出全部电路和源程序。
2、发挥部分
⑴用60只LED发光管旋转显示,模拟“秒针”的行走。
⑵模拟“秒针”行走的“嘀哒”声。
⑶增加室温检测和显示功能(可与时间交替显示)。
⑷增加停(掉)电保护功能。
⑸提高计时精度,使年计时误差小于30秒。
⑹增加日自动校准功能,使得该电子钟“永无误差”。
数码管显示器有二种工作方式,即静态显示方式和动态扫描显示方式。
为节省端口及降低功耗,本系统采用动态扫描显示方式。动态扫描显示方式需解决多位1LED数码管的“段控”和“位控”问题,本电路的“段控”(即要显示的段码的控制)通过P0口实现;而每一位的公共端,即LED数码管的“位控”,则由P3口控制。这种连接方式由于多位字段线连在一起,因此,要想显示不同的内容,必然要采取轮流显示的方式,即在某一瞬间,只让其中的某一位的字位线处于选通状态,其它各位的字位线处于断开状态,同时字段线上输出这一位相应要显示字符的字段码。在这一瞬时,只有这一位在显示,其他几位则暗。在本系统中,字位线的选通与否是通过PNP三极管的导通与截止来控制,即三极管处于“开关”状态。
系统的时分显示部件由4只7段共阳LED数码管构成,前两只用于时的显示,后两只用于分的显示。值得一提的是,在设计中需要实现时与分之间的两个闪烁点,为此,
将第三只LED数码管倒置摆放,这样就形成了两个很自然的闪烁点。与此同时,为了能使两点显示能够形象的表示时钟“秒”的变化,设计时,将两个点由P1.7单独控制,每隔一秒使P1.7发送一个正脉冲,从而实现了两个点的闪烁显示,闪烁周期为一秒。
根据AT89C2051单片机灌电流能力强,拉电流能力弱的特点,我们选用共阳数码管。将AT89C2051的P1.0~P1.7分别与共阳数码管的a~g及dp相连,高电平的位对应的LED数码管的段暗,低电平的位对应的LED数码管的段亮,这样,当P0口输出不同的段码,就可以控制数码管显示不同的字符。例如:当P0口输出的段码为1100 0000,数码管显示的字符为0。

基于单片机的电子时钟的设计

基于单片机的电子时钟的设计

密级:JINING UNIVERSITY学士学位论文THESIS OF BACHELOR题目基于单片机的数字时钟设计系别:物理与信息工程系专业年级:2010级机械设计制造及其自动化学生姓名:学号:2010073424指导教师:仲伟职称:高级工程师起讫日期:2014年1月1日—2014年5月31日目录摘要 (Ⅰ)关键词 (Ⅰ)Abstract (Ⅱ)Key words (Ⅱ)引言 (1)1 数字时钟硬件部分设计 (4)1.1 主控制模块 (4)1.1.1 STC89C52单片机简介 (4)1.1.2 STC89C52主要参数 (5)1.1.3 主控制电路图 (6)1.2 显示模块 (6)1.2.1 1602LCD显示器简介 (6)1.2.2 1602LCD显示器结构 (7)1.2.3 1602LCD驱动及数据原理 (7)1.2.4 显示模块数据连接图 (9)1.3 时钟模块 (9)1.3.1 DS1302特性简介 (9)1.3.2 DS1302数据操作原理 (10)1.3.3 时钟模块的数据连接 (11)1.4 电源转换模块 (12)1.5 按键部分电路设计 (12)1.6 电路仿真与设计 (13)2 数字时钟软件部分设计结果与分析 (14)2.1 主程序流程图 (14)2.2 时钟模块程序流程图 (14)2.3 显示模块程序流程图 (15)2.4 按键处理 (15)3 调试与检测安全 (16)3.1 供电安全、测量仪器安全 (16)3.2 几个必须记住的安全操作观念: (16)4 总结 (17)参考文献 (18)致谢 (19)附录(C程序) (20)基于单片机的数字时钟设计机械设计制造及其自动化专业学生张衍会指导教师仲伟摘要:本文主要阐述的是一款单片机数字时钟的设计。

该时钟基本功能是能准确显示和快速校准时、分、秒。

扩展功能是整点报时功能。

本设计通过硬件电路的制作以及软件程序的编制来完成。

此时钟系统主要由主控制模块、时钟模块、液晶显示模块、电源转换模块以及键盘控制模块组成。

基于单片机C语言电子时钟完整版(闹钟,整点报时)

基于单片机C语言电子时钟完整版(闹钟,整点报时)

《单片机技术》课程设计说明书数字电子钟系、部:电气与信息工程学院学生姓名:指导教师:职称专业:班级:完成时间:2013-06-07摘要电子钟在生活中应用非常广泛,而一种简单方便的数字电子钟则更能受到人们的欢迎。

所以设计一个简易数字电子钟很有必要。

本电子钟采用ATMEL公司的AT89S52单片机为核心,使用12MHz 晶振与单片机AT89S52 相连接,通过软件编程的方法实现以24小时为一个周期,同时8位7段LED数码管(两个四位一体数码管)显示小时、分钟和秒的要求,并在计时过程中具有定时功能,当时间到达提前定好的时间进行蜂鸣报时。

该电子钟设有四个按键KEY1、KEY2、KEY3、KEY4和KEU5键,进行相应的操作就可实现校时、定时、复位功能。

具有时间显示、整点报时、校正等功能。

走时准确、显示直观、运行稳定等优点。

具有极高的推广应用价值。

关键词电子钟;AT89S52;硬件设计;软件设计ABSTRACTClock is widely used in life, and a simple digital clock is more welcomed by people. So to design a simple digital electronic clock is necessary.The system use a single chip AT89S52 of ATMEL’s as its core to control The crystal oscillator clock,using of E-12MHZ is connected with the microcontroller AT89S52, through the software programming method to achieve a 24-hour cycle, and eight 7-segment LED digital tube (two four in one digital tube) displays hours, minutes and seconds requirements, and in the time course of a timing function, when the time arrived ahead of scheduled time to buzz a good timekeeping. The clock has four buttons KEY1, KEY2, KEY3,KEY4 and KEY5 key, and make the appropriate action can be achieved when the school, timing, reset. With a time display, alarm clock settings, timer function, corrective action. Accurate travel time, display and intuitive, precision, stability, and so on. With a high application value.Key words Electronic clock;;AT89S52;Hardware Design;Software Design目录1设计课题任务、功能要求说明及方案介绍 (1)1.1设计课题任务 (1)1.2功能要求说明 (1)1.3设计总体方案介绍及原理说明 (1)2设计课题硬件系统的设计 (2)2.1设计课题硬件系统各模块功能简要介绍 (2)2.2设计课题电路原理图、PCB图、元器件布局图 (2)2.3设计课题元器件清单 (5)3设计课题软件系统的设计 (6)3.1设计课题使用单片机资源的情况 (6)3.2设计课题软件系统各模块功能简要介绍 (6)3.3设计课题软件系统程序流程框图 (6)3.4设计课题软件系统程序清单 (10)4设计结论、仿真结果、误差分析、教学建议 (21)4.1设计课题的设计结论及使用说明 (21)4.2设计课题的仿真结果 (21)4.3设计课题的误差分析 (22)4.4设计体会 (22)4.5教学建议 (22)结束语 (23)参考文献 (24)致谢 (25)附录 (26)1 设计课题任务、功能要求说明及方案介绍1.1 设计课题任务设计一个具有特定功能的电子钟。

基于单片机的简易电子时钟设计

基于单片机的简易电子时钟设计

基于单片机的简易电子时钟设计1 设计任务与要求1.1 设计背景数字钟已成为人们日常生活中必不可少的必需品,广泛用于个人家庭以及办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。

由于数字集成电路技术的发展和采用了先进的石英技术,使数字钟具有走时准确、性能稳定、携带方便等优点,它还用于计时、自动报时及自动控制等各个领域。

尽管目前市场上已有现成的数字钟集成电路芯片出售,价格便宜、使用也方便,但鉴于单片机的定时器功能也可以完成数字钟电路的设计,因此进行数字钟的设计是必要的。

在这里我们将已学过的比较零散的数字电路的知识有机的、系统的联系起来用于实际,来培养我们的综合分析和设计电路,写程序、调试电路的能力。

单片机具有体积小、功能强可靠性高、价格低廉等一系列优点,不仅已成为工业测控领域普遍采用的智能化控制工具,而且已渗入到人们工作和和生活的各个角落,有力地推动了各行业的技术改造和产品的更新换代,应用前景广阔。

1.2 课程设计目的(1)巩固、加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决工业控制的能力;(2)培养针对课题需要,选择和查阅有关手册、图表及文献资料的自学能力,提高组成系统、编程、调试的动手能力;(3)过对课题设计方案的分析、选择、比较、熟悉单片机用系统开发、研制的过程,软硬件设计的方法、内容及步骤。

1.3 设计要求1).时制式为24小时制。

2).采用LED数码管显示时、分,秒采用数字显示。

3).具有方便的时间调校功能。

4).计时稳定度高,可精确校正计时精度。

2 总体方案设计2.1 实现时钟计时的基本方法利用MCS-51系列单片机的可编程定时/计数器、中断系统来实现时钟计数。

(1) 计数初值计算:把定时器设为工作方式1,定时时间为50ms,则计数溢出20XX得时钟计时最小单2.4.1 计时方案利用AT89S51单片机内部的定时/计数器进行中断时,配合软件延时实现时、分、秒的计时。

基于单片机的电子时钟(毕业设计)doc先用

基于单片机的电子时钟(毕业设计)doc先用

电子时钟是一种非常广泛日常计时工具,给人们的带来了很大的方便,在社会上越来越流行。

它可以对年、月、日、时、分、秒进行计时,采用直观的数字显示,可以同时显示年月日时分秒和温度等信息,还有时间校准等功能。

该电子时钟主要采用STC89C52单片机作为主控核心,用DS1302时钟芯片作为时钟、液晶12864显示屏显示。

STC89C52单片机是由深圳宏晶科技公司推出的,功耗小,电压可选用4~6V电压供电;DS1302时钟芯片是美国DALLAS公司推出的具有细电流充电功能的低功耗实时时钟芯片,它可以对年、月、日、星期、时、分、秒进行计时,还具有闰年补偿等多种功能,而且DS1302的使用寿命长,误差小;数字显示是采用的12864液晶显示屏来显示,可以同时显示年、月、日、星期、时、分、秒和温度等信息。

此外,该电子时钟还具有时间校准等功能。

关键词:单片机STC89C52 时钟芯片DS1302 液晶12864 温度基于单片机STC数字式时钟的设计一、绪论随着人们生活水平的提高和生活节奏的加快,对时间的要求越来越高,精准数字计时的消费需求也是越来越多。

二十一世纪的今天,最具代表性的计时产品就是电子万年历,它是近代世界钟表业界的第三次革命。

第一次是摆和摆轮游丝的发明,相对稳定的机械振荡频率源使钟表的走时差从分级缩小到秒级,代表性的产品就是带有摆或摆轮游丝的机械钟或表。

第二次革命是石英晶体振荡器的应用,发明了走时精度更高的石英电子钟表,使钟表的走时和月差从分级缩小到秒级。

第三次革命就是单片机数码计时技术的应用(电子万年历),使计时产品的走时日差从分级缩小到1/600万秒,从原有传统指针计时的方式发展为人们日常更为熟悉的夜光数字显示方式,直观明了,并增加了全自动日期、星期、温度以及其他日常附属信息的显示功能,它更符合消费者的生活需求!因此,电子万年历的出现带来了钟表计时业界跨跃性的进步。

我国生产的电子万年历有很多种,总体上来说以研究多功能电子万年历为主,使万年历除了原有的显示时间,日期等基本功能外,还具有闹铃,报警等功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中图分类号:基于单片机控制的电子时钟设计专业名称:应用电子技术****:***导师姓名:王春霞职称:讲师焦作大学机电工程学院2012年 12 月中图分类号:密级:UDC:单位代码:基于单片机控制的电子时钟设计Based on single-chip microcomputer control the design of the electronic clock焦作大学机电工程学院摘要现代生活的人们越来越重视起了时间观念,可以说是时间和金钱划上了等号。

对于那些对时间把握非常严格和准确的人或事来说,时间的不准确会带来非常大的麻烦,所以以数码管为显示器的时钟比指针式的时钟表现出了很大的优势。

数码管显示的时间简单明了而且读数快、时间准确显示到秒。

所以数字电子钟的精度、稳定度远远超过老式机械钟。

而机械式的依赖于晶体震荡器,可能会导致误差。

在这次设计中,我们采用LED数码管显示时、分、秒,以24小时计时方式,根据数码管动态显示原理来进行显示,以AT89S51芯片为核心,辅以必要的电路,设计了一个简易的电子时钟,它由4.5V直流电源供电,通过数码管能够准确显示时间,调整时间,并在数码管上显示相应的时间。

关键词:单片机 AT89S51 电子时钟ABSTRACTModern life people pay more and more attention to up the concept of time, can say time and money off the equal sign. For those who grasp of time is very strict and accurate person or thing, it is not accurate time will bring very big trouble, so to digital tube for display clock than pointer clock showed a lot of advantages. Digital tube display time simple and fast reading, time accurate display to seconds. So the digital clock accuracy, stability is far more than the old mechanical clock. And mechanical dependent on the crystal oscillators, may lead to error. In this design, we adopt LED digital tube display, points, SEC to 24 hours time way, according to the principle of dynamic display of digital tube to show that AT89S51 chip as the core, with the necessary circuit, design a simple electronic clock, it consists of 4.5 V dc power supply, through the digital tube can accurately display the time, adjusting time, and in the digital tube display the corresponding time.Key word:SCM AT89S51 electronic clock目录第一章引言 (1)1.1数字电子钟的背景 (1)1.2数字电子钟的意义 (1)1.3数字电子钟的应用 (1)第二章设计方案 (3)2.1数字时钟方案 (3)2.2数码管显示方案 (3)第三章系统设计 (4)3.1总体设计 (4)3.2单片机外围控制电路 (4)3.2.1单片机的选择 (4)3.2.2控制电路 (6)3.2.3电源部分 (7)3.2.4复位电路 (8)3.2.5程序下载接口 (8)3.2.6位选部分 (9)3.2.7数码管的连接电路 (9)第四章软件设计 (11)4.1程序流程图 (11)4.2源程序 (13)第五章使用调试 (20)第六章设计总结 (21)参考文献 (22)附录 (23)致谢 (24)第一章引言1.1数字电子钟的背景20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。

时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。

忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。

但是,一旦重要事情,一时的耽误可能酿成大祸。

而单片机模块中最常见的就是数字电子钟,数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。

下面是单片机的主要发展趋势。

单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。

从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。

这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。

1.2数字电子钟的意义数字钟是采用数字电路实现对时、分、秒数字显示的计时装置,广泛用于个人家庭、车站、码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。

诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。

因此,研究数字钟及扩大其应用,有着非常现实的意义。

1.3数字电子钟的应用数字钟已成为人们日常生活中:必不可少的必需品,广泛用于个人家庭以及车站、码头、剧场、办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。

由于数字集成电路技术的发展和采用了先进的石英技术,使数字钟具有走时准确、性能稳定、携带方便等优点,它还用于计时、自动报时及自动控制等各个领域。

现今,高精度的计时工具大多数都使用了石英晶体振荡器,由于电子钟,石英表,石英钟都采用了石英技术,因此走时精度高,稳定性好,使用方便,不需要经常调校,数字式电子钟用集成电路计时时,译码代替机械式传动,用LED显示器代替显示器代替指针显示进而显示时间,减小了计时误差,这种表具有时,分,秒显示时间的功能,还可以进行时和分的校对,片选的灵活性好。

时钟电路在计算机系统中起着非常重要的作用,是保证系统正常工作的基础。

在一个单片机应用系统中,时钟有两方面的含义:一是指为保障系统正常工作的基准振荡定时信号,主要由晶振和外围电路组成,晶振频率的大小决定了单片机系统工作的快慢;二是指系统的标准定时时钟,即定时时间,它通常有两种实现方法:一是用软件实现,即用单片机内部的可编程定时/计数器来实现,但误差很大,主要用在对时间精度要求不高的场合;二是用专门的时钟芯片实现,在对时间精度要求很高的情况下,通常采用这种方法,典型的时钟芯片有:DS1302,DS12887,X1203等都可以满足高精度的要求。

本文主要介绍用单片机内部的定时/计数器来实现电子时钟的方法,本设计由单片机AT89S51芯片和LED数码管为核心,辅以必要的电路,构成了一个单片机电子时钟。

第二章设计方案2.1数字时钟方案数字时钟是本设计的最主要的部分。

根据需要,可利用两种方案实现。

方案一:本方案采用Dallas公司的专用时钟芯片DS12887A。

该芯片内部采用石英晶体振荡器,其芯片精度不大于10ms/年,且具有完备的时钟闹钟功能,因此,可直接对其以用于显示或设置,使得软件编程相对简单。

为保证时钟在电网电压不足或突然掉电等突发情况下仍能正常工作,芯片内部包含锂电池。

当电网电压不足或突然掉电时,系统自动转换到内部锂电池供电系统。

而且即使系统不上电,程序不执行时,锂电池也能保证芯片的正常运行,以备随时提供正确的时间。

方案二:本方案完全用软件实现数字时钟。

原理为:在单片机内部存储器设三个字节分别存放时钟的时、分、秒信息。

利用定时器与软件结合实现1秒定时中断,每产生一次中断,存储器内相应的秒值加1;若秒值达到60,则将其清零,并将相应的分字节值加1;若分值达到60,则清零分字节,并将时字节值加1;若时值达到24,则将十字节清零。

该方案具有硬件电路简单的特点。

但由于每次执行程序时,定时器都要重新赋初值,所以该时钟精度不高。

而且,由于是软件实现,当单片机不上电,程序不执行时,时钟将不工作。

基于硬件电路的考虑,本设计采用方案二完成数字时钟的功能。

2.2数码管显示方案方案一:静态显示。

所谓静态显示,就是当显示器显示某一字符时,相应的发光二极管恒定的导通或截止。

该方式每一位都需要一个8 位输出口控制。

静态显示时较小的电流能获得较高的亮度,且字符不闪烁。

但当所显示的位数较多时,静态显示所需的I/O口太多,造成了资源的浪费。

方案二:动态显示。

所谓动态显示就是一位一位的轮流点亮各个位,对于显示器的每一位来说,每隔一段时间点亮一次。

利用人的视觉暂留功能可以看到整个显示,但必须保证扫描速度足够快,字符才不闪烁。

显示器的亮度既与导通电流有关,也于点亮时间与间隔时间的比例有关。

调整参数可以实现较高稳定度的显示。

动态显示节省了I/O口,降低了能耗。

从节省I/O口和降低能耗出发,本设计采用方案二。

第三章系统设计3.1总体设计利用单片机(AT89S51)制作简易电子时钟,由六个LED数码管分别显示小时十位、小时个位、分钟十位、分钟个位、秒钟十位、秒钟个位。

6个PNP管(9012)分别控制六个数码管的亮灭,其中一个按键(S1)用于系统复位,另一个按键(S2)用于时间调整。

图3-1系统框图Figure 3-1 system block diagram3.2单片机外围控制电路3.2.1单片机的选择单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。

单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。

相关文档
最新文档