方程与不等式之一元一次方程专项训练及答案
2021年七上数学同步练习-方程与不等式_一元一次方程的实际应用-行程问题-综合题专训及答案
(3) 如图,PO=1,点P在AB的上方,且∠POB=60°,点P绕着点O以30度/秒的速度在圆周上逆时针旋转一周停止
,同时点Q沿线段AB自点A向点B运动,若P、Q两点能相遇,求点Q的运动速度.
12、
(2020东台.七上期末) 如图,射线 上有三点 、 、 ,满足
,
,
,点 从
点 出发,沿 方向以
的速度匀速运动,点 从点 出发在线段 上向点 匀速运动,两点同时出发,当
(1) 已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长. (2) 已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发 ,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒. ①若点P点Q同时出发,且当点P与点Q重合时,求t的值.
;小康练习跑步,平均每分钟
跑
,两人同时同地出发.
(1) 若两人反向出发,经过多少时间首次相遇?
(2) 若两人同向出发,经过多少时间首次相遇?
14、
(2020绍兴.七上期中) 如图,数轴的单位长度为1.
(1) 如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________; (2) 当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D的距离的2倍,若存在,请求出此 时点M所表示的数;若不存在,说明理由; (3) 在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个 单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少? 15、 (2020东胜.七上期中) 一只汽艇从A码头顺流航行到B码头用2小时,从B码头返回到A码头,用了2.5小时,如果水流速 度是3千米/时,求: (1) 汽艇在静水中的速度; (2) A、B两地之间的距离.
(易错题精选)初中数学方程与不等式之一元一次方程经典测试题
(易错题精选)初中数学方程与不等式之一元一次方程经典测试题一、选择题1.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A .3场B .4场C .5场D .6场【答案】C【解析】【分析】设共胜了x 场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x 场,则平了(14-5-x )场,由题意得:3x+(14-5-x )=19,解得:x=5,即这个队胜了5场.故选C .【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.2.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 【答案】A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.3.某书店推出一种优惠卡,每张卡售价为50元,凭卡购书可享受8折优惠,小明同学到该书店购书,他先买购书卡再凭卡付款,结果省了10元。
若此次小明不买卡直接购书,则他需要付款()A.380元B.360元C.340元D.300元【答案】D【解析】【分析】此题的关键描述:“先买优惠卡再凭卡付款,结果节省了10元”,设出未知数,根据题中的关键描述语列出方程求解.【详解】解:设小明同学不买卡直接购书需付款是x元,则有:50+0.8x=x-10解得:x=300即:小明同学不凭卡购书要付款300元.故选:D.【点睛】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.4.某商品打七折后价格为a元,则原价为()A.a元B.107a元C.30%a元D.710a元【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5.若x=-2是方程ax-b=1的解,则代数式4a+2b-3的值为()A.1 B.3-C.1-D.5-【答案】D【解析】【分析】把x=-2代入ax-b=1得到关于a和b的等式,利用等式的性质,得到整式4a+2b-3的值,即可得到答案.【详解】解:把x=-2代入ax-b=1得:-2a-b=1,等式两边同时乘以-2得:4a+2b=-2,等式两边同时减去3得:4a+2b-3=-2-3=-5,故选:D.【点睛】本题考查了一元一次方程的解和代数式求值,正确掌握代入法和等式的性质是解题的关键.6.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4 C.3 D.不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x-2=5且2x-1=7或3x-2=7且2x-1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.8.某学校,安排50人打扫校园卫生,20人拉垃圾,后因两边的人手不够,又增派30人去支援,结果打扫卫生的人数是拉垃圾人数的3倍,若设支援打扫卫生的同学有x人,则下列方程正确的是()A.50+x=3×30 B.50+x=3×(20+30-x)C .50+x =3×(20-x)D .50+x =3×20【答案】B【解析】【分析】 可设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,根据题意可得题中存在的等量关系:原来打扫卫生的人数+支援打扫卫生的人数=3×(原来拉垃圾的人数+支援拉垃圾的人数),根据此等量关系列出方程即可.【详解】解:设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,依题意有 50+x =3[20+(30﹣x )],故选:B .【点睛】本题考查了一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐蔽,要注意仔细审题,耐心寻找.9.A ,B 两地相距480 km ,一列慢车从A 地出发,每小时行驶60 km ,一列快车从B 地出发,每小时行驶90 km ,快车提前30 min 出发.两车相向而行,慢车行驶了多少小时后,两车相遇.若设慢车行驶了x h 后,两车相遇,则根据题意,下面所列方程正确的是( ) A .60(30)90480x x ++=B .6090(30)480x x ++=C .160()904802x x ++=D .16090()4802x x ++= 【答案】D【解析】【分析】【详解】解:慢车行驶了x 小时后,两车相遇,根据题意得出:16090()4802x x ++=. 故选D .【点睛】本题考查由实际问题抽象出一元一次方程.10.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A .0150250x =⨯B .0251500x ⋅= C .0015025x x-= D .0150250x -= 【答案】C【解析】【分析】等量关系为:成本×(1+利润率)=售价,把相关数值代入即可【详解】解:设这种服装的成本价为x 元,那么根据利润=售价-成本价,可得出方程:150-x=25%x ;15025%x x-= 故应选C11.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是( ) A .20B .22C .25D .20或25【答案】D【解析】【分析】本题分票价每张45元和票价每张45元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.【详解】①若购买的电影票不超过20张,则其数量为900÷45=20(张);②若购买的电影票超过20张,设购买了x 张电影票,根据题意,得:45×x ×80%=900,解得:x =25;综上,共购买了20张或25张电影票;故选D .【点睛】本题考查了一元一次方程的应用,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系.12.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了( )元.A .300B .260C .240D .220【答案】B【解析】【分析】 根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.【详解】若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.设花费较少的一家花了x 元,则另一家花了40x +元,根据题意得:40=605x +⨯解得:260x =检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B .【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.13.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .179x x -= B .179x x += C .7x+9x=1 D .9x-7x=1 【答案】B【解析】【分析】 直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】 解:野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11179x ⎛⎫+= ⎪⎝⎭,即179x x +=, 故选B.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.14.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.15.下列等式变形错误的是( )A.若x=y,则x-5=y-5 B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y【答案】D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A:等式两边同时减去了5,等式依然成立;B:等式两边同时除以3-,等式依然成立;C:等式两边同时乘以a,等式依然成立;D:当0m=时,x不一定等于y,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.16.若12xy=⎧⎨=-⎩是关于x和y的二元一次方程1ax y+=的解,则a的值等于()A.3 B.1 C.1-D.3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a的一元一次方程即可.【详解】解:将12xy=⎧⎨=-⎩代入1ax y+=得,21a-=,解得:3a =.故选:A .【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.17.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( )A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-【答案】B【解析】【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】解:设共有x 人,可列方程为:8x-3=7x+4.故选:B【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.18.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种【答案】B【解析】【分析】设小虎足球队踢平场数是所负场数的k 倍,依题意建立方程组,解方程组从而得到用k 表示的负场数,因为负场数和k 均为整数,据此求得满足k 为整数的负场数情况.【详解】解:设小虎足球队胜了x 场,平了y 场,负了z 场,依题意得 17316x y z x y y kz ++=⎧⎪+=⎨⎪=⎩①②③,把③代入①②得(1)17316x k z x kz ++=⎧⎨+=⎩,解得z=3523k +(k 为整数). 又∵z 为正整数,∴当k=1时,z=7;当k=2时,z=5;当k=16时,z=1. 综上所述,小虎足球队所负场数的情况有3种情况.故选B .【点睛】本题考查了二元一次方程组的应用.解答方程组是个难点,用了换元法.19.如果关于x 的方程()32019a x -=有解,那么实数a 的取值范围是( ) A .3a <B .3a =C .3a >D .3a ≠ 【答案】D【解析】【分析】根据方程有解确定出a 的范围即可.【详解】∵关于x 的方程(a-3)x=2019有解,∴a-3≠0,即a≠3,故选:D .【点睛】此题考查了一元一次方程的解,弄清方程有解的条件是解本题的关键.20.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3【答案】A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.。
最新初中数学方程与不等式之一元一次方程难题汇编含答案
最新初中数学方程与不等式之一元一次方程难题汇编含答案一、选择题1.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是( )A .20岁B .16岁C .15岁D .12岁【答案】A【解析】【分析】设乙今年的年龄是x 岁,则甲今年的年龄是(x+12)岁.根据等量关系:4年后甲的年龄恰好是乙的年龄的2倍,列出方程进行求解即可.【详解】设乙今年的年龄是x 岁,根据题意得:(x+12)+4=2(x+4),解得:x=8,则:x+12=20,即甲今年的年龄是20岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.下列说法正确的是( )A .若a c =b c,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b 【答案】A【解析】【分析】按照分式和整式的性质解答即可.【详解】 解:A .因为C 做分母,不能为0,所以a=b ;B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D .a 和b 可以互为相反数.故选 :A【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.3.若关于x 的方程(m-3)x |m|-2 -m+3=0是一元一次方程,则m 的值为( )A .m=3B .m=-3C .m=3或-3D .m=2或-2【答案】B【解析】【分析】 根据一元一次方程的定义得到|m |-2=1且m-3≠0,解得m的取值范围即可..【详解】解:有题意得:|m |-2=1且m-3≠0,解得m=-3,故答案为B .【点睛】本题考查了一元一次方程的概念和解法.掌握一元一次方程的未知数的指数为1且一次项系数不等于0是解答本题的关键.4.已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x ﹣2,2x ﹣1,若这两个三角形全等,则x 为( )A .B .4C .3D .不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x -2=5且2x -1=7或3x -2=7且2x -1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质5.下列关于a 、b 的等式,有一个是错误的,其它都是正确的,则错误的是( ) A .3b a =B .0b a -=C .2290b a -=D .26b m a m +=+【答案】B【解析】【分析】观察四个等式可发现都含有一个相同的等式b-3a=0,由此即可判断出错误的选项.【详解】由题意知,选项A 可以化为b-3a=0;选项C 可以化为(b-3a )(b+3a)=0,可以得到b-3a=0;选项D 可以化为2b-6a=0,即b-3a=0,由此可以判断选项A 、C 、D 都是正确的,选项B 中的等式是错误的,故选:B.【点睛】此题考查等式的性质,根据等式的性质正确化简是解题的关键.6.等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.7.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 【答案】D【解析】【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【详解】A .由567x x +=-得675x x -=--,故错误;B .由2(1)3x --=得223x -+=,故错误;C .由310.7x -=得103017x -=,故错误; D .正确.故选:D .【点睛】 本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.8.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A .3229x x -=+ B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 【答案】B【解析】【分析】 根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】 根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.9.方程2﹣24736x x --=-去分母得( )A .2﹣2(2x ﹣4)=﹣(x ﹣7)B .12﹣2(2x ﹣4)=﹣x ﹣7C .12﹣2(2x ﹣4)=﹣(x ﹣7)D .以上答案均不对【答案】C【解析】【分析】两边同时乘以6即可得解.【详解】 解方程:247236x x ---=- 去分母得:122(24)(7)x x --=--. 故选C.【点睛】本题考查了解一元一次方程的去分母,两边乘以同一个数时要注意整数也要乘以这个数.10.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2【答案】C【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.11.已知方程3x –2y=5,把它变形为用含x 的代数式表示y ,正确的是( )A .y=352x - B .y=352x + C .y=352-+x D .y=352--x 【答案】A【解析】【分析】 根据等式的性质,把x 看做已知数求出y 即可. 【详解】解:方程3x –2y=5解得:y=352x - 故选:A.【点睛】 本题主要考查了等式的性质,解题的关键是将x 看做已知数求出y.12.下列各式属于一元一次方程的是( )A .3x+1B .3x+1>2C .y =2x+1D .3x+1=2【答案】D【分析】直接利用一元一次方程的定义分析得出答案.【详解】A 、3x+1是代数式,故此选项错误;B 、3x+1>2,是不等式,故此选项错误;C 、y=2x+1,是一次函数,故此选项错误;D 、3x+1=2属于一元一次方程,故此选项正确.故选:D .【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.13.下列等式的变形中,正确的有( )①由53x =得53x =;②由a=b 得,-a=-b ;③由a b c c =得a b =;④由m n =得m 1n = A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】本题需先根据等式的性质对每一选项灵活分析,即可得出正确答案.【详解】①若53x =,则35x =故本选项错误 ②若由a=b 得,-a=-b ,则-a=-b 故本选项正确③由a b c c=,说明c ≠0,得a b =故本选项正确 ④若m n =≠0时,则m 1n =故本选项错误 故选:B【点睛】本题考查了等式的基本性质,在已知等式等号两边同时加减或乘除等式是否仍然成立.14.《算法统宗》是我国明代数学家程大位的一部著作.在这部著作中,许多数学问题都是以诗歌的形式呈现.“以碗知僧”就是其中一首。
最新初中数学方程与不等式之一元一次方程综合训练(2)
最新初中数学方程与不等式之一元一次方程综合训练(2)一、选择题1.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是( )A .20岁B .16岁C .15岁D .12岁【答案】A【解析】【分析】设乙今年的年龄是x 岁,则甲今年的年龄是(x+12)岁.根据等量关系:4年后甲的年龄恰好是乙的年龄的2倍,列出方程进行求解即可.【详解】设乙今年的年龄是x 岁,根据题意得:(x+12)+4=2(x+4),解得:x=8,则:x+12=20,即甲今年的年龄是20岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 【答案】A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.3.某书店推出一种优惠卡,每张卡售价为50元,凭卡购书可享受8折优惠,小明同学到该书店购书,他先买购书卡再凭卡付款,结果省了10元。
若此次小明不买卡直接购书,则他需要付款()A.380元B.360元C.340元D.300元【答案】D【解析】【分析】此题的关键描述:“先买优惠卡再凭卡付款,结果节省了10元”,设出未知数,根据题中的关键描述语列出方程求解.【详解】解:设小明同学不买卡直接购书需付款是x元,则有:50+0.8x=x-10解得:x=300即:小明同学不凭卡购书要付款300元.故选:D.【点睛】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.4.一项工程,甲队独做10天完成,乙队独做15天完成,两队合作完成这项工程需要的天数为()A.25 B.12.5 C.6 D.无法确定【答案】C【解析】【分析】设两队合作,需要x天完成,根据甲队独做10天可以完成,一天完成工程的110,乙队独做15天可以完成,一天完成工程的115,列出方程,求出x的值即可.【详解】解:设两队合作,需要x天完成,根据题意得:(111015)x=1,解得:x=6,答:两队合作,需要6天完成;故选:C.【点睛】此题考查了一元一次方程在工程问题中的应用,关键是读懂题意,找出之间的数量关系,列出方程,等量关系是工作量=效率和×合作时间.5.8×200=x+40解得:x=120答:商品进价为120元.故选:B .【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.6.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3【答案】A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.7.下面是一个被墨水污染过的方程: 11222x x -=-,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是( ) A .2B .﹣2C .﹣12D .12【答案】A【解析】【分析】 设被墨水覆盖的数是y ,将x=-1代入,解含有y 的方程即可得到答案.【详解】设被墨水覆盖的数是y ,则原方程为:11222x x y -=-, ∵此方程的解是x=-1,∴将x=-1代入得:11222y --=-- , ∴y=2,故选:A.【点睛】 此题考查解一元一次方程,一元一次方程的解.8.点P (x 1,y 1)和点Q (x 2,y 2)是关于x 的函数y =mx 2﹣(2m +1)x +m +1(m 为实数)图象上两个不同的点.对于下列说法:①不论m 为何实数,关于x 的方程mx 2﹣(2m +1)x +m +1=0必有一个根为x =1;②当m =0时,(x 1﹣x 2)(y 1﹣y 2)<0成立;③当x 1+x 2=0时,若y 1+y 2=0,则m =﹣1;④当m ≠0时,抛物线顶点在直线y =﹣12x +1上.其中正确的是( ) A .①②B .①②③C .③④D .①②④【答案】A【解析】【分析】根据方程解的定义对①进行判断;先得到当m=0时,函数解析式为y=﹣x+1,则可计算出()()2121212()x x y y x x =﹣﹣﹣﹣,于是可根据非负数的性质对②进行判断;当m=﹣1时,解析式为y =﹣2x +x ,可计算出1y +2y =212x x ≠0,于是可对③进行判断;先计算出顶点坐标,然后根据一次函数图象上点的坐标特征对④进行判断.【详解】当x =1时,y =mx 2﹣(2m +1)x +m +1=m ﹣2m ﹣1+m +1=0,则方程mx 2﹣(2m +1)x +m +1=0必有一个根为x =1,所以①正确;当m =0时,y =﹣x +1,则y 1=﹣x 1+1,y 2=﹣x 2+1,所以(x 1﹣x 2)(y 1﹣y 2)=(x 1﹣x 2)(﹣x 1+x 2)=﹣(x 1﹣x 2)2,而点P (x 1,y 1)和点Q (x 2,y 2)是两个不同的点,所以x 1≠x 2,则(x 1﹣x 2)(y 1﹣y 2)=﹣(x 1﹣x 2)2<0,所以②正确;当m =﹣1时,y =﹣x 2+x ,则y 1=﹣x 12+x 1,y 2=﹣x 22+x 2,所以y 1+y 2=﹣x 12+x 1﹣x 22+x 2=﹣(x 1+x 2)2+2x 1x 2+(x 1+x 2),当x 1+x 2=0时,y 1+y 2=2x 1x 2≠0,所以③错误;当m ≠0时,顶点的横坐标为2122b m a m+-=,纵坐标为()()22412141444m m m ac b a m m+-+-==-,当x =212m m +时,112121112224m m y x m m+-=-+=-+=n , 所以抛物线的顶点不在直线112y x =-+上,所以④错误. 综上:①②正确,故选:A .【点睛】本题考查了二次函数的性质、方程解的定义、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.9.关于x 的方程243x m +=和1x m -=有相同的解,则m 的值是( )A .6B .5C .52D .23- 【答案】A【解析】分析:根据同解方程,可得关于m 的方程,根据解方程,可得答案.详解:由题意,得:x =m +1,2(m +1)+4=3m ,解得:m =6.故选A .点睛:本题考查了同解方程,利用同解方程得出关于m 的方程是解题的关键.10.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元【答案】C【解析】【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.11.在《九章算术》方田章“圆田术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种无限与有限的转化的思想,比如在234111112222+++++…中,“…”代表按规律不断求和,设234111112222x +++++⋅⋅⋅=.则有112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地2461111333++++⋅⋅⋅的结果为( ) A .43 B .98 C .65 D .2【答案】B【解析】【分析】 设2461111333x ++++⋅⋅⋅=,仿照例题进行求解. 【详解】 设2461111333x ++++⋅⋅⋅=, 则246224611111111113333333⎛⎫++++⋅⋅⋅=+++++⋅⋅⋅ ⎪⎝⎭, 2113x x ∴=+, 解得,98x =, 故选B .【点睛】 本题考查类比推理,一元一次方程的应用,理解题意,正确列出方程是解题的关键.12.若方程组5133x y a x y a -=+⎧⎨+=-⎩的解x 与y 的差为3,则a 的值为( ) A .0B .7C .7-D .8【答案】B【解析】【分析】 先利用加减消元法解方程组得到37838a x a y -⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a 的方程,然后解一元一次方程即可得解.【详解】解:∵5133x y a x y a -=+⎧⎨+=-⎩①② ②-①×3得,38a y +=-①+②×5得,378a x -= ∴方程组的解为:37838a x a y -⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y a x y a -=+⎧⎨+=-⎩的解x 与y 的差为3,即3x y -= ∴373388a a -+⎛⎫--= ⎪⎝⎭∴7a =.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.13.将方程247236x x ---= 去分母得 ( ) A .2﹣2(2x-4)= - (x-7) B .12﹣2(2x ﹣4)=﹣x ﹣7C .12﹣4x ﹣8= - (x-7)D .12﹣2(2x ﹣4)= x ﹣7 【答案】D【解析】【分析】根据原方程可知将其两边同时乘以各分母的最小公倍数6即可求得相应的答案.【详解】∵原方程分母的最小公倍数为6,∴原方程两边同时乘以6可得:()122247x x --=-,故选:D.【点睛】本题主要考查了一元一次方程中去分母的运算,熟练掌握相关方法是解题关键14.下列方程变形正确的是( )A .由25x +=,得52x =+B .由23x =,得32x = C .由104x =,得4x = D .由45x =-,得54x =-- 【答案】B【解析】【分析】 根据等式的性质依次进行判断即可得到答案.【详解】A. 由25x +=,得x=5-2,故错误;B. 由23x =,得32x =,故正确; C. 由104x =,得x=0,故错误; D. 由45x =-,得x=4+5,故错误,故选:B.【点睛】此题考查等式的性质,熟记性质定理是解题的关键.15.若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程1ax y +=的解,则a 的值等于( ) A .3 B .1 C .1- D .3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a 的一元一次方程即可.【详解】解:将12x y =⎧⎨=-⎩代入1ax y +=得,21a -=, 解得:3a =.故选:A .【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.16.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( )A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-【答案】B【解析】【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】解:设共有x 人,可列方程为:8x-3=7x+4.故选:B【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.17.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种【答案】B【解析】【分析】设小虎足球队踢平场数是所负场数的k 倍,依题意建立方程组,解方程组从而得到用k 表示的负场数,因为负场数和k 均为整数,据此求得满足k 为整数的负场数情况.【详解】解:设小虎足球队胜了x 场,平了y 场,负了z 场,依题意得 17316x y z x y y kz ++=⎧⎪+=⎨⎪=⎩①②③,把③代入①②得(1)17316x k z x kz ++=⎧⎨+=⎩, 解得z=3523k +(k 为整数). 又∵z 为正整数,∴当k=1时,z=7;当k=2时,z=5;当k=16时,z=1.综上所述,小虎足球队所负场数的情况有3种情况.故选B .【点睛】本题考查了二元一次方程组的应用.解答方程组是个难点,用了换元法.18.小明和小亮两人在长为50m 的直道AB(A 、B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步速度为5m/s ,小亮跑步速度为4m/s ,则起跑后60s 内,两人相遇的次数为( )A .3B .4C .5D .6 【答案】C【解析】【分析】设在60s 内两人相遇x 次,根据每次相遇的时间50254⨯+,一共是60s ,列出方程求解即可. 【详解】设两人起跑后60s 内相遇x 次,依题意得:5026054x ⨯=+, 解得x=5.4,∵x 为整数,∴x 取5,故选:C.【点睛】 此题考查一元一次方程的实际应用,解题的关键一是求出两人每一次相遇间隔的实际,二是找到隐含的等量关系:每一次相遇时间乘以次数等于总时间,由此构建一元一次方程.19.如果关于x 的方程()32019a x -=有解,那么实数a 的取值范围是( ) A .3a <B .3a =C .3a >D .3a ≠【答案】D【解析】【分析】根据方程有解确定出a 的范围即可.【详解】∵关于x 的方程(a-3)x=2019有解,∴a-3≠0,即a≠3,故选:D .【点睛】此题考查了一元一次方程的解,弄清方程有解的条件是解本题的关键.20.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A .0150250x =⨯B .0251500x ⋅= C .0015025x x-= D .0150250x -= 【答案】C【解析】【分析】 等量关系为:成本×(1+利润率)=售价,把相关数值代入即可【详解】 解:设这种服装的成本价为x 元,那么根据利润=售价-成本价, 可得出方程:150-x=25%x ;15025%x x-= 故应选C。
方程与不等式之一元一次方程单元汇编及答案解析
方程与不等式之一元一次方程单元汇编及答案解析一、选择题1.有一下式子:①0x =;②325+=;③14x=;④29x =;⑤23=x x ;⑥34x -;⑦2(1)2x +=;⑧20x y +=.其中是一元一次方程的个数是( ) A .2B .3C .4D .5 【答案】B【解析】【分析】我们将只含有一个未知数,且未知数的最高次数为1的整式方程称之为一元一次方程,据此进一步判断即可.【详解】①0x =,满足定义,是一元一次方程;②325+=,未含有未知数,故不是一元一次方程;③14x=,分母含有未知数,不是整式方程,故不是一元一次方程; ④29x =,未知数次数为2,故不是一元一次方程;⑤23=x x ,满足定义,故是一元一次方程;⑥34x -,不是等式,故不是一元一次方程;⑦2(1)2x +=,满足定义,故是一元一次方程;⑧20x y +=,含有两个未知数,故不是一元一次方程;综上所述,一共有3个一元一次方程,故选:B.【点睛】本题主要考查了一元一次方程的判断,熟练掌握相关概念是解题关键.2.小明在某个月的日历中圈出三个数,算得这三个数的和为36,那么这三个数的位置不可能是( )A .B .C .D .【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A 、设最小的数是x .x+x+1+x+8=36,x=9.故本选项可能.B 、设最小的数是x .x+x+8+x+16=36,x=4,故本选项可能.C 、设最小的数是x .x+x+8+x+2=36,x=263,不是整数,故本项不可能. D 、设最小的数是x .x+x+1+x+2=36,x=11,故本选项可能.因此不可能的为C.故选:C.【点睛】 此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证.锻炼了学生理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.3.一家商店将某款衬衫的进价提高40%作为标价,又以八折卖出,结果每件衬衫仍可获利15元,则这款衬衫每件的进价是( )A .120元B .135元C .125元D .140元【答案】C【解析】【分析】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据售价-进价=15元,列出方程解方程即可.【详解】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据题意得: ()140%0.815x x +?=解得:x=125故选:C【点睛】 本题考查的是一元一次方程的应用-利润问题,把握进价、标价、售价及利润的关系是关键.4.下列说法正确的是( )A .若a c =b c,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b 【答案】A【分析】按照分式和整式的性质解答即可.【详解】解:A .因为C 做分母,不能为0,所以a=b ;B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D .a 和b 可以互为相反数.故选 :A【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.5.已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x ﹣2,2x ﹣1,若这两个三角形全等,则x 为( )A .B .4C .3D .不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x -2=5且2x -1=7或3x -2=7且2x -1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质6.解方程2153132x x +--=,去分母正确的是( ) A .2(21)3(53)1x x +--= B .21536x x +--= C .2(21)3(53)6x x +--=D .213(53)6x x +--=【答案】C【解析】试题分析:方程两边同乘以6得2(2x+1)-3(5x-3)=6,故答案选C.考点:去分母.7.下列解方程过程中,变形正确的是( )A .由2x-1=3得2x=3-1B .由255143x x -=-得6x-5=20x-1 C .由-5x=4得x =−54 D .由132x x -=得2x-3x=6【解析】【分析】根据等式的基本性质进行判断.【详解】A 、在2x-1=3的两边同时加上1,等式仍成立,即2x=3+1.故本选项错误;B 、在255143x x -=-的两边同时乘以12,等式仍成立,即6x-60=20x-12,故本选项错误;C 、在由-5x=4的两边同时除以-5,等式仍成立,即x=-45,故本选项错误; D 、在132x x -=的两边同时乘以6,等式仍成立,即2x-3y=6,故本选项正确. 故选D .【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;8.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++ B .12(10)1360x x +=+C .60101312x x +-= D .60101213x x +-= 【答案】B【解析】【分析】 实际生产12小时的零件比原计划13小时生产的零件多60件,根据生产总量=生产效率乘以时间即可列出方程【详解】 实际生产12小时的零件数量是12(x+10)件,原计划13小时生产的零件数量是13x 件,由此得到方程12(10)1360x x +=+,故选:B.【点睛】此题考查列方程解决实际问题,正确理解原计划与实际生产的工作量之间的关系是解题的关键.9.数轴上表示数a 和数b 的两点之间的距离为6,若a 的相反数为2,则b 为( )A .4B .4-C .8-D .4或8-【答案】D【解析】【分析】 根据相反数的性质求出a 的值,再根据两点距离公式求出b 的值即可.【详解】∵a 的相反数为2∴20a +=解得2a =-∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -=解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.10.商家出售的一种自行车的标价比进价高45%,实际销售这种自行车时按标价八折优惠,每辆获利80元,设这种自行车的进价是每辆x 元,下列方程正确的是( ) A .45%(1+80%)x ﹣x=80B .x+45%﹣80%=80C .80%(1+45%)x ﹣x=80D .(1+80%)(1+45%)x ﹣x=80【答案】C【解析】【分析】设这种自行车的进价是每辆x 元,根据利润=卖价-进价,列方程即可.【详解】设这种自行车的进价是每辆x 元,由题意得,80%(1+45%)x-x=80.故选:C .【点睛】本题考查了一元一次方程的应用-销售问题,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.11.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3【答案】D【解析】【分析】【详解】设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有()x1-,解得.故选D.12.若一个数的平方根为2a+3和a-15,则这个数是()A.-18 B.64 C.121 D.以上结论都不是【答案】C【解析】【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程,从而可求得a的值,进而求得这个数.【详解】解:根据题意得:2a+3+(a-15)=0,解得a=4,则这个数是(2a+3)2=121.故选:C.【点睛】本题主要考查了平方根的性质,正数的两个平方根互为相反数,据此把题目转化为解方程的问题,这是考试中经常出现的问题.13.一件商品以进价120%的价格标价,后又打八折出售,最后这件商品是()A.赚了 B.亏了 C.不赚不亏 D.不确定盈亏【答案】B【解析】【分析】设这件商品进价为a元,根据题意求得标价为120%a元,打八折后的售价为0.96a,比较即可解答.【详解】设这件商品进价为a元,则标价为120%a元,打八折后的售价为120%a×80%=0.96a.∵a>0.96a,∴这件商品亏了,亏了0.04a元.故选B.【点睛】本题考查了一元一次方程的应用,熟知售价、进价、利润之间的关系是解决问题的关键.14.一轮船从甲码头到乙码头顺水航行,用了2小时,从乙码头到甲码头逆水航行,用了2.5小时.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,根据题意可列方程为( )A .23 2.53x x +=-B .2(3) 2.5(3)x x +=-C .23 2.53x x -=+D .2(3) 2.5(3)x x -=+【答案】B【解析】【分析】顺流:速度=船在静水中的速度+水流的速度;逆流:速度=船在静水中的速度-水流的速度.【详解】顺流:速度=船在静水中的速度+水流的速度;逆流:速度=船在静水中的速度-水流的速度.在顺流和逆流航行过程中不变的是路程:路程=速度⨯时间顺流路程=()23x + 逆流路程=()2.53x -所以:()23x +=()2.53x -,选B .【点睛】掌握船在顺流和逆流时的速度计算公式,注意航行过程中不变的是路程建立等量关系即可.15.若方程组5133x y a x y a -=+⎧⎨+=-⎩的解x 与y 的差为3,则a 的值为( ) A .0B .7C .7-D .8【答案】B【解析】【分析】 先利用加减消元法解方程组得到37838a x a y -⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a 的方程,然后解一元一次方程即可得解.【详解】解:∵5133x y a x y a -=+⎧⎨+=-⎩①② ②-①×3得,38a y +=-①+②×5得,378a x -=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴3733 88a a-+⎛⎫--=⎪⎝⎭∴7a=.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a的方程是解决问题的关键.16.下列等式变形错误的是( )A.若x=y,则x-5=y-5 B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y【答案】D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A:等式两边同时减去了5,等式依然成立;B:等式两边同时除以3-,等式依然成立;C:等式两边同时乘以a,等式依然成立;D:当0m=时,x不一定等于y,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.17.下列等式变形正确的是()A.由a=b,得5+a=5﹣bB.如果3a=6b﹣1,那么a=2b﹣1C.由x=y,得x y m m =D.如果2x=3y,那么2629 55x y --=【解析】【分析】根据等式性质1对A 进行判断;根据等式性质2对B 、C 进行判断;根据等式性质1、2对D 进行判断.【详解】解:A 、由a =b 得a +5=b +5,所以A 选项错误;B 、如果3a =6b ﹣1,那么a =2b ﹣13,所以B 选项错误; C 、由x =y 得x m =y m(m ≠0),所以C 选项错误; D 、由2x =3y 得﹣6x =﹣9y ,则2﹣6x =2﹣9y ,所以262955x y --=,所以D 选项正确.故选:D .【点睛】 本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.18.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里 【答案】C【解析】【分析】【详解】试题分析:设第一天走了x 里,则根据题意知234511111137822222x ⎛⎫+++++= ⎪⎝⎭,解得x=192,故最后一天的路程为5119262⨯=里. 故选C19.若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程1ax y +=的解,则a 的值等于( ) A .3 B .1 C .1- D .3-【答案】A【解析】将方程的解代入所给方程,再解关于a 的一元一次方程即可.【详解】解:将12x y =⎧⎨=-⎩代入1ax y +=得,21a -=, 解得:3a =.故选:A .【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.20.若关于x 的不等式组12246x k x k k -⎧≥⎪⎨⎪-≤+⎩有解,且关于x 的方程()()2232kx x x =--+有非负整数....解,则符合条件的所有整数k 的和为( ) A .-5 B .-9 C .-12D .-16【答案】B【解析】【分析】先根据不等式组有解得k 的取值,利用方程有非负整数解,将k 的取值代入,找出符合条件的k 值,并相加.【详解】 12246x k x k k -⎧≥⎪⎨⎪-≤+⎩①②, 解①得:x≥1+4k ,解②得:x≤6+5k ,∴不等式组的解集为:1+4k≤x≤6+5k ,1+4k≤6+5k ,k≥-5,解关于x 的方程kx=2(x-2)-(3x+2)得,x=-61k +, 因为关于x 的方程kx=2(x-2)-(3x+2)有非负整数解,当k=-4时,x=2,当k=-3时,x=3,当k=-2时,x=6,∴-4-3-2=-9;故选B .【点睛】本题考查了解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.。
一次函数与方程不等式专项练习60题(有答案)15页
一次函数与方程、不等式专项练习60题(有答案)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A .x=2 B.y=2 C.x=﹣1 D.y=﹣12.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A .x<B.x<3 C.x>D.x>33.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A .x>0 B.x<0 C.x>1 D.x<14.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b >0的解集为()A .x<﹣1 B.x>﹣1 C.x>1 D.x<15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A .x>1 B.x>2 C.x<1 D.x<26.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为()A .x<﹣1 B.x>﹣1 C.x>2 D.x<27.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A .x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<08.已知整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m的最大值是()A .1 B.2 C.24 D.﹣99.如图,直线y1=与y2=﹣x+3相交于点A,若y1<y2,那么()A .x>2 B.x<2 C.x>1 D.x<110.一次函数y=3x+9的图象经过(﹣,1),则方程3x+9=1的解为x=_________.11.如图,已知直线y=ax+b,则方程ax+b=1的解x=_________.12.如图,一次函数y=ax+b的图象经过A,B两点,则关于x的方程ax+b=0的解是_________.13.已知直线与x轴、y轴交于不同的两点A和B,S△AOB≤4,则b的取值范围是_________.14.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是_________.15.已知ax+b=0的解为x=﹣2,则函数y=ax+b与x轴的交点坐标为_________.16.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为______,当x______时,kx+b<0.17.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.18.一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与_________的横坐标.19.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.20.一次函数y1=kx+b与y2=x+a的图象如图,则方程kx+b=x+a的解是_________.21.一次函数y=2x+2的图象如图所示,则由图象可知,方程2x+2=0的解为_________.22.一次函数y=ax+b的图象过点(0,﹣2)和(3,0)两点,则方程ax+b=0的解为_________.23.方程3x+2=8的解是x=_________,则函数y=3x+2在自变量x等于_________时的函数值是8.24.一次函数y=ax+b的图象如图所示,则一元一次方程ax+b=0的解是x=_________.25.观察下表,估算方程1700+150x=2450的解是_________.x的值 1 2 3 4 5 6 7 …1700+150x的值1850 2000 2150 2300 2450 2600 2750 …26.已知y1=3x+1,y2=21-3x,当x取何值时,y1比21y2小2.27.计算:(4a﹣3b)•(a﹣2b)28.我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式:_________.(2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.29.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象回答下列问题:(1)写出方程kx+b=0的解;(2)写出不等式kx+b>1的解集;(3)若直线l上的点P(m,n)在线段AB上移动,则m、n应如何取值.30.当自变量x的取值满足什么条件时,函数y=﹣2x+7的值为﹣2.31.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,则不等式0<2x<kx+b的解集是()A .x<1 B.x<0或x>1 C.0<x<1 D.x>132.已知关于x的一次函数y=kx+b(k≠0)的图象过点(2,0),(0,﹣1),则不等式kx+b≥0的解集是()A .x≥2 B.x≤2 C.0≤x≤2 D.﹣1≤x≤233.当自变量x的取值满足什么条件时,函数y=3x﹣8的值满足y>0()A .x=B.x≤C.x>D.x≥﹣34.已知函数y=8x﹣11,要使y>0,那么x应取()A .x>B.x<C.x>0 D.x<035.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x >﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A .0 B.1 C.2 D.336.如图,直线y=ax+b经过点(﹣4,0),则不等式ax+b≥0的解集为_________.37.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是_________.38.如图所示,函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是_________.39.如图,直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),则不等式组ax+b<cx+d <2的解集为_________.40.如图,直线y=kx+b经过点(2,1),则不等式0≤x<2kx+2b的解集为_________.41.一次函数y=kx+b的图象如图所示,由图象可知,当x_________时,y值为正数,当x_________时,y为负数.42.如图,直线y=kx+b经过A(1,2),B(﹣2,﹣1)两点,则不等式x<kx+b<2的解集为_________.43.如果直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x≥kx+b≥﹣2的解集为:_________.44.如图,直线y=kx+b与x轴交于点(﹣3,0),且过P(2,﹣3),则2x﹣7<kx+b≤0的解集_________.45.已知一次函数y=ax﹣b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为_________.46.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,O),则关于x的不等式a(x﹣l)﹣b >0的解集为_________.47.如图,直线y=ax+b经过A(﹣2,﹣5)、B(3,0)两点,那么,不等式组2(ax+b)<5x<0的解集是_________.48.已知函数y1=2x+b与y2=ax﹣3的图象交于点P(﹣2,5),则不等式y1>y2的解集是_________.49.如图,直线y=kx+b经过A(2,0),B(﹣2,﹣4)两点,则不等式y>0的解集为_________.50.已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有6个.51.作出函数y=2x﹣4的图象,并根据图象回答下列问题:(1)当﹣2≤x≤4时,求函数y的取值范围;(2)当x取什么值时,y<0,y=0,y>0;(3)当x取何值时,﹣4<y<2.52.画出函数y=2x+1的图象,利用图象求:(1)方程2x+1=0的根;(2)不等式2x+1≥0的解;(3)求图象与坐标轴的两个交点之间的距离.53.用画函数图象的方法解不等式5x+4<2x+10.54.画出函数y=3x+12的图象,并回答下列问题:(1)当x为什么值时,y>0;(2)如果这个函数y的值满足﹣6≤y≤6,求相应的x的取值范围.55.如图,直线y=x+1和y=﹣3x+b交于点A(2,m).(1)求m、b的值;(2)在所给的平面直角坐标系中画出直线y=﹣3x+b;(3)结合图象写出不等式﹣3x+b<x+1的解集是_________.56.如图,图中是y=a1x+b1和y=a2x+b2的图象,根据图象填空.的解集是_________;的解集是_________;的解集是_________.57.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B 两点,求不等式kx+b≤0的解.58.用图象法解不等式5x﹣1>2x+5.59.(1)在同一坐标系中,作出函数y1=﹣x与y2=x﹣2的图象;(2)根据图象可知:方程组的解为_________;(3)当x_________时,y2<0.(4)当x_________时,y2<﹣2(5)当x_________时,y1>y2.60.做一做,画出函数y=﹣2x+2的图象,结合图象回答下列问题.函数y=﹣2x+2的图象中:(1)随着x的增大,y将_________填“增大”或“减小”)(2)它的图象从左到右_________(填“上升”或“下降”)(3)图象与x轴的交点坐标是_________,与y轴的交点坐标是_________(4)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(5)当x取何值时,y=0?(6)当x取何值时,y>0?一次函数与方程不等式60题参考答案:1.∵一次函数y=kx+b的图象与x轴的交点为(﹣1,0),∴当kx+b=0时,x=﹣1.故选C.2.∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A3.由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.4.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b =﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣1,故选A5.由图象可知,当x<1时,直线y1落在直线y2的下方,故使y1<y2的x的取值范围是:x<1.故选C.6.两条直线的交点坐标为(﹣1,2),且当x>﹣1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>﹣1.故选B7.不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B8.联立两函数的解析式,得:,解得;即两函数图象交点为(1,2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当x=1时,m值最大,即m=2.故选B9.从图象上得出,当y1<y2时,x<2.故选B.10.方程3x+9=1的解,即函数y=3x+9中函数值y=1时,x的值.∵一次函数y=3x+9的图象经过(﹣,1),即函数值是1时,自变量x=﹣.因而方程3x+9=1的解为x=﹣11.根据图形知,当y=1时,x=4,即ax+b=1时,x=4.∴方程ax+b=1的解x=412.由图可知:当x=2时,函数值为0;因此当x=0时,ax+b=0,即方程ax+b=0的解为:x=213.由直线与x轴、y轴交于不同的两点A和B,令x=0,则y=b,令y=0,则x=﹣2b,∴S△AOB=×2b2=b2≤4,解得:﹣2≤b≤2且b≠0,故答案为:﹣2≤b≤2且b≠014.∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0)15.∵ax+b=0的解为x=﹣2,∴函数y=ax+b与x轴的交点坐标为(﹣2,0),故答案为:(﹣2,0)16.从图象上可知则关于x的方程kx+b=0的解为的解是x=﹣3,当x<﹣3时,kx+b<0.故答案为:x=﹣3,x<﹣317.根据题意,知点P(﹣2,﹣5)在函数y=2x+b的图象上,∴﹣5=﹣4+b,解得,b=﹣1;又点P(﹣2,﹣5)在函数y=ax﹣3的图象上,∴﹣5=﹣2a﹣3,解得,a=1;∴由方程2x+b=ax﹣3,得2x﹣1=x﹣3,解得,x=﹣2;故答案是:x=﹣218.∵0.5x+1=0,∴0.5x=﹣1,∴x=﹣2,∴一次函数y=0.5x+1的图象与x轴交点的横坐标为:x=﹣2,故答案为:x轴交点.19.根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax+b=1的解x=4.故答案为:420.一次函数y1=kx+b与y2=x+a的图象的交点的横坐标是3,故方程的解是:x=3.故答案是:x=321.由一次函数y=2x+2的图象知:y=2x+2经过点(﹣1,0),∴方程2x+2=0的解为:x=﹣1,故答案为:x=﹣1.22.一次函数y=ax+b 的图象过点(0,﹣2)和(3,0)两点,∴b=﹣2,3a+b=0,解得:a=,∴方程ax+b=0可化为:x ﹣2=0,∴x=3.23.解方程3x+2=8得到:x=2,函数y=3x+2的函数值是8.即3x+2=8,解得x=2,因而方程3x+2=8的解是x=2 即函数y=3x+2在自变量x 等于2时的函数值是8.故填2、8 24.∵一次函数y=ax+b 的图象与x 轴交点的横坐标是﹣2,∴一元一次方程ax+b=0的解是:x=﹣2.故填﹣225.设y=1700+150x ,由图中所给的表可知:当x=5时,y=1700+150x=2450,∴方程1700+150x=2450的解是5. 故答案为:526.∵y 1比21 y 2小2.,y 1=3x +1, y 2=21-3x ∴3x +1= 21(21-3x )-2=41-23x-2 两边都乘12得,4x+12=3-18x-24,移项及合并得22x=-33,解得x=-1.5,当x=-1.5时,y 1比21 y 2小2. 27.原式=4a •a ﹣8ab ﹣3ab+6b •b=4a 2﹣11ab+6b 228.(1)∵长方形的面积=长×宽,∴图3的面积=(a+2b )(2a+b )=2a 2+5ab+2b 2,故图3所表示的一个等式:(a+2b )(2a+b )=2a 2+5ab+2b 2,故答案为:(a+2b )(2a+b )=2a 2+5ab+2b 2;(2)∵图形面积为:(a+b )(a+3b )=a 2+4ab+3b 2,∴长方形的面积=长×宽=(a+b )(a+3b ),由此可画出的图形为:29.函数与x 轴的交点A 坐标为(﹣2,0),与y 轴的交点的坐标为(0,1),且y 随x 的增大而增大.(1)函数经过点(﹣2,0),则方程kx+b=0的根是x=﹣2;(2)函数经过点(0,1),则当x >0时,有kx+b >1,即不等式kx+b >1的解集是x >0;(3)线段AB 的自变量的取值范围是:﹣2≤x ≤2,当﹣2≤m ≤2时,函数值y 的范围是0≤y ≤2, 则0≤n ≤2.30. 函数y=﹣2x+7中,令y=﹣2,则﹣2x+7=﹣2,解得:x=4.5.31.一次函数y=kx+b 经过A 、B 两点,∴,解得:k=﹣,b=3. 故:y=﹣,∵0<2x <﹣,解得:0<x <1.故选C32.由于x 的一次函数y=kx+b (k ≠0)的图象过点(2,0),且函数值y 随x 的增大而增大,∴不等式kx+b ≥0的解集是x ≥2.故选A33.函数y=3x ﹣8的值满足y >0,即3x ﹣8>0,解得:x >.故选C34.函数y=8x ﹣11,要使y >0,则8x ﹣11>0,解得:x >.故选A .35. 由图象可知,a >0,故①正确;b >0,故②正确;当x >﹣2是直线y=3x+b 在直线y=ax ﹣2的上方,即x >﹣2是不等式3x+b >ax ﹣2,故③正确.故选D .36.由图象可以看出:当x ≥﹣4时,y ≥0,∴不等式ax+b ≥0的解集为x ≥﹣4,故答案为:x ≥﹣437.∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣138.∵函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点,∴根据图象可以看出,当y1>y2时,x的取值范围是x>2或x<﹣1,故答案为:x<﹣1或x>239. 如图,直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),则不等式组ax+b<cx+d<2的解集为(0,2).40.由直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),根据图象即可知不等式组ax+b<cx+d<2的解集为(0,2),故答案为:(0,2).41. 一次函数y=kx+b的图象如图所示,由图象可知,当x x>﹣3时,y值为正数,当x x<﹣3时,y为负数.42.由图形知,一次函数y=kx+b经过点(﹣3,0),(0,2)故函数解析式为:y=x+2,令y>0,解得:x>﹣3,令y<0,解得:x<﹣3.故答案为:x>﹣3,x<﹣343.直线y=kx+b经过A(2,1)和B(﹣1,﹣2)两点,可得:,解得;则不等式组x≥kx+b≥﹣2可化为x≥x﹣1≥﹣2,解得:﹣1≤x≤244.直线y=kx+b与x轴交于点(﹣3,0),且过P(2,﹣3),∴结合图象得:kx+b≤0的解集是:x≥﹣3,∵2x﹣7<﹣3,∴x<2,∴2x﹣7<kx+b≤0的解集是:﹣3≤x<2,故答案为:﹣3≤x<245.如右图所示:不等式ax>b的解集就是求函数y=ax﹣b>0,当y>0时,图象在x轴上方,则不等式ax>b的解集为x>﹣2.故答案为:x>﹣2.46.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b,=﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣147.把A(﹣2,﹣5)、B(3,0)两点的坐标代入y=ax+b,得﹣2a+b=﹣5,3a+b=0,解得:a=1,b=﹣3.解不等式组:2(x﹣3)<5x<0,得:﹣2<x<0.故答案为:﹣2<x<048.由图象可知x>﹣2时,y1>y2;故答案为x>﹣249.∵一次函数y=kx+b的图象经过A、B两点,由图象可知:直线从左往右逐渐上升,即y随x的增大而增大,又A(2,0),所以不等式y>0的解集是x>2.故答案为x>250.∵已知点P(x,y)位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.则P坐标为(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1)共6个.故答案为:651.当x=0时,y=﹣4,当y=0时,x=2,即y=2x﹣4过点(0,﹣4)和点(2,0),过这两点作直线即为y=2x﹣4的图象,从图象得出函数值随x的增大而增大;(1)当x=﹣2时,y=﹣8,当x=4,y=4,∴当﹣2≤x≤4时,函数y的取值范围为:﹣8≤y≤4;(2)由于当y=0时,x=2,∴当x<2时,y<0,当x=2时,y=0,当x>2时,y>0;(3)∵当y=﹣4时,x=0;当y=2时,x=3,∴当x的取值范围为:0<x<3时,有﹣4<y<2.52.列表:描点,过(0,1)和(﹣,0)两点作直线即可得函数y=2x+1的图象,如图:(1)由图象看出当x=﹣时,y=0,即2x+1=0,所以x=﹣是方程2x+1=0的解;(2)不等式2x+1≥0的解应为函数图象上不在x轴下方的点的横坐标,所以x≥﹣是不等式2x+1≥0的解;(3)由勾股定理得它们之间的距离为53.令y1=5x+4,y2=2x+10,对于y1=5x+4,当x=0时,y=4;当y=0时,x=﹣,即y1=5x+4过点(0,4)和点(﹣,0),过这两点作直线即为y1=5x+4的图象;对于y2=2x+10,当x=0时,y=10;当y=0时,x=﹣5,即y2=2x+10过点(0,10)和点(﹣5,0),过这两点作直线即为y2=2x+10的图象.图象如图:由图可知当x<2时,不等式5x+4<2x+10成立.54. 当x=0时,y=12;当y=0时,x=﹣4,即y=3x+12过点(0,12)和点(﹣4,0),过这两点作直线即为y=3x+12的图象,从图象得出函数值随x的增大而增大;(1)函数图象经过点(﹣4,0),并且函数值y随x的增大而增大,因而当x>﹣4时y>0;(2)函数经过点(﹣6,﹣6)和点(﹣2,6)并且函数值y随x的增大而增大,因而函数y的值满足﹣6≤y≤6时,相应的x的取值范围是:﹣6≤x≤﹣2.55.(1)根据题意得:解得:(2)画出直线如图:(3)自变量的取值范围是:x>2.56.由题意知:由图象知y=a1x+b1>0时有x>﹣3,函数y=a2x+b2>0时有x<1,∴不等式组的解集的解集为:﹣3<x<1;故答案为:﹣3<x<1;由题知:由图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x<1,∴不等式组的解集为:x<﹣3;故答案为:x<﹣3;由题意知:根据函数图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x>1,∴不等式组的解集是空集;故答案为:空集57.∵直线y=kx+b(k≠0)过(1,3)和(3,1)两点,∴,解得:,∴直线AB的解析式为:y=﹣x+4,∵当y=0时,x=4,∴A(4,0),∴不等式kx+b≤0的解集为:x<4.58.5x﹣1>2x+5可变形为x﹣2>0,画一次函数y=x﹣2的图象,如图所示:根据图象可得:当y>0时,图象在x轴的上方,故x>2.59.(1)解:如图所示:.(2)解:由图象可知:方程组的解为,故答案为:.(3)解:根据题意得:x﹣2<0,解得:x<2,故答案为:<2.(4)解:根据题意得:x﹣2<﹣2,解得:x<0,故答案为:<0.(5)解:根据题意得:﹣x>x﹣2,解得:x<1,故答案为:x<1.60.函数y=﹣2x+2的图象为:(1)由图象知:随着x的增大,y将减小.(2)由图象知:图象从左向右下降.(3)由图象知:与x轴的交点坐标是(1,0),与y轴的交点坐标是(0,2).(4)由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降.(5)由图象知:当x=1时,y=0.(6)由图象知:当x<1时,y>0.。
人教版初中数学方程与不等式之一元一次方程技巧及练习题附答案
人教版初中数学方程与不等式之一元一次方程技巧及练习题附答案一、选择题1.《算法统宗》是我国明代数学家程大位的一部著作.在这部著作中,许多数学问题都是以诗歌的形式呈现.“以碗知僧”就是其中一首。
巍巍古寺在山林,不知寺内几多僧;三百六十四只碗,看看用尽不差争;三人共食一碗饭,四人其吃一碗羹;请问先生明算者,算来寺内几多僧?”意思是说:山林中有一个古寺,寺里共有364个碗,平均三个僧人共用一个碗吃饭,四个僧人共用一个碗喝汤,问寺中有多少个僧人?( )A .364B .91C .624D .100【答案】C【解析】【分析】读懂题中的诗句,找出条件,共有364只碗,三人共食一碗饭,四人共吃一碗羹.可以列出方程.【详解】设寺中有x 个僧人,根据题意列方程,得 36434x x +=, 解得624x =,∴寺中有624个僧人.故选:C.【点睛】解决本题的关键是找出人数和碗数之间的关系,从而列出方程求出答案.失分的原因:对题意理解的不准确.2.8×200=x+40解得:x=120答:商品进价为120元.故选:B .【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.3.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100【答案】B【解析】【分析】设商品进价为x 元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x 元,售价为每件0.8×200元,由题意得4.下列说法正确的是( )A .若a c =b c,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b 【答案】A【解析】【分析】按照分式和整式的性质解答即可.【详解】 解:A .因为C 做分母,不能为0,所以a=b ;B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D .a 和b 可以互为相反数.故选 :A【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.5.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程.6.若关于x 的不等式组12246x k x k k -⎧≥⎪⎨⎪-≤+⎩有解,且关于x 的方程()()2232kx x x =--+有非负整数....解,则符合条件的所有整数k 的和为( ) A .-5 B .-9 C .-12D .-16【答案】B【解析】【分析】先根据不等式组有解得k 的取值,利用方程有非负整数解,将k 的取值代入,找出符合条件的k 值,并相加.【详解】12246x k x k k -⎧≥⎪⎨⎪-≤+⎩①②, 解①得:x≥1+4k ,解②得:x≤6+5k ,∴不等式组的解集为:1+4k≤x≤6+5k ,1+4k≤6+5k ,k≥-5,解关于x 的方程kx=2(x-2)-(3x+2)得,x=-61k +, 因为关于x 的方程kx=2(x-2)-(3x+2)有非负整数解,当k=-4时,x=2,当k=-3时,x=3,当k=-2时,x=6,∴-4-3-2=-9;故选B .【点睛】本题考查了解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.7.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A .0150250x =⨯B .0251500x ⋅= C .0015025x x-= D .0150250x -= 【答案】C【解析】【分析】 等量关系为:成本×(1+利润率)=售价,把相关数值代入即可【详解】 解:设这种服装的成本价为x 元,那么根据利润=售价-成本价,可得出方程:150-x=25%x ;15025%x x-= 故应选C8.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元【答案】C【解析】【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.9.一项工程,甲队独做10天完成,乙队独做15天完成,两队合作完成这项工程需要的天数为( )A .25B .12.5C .6D .无法确定 【答案】C【解析】【分析】设两队合作,需要x 天完成,根据甲队独做10天可以完成,一天完成工程的110,乙队独做15天可以完成,一天完成工程的115,列出方程,求出x 的值即可. 【详解】解:设两队合作,需要x 天完成,根据题意得: (111015+)x=1, 解得:x=6,答:两队合作,需要6天完成;故选:C.【点睛】此题考查了一元一次方程在工程问题中的应用,关键是读懂题意,找出之间的数量关系,列出方程,等量关系是工作量=效率和×合作时间.10.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是()A.20岁B.16岁C.15岁D.12岁【答案】A【解析】【分析】设乙今年的年龄是x岁,则甲今年的年龄是(x+12)岁.根据等量关系:4年后甲的年龄恰好是乙的年龄的2倍,列出方程进行求解即可.【详解】设乙今年的年龄是x岁,根据题意得:(x+12)+4=2(x+4),解得:x=8,则:x+12=20,即甲今年的年龄是20岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于()A.10分 B.15分 C.20分 D.30分【答案】C【解析】解:根据题意列方程得:260t+800=300t,解得:t=20,故选C.点睛:此题要把握再相遇时甲比已多跑了800米,这是一个追及问题,别把它混为相遇问题就能解决.12.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴3733 88a a-+⎛⎫--=⎪⎝⎭∴7a=.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a的方程是解决问题的关键.13.若代数式x+2的值为1,则x等于( )A.1 B.-1 C.3 D.-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.14.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由n %提高到(n +6)%,则n 的值为( ).A .10B .12C .14D .17【答案】C【解析】【分析】设原进价为x ,根据等量关系:原进价+原来利润=进价降低后的进价+降价后的利润列方程求解即可.【详解】解:设原进价为x ,则:x+n%•x=95%•x+95%•x•(n+6)%,∴1+n%=95%+95%(n+6)%,∴100+n=95+0.95(n+6),∴0.05n=0.7解得:n=14.故选C .【点睛】本题考查了一元一次方程的应用,此类题常用到得数量关系是:售价=进价+利润,进价×利润率=利润.15.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里 【答案】C【解析】【分析】【详解】试题分析:设第一天走了x 里,则根据题意知234511111137822222x ⎛⎫+++++= ⎪⎝⎭,解得x=192,故最后一天的路程为5119262⨯=里. 故选C16.若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程1ax y +=的解,则a 的值等于( ) A .3 B .1 C .1- D .3-【答案】A【分析】将方程的解代入所给方程,再解关于a 的一元一次方程即可.【详解】解:将12x y =⎧⎨=-⎩代入1ax y +=得,21a -=, 解得:3a =.故选:A .【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.17.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =-【答案】B【解析】【分析】首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母. 由题意得:2×1200x=2000(22-x ),故选:B .【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.18.方程|2x+1|=7的解是( )A .x=3B .x=3或x=﹣3C .x=3或x=﹣4D .x=﹣4【答案】C【解析】【分析】根据绝对值的意义,将原方程转化为两个一元一次方程后求解.【详解】 解:由绝对值的意义,把方程217x +=变形为: 2x +1=7或2x +1=-7,解得x =3或x =-4【点睛】本题考查了绝对值的意义和一元一次方程的解法,对含绝对值的方程,一般是根据绝对值的意义,去除绝对值后再解方程.19.为引导居民节约用水,某市出台了城镇居民作用水阶梯水价制度.每年水费的计算方法为:年交水费=第一阶梯水价×第一阶梯用水量+第二阶梯水价×第二阶梯用水量+第三阶梯水价×第三阶梯用水量.该市某同学家在实施阶梯水价制度后的第一年缴纳水费1730元,则该同学家这一年的用水量为()某市居民用水阶梯水价表A.250m3B.270m3C.290m3D.310m3【答案】C【解析】【分析】利用表格中数据得出水费超过1460元时包括第三阶梯水价费用,进而得出等量系求出即可.【详解】解:设该同学这一年的用水量为x,根据表格知,180×5+80×7=1460<1730,则该同学家的用水量包括第三阶梯水价费用,依题意得:180×5+80×7+(x−260)×9=1730,解得x=290.故选C.【点睛】本题考查了一元一次方程的应用.20.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人【答案】A【解析】【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+1003x=100,解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.。
2021全国中考真题:方程与不等式(一元一次方程答案版)
2021全国中考真题分类汇编(方程与不等式)----一次方程(组)一、选择题1.(2021·安徽省)设a ,b ,c 为互不相等的实数,且4155b ac =+,则下列结论正确的是()A.a b c>> B.c b a>> C.4()a b b c -=- D.5()a c ab -=-【答案】D 【解析】【分析】举反例可判断A 和B ,将式子整理可判断C 和D .【详解】解:A .当5a =,10c =,41655b ac =+=时,c b a >>,故A 错误;B .当10a =,5c =,41955b ac =+=时,a b c >>,故B 错误;C .4()a b b c -=-整理可得1455b ac =-,故C 错误;D .5()a c a b -=-整理可得4155b ac =+,故D 正确;故选:D .2.(2021•甘肃省定西市)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为()A .B .C .D .【分析】设共有x 人,y 辆车,根据“如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】解:设共有x 人,y 辆车,依题意得:.故选:C .3.(2021•湖北省武汉市)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱;每人出7钱,还差4钱.问人数,物价是y 钱,则下列方程正确的是()A .8(x ﹣3)=7(x +4)B .8x +3=7x ﹣4C .=D .=【分析】根据人数=总钱数÷每人所出钱数,得出等式即可.【解答】解:设物价是y 钱,根据题意可得:=.故选:D .4.(2021•株洲市)方程122x-=的解是()A.2x =B.3x = C.5x = D.6x =【答案】D5.(2021•四川省成都市)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为()A .B .C .D .【分析】设甲需持钱x ,乙持钱y ,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.【解答】解:设甲需持钱x ,乙持钱y ,根据题意,得:,故选:A6(2021•四川省南充市)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x 元,则可列方程为()A .10x +5(x ﹣1)=70B .10x +5(x +1)=70C .10(x ﹣1)+5x =70D .10(x +1)+5x =70【分析】设每个肉粽x 元,则每个素粽(x ﹣1)元,根据总价=单价×数量,结合购买10个肉粽和5个素粽共用去70元,即可得出关于x 的一元一次方程,此题得解.【解答】解:设每个肉粽x 元,则每个素粽(x ﹣1)元,依题意得:10x +5(x ﹣1)=70.故选:A .7.(2021•天津市)方程组234x y x y +=⎧⎨+=⎩的解是()A.02x y =⎧⎨=⎩ B.11x y =⎧⎨=⎩C.22x y =⎧⎨=-⎩ D.33x y =⎧⎨=-⎩【答案】B 【解析】【分析】直接利用加减消元法解该二元一次方程组即可.【详解】234x y x y +=⎧⎨+=⎩①②,②-①得:32x y x y +--=,即22x =,∴1x =.将1x =代入①得:12y +=,∴1y =.故原二元一次方程组的解为11x y =⎧⎨=⎩.故选B .8.(2021•新疆)某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是()A.26216x yx y+=⎧⎨+=⎩B.26216x yx y+=⎧⎨+=⎩C.16226x yx y+=⎧⎨+=⎩D.16226x yx y+=⎧⎨+=⎩【答案】D9.(2021•浙江省杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则()A.60.5(1﹣x)=25B.25(1﹣x)=60.5C.60.5(1+x)=25D.25(1+x)=60.5【分析】依题意可知四月份接待游客25万,则五月份接待游客人次为:25(1+x),进而得出答案.【解答】解:设该景点今年四月到五月接待游客人次的增长率为x(x>0),则25(1+x)=60.8.故选:D.10.(2021•浙江省温州市).解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x 【分析】可以根据乘法分配律先将2乘进去,再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣3x﹣2=x,故选:D.11.(2021•江苏省无锡市)方程组的解是()A.B.C.D.【分析】将两个方程相加,可消去y,得到x的一元一次方程,从而解得x=4,再将x =4代入①解出y的值,即得答案.【解答】解:,①+②得:2x=8,∴x=4,把x=4代入①得:4+y=5,∴y=1,∴方程组的解为.故选:C.12.(2021•黑龙江省龙东地区)为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有()A.5种B.6种C.7种D.8种【答案】A【解析】【分析】设购买甲种奖品为x件,乙种奖品为y件,由题意可得15x+10y=180,进而求解即可.【详解】解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:15x+10y=180,3∴y=18-x,2∵x>0,y>0,且x、y都为正整数,∴当x=2时,则y=15;当x=4时,则y=12;当x=6时,则y=9;当x=8时,则y=6;当x=10时,则y=3;∴购买方案有5种;故选A.13.(2021•齐齐哈尔市)周末,小明的妈妈让他到药店购买口罩和消精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有()A.3种B.4种C.5种D.6种【答案】B 【解析】【分析】设购买口罩x 包,酒精湿巾y 包,根据总价=单价⨯数量,即可列出关于,x y 的二元一次方程,结合,x y 均为正整数,即可得出购买方案的个数.【详解】解:设购买口罩x 包,酒精湿巾y 包,依据题意得:3230x y +=2103x y ∴=-,x y 均为正整数,83x y =⎧∴⎨=⎩或66x y =⎧⎨=⎩或49x y =⎧⎨=⎩或212x y =⎧⎨=⎩∴小明共有4种购买方案.故选:B .二.填空题1.(2021•江苏省扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.【答案】20【解析】【分析】设良马行x 日追上驽马,根据路程=速度×时间结合两马的路程相等,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设快马行x 天追上慢马,则此时慢马行了(x +12)日,依题意,得:240x =150(x +12),解得:x =20,∴快马20天追上慢马,故答案为:20.2.(2021•山东省泰安市)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为.【分析】根据乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50和题目中所设的未知数,可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.3.(2021•陕西省).幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,则图中a的值为﹣2.【分析】根据各行的三个数字之和相等,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:依题意得:﹣1﹣6+3=0+a﹣4,解得:a=﹣7.故答案为:﹣2.⎧x+2y=2-_________4.(2021•广东省)二元一次方程组⎨的解为.⎩2x+y=2【答案】22x y =⎧⎨=-⎩【解析】2222x y x y +=-⎧⎨+=⎩①②,①+②可得0x y +=③,①-③得,2y =-,把2y =-代入③得2x =因此22x y =⎧⎨=-⎩,考查二元一次方程组的解法5.(2021•四川省凉山州)已知13x y =⎧⎨=⎩是方程2ax y +=的解,则a 的值为______________.【答案】-1【解析】【分析】根据方程解的定义,将x =1,y =3代入方程2ax y +=,即可求得a 的值.【详解】解:根据题意,将x =1,y =3代入方程2ax y +=,得:32a +=,解得:a =-1,故答案为:-1.6.(2021•浙江省嘉兴市)已知二元一次方程x +3y =14,请写出该方程的一组整数解(答案不唯一).【分析】把y 看做已知数求出x ,确定出整数解即可.【解答】解:x +3y =14,x =14﹣3y ,当y =1时,y =11,则方程的一组整数解为.故答案为:(答案不唯一).7.(2021•浙江省金华市)已知是方程3x +2y =10的一个解,则m 的值是2.【分析】把方程组的解代入到方程中,得到关于m 的一元一次方程,解方程即可.【解答】解:把代入方程得:3×2+2m=10,∴m=2,故答案为:2.8.(2021•浙江省绍兴市)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两;若每人9两,则差8两.银子共有46两.【分析】通过设两个未知数,可以列出银子总数相等的二元一次方程组,本题得以解决.【解答】解:设有x人,银子y两,由题意得:,解得,故答案为46.9.(2021•重庆市B)方程2(x﹣3)=6的解是x=6.【分析】按照去括号,移项,合并同类项的步骤解方程即可.【解答】解:方程两边同除以2得:x﹣3=3.移项,合并同类项得:x=6.故答案为:x=6.【点评】本题主要考查了解一元一次方程.解一元一次方程常见的过程有去分母,去括号、移项、合并同类项,系数化为1等.10.(2021•重庆市A)若关于x的方程442x a-+=的解是2x=,则a的值为__________.【答案】3【解析】【分析】将x=2代入已知方程列出关于a的方程,通过解该方程来求a的值即可.【详解】解:根据题意,知4-2+a=4,2解得a=3.故答案是:3.11.(2021•湖北省江汉油田)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为_______尺.(其大意为:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺.)【答案】20【解析】【分析】设绳索长x 尺,根据两种量竿的方法建立方程,解方程即可得.【详解】解:设绳索长x 尺,由题意得:552xx -=+,解得20x =,即绳索长20尺,故答案为:20.三、解答题1.(2021•四川省广元市)解方程:31423x x --+=.【答案】7x =【解析】【分析】根据整式方程的计算过程,去分母、去括号、移项、合并同类项、系数化为1,就可以得到结果.【详解】解:去分母得:()()332124x x -+-=,去括号得:392224x x -+-=,移项并合并同类项得:535x =,系数化为1得:7x =,故答案为:7x =.2.(2021•浙江省台州)解方程组:241x y x y +=⎧⎨-=-⎩【答案】12x y =⎧⎨=⎩.【解析】【分析】观察方程组中同一未知数的系数特点:x 的系数存在倍数关系,而y 的系数互为相反数,因此将两方程相加,消去y 求出x ,再求出y 的值,可得到方程组的解.【详解】解:①+②得:3x =3,即x =1,把x =1代入①得:y =2,则方程组的解为12x y =⎧⎨=⎩.3.(2021•四川省眉山市)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×15+②×2得:49x =﹣294,解得:x =﹣6,把x =﹣6代入②得:y =1,则方程组的解为4.(2021•呼和浩特市)解方程组1.5(2010)150001.2(110120)97200x y x y +=⎧⎨+=⎩解:1.5(2010)150001.2(110120)97200x y x y +=⎧⎨+=⎩,化简得210001112810x y x y +=⎧⎨+=⎩①②①×12-②得:133900x =解得300x =把300x =代入①得:400y =∴方程组的解为:300400x y =⎧⎨=⎩5.(2021•江苏省扬州)已知方程组271x y x y +=⎧⎨=-⎩的解也是关于x 、y 的方程4ax y +=的一个解,求a 的值.1【答案】a =2【解析】【分析】求出方程组的解得到x 与y 的值,代入方程计算即可求出a 的值.【详解】解:方程组271x y x y +=⎧⎨=-⎩①②,把②代入①得:()217y y -+=,解得:3y =,代入①中,解得:2x =,把2x =,3y =代入方程4ax y +=得,234a +=,解得:12a =.6.(2021·安徽省)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2;(2)2n +4;(3)1008块【解析】【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;故答案为:2;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;所以当地砖有n 块时,等腰直角三角形地砖有(24n +)块;故答案为:24n +;(3)令242021n +=则1008.5n =当1008n =时,242020n +=此时,剩下一块等腰直角三角形地砖∴需要正方形地砖1008块.7.(2021•湖南省邵阳市)为庆祝中国共产党成立100周年,某校计划举行“学党史•感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品店购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.【分析】设钢笔购买了x 支,笔记本购买了y 本,篮球个数+钢笔支数+笔记本本数=56,篮球总价+钢笔总价+笔记本总价=1000,利用这两个相等关系列出二元一次方程组,解出即得钢笔和笔记本的数量,乘以各自单价即得各自总价.【解答】解:设钢笔购买了x 支,笔记本购买了y 本.由题意得:,解得:,∴15×15=225(元),35×5=175(元),答:钢笔购买了15支共225元,笔记本购买了35本共175元.8.(2021•陕西省)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【分析】设这种服装每件的标价是x 元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”从而得出等式方程,解方程即可求解;【解答】解:设这种服装每件的标价是x 元,根据题意得,10×0.8x =11(x ﹣30),解得x =110,答:这种服装每件的标价为110元.9.(2021•广西贺州市)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m 时,按一级单价收费;当每户每月用水量超过312m 时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m ,缴纳水费32元.七月份因孩子放假在家,用水量为314m ,缴纳水费51.4元.(1)问该市一级水费,二级大费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?【答案】(1)一级水费的单价为3.2元/3m ,二级水费的单价为6.5元/3m ;(2)316m 【解析】【分析】(1)设该市一级水费的单价为x 元/3m ,二级水费的单价为y 元/3m ,根据题意,列出二元一次方程组,即可求解;(2)先判断水量超过312m ,设用水量为3m a ,列出方程,即可求解.【详解】(1)设该市一级水费的单价为x 元/3m ,二级水费的单价为y 元/3m ,依题意得()103212141251.4x x y =⎧⎨--=⎩,解得 3.26.5x y =⎧⎨=⎩,答:该市一级水费的单价为3.2元/3m ,二级水费的单价为6.5元/3m .(2)当水费为64.4元,则用水量超过312m ,设用水量为3m a ,得,()12 3.212 6.564.4a ⨯+-⨯=,解得:16a =.答:当缴纳水费为64.4元时,用水量为316m .。
一元一次不等式练习习题附答案
一元一次不等式练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,下列结论正确的是( )A .c >a >bB .11b c >C .|a |<|b |D .abc >0【答案】B 【分析】根据数轴可得:101a b c <-<<<<再依次对选项进行判断. 【详解】解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大, 即可得:101a b c <-<<<<,A 、由101a b c <-<<<<,得c b a >>,故选项错误,不符合题意;B 、01b c <<<,根据不等式的性质可得:11b c >,故选项正确,符合题意; C 、1,01a b <-<<,可得||||a b >,故选项错误,不符合题意; D 、0,0,0a b c <<<,故0abc <,故选项错误,不符合题意; 故选:B . 【点睛】本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出101a b c <-<<<<.2.若不等式组4101x m x x m-+<+⎧⎨+>⎩解集是4x >,则( )A .92m ≤B .5m ≤C .92m =D .5m =【答案】C 【分析】首先解出不等式组的解集,然后与x >4比较,即可求出实数m 的取值范围. 【详解】解:由①得2x >4m -10,即x >2m -5; 由②得x >m -1;∵不等式组4101x m xx m-+<+⎧⎨+>⎩的解集是x>4,若2m-5=4,则m=92,此时,两个不等式解集为x>4,x>72,不等式组解集为x>4,符合题意;若m-1=4,则m=5,此时,两个不等式解集为x>5,x>4,不等式组解集为x>5,不符合题意,舍去;故选:C.【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.3.下列不等式组,无解的是()A.1030xx->⎧⎨->⎩B.1030xx-<⎧⎨-<⎩C.1030xx->⎧⎨-<⎩D.1030xx-<⎧⎨->⎩【答案】D【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、1030xx->⎧⎨->⎩,解得13xx>⎧⎨>⎩,解集为:3x>,故不符合题意;B、1030xx-<⎧⎨-<⎩,解得13xx<⎧⎨<⎩,解集为:1x<,故不符合题意;C、1030xx->⎧⎨-<⎩,解得13xx>⎧⎨<⎩,解集为:13x<<,故不符合题意;D、1030xx-<⎧⎨->⎩,解得13xx<⎧⎨>⎩,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.4.海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80 D.5x﹣2(20﹣x)<80【答案】C【分析】设小明答对x道题,则答错或不答(20﹣x)道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则他答错或不答的题数为20﹣x,依题意,得:5x﹣2(20﹣x)>80.故选:C.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.5.不等式组31xx<⎧⎨≥⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】根据不等式组的解集的表示方法即可求解. 【详解】解:∵不等式组的解集为31x x <⎧⎨≥⎩ 故表示如下:故选:C . 【点睛】本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.如果0b a <<,则下列哪个不等式是正确的( ) A .2b ab < B .2a ab >C .22b a ->-D .22b a >【答案】C 【分析】运用不等式的基本性质逐一判断即可. 【详解】 ∵0b a <<, ∴2b ab > , ∴A 不符合题意; ∵0b a <<, ∴2ab a > , ∴B 不符合题意; ∵0b a <<, ∴22b a ->- , ∴C 符合题意; ∵0b a <<, ∴22b a < , ∴D 不符合题意; 故选C .【点睛】本题考查了不等式的性质,熟练运用基本性质是解题的关键.7.如图,数轴上表示的解集是()A.﹣3<x≤2B.﹣3≤x<2 C.x>﹣3 D.x≤2【答案】A【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选A.【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.8.能说明“若x>y,则ax>ay”是假命题的a的值是()A.3 B.2 C.1 D.1-【答案】D【分析】根据不等式的性质,等式两边同时乘以或者除以一个负数,不等式的符号改变,判断即可.【详解】解:“若x>y,则ax>ay”是假命题,则0a<,故选:D.【点睛】本题考查了不等式的基本性质,熟知不等式的三个基本性质是解本题的关键.二、填空题912x-x的取值范围为_______________.【答案】12x ≤且1x ≠- 【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式求解. 【详解】解:由题意得:120x -≥,且10x +≠ 解得:12x ≤且1x ≠- 故答案为:12x ≤且1x ≠- 【点睛】本题考查了分式有意义的条件和二次根式有意义的条件,掌握:分式有意义,分母不为0;二次根式的被开方数是非负数是解题的关键. 10.若m 与3的和是正数,则可列出不等式:___. 【答案】30m +> 【分析】根据题意列出不等式即可 【详解】若m 与3的和是正数,则可列出不等式30m +> 故答案为:30m +> 【点睛】本题考查了一元一次不等式的应用,理解题意是解题的关键.11.不等式组21054x x -≤⎧⎨+≥⎩的整数解是__________.【答案】-1、0 【分析】分别求出各不等式的解集,再求出其公共解集即可得出答案. 【详解】解:解不等式210x -≤, 得:12x ≤, 解不等式54x +≥, 得:1x ≥-,则不等式组的解集为112x ≤≤-, ∴不等式组的整数解为-1、0, 故答案为:-1、0. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解题的关键.12.a 、b 、c 表示的数在数轴上如图所示,试填入适当的>”“<”或“=”.(1)3a +______3b +;(2)-a b ________0; (3)35a __________35b ;(4)2a -________2b -;(5)14a -________14b -;(6)a c ⋅_______b c ⋅; (7)a c -________b c -;(8)ab _______2b .【答案】> > > < < > > > 【分析】本题主要是根据不等式的性质:(1)不等式的两边同时加上或减去同一个数或式子,不等式的方向不改变; (2)不等式的两边同时乘或除以一个大于零的数或式子,不等号的方向不变; (3)不等式的两边同时乘或除以一个小于零的数或式子,不等号的方向改变. 据此可以对不等号的方向进行判断. 【详解】解:由数轴的定义得:a>0,b>0,c <0,a >b >c ,(1)不等式a >b 的两边同加上3,不改变不等号的方向,则3a +>3b +; (2)不等式a >b 的两边同减去b ,不改变不等号的方向,则a -b >b -b ,即a -b >0; (3)不等式a >b 的两边同乘以35,不改变不等号的方向,则35a >35b ;(4)不等式a >b 的两边同乘以-2,改变不等号的方向,则2a -<2b -;(5)不等式a >b 的两边同乘以-4,改变不等号的方向,则-4a <-4b ;不等式-4a <-4b 的两边同加上1,不改变不等号的方向,则14a -<14b -;(6)不等式a >b 的两边同乘以正数c ,不改变不等号的方向,则a c ⋅ > b c ⋅; (7)不等式a >b 的两边同减去c ,不改变不等号的方向,则a c ->b c -; (8)不等式a >b 的两边同乘以正数b ,不改变不等号的方向,则ab >2b .【点睛】本题主要是考查不等式的基本性质,熟练掌握不等式的三个性质的应用是解本题的关键,同时不等式的性质(3)是类似题型中考查的重点及易错点.13.不等式组53xx m<⎧⎨>+⎩有解,m的取值范围是______.【答案】m<2【分析】根据不等式组得到m+3<x<5,【详解】解:解不等式组53xx m<⎧⎨>+⎩,可得,m+3<x<5,∵原不等式组有解∴m+3<5,解得:m<2,故答案为:m<2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.14.如果a>b,那么﹣2﹣a___﹣2﹣b.(填“>”、“<”或“=”)【答案】<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a>b,∴﹣a<﹣b,∴﹣2﹣a<﹣2﹣b,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.三、解答题15.解下列不等式:(1)5132x x -+>-;(2)1515x x -+≤-;(3)112135x x -<-;(4)(31)2x x x --≤+.【答案】(1)3x <;(2)152x ≥;(3)458x <;(4)13x ≥-. 【分析】根据解一元一次不等式的步骤以及不等式的基本性质,解一元一次不等式即可. 【详解】 (1)5132x x -+>- 去分母,5226x x -+>- 移项,合并同类项,3x ->- 化系数为1,3x <; (2)1515x x-+≤- 去分母,315x x -+≤- 移项,合并同类项,215x -≤- 化系数为1, 152x ≥; (3)112135x x -<-去分母,530153x x -<- 移项,合并同类项,845x < 化系数为1,458x <; (4)(31)2x x x --≤+ 去括号,312x x x -+≤+ 移项,合并同类项,31x -≤ 化系数为1,13x ≥-.【点睛】本题考查了解一元一次不等式,正确的计算是解题的关键. 16.解下列不等式组: (1)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩ (2)273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩【答案】(1)12x -≤<;(2)1x ≥-.【分析】(1)(2)分别先根据一元一次不等式的解法分别求出每个不等式的解集,并将两个不等式的解集表示在同一数轴上,再利用不等式组的解集的确定方法:“同大取大;同小取小;大小小大中间找;大大小小无解”求解即可. 【详解】解:(1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①②,解不等式①,得1x ≥-. 解不等式②,得2x <.将不等式的解集在数轴上表示如图:所以,原不等式组的解集为12x -≤<.(2)()2731423133x x x x ⎧-<-⎪⎨+≥-⎪⎩①② 解不等式①,得4x ->. 解不等式②,得1x ≥-.将不等式的解集在数轴上表示如图:所以,原不等式组的解集为1x ≥-. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小无解了”的原则是解答此题的关键. 17.已知-x <-y ,用“<”或“>”填空: (1)7-x ________7-y . (2)-2x ________-2y . (3)2x ________2y . (4)23x _______23y .【答案】(1)<(2)<(3)>(4)>【分析】根据不等式的性质求解即可.(1)解:∵x y-<-,∴不等号两边都加7,依据不等式的性质1,得7-x<7-y.(2)解:∵x y-<-,∴不等号两边都乘以2,依据不等式的性质2,得-2x<-2y.(3)解:∵x y-<-,∴不等号两边都乘以-2;依据不等式的性质3,得2x>2y.(4)解:∵x y-<-,∴不等号两边都乘以23-,依据不等式的性质3,得23x>23y.故答案为:(1)<(2)<(3)>(4)>【点睛】本题考查了不等式的性质:1、把不等式的两边都加(或减去)同一个数或式子,不等号的方向不变;2、不等式两边都乘(或除以)同一个正数,不等号的方向不变;3、不等式两边都乘(或除以)同一个负数,不等号的方向改变.18.下列式子中,是一元一次不等式的有哪些?(1)3x+5=0;(2)2x+3>5;(3)384x<;(4)1x≥2;(5)2x+y≤8【答案】(2)、(3)是一元一次不等式【分析】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可,根据定义逐一判断即可.【详解】解:(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数,所以不是一元一次不等式,所以一元一次不等式有:(2)、(3)【点睛】本题考查的是一元一次不等式的识别,掌握一元一次不等式的定义是解本题的关键. 19.解不等式(组)(1)2151132x x -+-> (2)321125123x x x x -≥+⎧⎪+⎨-<-⎪⎩ 【答案】(1)1x -<;(2)不等式组的解集为83x ≤-. 【分析】(1)先去分母,再去括号,移项合并,系数化1即可;(2)分别解每个不等式,再取它们的公共解集即可.【详解】解:(1)2151132x x -+->, 去分母得()()2213516x x --+> ,去括号得421536x x --->,移项合并得 1111x ->,解得1x -<;(2)321125123x x x x -≥+⎧⎪⎨+-<-⎪⎩①②, 解不等式①得83x ≤-, 解不等式②得45x <, ∴不等式组的解集为83x ≤-. 【点睛】本题考查不等式的解法,不等式组的解法,掌握不等式的解法与步骤,不等式组的解法,特别是不等式组的解集取法,同大取大,同小取小,大小小大取中间,大大小小无解是解题关键.20.解不等式:(1)2(x ﹣1)﹣3(3x +2)>x +5.(2)221235x x +->-. 【答案】(1)138x <-(2)43x < 【分析】(1)去括号,移项合并同类项,求解不等式即可;(2)去分母,去括号,移项合并同类项,求解不等式即可.【详解】解:(1)去括号,得:2x ﹣2﹣9x ﹣6>x +5,移项,得:2x ﹣9x ﹣x >5+2+6,合并,得:﹣8x >13,系数化为1,得:138x <-; (2)去分母,得:5(2+x )>3(2x ﹣1)﹣30,去括号,得:10+5x >6x ﹣3﹣30,移项,得:5x ﹣6x >﹣3﹣30﹣10,合并同类项,得:﹣x >﹣43,系数化为1,得:x <43.【点睛】此题考查了一元一次不等式的求解,解题的关键是掌握一元一次不等式的求解步骤. 21.计算:解下列不等式(组),并把解集在数轴上表示出来.(1)6341213x x x x +≤+⎧⎪+⎨>-⎪⎩ (2)()31511242x x x x ⎧-<+⎪⎨-≥-⎪⎩ 【答案】(1)14x ≤<,数轴见解析;(2)723x -<≤,数轴见解析 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,再将解集表示在数轴上即可.【详解】(1)634 1213x xxx+≤+⎧⎪⎨+>-⎪⎩①②解不等式①,得x≥1.解不等式②,得x<4.因此,原不等式组的解集为1≤x<4.在数轴上表示其解集如下:(2)()31511242x xxx⎧-<+⎪⎨-≥-⎪⎩①②.由①,得x>﹣2.由②,得x≤73.故此不等式组的解集为723x-<≤.在数轴上表示为,【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.22.列一元一次方程解应用题:某校七年级将进行广播操比赛,七年级(1)班准备在网上找商家将班徽制作成胸牌,下列图表是负责这项事务的同学了解到的信息及他们的对话:材料费(元/个)总设计费(元)甲商家10150乙商家12160(1)当制作多少个胸牌时,在甲、乙两个商家购买费用相同?(2)七年级(1)班应该如何根据本班定制胸牌数量选择不同的商家才更省钱?【答案】(1)当制作23个胸牌时,甲乙两个商家购买费用相同;(2)当七年级(1)班人数定制胸牌少于23个时,选择乙商家更省钱;当七年级(1)班人数定制胸牌多于23个时,选择甲商家更省钱;当制作23个胸牌时,甲乙两个商家购买费用相同.【分析】(1)根据题意设当制作x 个胸牌时,甲乙两个商家购买费用相同,依据所花费用相同列出方程,求解即可;(2)设根据七年级(1)班人数定制胸牌y 个,则选择甲方案花费为:100.915015y ⨯++乙方案花费为:121600.6y +⨯,根据题意分三种情况讨论即可.【详解】解:(1)设当制作x 个胸牌时,甲乙两个商家购买费用相同,根据题意可得:100.915015121600.6x x ⨯++=+⨯,解得:23x =,当制作23个胸牌时,甲乙两个商家购买费用相同;(2)设根据七年级(1)班人数定制胸牌y 个,则选择甲方案花费为:100.915015y ⨯++乙方案花费为:121600.6y +⨯,当100.915015121600.6y y ⨯++>+⨯,解得:23y <,当七年级(1)班人数定制胸牌少于23个时,选择乙商家更省钱;当100.915015121600.6y y ⨯++<+⨯,解得:23y >,当七年级(1)班人数定制胸牌多于23个时,选择甲商家更省钱;当100.915015121600.6y y ⨯++=+⨯,解得:23y =,当制作23个胸牌时,甲乙两个商家购买费用相同.【点睛】题目主要考查一元一次方程及一元一次不等式的应用,理解题意,列出相应方程是解题关键.23.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,在每辆车都满载的情况下,甲种运输车至少需要安排多少辆.【答案】甲种运输车至少需要安排6辆【分析】设甲种运输车运输x 吨,则乙种运输车运输(46-x )吨,根据两种运输汽车不超过10辆建立不等式求出其解,就可以求出甲种车运输的吨数,从而求出结论.【详解】解:设甲种运输车运输x 吨,则乙种运输车运输(46-x )吨, 根据题意,得:4654x x -+≤10, 去分母得:4x +230-5x ≤200,-x ≤-30,x ≥30,则5x ≥6. 答:甲种运输车至少需要安排6辆.【点睛】本题考查了一元一次不等式的应用,关键是以运输车的总数不超过10辆作为不等量关系列方程求解.24.(1)解不等式:3x ﹣2≤5x ,并把解集在数轴上表示出来.(2)解不等式组2(2)313123x x x x -≤-⎧⎪+-⎨>+⎪⎩,并写出它的最大整数解. 【答案】(1)x ≥﹣1,数轴见解析;(2)733x -<≤,2 【分析】 (1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解.【详解】解:(1)移项,得:3x ﹣5x ≤2,合并同类项,得:﹣2x ≤2,系数化为1,得:x ≥﹣1,将不等式的解集表示在数轴上如下:(2)解不等式2(x﹣2)≤3﹣x,得:x≤73,解不等式13123+->+x x,得:x>﹣3,则不等式组的解集为﹣3<x≤73,∴其最大整数解为2.【点睛】本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键.。
2021年七上数学期中复习-方程与不等式_一元一次方程_一元一次方程的解-解答题专训及答案
2021年七上数学期中复习-方程与不等式_一元一次方程_一元一次方程的解-解答题专训及答案一元一次方程的解解答题-专训1、(2019台州.七上期末) 小明解方程+ 1 = 时,由于粗心大意,在去分母时,方程左边的 1 没有乘10,由此求得的解为x=4,试求 a 的值,并求出方程正确的解.2、(2018临夏.七上期末) 老师在黑板上出了一道解方程的题:,小明马上举起了手,要求到黑板上去做,他是这样做的:4(2x-1)=1-3(x+2),①8x-4=1-3x-6,②8x+3x=1-6+4,③11x=-1,④x=- .⑤老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了.请你指出他错在第几步,然后再细心地解下面的方程,相信你一定能做对.⑴5(x+8)=6(2x-7)+5;⑵ .3、(2020浦城.七上期末) 已知关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣4的解互为相反数,求m的值.4、(2019吉林.七上期末) 已知关于x的方程m+ =4的解是关于x的方程的解的2倍,求m的值.5、(2016江苏.七上期末) 已知不等式的最小整数解为方程的解,求代数式的值.6、(2016莆田.七上期末) 如果方程﹣8=﹣的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子a﹣a2的值.7、(2020三门峡.七上期末) 已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程的解.8、(2020三门峡.七上期末) 方程﹣3=的根,比关于x的方程2﹣(a﹣x)=2x的根的2倍还多4.5,求关于x的方程a(x﹣5)﹣2=a(2x﹣3)的解.9、(2020醴陵.七上期末) 在做解方程练习时,有一个方程“ ”题中∎处不清晰,李明问老师,老师只是说:“∎是一个有理数,该方程的解与当X=3时的整式的值相同。
”依据老师的提示,请你帮李明求出方程的解,并找到这个有理数。
10、(2019黄埔.七上期末) 已知x=﹣2是方程a(x+3)=a+x的解,求a﹣(a﹣1)+3(4﹣a)的值.11、(2018岳池.七上期末) 如果y=3是方程2+(m-y)=2y的解,那么关于x的方程2mx=(m+1)(3x-5)的解是多少?12、(2019兰州.七上期末) 若是方程的解,求关于的方程的解.13、(2019沙雅.七上期末) 已知关于x的一元一次方程的解是,求k的值.14、(2016宜昌.七上期中) 已知(a﹣2)x2+ax+1=0是关于x的一元一次方程(即x 是未知数),求这个方程的解.15、(2020丹江口.七上期末) 在作解方程练习时,学习卷中有一个方程“ ”中的没印清晰,小聪问老师,老师只是说:“ 是个有理数,该方程的解与方程的解相同.”小聪很快补上了这个常数,聪明的你能补上这个常数吗?一元一次方程的解解答题-答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
初一数学一元一次方程试题答案及解析
初一数学一元一次方程试题答案及解析1.(1)解不等式:5(x-2)+8<7-6(x-1)(2)若(1)中的不等式的最大整数解是方程2x-ax=3的解,求a的值.【答案】(1)x<;(2)a=-1.【解析】(1)根据不等式的解法:先去括号移项,然后合并同类项,系数化为1,求出不等式的解;(2)根据(1)所求的不等式的解,可得方程2x-ax=3的解为1,代入求a的值.试题解析:(1)去括号得:5x-10+8<7-6x+6,移项合并同类项得:11x<15,系数化为1得:x<;(2)由(1)得,方程2x-ax=3的解为1,将x=1代入得:2-a=3,解得:a=-1.【考点】1.解一元一次不等式;2.一元一次方程的解;3.一元一次不等式的整数解.2.初一(19)班有48名同学,其中有男同学名,将他们编成1号、2号、…,号。
在寒假期间,1号给3名同学打过电话,2号给4名同学打过电话,3号给5名同学打过电话,…,号同学给一半同学打过电话,由此可知该班女同学的人数是()A.22B.24C.25D.26【答案】D.【解析】已知初一(19)班有48名同学,则一半学生数为24,根据1号给3=2+1名同学打过电话,2号给4=2+2名同学打过电话,3号给5=2+3名同学打过电话,…,号同学给一半同学打过电话,求解即可.∵初一(19)班有48名同学,∴一半学生数为24,∵1号给3=2+1名同学打过电话,2号给4=2+2名同学打过电话,3号给5=2+3名同学打过电话,…,号同学给一半同学打过电话,∴,则该班女同学的人数是48-22=26人,故选D.【考点】应用类问题.3.的倒数与互为相反数,那么的值是()A.B.C.3D.-3【答案】C【解析】由题意可知,解得,故选C.4.若方程的解为,则的值为( )A.B.C.D.【答案】C【解析】将代入中,得,解得故选C.5.江南生态食品加工厂收购了一批质量为的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量倍还多,求粗加工的该种山货质量.【答案】【解析】解:设粗加工的该种山货质量为,根据题意,得,解得.答:粗加工的该种山货质量为.6.右面是“美好家园”购物商场中“飘香”洗发水的价格标签,请你在横线上填出它的现价.【答案】28.8【解析】设出洗发水的现价是x元,直接得出有关原价的一元一次方程,再进行求解.设洗发水的现价为x元,由题意得:0.8×36=x,解得:x=28.8(元).故答案为:28.8元.7.若当时,代数式的值为,那么当时,该代数式的值是_______.【答案】5.【解析】∵代入可得,解得:.把,代入代数式得:=.故答案为:5.【考点】1.解一元一次方程;2.代数式求值.8.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?【答案】(1)购买一块A型小黑板需要l00元,购买一块8型小黑板需要l20元;(2)有两种购买方案:方案一:购买A型小黑板21块,购买8型小黑板39块;方案二:购买A型小黑板22块。
一元一次方程专题训练经典练习题(含答案)
一元一次方程专题训练经典练习题(含答案)-CAL-FENGHAI.-(YICAI)-Company One1一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x )=04、5x (2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x ) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x )-3(x+1) 14、1- 12 x=215、3- 13 x=2(x+1) 16、2(x- 34)=8-x17、12 (2x+1)+1=2(2-x ) 18、x- 13(x-5)= 2319、-x= -3(x-4) 20、7x ·(5 - 4· 12)= 5+x21、0.1+x 2 =2 22、 x-10.2 =3(x-1)23、x-10.3 + x+20.3 =2 24 、12 + 13x = 23 +125、 2x-10.5 = 2- 3x+20.3 26、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、 25(300+x )- 35(200+x )=400·110二、一元一次方程应用题1、 一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
2、小华从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B 地,求A、B两地间的距离。
方程与不等式之一元一次方程专项训练
方程与不等式之一元一次方程专项训练一、选择题1.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元【答案】C【解析】【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.2.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A .5B .4C .3D .2 【答案】B【解析】分析:可设两人相遇的次数为x ,根据每次相遇的时间100254⨯+,总共时间为100s ,列出方程求解即可.详解:设两人相遇的次数为x ,依题意有 100254⨯+x=100, 解得x=4.5,∵x 为整数,∴x 取4.故选B .点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.3.某种商品的进价为每件180元,按标价的九折销售时,利润率为20%,这种商品每件的标价为()元.A.200 B.240 C.245 D.255【答案】B【解析】【分析】设这种商品的标价是x元,根据某种商品每件的进价为180元,按标价的九折销售时,利润率为20%可列方程求解.【详解】设这种商品的标价是x元,90%x﹣180=180×20%x=240这种商品的标价是240元.故选:B.【点睛】本题考查一元一次方程的应用,关键知道利润=售价﹣进价,根据此可列方程求解.4.某商品打七折后价格为a元,则原价为()A.a元B.107a元C.30%a元D.710a元【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 5.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程.6.下列关于a 、b 的等式,有一个是错误的,其它都是正确的,则错误的是( ) A .3b a =B .0b a -=C .2290b a -=D .26b m a m +=+【答案】B【解析】【分析】观察四个等式可发现都含有一个相同的等式b-3a=0,由此即可判断出错误的选项.【详解】由题意知,选项A 可以化为b-3a=0;选项C 可以化为(b-3a )(b+3a)=0,可以得到b-3a=0;选项D 可以化为2b-6a=0,即b-3a=0,由此可以判断选项A 、C 、D 都是正确的,选项B 中的等式是错误的,故选:B.【点睛】此题考查等式的性质,根据等式的性质正确化简是解题的关键.7.下列解方程过程中,变形正确的是( )A .由2x-1=3得2x=3-1B .由255143x x -=-得6x-5=20x-1 C .由-5x=4得x =−54 D .由132x x -=得2x-3x=6 【答案】D【解析】【分析】根据等式的基本性质进行判断.【详解】A 、在2x-1=3的两边同时加上1,等式仍成立,即2x=3+1.故本选项错误;B 、在255143x x -=-的两边同时乘以12,等式仍成立,即6x-60=20x-12,故本选项错误;C 、在由-5x=4的两边同时除以-5,等式仍成立,即x=-45,故本选项错误; D 、在132x x -=的两边同时乘以6,等式仍成立,即2x-3y=6,故本选项正确. 故选D .【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;8.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++ B .12(10)1360x x +=+C .60101312x x +-= D .60101213x x +-= 【答案】B【解析】【分析】 实际生产12小时的零件比原计划13小时生产的零件多60件,根据生产总量=生产效率乘以时间即可列出方程【详解】 实际生产12小时的零件数量是12(x+10)件,原计划13小时生产的零件数量是13x 件,由此得到方程12(10)1360x x +=+,故选:B.【点睛】此题考查列方程解决实际问题,正确理解原计划与实际生产的工作量之间的关系是解题的关键.9.下列方程中,是一元一次方程的是( )A .x 2﹣4x =3B .x =0C .x +2y =1D .x ﹣1=1x【答案】B【解析】【分析】一元一次方程的一般式为ax+b=0(a≠0),根据该定义进行判断即可.【详解】解:x2﹣4x=3,未知数x的最高次数为2,故A不是一元一次方程;x=0,符合一元一次方程的定义,故B是一元一次方程;x+2y=1,方程含有两个未知数,故C不是一元一次方程;x﹣1=1x,分母上含有未知数,故D不是一元一次方程.故选择B.【点睛】本题考查了一元一次方程的定义.10.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.4次B.3次C.2次D.1次【答案】B【解析】【分析】【详解】试题解析:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;第三次PD=QB时,Q运动一个来回后从C到B,12-t=36-4t,解得t=8;第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-36,解得t=9.6.∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选:B.考点:平行四边形的判定与性质11.在《九章算术》方田章“圆田术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种无限与有限的转化的思想,比如在234111112222+++++…中,“…”代表按规律不断求和,设234111112222x +++++⋅⋅⋅=.则有112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地2461111333++++⋅⋅⋅的结果为( ) A .43 B .98 C .65 D .2【答案】B【解析】【分析】 设2461111333x ++++⋅⋅⋅=,仿照例题进行求解. 【详解】 设2461111333x ++++⋅⋅⋅=, 则246224611111111113333333⎛⎫++++⋅⋅⋅=+++++⋅⋅⋅ ⎪⎝⎭, 2113x x ∴=+, 解得,98x =, 故选B .【点睛】 本题考查类比推理,一元一次方程的应用,理解题意,正确列出方程是解题的关键.12.商家出售的一种自行车的标价比进价高45%,实际销售这种自行车时按标价八折优惠,每辆获利80元,设这种自行车的进价是每辆x 元,下列方程正确的是( ) A .45%(1+80%)x ﹣x=80B .x+45%﹣80%=80C .80%(1+45%)x ﹣x=80D .(1+80%)(1+45%)x ﹣x=80【答案】C【解析】【分析】设这种自行车的进价是每辆x 元,根据利润=卖价-进价,列方程即可.【详解】设这种自行车的进价是每辆x 元,由题意得,80%(1+45%)x-x=80.故选:C .【点睛】本题考查了一元一次方程的应用-销售问题,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.13.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0B .2C .﹣2D .﹣6 【答案】C【解析】【分析】将x =2代入方程12x +a =-1可求得. 【详解】解:将x =2代入方程12x +a =﹣1得1+a =﹣1, 解得:a =﹣2.故选:C .【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.14.有一下式子:①0x =;②325+=;③14x=;④29x =;⑤23=x x ;⑥34x -;⑦2(1)2x +=;⑧20x y +=.其中是一元一次方程的个数是( ) A .2B .3C .4D .5 【答案】B【解析】【分析】我们将只含有一个未知数,且未知数的最高次数为1的整式方程称之为一元一次方程,据此进一步判断即可.【详解】①0x =,满足定义,是一元一次方程;②325+=,未含有未知数,故不是一元一次方程; ③14x=,分母含有未知数,不是整式方程,故不是一元一次方程; ④29x =,未知数次数为2,故不是一元一次方程;⑤23=x x ,满足定义,故是一元一次方程;⑥34x -,不是等式,故不是一元一次方程;⑦2(1)2x +=,满足定义,故是一元一次方程;⑧20x y +=,含有两个未知数,故不是一元一次方程;综上所述,一共有3个一元一次方程,故选:B.【点睛】本题主要考查了一元一次方程的判断,熟练掌握相关概念是解题关键.15.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里【答案】C【解析】【分析】【详解】 试题分析:设第一天走了x 里,则根据题意知234511111137822222x ⎛⎫+++++= ⎪⎝⎭,解得x=192,故最后一天的路程为5119262⨯=里. 故选C16.下列方程变形正确的是( )A .由25x +=,得52x =+B .由23x =,得32x = C .由104x =,得4x = D .由45x =-,得54x =-- 【答案】B【解析】【分析】 根据等式的性质依次进行判断即可得到答案.【详解】A. 由25x +=,得x=5-2,故错误;B. 由23x =,得32x =,故正确; C. 由104x =,得x=0,故错误; D. 由45x =-,得x=4+5,故错误,故选:B.【点睛】此题考查等式的性质,熟记性质定理是解题的关键.17.若12xy=⎧⎨=-⎩是关于x和y的二元一次方程1ax y+=的解,则a的值等于()A.3 B.1 C.1-D.3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a的一元一次方程即可.【详解】解:将12xy=⎧⎨=-⎩代入1ax y+=得,21a-=,解得:3a=.故选:A.【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.18.解分式方程12x-﹣3=42x-时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4【答案】B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.19.甲、乙两人都从A出发经B地去C地,乙比甲晚出发1分钟,两人同时到达B地,甲在B地停留1分钟,乙在B地停留2分钟,他们行走的路程y(米)与甲行走的时间x (分钟)之间的函数关系如图所示,则下列说法中正确的个数有()①甲到B地前的速度为100/minm②乙从B地出发后的速度为600/minm③A、C两地间的路程为1000m④甲乙在行驶途中再次相遇时距离C地300mA.1个B.2个C.3个D.4个【答案】C【解析】【分析】①②③直接利用图中信息即可解决问题,求出到B地后的函数关系式,利用方程组求交点坐标即可判定④的正确性.【详解】解:由图象可知:甲到B地前的速度为400÷4=100米/分钟,故①正确,乙从B地出发后的速度为600÷2=300米/分钟,故②错误,由图象可知,A、C两地间的路程为1000米,故③正确,设甲到B地后的函数关系为y=kx+b,则有5400 91000k bk b+=⎧⎨+=⎩,解得150350kb=⎧⎨=-⎩,∴y=150x-350,设乙到B地后的函数关系为y=mx+n,则有6400 81000m nm n+=⎧⎨+=⎩,解得3001400mn=⎧⎨=-⎩,∴y=300x-1400,由1503503001400 y xy x=-⎧⎨=-⎩解得7700xy=⎧⎨=⎩,∴甲乙再次相遇时距离A地700米,∵1000-700=300,∴甲乙再次相遇时距离C地300米,故④正确,故选:C.【点睛】本题考查一次函数的应用、路程=速度×时间的关系等知识,解题的关键是读懂图象信息,学会构建一次函数,利用方程组求交点坐标解决实际问题,属于中考常考题型.20.某同学在解方程3x-1=□x+2时,把□处的数字看错了,解得x=-1,则该同学把□看成了()A.3 B.13C.6 D.-16【答案】C【解析】把x=﹣1代入方程3x﹣1=□x+2,得 3×(﹣1)﹣1=﹣1□+2,即﹣4=﹣1□+2,解得□=6.故选C.点睛:此题主要考查了一元一次方程的解,解题时先把x的值代入到方程中,把方程转换成求未知系数的方程,然后解得未知系数的值.。
新初中数学方程与不等式之一元一次方程技巧及练习题附答案(2)
新初中数学方程与不等式之一元一次方程技巧及练习题附答案(2)一、选择题1.若一个数的平方根为2a+3和a-15,则这个数是( )A .-18B .64C .121D .以上结论都不是【答案】C【解析】【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a 的方程,从而可求得a 的值,进而求得这个数.【详解】解:根据题意得:2a+3+(a-15)=0,解得a=4,则这个数是(2a+3)2=121.故选:C .【点睛】本题主要考查了平方根的性质,正数的两个平方根互为相反数,据此把题目转化为解方程的问题,这是考试中经常出现的问题.2.方程2﹣24736x x --=-去分母得( ) A .2﹣2(2x ﹣4)=﹣(x ﹣7) B .12﹣2(2x ﹣4)=﹣x ﹣7C .12﹣2(2x ﹣4)=﹣(x ﹣7)D .以上答案均不对 【答案】C【解析】【分析】两边同时乘以6即可得解.【详解】 解方程:247236x x ---=- 去分母得:122(24)(7)x x --=--. 故选C.【点睛】本题考查了解一元一次方程的去分母,两边乘以同一个数时要注意整数也要乘以这个数.3.小明在某个月的日历中圈出三个数,算得这三个数的和为36,那么这三个数的位置不可能是( )A.B.C.D.【答案】C【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+1+x+8=36,x=9.故本选项可能.B、设最小的数是x.x+x+8+x+16=36,x=4,故本选项可能.C、设最小的数是x.x+x+8+x+2=36,x=263,不是整数,故本项不可能.D、设最小的数是x.x+x+1+x+2=36,x=11,故本选项可能.因此不可能的为C.故选:C.【点睛】此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证.锻炼了学生理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.4.今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄是儿子年龄的4倍.设今年儿子的年龄为x岁,则下列式子正确的是()A.4x-5=3(x-5) B.4x+5=3(x+5)C.3x+5=4(x+5) D.3x-5=4(x-5)【答案】D【解析】【分析】设今年儿子的年龄为x岁,则今年父亲的年龄为3x岁,根据5年前父亲的年龄是儿子年龄的4倍,即可得出关于x的一元一次方程,此题得解.【详解】设今年儿子的年龄为x岁,则今年父亲的年龄为3x岁,依题意,得:3x﹣5=4(x﹣5).故选D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3【答案】A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.6.若关于x 的不等式组12246x k x k k -⎧≥⎪⎨⎪-≤+⎩有解,且关于x 的方程()()2232kx x x =--+有非负整数....解,则符合条件的所有整数k 的和为( ) A .-5 B .-9 C .-12D .-16【答案】B【解析】【分析】先根据不等式组有解得k 的取值,利用方程有非负整数解,将k 的取值代入,找出符合条件的k 值,并相加.【详解】 12246x k x k k -⎧≥⎪⎨⎪-≤+⎩①②, 解①得:x≥1+4k ,解②得:x≤6+5k ,∴不等式组的解集为:1+4k≤x≤6+5k ,1+4k≤6+5k ,k≥-5,解关于x的方程kx=2(x-2)-(3x+2)得,x=-61k,因为关于x的方程kx=2(x-2)-(3x+2)有非负整数解,当k=-4时,x=2,当k=-3时,x=3,当k=-2时,x=6,∴-4-3-2=-9;故选B.【点睛】本题考查了解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.7.某同学在解方程3x-1=□x+2时,把□处的数字看错了,解得x=-1,则该同学把□看成了()A.3 B.13C.6 D.-16【答案】C【解析】把x=﹣1代入方程3x﹣1=□x+2,得 3×(﹣1)﹣1=﹣1□+2,即﹣4=﹣1□+2,解得□=6.故选C.点睛:此题主要考查了一元一次方程的解,解题时先把x的值代入到方程中,把方程转换成求未知系数的方程,然后解得未知系数的值.8.商家出售的一种自行车的标价比进价高45%,实际销售这种自行车时按标价八折优惠,每辆获利80元,设这种自行车的进价是每辆x元,下列方程正确的是()A.45%(1+80%)x﹣x=80 B.x+45%﹣80%=80C.80%(1+45%)x﹣x=80 D.(1+80%)(1+45%)x﹣x=80【答案】C【解析】【分析】设这种自行车的进价是每辆x元,根据利润=卖价-进价,列方程即可.【详解】设这种自行车的进价是每辆x元,由题意得,80%(1+45%)x-x=80.故选:C.【点睛】本题考查了一元一次方程的应用-销售问题,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.数轴上表示数a 和数b 的两点之间的距离为6,若a 的相反数为2,则b 为( ) A .4B .4-C .8-D .4或8- 【答案】D【解析】【分析】根据相反数的性质求出a 的值,再根据两点距离公式求出b 的值即可.【详解】∵a 的相反数为2∴20a +=解得2a =-∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -=解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.10.下列各式属于一元一次方程的是( )A .3x+1B .3x+1>2C .y =2x+1D .3x+1=2【答案】D【解析】【分析】直接利用一元一次方程的定义分析得出答案.【详解】A 、3x+1是代数式,故此选项错误;B 、3x+1>2,是不等式,故此选项错误;C 、y=2x+1,是一次函数,故此选项错误;D 、3x+1=2属于一元一次方程,故此选项正确.故选:D .【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.11.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .3(2)29x x -=+B .3(2)29x x +=-C .9232x x -+=D .9232x x +-=【答案】A【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x-2)=2x+9.故选:A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.12.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 026,则n的值为().A.407 B.406 C.405 D.404【答案】D【解析】【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长,由此得出ABn=5(n+1)×5+1,将2026代入求出n即可.【详解】∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,∴AB1=AA1+A1A2+A2B1=5+5+1==2×5+1=11,∴AB2的长为:5+5+6=3×5+1=16,……∴ABn=5(n+1)+15(n+1)+1=2026,解得:n=404,故选D.【点睛】本题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.13.一件商品以进价120%的价格标价,后又打八折出售,最后这件商品是()A.赚了 B.亏了 C.不赚不亏 D.不确定盈亏【答案】B【解析】【分析】设这件商品进价为a元,根据题意求得标价为120%a元,打八折后的售价为0.96a,比较即可解答.【详解】设这件商品进价为a元,则标价为120%a元,打八折后的售价为120%a×80%=0.96a.∵a>0.96a,∴这件商品亏了,亏了0.04a元.故选B.【点睛】本题考查了一元一次方程的应用,熟知售价、进价、利润之间的关系是解决问题的关键.14.若代数式x+2的值为1,则x等于( )A.1 B.-1 C.3 D.-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.15.下列等式变形错误的是( )A.若x=y,则x-5=y-5 B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y【答案】D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.A:等式两边同时减去了5,等式依然成立;B:等式两边同时除以3-,等式依然成立;C:等式两边同时乘以a,等式依然成立;D:当0m=时,x不一定等于y,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.16.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由n%提高到(n+6)%,则n的值为().A.10 B.12 C.14 D.17【答案】C【解析】【分析】设原进价为x,根据等量关系:原进价+原来利润=进价降低后的进价+降价后的利润列方程求解即可.【详解】解:设原进价为x,则:x+n%•x=95%•x+95%•x•(n+6)%,∴1+n%=95%+95%(n+6)%,∴100+n=95+0.95(n+6),∴0.05n=0.7解得:n=14.故选C.【点睛】本题考查了一元一次方程的应用,此类题常用到得数量关系是:售价=进价+利润,进价×利润率=利润.17.小明和小亮两人在长为50m的直道AB(A、B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B 点……若小明跑步速度为5m/s,小亮跑步速度为4m/s,则起跑后60s内,两人相遇的次数为( )A.3 B.4 C.5 D.6【答案】C【解析】【分析】设在60s内两人相遇x次,根据每次相遇的时间50254⨯+,一共是60s,列出方程求解即可.设两人起跑后60s 内相遇x 次,依题意得:5026054x ⨯=+, 解得x=5.4,∵x 为整数,∴x 取5,故选:C.【点睛】 此题考查一元一次方程的实际应用,解题的关键一是求出两人每一次相遇间隔的实际,二是找到隐含的等量关系:每一次相遇时间乘以次数等于总时间,由此构建一元一次方程.18.某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,•限定其提价的幅度只能是原价的10%,则该药品现在降价的幅度是( )A .45%B .50%C .90%D .95%【答案】A【解析】试题分析:设药品的原价为a 元,药品现在降价x ,则根据题意可得:a (1+100%)(1-x )=a (1+10%),解得x=45%,故选;A .考点:一元一次方程的应用.19.在《九章算术》方田章“圆田术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种无限与有限的转化的思想,比如在234111112222+++++…中,“…”代表按规律不断求和,设234111112222x +++++⋅⋅⋅=.则有112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地2461111333++++⋅⋅⋅的结果为( ) A .43 B .98 C .65 D .2【答案】B【解析】【分析】 设2461111333x ++++⋅⋅⋅=,仿照例题进行求解. 【详解】设2461111333x ++++⋅⋅⋅=, 则246224611111111113333333⎛⎫++++⋅⋅⋅=+++++⋅⋅⋅ ⎪⎝⎭, 2113x x ∴=+, 解得,98x =, 故选B .【点睛】 本题考查类比推理,一元一次方程的应用,理解题意,正确列出方程是解题的关键.20.下列是等式133223x x --=的变形,其中根据等式的性质2变形的是( )A .133232x x --=+ B .3(13)322x x --= C .3(13)64x x --=D .3(13)46x x --= 【答案】C【解析】【分析】根据等式的性质2将原方程两边同时乘以2加以变形化简即可.【详解】 原方程133223x x --=两边同时乘以2可得:3(13)64x x --=,故选:C.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程与不等式之一元一次方程专项训练及答案一、选择题1.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A .3场B .4场C .5场D .6场【答案】C【解析】【分析】设共胜了x 场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x 场,则平了(14-5-x )场,由题意得:3x+(14-5-x )=19,解得:x=5,即这个队胜了5场.故选C .【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.2.方程2﹣24736x x --=-去分母得( ) A .2﹣2(2x ﹣4)=﹣(x ﹣7) B .12﹣2(2x ﹣4)=﹣x ﹣7C .12﹣2(2x ﹣4)=﹣(x ﹣7)D .以上答案均不对 【答案】C【解析】【分析】两边同时乘以6即可得解.【详解】 解方程:247236x x ---=- 去分母得:122(24)(7)x x --=--. 故选C.【点睛】本题考查了解一元一次方程的去分母,两边乘以同一个数时要注意整数也要乘以这个数.3.今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄是儿子年龄的4倍.设今年儿子的年龄为x 岁,则下列式子正确的是( )A .4x -5=3(x -5)B .4x+5=3(x+5)C .3x+5=4(x+5)D .3x -5=4(x -5)【答案】D【解析】【分析】设今年儿子的年龄为x 岁,则今年父亲的年龄为3x 岁,根据5年前父亲的年龄是儿子年龄的4倍,即可得出关于x 的一元一次方程,此题得解.【详解】设今年儿子的年龄为x 岁,则今年父亲的年龄为3x 岁,依题意,得:3x ﹣5=4(x ﹣5).故选D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.4.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A .5B .4C .3D .2 【答案】B【解析】分析:可设两人相遇的次数为x ,根据每次相遇的时间100254⨯+,总共时间为100s ,列出方程求解即可.详解:设两人相遇的次数为x ,依题意有 100254⨯+x=100, 解得x=4.5,∵x 为整数,∴x 取4.故选B .点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.5.如图,有一内部装有水的直圆柱形水桶,桶高20dm ;另有一直圆柱形的实心铁柱,柱高30dm ,直立放置于水桶底面上,水桶内的水面高度为12dm ,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为( )A.4.5dm B.6dm C.8dm D.9dm【答案】D【解析】【分析】由水桶底面半径:铁柱底面半径=2:1,得到水桶底面积:铁柱底面积=4:1,设铁柱底面积为a(dm2),水桶底面积为4a(dm2),于是得到水桶底面扣除铁柱底面部分的环形区域面积为4a-a=3a(dm2),,根据原有的水量为3a×12=36a (dm3),列出方程,即可得到结论.【详解】∵水桶底面半径:铁柱底面半径=2:1,∴水桶底面积:铁柱底面积=4:1,设铁柱底面积为a(dm2),则水桶底面积为4a(dm2),∴水桶底面扣除铁柱底面部分的环形区域面积为4a−a=3a(dm2),∴原有的水量为:3a×12=36a (dm3),设水桶内的水面高度变为xdm,则4ax=36a,解得:x=9,∴水桶内的水面高度变为9dm.故选D.【点睛】本题主要考查用一元一次方程解决圆柱体的等积变形问题,掌握圆柱体的体积公式是解题的关键.6.某种商品的进价为每件180元,按标价的九折销售时,利润率为20%,这种商品每件的标价为()元.A.200 B.240 C.245 D.255【答案】B【解析】【分析】设这种商品的标价是x元,根据某种商品每件的进价为180元,按标价的九折销售时,利润率为20%可列方程求解.【详解】设这种商品的标价是x元,90%x﹣180=180×20%x=240这种商品的标价是240元.故选:B .【点睛】本题考查一元一次方程的应用,关键知道利润=售价﹣进价,根据此可列方程求解.7.一个书包的标价为a 元,按八折出售仍可获利20%,该书包的进价为( ) A .23a B .34a C .45a D .56a 【答案】A【解析】【分析】设进价为x 元,根据题意可得820%10=-x a x ,解得23x a =,即为所求. 【详解】设进价为x 元 根据题意得:820%10=-x a x ∴41.25=x a ∴23x a = 故选:A【点睛】本题考查了一元一次方程的应用,理解题意,分清已知量和未知量,根据题目中的等量关系列出需要的代数式,进而列出方程,解所列的方程,求出未知数的值,检验所得的解是否符合实际问题的意义.8.下列等式变形正确的是( )A .如果0.58x =,那么x=4B .如果x y =,那么-2-2x y =C .如果a b =,那么a b c c= D .如果x y =,那么x y = 【答案】B【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时除以一个不为0的数,等式依然成立;两个数的绝对值相等,其本身不一定相等,据此逐一判断即可.【详解】A :如果0.58x =,那么16x =,故选项错误;B :如果x y =,那么22x y -=-,故选项正确;C :如果a b =,当0c ≠时,那么a b c c=,故选项错误; D :如果x y =,那么x y =±,故选项错误;故选:B.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.9.关于x 的方程243x m +=和1x m -=有相同的解,则m 的值是( )A .6B .5C .52D .23- 【答案】A【解析】分析:根据同解方程,可得关于m 的方程,根据解方程,可得答案.详解:由题意,得:x =m +1,2(m +1)+4=3m ,解得:m =6.故选A .点睛:本题考查了同解方程,利用同解方程得出关于m 的方程是解题的关键.10.有一下式子:①0x =;②325+=;③14x=;④29x =;⑤23=x x ;⑥34x -;⑦2(1)2x +=;⑧20x y +=.其中是一元一次方程的个数是( ) A .2B .3C .4D .5 【答案】B【解析】【分析】我们将只含有一个未知数,且未知数的最高次数为1的整式方程称之为一元一次方程,据此进一步判断即可.【详解】①0x =,满足定义,是一元一次方程;②325+=,未含有未知数,故不是一元一次方程; ③14x=,分母含有未知数,不是整式方程,故不是一元一次方程; ④29x =,未知数次数为2,故不是一元一次方程;⑤23=x x ,满足定义,故是一元一次方程;⑥34x -,不是等式,故不是一元一次方程;⑦2(1)2x +=,满足定义,故是一元一次方程;⑧20x y +=,含有两个未知数,故不是一元一次方程;综上所述,一共有3个一元一次方程,故选:B.【点睛】本题主要考查了一元一次方程的判断,熟练掌握相关概念是解题关键.11.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .3(2)29x x -=+ B .3(2)29x x +=-C .9232x x -+= D .9232x x +-= 【答案】A【解析】【分析】 根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x 辆车,则可列方程:3(x-2)=2x+9.故选:A .【点睛】 此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.12.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是( )A .20岁B .16岁C .15岁D .12岁【答案】A【解析】【分析】设乙今年的年龄是x 岁,则甲今年的年龄是(x+12)岁.根据等量关系:4年后甲的年龄恰好是乙的年龄的2倍,列出方程进行求解即可.【详解】设乙今年的年龄是x 岁,根据题意得:(x+12)+4=2(x+4),解得:x=8,则:x+12=20,即甲今年的年龄是20岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.13.小元步行从家去火车站,走到 6 分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3 分钟.小元离家路程S(米)与时间t(分钟)之间的函数图象如图,从家到火车站路程是( )A .1300 米B .1400 米C .1600 米D .1500 米【答案】C【解析】【分析】 根据图象求出小元步行的速度和出租车的速度,设家到火车站路程是x 米,然后根据题意,列一元一次方程即可.【详解】解:由图象可知:小元步行6分钟走了480米∴小元步行的速度为480÷6=80(米/分)∵以同样的速度回家取物品,∴小元回家也用了6分钟∴小元乘出租车(16-6-6)分钟走了1280米∴出租车的速度为1280÷(16-6-6)=320(米/分)设家到火车站路程是x 米 由题意可知:62380320x x -=⨯+ 解得:x=1600故选C .【点睛】此题考查的是函数的图象和一元一次方程的应用,掌握函数图象的意义和实际问题中的等量关系是解决此题的关键.14.已知方程3x –2y=5,把它变形为用含x 的代数式表示y ,正确的是( )A .y=352x - B .y=352x + C .y=352-+x D .y=352--x 【答案】A【解析】【分析】 根据等式的性质,把x 看做已知数求出y 即可. 【详解】解:方程3x –2y=5解得:y=352x - 故选:A.【点睛】 本题主要考查了等式的性质,解题的关键是将x 看做已知数求出y.15.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种【答案】B【解析】【分析】设小虎足球队踢平场数是所负场数的k 倍,依题意建立方程组,解方程组从而得到用k 表示的负场数,因为负场数和k 均为整数,据此求得满足k 为整数的负场数情况.【详解】解:设小虎足球队胜了x 场,平了y 场,负了z 场,依题意得 17316x y z x y y kz ++=⎧⎪+=⎨⎪=⎩①②③,把③代入①②得(1)17316x k z x kz ++=⎧⎨+=⎩, 解得z=3523k +(k 为整数). 又∵z 为正整数,∴当k=1时,z=7;当k=2时,z=5;当k=16时,z=1. 综上所述,小虎足球队所负场数的情况有3种情况.故选B .【点睛】本题考查了二元一次方程组的应用.解答方程组是个难点,用了换元法.16.小明和小亮两人在长为50m 的直道AB(A 、B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步速度为5m/s ,小亮跑步速度为4m/s ,则起跑后60s 内,两人相遇的次数为( )A .3B .4C .5D .6 【答案】C【解析】【分析】设在60s 内两人相遇x 次,根据每次相遇的时间50254⨯+,一共是60s ,列出方程求解即可. 【详解】设两人起跑后60s 内相遇x 次,依题意得:5026054x ⨯=+, 解得x=5.4,∵x 为整数,∴x 取5,故选:C.【点睛】 此题考查一元一次方程的实际应用,解题的关键一是求出两人每一次相遇间隔的实际,二是找到隐含的等量关系:每一次相遇时间乘以次数等于总时间,由此构建一元一次方程.17.解分式方程12x -﹣3=42x -时,去分母可得( ) A .1﹣3(x ﹣2)=4 B .1﹣3(x ﹣2)=﹣4C .﹣1﹣3(2﹣x )=﹣4D .1﹣3(2﹣x )=4 【答案】B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x ﹣2)=﹣4,故选B .【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.18.如果关于x 的方程()32019a x -=有解,那么实数a 的取值范围是( ) A .3a <B .3a =C .3a >D .3a ≠【答案】D【解析】【分析】根据方程有解确定出a 的范围即可.【详解】∵关于x 的方程(a-3)x=2019有解,∴a-3≠0,即a≠3,故选:D .【点睛】此题考查了一元一次方程的解,弄清方程有解的条件是解本题的关键.19.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t 分钟后第一次相遇,t 等于( )A .10分B .15分C .20分D .30分【答案】C【解析】解:根据题意列方程得:260t +800=300t ,解得:t =20,故选C .点睛:此题要把握再相遇时甲比已多跑了800米,这是一个追及问题,别把它混为相遇问题就能解决.20.如图,平行四边形ABCD 中,AB=8cm ,AD=12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有( )A .4次B .3次C .2次D .1次 【答案】B【解析】【分析】【详解】试题解析:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD ∥BC ,∵四边形PDQB 是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;第三次PD=QB时,Q运动一个来回后从C到B,12-t=36-4t,解得t=8;第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-36,解得t=9.6.∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选:B.考点:平行四边形的判定与性质。