多波及横波地震勘探方法原理

合集下载

地震勘探的基本原理

地震勘探的基本原理

地震勘探的基本原理地震勘探的基本原理地震勘探是一种利用地震波在地下传播的速度、反射、折射和衍射等特性,来研究地下构造和物性的方法。

其基本原理是将人工产生的地震波通过地表或井口传播到地下,经过不同介质的反射、折射和衍射后,再由接收器记录到地面上,并通过对记录数据的处理与解释,获得关于地下构造和物性的信息。

一、地震波的产生1.1 人工震源人工震源是指人类利用各种手段产生的能量大、频率宽、时间短暂、方向可控制且具有重复性等特点的振动源。

常见的人工震源包括爆炸物、振动器和压缩空气枪等。

1.2 自然震源自然震源是指自然界中产生的能量大而频率宽广,时间持续较长且不可控制且不具有重复性等特点的振动源。

常见自然震源包括火山喷发、海啸和地球内部运动等。

二、地震波在介质中传播2.1 地震波的类型地震波包括纵波、横波和面波等。

其中,纵波是指地震波在介质中传播时,颗粒沿着传播方向来回振动的一种波动形式;横波是指地震波在介质中传播时,颗粒垂直于传播方向来回振动的一种波动形式;面波是指地震波在介质表面上发生反射、折射和衍射等现象后,沿着介质表面传播的一种复杂的振动形式。

2.2 地震波在介质中的速度地震波在不同介质中传播的速度不同。

例如,在固体岩石中,纵波单向速度通常高于横波单向速度,而在液态岩石或水中,则不存在横向速度。

同时,不同类型的地震波也具有不同的速度特性。

三、地震勘探数据采集3.1 接收器接收器是指用于记录地震信号并将其转化为电信号输出的设备。

常见接收器包括地震仪、加速计和压电传感器等。

3.2 数据采集系统数据采集系统是指将接收器记录的地震信号进行放大、滤波和数字化等处理,并存储到计算机或数据采集仪中的设备。

常见的数据采集系统包括模拟型和数字型两种。

四、地震勘探数据处理与解释4.1 数据处理数据处理是指将采集到的地震信号进行滤波、去除噪声、提取地震波到时等预处理工作,以及进行成像和反演等后续分析工作。

常见的数据处理方法包括叠加法、偏移法、共振法和反演法等。

地震勘探原理和方法

地震勘探原理和方法

地震勘探原理和方法地震勘探是一种通过地震波的传播和反射来探测地下结构的方法。

通过地震勘探,可以获取地下地质信息,如油气资源、地下水等。

其原理是通过地震波在地下的传播和反射,来获取地下结构的信息,从而进行地质勘探。

地震勘探的原理主要包括地震波的产生和传播,以及地震波在不同媒介中的传播速度和反射、折射等现象。

地震波可以通过不同的方法产生,例如在地面上布设震源装置,如地震仪或爆炸物等,通过地面振动产生地震波。

地震波的传播是通过地下介质的传导来实现的。

地震波的传播速度取决于介质的密度、弹性模量等特性。

当地震波遇到介质边界时,会发生反射、折射和透射等现象。

反射是地震波遇到界面时一部分能量反射回来的现象;折射是地震波遇到介质边界发生方向改变的现象;透射是地震波穿过介质边界后继续传播的现象。

地震勘探的方法主要包括地震勘探测井、地震勘探剖面和地震勘探阵列等。

地震勘探测井是通过在地下钻探井口并向井内注入震源来产生地震波,然后通过井中的测震仪记录地震波。

这种方法可以获取井内和井周围的地下结构信息,用于勘探油气资源等。

地震勘探剖面是通过在地表上布设震源和接收器,在不同位置上记录地震波的传播情况。

这些记录的数据可以通过地震处理和解释来获取地下结构的信息。

这种方法可以获取地质信息和油气资源等。

地震勘探阵列是将多个地面震源和接收器布设在一定区域内,同时记录地震波的传播信息。

通过对地震波的分析和解释,可以获取地下结构的信息。

这种方法可以用于地震监测和地震研究等。

地震勘探还可以通过数据处理和解释来获取更详细的地下结构信息。

数据处理包括地震波形记录的处理、去除噪声等。

数据解释包括地震波传播路径的解释、地震反射地震震相的解释等。

总之,地震勘探是通过地震波的传播和反射来获取地下结构信息的一种方法。

通过不同的方法和技术,可以获取地质信息和油气资源等。

地震勘探具有广泛的应用领域和重要的地质意义。

地震勘探原理知识点总结

地震勘探原理知识点总结

地震勘探原理知识点总结地震勘探是一种通过观察和分析地震波在地下传播的方式,来获取地下结构信息的地球物理勘探方法。

地震波是由地震事件产生的一种机械波,它在地下的传播过程中会受到不同地质体的影响而产生反射、折射等现象,从而携带着地下结构信息。

因此,地震勘探可以用来确定地下的地层结构、寻找矿藏、油气藏等目的。

在地质勘探中,地震勘探是一种非常重要的方法,本文将对地震勘探的原理知识点进行总结。

地震波的产生地震波是由地球内部的地震事件产生的,地震事件通常是由地质构造活动引起的,比如地震断裂带的发生、火山喷发等。

当地球内部发生地震事件时,会产生由地震波作为机械波向四面八方传播。

地震波在传播的过程中会受到地下不同地质体的影响,并产生不同的反射、折射现象,携带着地下结构信息。

地震波的种类地震波可以分为两种主要类型:压缩波(P波)和剪切波(S波)。

P波是一种机械波,它的传播速度相对较快,能够在固体、液体和气体中传播。

S波是一种横波,只能在固体介质中传播,不能传播在液体和气体中。

P波和S波在地下传播时会受到地质体的影响而产生反射、折射等现象,这些现象可以被记录并用来解释地下结构的特征。

地震波在地下的传播地震波在地下的传播受到地质介质的影响而产生不同的现象。

当地震波遇到介质的界面时,会发生反射现象,一部分能量会被反射回来;另外一部分能量会继续向前传播。

此外,当地震波遇到介质的界面时,也会发生折射现象,这会导致地震波的传播方向发生改变。

地震波的这些特性可以被记录下来,并通过分析来进行地下结构的解释。

地震波的记录地震波在地下的传播过程中,会在地下不同深度和不同位置上产生不同的反射、折射现象。

这些现象可以通过地面上的地震波记录仪被记录下来。

地震波记录仪会记录下地震波传播时的波形和传播时间,这些记录可以被地震学家用来分析地下的结构和岩性。

地震波的解释地震波的记录可以被地震学家用来解释地下的结构和岩性。

通过分析地震波的波形和传播时间,地震学家可以确定地下的地层结构、寻找矿藏、油气藏等目的。

地震勘探原理和方法

地震勘探原理和方法

地震勘探原理和方法地震勘探是一种地球物理勘探方法,通过研究地震波在地壳中的传播规律来推断地下岩层的性质和形态。

本文将介绍地震勘探的基本原理和方法,包括地震波传播原理、地震波探测方法、数据采集技术、数据处理技术、地质解释技术、地球物理测井技术和地震勘探仪器设备等方面。

1.地震波传播原理地震波是指地震发生时产生的波动,包括纵波和横波。

纵波是压缩波,在地壳中以波的形式传播,横波是剪切波,在地壳中以扭动的方式传播。

当地震波在地壳中传播时,遇到不同密度的岩层会发生反射、折射和透射等现象,这些现象是地震勘探的基础。

2.地震波探测方法地震波探测方法包括折射波法和反射波法。

折射波法是通过测量地震波在地壳中传播的速度和时间来推断地下岩层的性质和形态。

反射波法是通过测量地震波在地壳中反射回来的信号来推断地下岩层的性质和形态。

在实际应用中,通常采用折射波法和反射波法相结合的方式来提高地震勘探的精度和分辨率。

3.数据采集技术数据采集技术是地震勘探的关键之一,它包括野外数据采集和室内数据采集。

野外数据采集是在野外布置观测系统,通过激发地震波并记录地震信号来进行数据采集。

室内数据采集则是在室内通过计算机系统对野外采集的数据进行处理和分析。

4.数据处理技术数据处理技术是地震勘探的关键之一,它包括预处理、增益控制、滤波、叠加、偏移、反演等步骤。

预处理包括去除噪声、平滑处理等;增益控制包括调整信号的幅度和相位;滤波包括去除高频噪声和低频干扰;叠加是指将多个地震信号进行叠加,以提高信号的信噪比;偏移是指将反射回来的信号进行移动,以纠正地震信号的偏移;反演是指将地震信号转换为地下岩层的物理性质,如速度、密度等。

5.地质解释技术地质解释技术是地震勘探的关键之一,它包括构造解释、地层解释和储层解释等方面。

构造解释是指根据地震信号推断地下岩层的构造特征和形态;地层解释是指根据地震信号推断地下岩层的年代、沉积环境和地层组合;储层解释是指根据地震信号推断地下油气储层的性质和特征。

地震勘探的原理及应用

地震勘探的原理及应用

地震勘探的原理及应用1. 地震勘探的原理地震勘探是一种利用地震波在地下传播的特性来获取地下结构信息的方法。

地震勘探的原理基于以下两个基本假设:1. 地震波在不同介质中传播速度不同地震波在地下介质中传播时,会遇到不同密度、不同速度的介质。

根据介质的物理性质不同,地震波在不同介质中传播时会有相应的速度变化。

这种速度变化导致地震波在地下的传播路径发生偏折、折射和反射,从而提供了地下结构的信息。

2. 地震波与地下结构的相互作用导致地震波的衰减和改变地震波在地下传播时,会与地下结构发生相互作用。

地震波的能量在与地下结构相互作用时会发生衰减,即地震波的振幅逐渐减小。

同时,地震波也会因为地下结构的反射、折射等作用而发生衰减,波形也会发生改变。

通过地震波在地下的衰减和改变,可以推断地下结构的性质和分布。

2. 地震勘探的应用地震勘探在地质科学研究、地下工程勘察和矿产资源开发等领域具有广泛的应用。

2.1 地质科学研究地震勘探可以帮助地质学家研究地下岩石、沉积物的分布和结构。

通过分析地震波在地下的传播速度变化和波形改变,可以推断出地下的岩石类型、厚度、形态等信息。

地震勘探可以帮助地质学家了解地壳运动、地震活动和地下断裂带等地质现象,进而预测地震风险和地质灾害。

2.2 地下工程勘察地震勘探在地下工程勘察中起着重要的作用。

在建设大型工程项目(如大坝、地铁、隧道等)前,需要了解地下的地质条件和结构,以便选择合适的工程设计方案。

地震勘探可以提供地下土层、岩石、裂隙等的信息,帮助工程师在进行工程勘察和设计时避免地质灾害风险,减少工程风险并提高工程质量。

2.3 矿产资源开发地震勘探可以在矿产资源勘探中发挥重要的作用。

通过分析地震波在地下的传播速度和波形改变,可以判断地下是否存在矿产资源。

地震勘探可以帮助勘探人员找到矿脉、矿体等矿产资源的分布情况,并预测矿体的形态、规模和品位等信息。

这些信息对于矿产资源的开发和利用具有重要的指导意义。

多波及横波地震勘探

多波及横波地震勘探
详细描述
多波及横波地震勘探技术能够同时记录纵波和横波的传播信息,提供更全面的地 质信息。在石油和天然气勘探中,通过分析这些信息,可以更准确地确定地质构 造、储层分布和油气的富集程度,为钻井和开采提供科学依据。
矿产资源勘探
总结词
多波及横波地震勘探在矿产资源勘探中具有广泛应用,能够提供更精确的地质 结构和矿产资源分布信息。
探测深度增加
未来多波及横波地震勘探的探测深度 将进一步加大,能够更好地揭示地下 深层的结构和属性,为资源开发和地 质灾害防治提供更准确的信息。
结合其他地球物理方法进行综合勘探
综合地球物理方法
多波及横波地震勘探将与重力、 磁力、电法等其他地球物理方法 相结合,形成综合地球物理勘探 方法,提高勘探效率和精度。
多波及横波地震勘探
ห้องสมุดไป่ตู้
• 引言 • 多波地震勘探原理 • 横波地震勘探原理 • 多波及横波地震勘探的应用实例 • 未来展望
01
引言
地震勘探简介
地震勘探是通过人工方法激发地震波 ,利用地震波在地下传播的规律,探 测地下岩层的分布、性质和形态的一 种地球物理勘探方法。
地震勘探广泛应用于石油、天然气、 煤等矿产资源的勘探,以及工程地质 勘察、水文地质勘察、地质灾害调查 等领域。
详细描述
多波及横波地震勘探技术能够揭示地下岩层的结构和性质, 评估工程场地的稳定性和安全性。通过分析这些信息,可以 预测可能出现的地质灾害和工程问题,为工程设计和施工提 供科学依据,保障工程的安全和可靠性。
05
未来展望
提高多波及横波地震勘探的分辨率和探测深度
分辨率提升
随着技术的发展,多波及横波地震勘 探的分辨率将得到显著提高,能够更 准确地识别地下目标物的细节和特征 。

地震勘探

地震勘探

横波(纵波):质点振动方向与波传播方向垂直(一致). 振动图:同一质点在不同时刻所处位置关系.波动图:振动在传播过程中,各个质点所在位置组成的波形曲线.视速度:不沿射线方向测得的传播速度.视波长:从波剖面中可得到的相邻两峰或两谷间的距离称为视波长.正常时差:将由震源点激发到某一反射界面的自激自收时间与某一炮检距处接收时间之差,称为正常时差-由炮检距不同而引起的时差.剩余时差:动校正后多次各叠加道时间与其中心点处的时间t0之差.动校正:在水平界面的情况下,从观测到的反射波旅行时中减去正常时差△t,得到x/2处的t0时间.均方根速度:把水平层状介质情况下的反射波时距曲线近似当作双曲线,求出的地震波速度称为均方根速度.这种近似在一定程度上考虑了射线的偏折.等效速度:在均方介质条件下,理论双曲线与实际反射波时距曲线最佳拟合的介质速度.平均速度:地震波垂直穿过地层的总厚度与总传播时间之比.地震子波:震源产生的信号传播一段时间后,波行趋于稳定,我们称这时地震波为地震子波.纵向分辨率:在纵向上能分辨岩层的最小厚度.纵向分辨率能分辨的最小厚度为1/4波长.横向分辨率:指在横向区分最小地质的宽度.设为一个菲涅耳带宽度.地震勘探分为反射波勘探地震法,折射波勘探地震法和透射波勘探地震法,用于石油和天然气勘探主要是反射波勘探地震法,其他两种方法用的较少.观测系统:炮点和检波器之间的位置关系动校正过程:从一次反射波的旅行时中减去正常时差,就得到炮点处自激自收反射时间t0.水平叠加:地震资料数据采集得到的是共炮点记录,在地震资料处理时,根据观测系统进行抽道,得到共中心的点道集,再对共中心点道集进行动校正,然后利用水平叠加技术,就得到水平叠加剖面.影响水平叠加效果的因素主要有叠加速度的影响,界面倾斜情况.在水平叠加剖面上,多次波能量得到的压制,绕射波能量加强.地震解释显示方式:波行形式,变面积形式,变面积加波形形式,变密度形式,变密度加波形形式. 地震子波表达式:S(t)=W(t)*R(t)+n(t)地震勘探的主要生产工作步骤为:野外地震采集,地震资料处理,地震资料解释.惠更斯原理:是利用波前概念来研究波的传播的。

地震探测技术的原理与应用

地震探测技术的原理与应用

地震探测技术的原理与应用地震是一种无法预测和控制的自然灾害,但是通过地震探测技术可以有效地监测和提前预警地震。

地震探测技术广泛应用于地质勘探、矿产资源开发、地下工程建设等领域,本文将详细介绍地震探测技术的原理与应用。

一、地震探测技术的原理地震探测技术是利用地震波在地下的传播规律测定地下物质构造和介质性质的一种方法,其核心原理是地震波的传播和反射。

地震波是由地震能量引起地质介质中弹性波的传播,包括纵波和横波。

当地震波经过地下物质层时,会发生反射、折射和透射等现象,通过对地震波的观测和分析,可以确定地下物质的位置、形态、物性等信息。

地震波的传播速度取决于岩石的弹性模量、密度和泊松比等物理特性,不同介质密度和速度的变化会导致地震波的反射和折射,这就是地震探测技术利用的物理原理。

地震探测技术一般分为爆炸地震勘探和地震震源勘探两种,前者是采用爆炸源产生的地震波,后者是利用人工震源产生地震波。

在地震勘探中,一般采用三角测量法、地震反射法、地震折射法、地震层析成像技术等方法进行勘测。

二、地震探测技术的应用1. 石油勘探地震探测技术在石油勘探中起到重要作用,通过对地震波在岩石中的传播和反射特性的观测和分析,可以研究出石油地质构造和储集层分布情况,为石油勘探提供了基础资料。

2. 矿产勘探地震探测技术也被广泛应用于矿产勘探中,可以通过地震波在地下物质中的特性,判断地下矿体的分布情况、形态、深度等信息。

通过地震探测技术的应用,在矿产勘探中发现了大量的矿体,提高了勘探的效率和精度。

3. 地下工程勘察地震探测技术在地下工程勘察中也有广泛的应用,可以通过地震波在地下介质中的传播特性,确定地下障碍物的位置、形状和范围,为工程施工提供了重要的依据。

4. 地震监测和预警地震探测技术在地震监测和预警中也有广泛的应用,可以通过地震波的观测和分析,判断地震的发生时间、地震震级等信息,提前预警,减少地震带来的伤害和损失。

总之,地震探测技术在地质勘探、矿产资源开发、地下工程建设等领域都有广泛的应用,是现代地质工程中不可或缺的技术手段。

地震勘探方法原理

地震勘探方法原理

地震勘探方法原理地震勘探是一种通过地震波传播和反射来获取地下结构信息的方法。

它是地球物理勘探中使用最广泛、最有效的方法之一、地震勘探在石油、地质、地球物理等领域有着广泛的应用,可以用于寻找石油、矿藏、地下水等资源,以及研究地壳构造和地球内部的物质分布。

地震勘探方法基于地下介质中的地震波传播和反射特性。

当地震波从震源发出时,会以弹性波的形式向外传播,包括纵波(P波)和横波(S 波)。

这些波在不同介质中传播时,会发生折射、反射、散射等现象,从而提供了地下结构和介质性质的信息。

地震勘探中常用的炮点与检波点间隔一定距离,然后在炮点处设置震源,通过触发震源产生地震波。

炮点与检波点分别安放在地表或井口上,用于记录地震波的传播情况。

通常会在一条直线上放置多个检波点,以记录不同方向上地震波的到达时间和振幅。

地震勘探的原理主要包括地震波的传播速度和反射特性。

地震波在地下介质中的传播速度是由介质的岩石密度、弹性模量和泊松比等因素决定的。

而地震波的反射特性则与地下界面的界面条件、介质性质和入射角度等有关。

地震波在地下界面上发生反射时,会发生能量的转换和传播方向的改变。

当地震波从一种介质传播到另一种介质时,波的一部分会被反射回来,而另一部分会继续传播,形成折射波。

根据反射波和折射波的到达时间和幅度,可以推断出地下界面的位置、形态和介质性质。

地震勘探的数据处理主要包括地震资料的采集、预处理、处理和解释。

在地震勘探中,需要对地震数据进行时间校正、干扰去除、滤波处理等预处理工作,然后利用地震数据进行地震勘探成像和建模。

这些工作需要借助于地震勘探的理论和方法,如正演模拟、全波形反演、地震偏移等。

总之,地震勘探是一种利用地震波传播和反射特性获取地下结构和介质性质信息的方法。

通过炮点与检波点的布设和数据的处理分析,可以准确地揭示地下的构造和物质分布,为地质、地球物理等领域的研究和资源勘探提供重要的依据和参考。

地震勘探基本原理

地震勘探基本原理

地震勘探基本原理地震勘探是一种利用地震波传播规律探测地下构造和地质信息的方法。

它利用地震波在地下介质中传播的特性,通过测量地震波的传播时间、速度和振幅等参数,推断地下结构和岩性的分布。

地震勘探在石油勘探、工程勘察和地质灾害预测等领域有着重要的应用。

地震勘探的基本原理是利用地震波在地下介质中的传播反射、折射、透射和散射等现象。

当地震波从一个介质传播到另一个介质时,由于介质性质的不同,地震波传播的方向和速度都会发生变化,这就导致了地震波的反射、折射和透射。

地震勘探中常用的地震波有纵波和横波两种。

纵波是指地震波沿着传播方向的振动方向与传播方向一致的波动,它的传播速度较快;横波是指地震波沿着传播方向的振动方向垂直于传播方向的波动,它的传播速度较慢。

在地震勘探中,纵波和横波的传播速度不同,可以用来推断地下介质的物理性质。

地震勘探常用的方法包括地面地震勘探和井下地震勘探。

地面地震勘探是在地表布设地震仪器,通过测量地震波在地下的传播情况来推断地下构造。

地面地震勘探常用的方法有地震反射法和地震折射法。

地震反射法是利用地震波在地下发生反射的现象,通过测量地震波的反射时间和振幅来推断地下构造的分布和形态。

地震折射法是利用地震波在地下发生折射的现象,通过测量地震波的折射角度和折射时间来推断地下构造的性质和分布。

井下地震勘探是在钻井过程中进行的地震勘探,它可以提供更高分辨率的地下图像。

井下地震勘探常用的方法有井下地震反射法和井下地震折射法。

井下地震反射法是在钻井井筒内布设地震仪器,通过测量地震波在井筒壁上反射的时间和振幅来推断地下构造的分布和形态。

井下地震折射法是利用地震波在井筒内和地下介质之间发生折射的现象,通过测量地震波的折射角度和折射时间来推断地下构造的性质和分布。

地震勘探的基本原理是利用地震波在地下介质中的传播现象,通过测量地震波的传播时间、速度和振幅等参数来推断地下构造和岩性的分布。

地震勘探常用的方法有地面地震勘探和井下地震勘探,它们可以提供有关地下构造、岩性和地质灾害的重要信息。

地震勘探的三大原理

地震勘探的三大原理

地震勘探的三大原理地震勘探是一种利用地震波传播和反射特性来研究地球内部结构和寻找地下资源的方法。

它基于三大原理,即地震波的发射、传播和接收。

下面我将详细介绍这三个原理。

首先是地震波的发射原理。

地震波的发射通常采用震源或炸药爆炸的方式。

地震仪器通过记录地震波在地壳中的传播情况,以及记录地震波到达地面的时间和振幅,从而获得地下结构信息。

地震波的发射主要依赖于地震仪器或炸药的释放能量,能量的释放方式和释放地点。

根据不同的地质环境和勘探目标,选择合适的发射方式和能量释放量,可以获得更准确的地下信息。

其次是地震波的传播原理。

地震波在地下传播的过程中会遇到不同的地质体,如岩石层、构造断裂等,它们对地震波的传播具有不同的影响。

地震波在传播过程中会发生折射、反射、散射等现象,这些现象包含了地下结构的信息。

地震波的传播速度与地下介质的物理特性有关,如密度、弹性模量等。

地震波传播速度的变化可以揭示地下岩石的变化,从而帮助我们研究地壳的结构和性质。

最后是地震波的接收原理。

地震波到达地面后,会被地震仪器接收并记录。

地震仪器通常采用地震传感器(即地震记录仪)进行记录。

地震记录仪可以记录地震波到达的时间和振幅,通过这些数据可以推算出地震波的传播路径和波形。

根据地震波的传播时间差和接收点的位置,可以推断地震波的传播路径中的岩石层和构造特征,从而获得地下结构和地质构造的信息。

综上所述,地震勘探的三大原理是地震波的发射、传播和接收。

这些原理的应用可以帮助我们揭示地下结构和寻找地下资源。

在地震勘探实践中,我们可以通过选择合适的发射方式和能量释放量,以及观测和分析地震波在地下介质中的传播特征和到达地面的波形信息,来获得更准确的地下结构和地质构造信息。

地震勘探方法原理

地震勘探方法原理

义:在一个周期(或一个波长距离)内,
振动损耗能量E与总能量E之比的倒数
1

E E

E
;
Q 2 2E
2 E
QE
Q值越大,能量损耗越小,介质越接近完全弹性
吸收系数:波在粘滞介质中传播时,它的振幅被吸收
衰减,衰减的快慢有吸收系数确定
f Q Q V
式中为波长。
别称为体变模量К(压缩模量:压力与体积
变化之比)和切变模量μ(刚性模量:切应
力与切应变之比)。


P V
V



P V
V

切变模量( 刚性模量)μ 的表达式说明: μ 越大,切应变越小。 对于液体, μ=0,即液体不产生切变,只有 体积变化。
拉梅系数:由胡克定律,应力与应变之间存在线 性关系,由线性方程组表示,出现36 个弹性系数。对于各向同性均匀介质, 这些系数大都对应相等,可归结为应力 与应变方向一致和垂直的两个系数λ和 μ(切变模量), λ 即为拉梅系数。
透射波的形成 透射定律:反射线、透射线位于法线的两侧,入射线、透射线、
法线在同一个射线平面内,反射角和入射角满足斯 奈尔定律。
sin sin ' sin
V1
V1
V2
V1 sin V2 sin
斯奈尔定理:入射角的正弦和透射角的正弦之比等于入射波
和透射波速度之比。当V1>V2,则>,透射波射线靠近法线偏折, 当V1<V2,则<,透射波射线远离法线,向界面靠拢。实际地层 中,波的透射多属此类。
波的强度条件:速度界面是透射界面,波阻抗界面是反射界
面。当入射波振幅Ai一定时,T越大,则R越 小,即透射波强,反射波弱;反之,T越小, 则R越大,即透射波弱,反射波强。

探讨多波多分量地震勘探技术进展

探讨多波多分量地震勘探技术进展

探讨多波多分量地震勘探技术进展1 引言随着勘探难度的增加和对岩性勘探要求的日益提高,以纵波勘探技术为依托的传统三维地震勘探已经难以应对勘探过程中遇到的诸多新问题。

在这样的背景下,多波多分量地震勘探技术在近年来得到了迅速的发展。

所谓多波多分量勘探是指利用三分量检波器同时记录地震纵波(P波)、横波(S波)和转换波(P-S 波)信号,并进行相应的资料处理和解释工作。

相比以记录纵波为主的传统勘探方法,该技术能够获取更丰富的波动信息,在描述储层参数和空间展布、预测裂缝发育程度、研究储层含气性等方面表现出明显的优越性。

2 多波多分量地震技术发展历程和应用现状针对多波多分量地震勘探的理论研究最早始于前苏联,而相应的勘探实践则自20世纪70年代以来先后在前苏联、美国、法国等国家展开。

这一时期的勘探主要着力于利用横波速度低于纵波从因此在理论上能实现更高的分辨率这一特点,试图获取分辨率更高的地震资料。

但由于横波在速度低于纵波的同时,其频率也低于纵波在因此传播的过程中衰减严重,采集到的横波地震资料信噪比过低,因此多波多分量勘探在该阶并未取得显著进展。

20世纪70年代末至80年代中期的多波多分量勘探开始转为综合利用纵波、横波的联合勘探,其应用主要集中于求取包括泊松比在内的岩石弹性信息和鉴别含气亮点的真伪等方面。

但由于多波勘探相较于单一的纵波勘探成本过高,且在当时尚有诸多相关基础理论和技术问题未能得到妥善解决,因此多波地震勘探在岩性勘探方面的应用最终被以AVO为基础的纵波岩性勘探所取代。

多波多分量勘探近年来的再次兴起始于20世纪90年代海上多波地震勘探的成功。

海上多波多分量地震勘探先于陆上取得成功的原因主要来自两个方面:(1)一定深度的海床相比于陆地环境噪声更低,采集到的横波资料信噪比较低;(2)海洋地震勘探面临着诸如硬海底、气柱等用传统纵波勘探难以解决的问题,这些问题的提出促进了海上多波勘探的发展。

此外,海底多分量电缆接收系统(OBC)的研制成功为海上多波勘探排除了资料采集方面的障碍。

多波多分量地震勘探

多波多分量地震勘探
33
岩性预测(北海Alba油田):
Alba油田位置图
34
横 波 分裂 现 象
裂缝带引起各向异性 各向异性 引起横波分裂;因此,用横波分裂 现象计算各向异性。
{ H=VPH∕VSH
纵横波速度比: V=VPV∕VSV 各向异性系数:χ= H∕ V
各向异性强度增加 裂缝密度增加
破裂强度也增加 石油产量增加
2 t u 2 z d 5 2 x 5 u 2 z d 4 2 y 4 u 2 z d 3 2 z 3 u 2 z ( d 3 d 6 4 ) 5 2 y u z x ( d 5 d 5 1 ) 3 2 z u z x
(d 3 4d 3)6 2 x u z y (d 4 4d 2)3 2 y u z y 2 d 4 5 2 y u x z
横波分裂数值研究
三 维 EDA 介 质 中 波 动 方 程 , 取 对 x 、 y 的 偏 导 数 为 0 , 得 到 一 维
EDA介质中波动方程,表达式如下:
2uy
t2
d45 2 zu2x
d442 zu2y
2u
2u
2u
t2 d45z2 d55z2
模型1:已知两层地质模型,上面的地层为EDA介质,快、慢横波速度
25
观测系统
观测系统设计的主要参数包括最小炮检距、最大炮检距、道间距、
覆盖次数和接收参数等。在资料处理中,缺少小炮检距的资料会降
低速度分析对反射层的分辨率,而缺少大炮检距的资料会降低速度
分析对速度的分辨率,这都不利于确定精确的纵、横波速度,这在
设计观测系统时要加以考虑。
(1)最小炮检距。由于转换波在近炮检距的反射能量较弱,一般
EDA介质中三维三分量弹性波动方程为:

勘探地球物理中的地震波理论

勘探地球物理中的地震波理论

勘探地球物理中的地震波理论地震波是地球物理勘探中最重要的工具之一。

它们能够揭示地下结构和岩石性质,研究地球内部的物理特性和地质历史。

本文将介绍勘探地球物理中的地震波理论,包括地震波的生成、传播和接收过程,以及地震波利用数据探测地下结构的基本原理。

1. 地震波生成地震波是由地球内部的地震能量转移而来的。

地震波的产生通常是由岩石断裂或移动引起的。

假设一块岩石突然移动或断裂,将产生一种叫做“体波”的震动。

体波分为两种类型:纵波和横波。

纵波是沿坐标轴方向传播,并且在压缩和张力波中交替。

横波是在垂直于坐标轴方向上传播,并且振幅正交于从震源到某一点的方向。

2. 地震波传播地震波在地球中的传播经历了复杂的物理现象,如散射、衰减和干扰。

它还与各种不同的地质结构和介质相互作用。

地球内部的所有介质都有不同的声速和密度,这些参数影响地震波传播的速度、方向和振幅。

沿着介质速度改变的边界传播的地震波发生了弯曲,并产生了反射和折射,使地震波的路径变得更加复杂。

此外,地球内部的不均匀性会导致波的散射和衰减。

因此,地震波的传播会受到多种因素的影响,需要进行深入的分析和建模才能理解其传播特性。

3. 地震波接收地震波可以由传感器接收。

这些传感器通常是地面上的移动式传感器或固定式传感器网络。

地震波接收的过程涉及从地下结构中接收到的多个波形,然后将它们与参考波形进行比较,以关联和定位地下结构。

在现代地震物理应用中,数字信号处理受到了广泛的关注和应用。

这种技术可以对数据进行处理、滤波和解释,从而提高地震图像的分辨率和重建地下结构的精度。

4. 地震波利用数据探测地下结构的基本原理地震波探测是一个基于地震波的纵向和横向速度差异,获取地下结构信息的技术。

非常适合于探测石油天然气、地下水、地热、矿藏、地质灾害等。

探测特定地下结构的方法可以基于P波和S波的波速差异来进行,同时还可以利用反射、折射、绕射和散射的现象进行信息的推断和建图。

地震波探测的基本步骤是将一个震源产生的地震波传播到地下结构,再由传感器接收到回波反馈的数据波形。

地震勘探原理及方法

地震勘探原理及方法

地震勘探原理及方法一、地震勘探基本原理1.地震地质模型基本分类2.光滑、理想弹性介质中的三维波动方程3.无限大均匀各向同性介质中的弹性波场及特征4.地震波的散射、反射和偏折5.多层黏弹性介质中的弹性波场及特征6.几何地震学原理7.地震波速度及地震地质条件1.1地震地质模型基本分类1.地震地质模型2.液态沦为弹性介质的条件3.人工激发震源与岩层的弹性4.常用的弹性介质模型1.3无限大均匀各向同性介质中的弹性波场及特征1.3.1无限大光滑各向同性介质中的平面波1.3.2无限大均匀各向同性介质中的球面波1.3.3地震波的动力学特征1.3.4地震波的运动学特征1、动力学特征(动力学参数)2、运动学特征(运动学参数)3、动力学特征的彰显:远近震源处的加速度波形变化球面扩散、振动图和波剖面谱分析4、运动学的原理和定理:huygens、fermat、snell5、时间场和射线的关系6、基本概念:射线、视速度、频波关系、波数、波长动力学信息(反映动力学特征的信息)振幅、频率、波形、稀释膨胀、极化特点、连续性等特征。

运动学信息(反映运动学特征的信息)传播时间(旅行时间)、传播时间-空间距离的关系、波的传播路径、地震速度等特征 1.4地震波的反射、透射和折射1.平面波的散射和反射2.弹性分界面上的波型转换和能量分配3.球面波的散射、反射和偏折4.地震面波1、斯奈尔定理(包含散射定理、反射定理)2、波的转换(同类波、转换波)3、能量分配zoeppritz方程(法线入射、入射自由表面、反射产生条件)4、弯曲入射光及折射波的产生(产生条件、原因)5、折射波的特点(波前为圆锥台、射线为直线、能量蔓延比反射波慢、折射盲区、屏蔽现象)6、ava曲线(临界入射前、临界入射、过临界入射)7、面波的特点(传播速度、质点位移、频散现象)1.5多层黏弹性介质中的弹性波场及特征1.黏弹性介质中弹性波的传播和大地滤波作用2.多层介质中弹性波的传播特性3.地震波的簿层效应4.地震衍射波5.地震波的波导效应6.反射波地震记录道构成的物理机制黏弹性介质中弹性波的传播基本概念黏滞性介质地震薄层地层对弹性波的吸收作用薄层的干涉作用voigt黏弹性理论薄层的谐波促进作用吸收系数及特性地震纵向分辨率大地滤波促进作用地震衍射波地震子波地震横向分辨率品质因素菲涅尔拎半径波导效应地震道褶积模型1.6几何地震学原理1.6.1地震反射波运动学1.6.2地震折射波的时距曲线1.6.3地震绕射波的时距曲线1.6.4多次反射波的时距曲线1.6.5垂直时距曲线方程1.6.6τ-p域各种波的运动学特点1.6.7地震横波运动学特征1、几何地震学的有关概念:几种深度、倾角的概念,几种深度的关系,视倾角与真倾角的2、反射波时距曲面方程:时距曲面的形状3、单个水平界面、单个弯曲界面、多层界面的时距曲线单个水平界面时距曲线的特点(极小点,渐进线方程,正常时差的概念)单个弯曲界面时距曲线的特点(极小点与界面、女性主义的关系,倾角时差)界面曲率对时距曲线的影响;多层介质反射波时距曲线的速度问题连续介质中波的时间场和反射波时距曲线4、地震折射波时距曲线一个水平、弯曲界面折射波时距曲线(时距曲线的特点、盲区、二者遇时距观测系统)多个水平层折射波时距曲线弯曲界面的折射波、穿透现象5、拖射波的时距曲线(时距曲线的特点、与反射波时距曲线的区别与联系)6、多次波时距曲线的特点。

(第三讲)横波勘探分析

(第三讲)横波勘探分析

一、基本原理
(1)地震各向异性分类 (a)TI介质中弹性波数值模拟,在均匀各向同性 介质中,在同一时刻波场波前快照是个圆,表示波 的传播速度各方向相同。而在各向异性介质中,波 前是一个椭圆,表示波的传播速度各方向不同。
一、基本原理
(1)地震各向异性分类 (b)EDA介质中的三维弹性波数值模拟。在EDA介 质中,考虑裂隙是垂直于地面的情况。理论研究表 明:平行于裂隙面和垂直于裂隙面波前特征不同。 首先,看平行于裂隙面的情况,取某一时刻的快照: 有纵波和横波,它们的波前面都是圆;
一、基本原理 横波双折射特点:
(a)EDA介质中弹性波地面地震记录模拟:
一、基本原理 横波双折射特点:
(b)EDA介质中弹性波VSP记录模拟 第一层是各向同性介质,第二层是各向异性介质, 第三层是各向同性介质.
一、基本原理 小结:横波特点
(1) 垂直面内极化的SV波 在界面上有二次波型转换 (2) 水平面内极化的SH波 在界面上没有波型转换,也称自生波。 (3) 转换横波P-SV
由于采用的三分量检波器记录,不仅记录Z分量, 同时记录X分量和y分量,且震源也可以沿X、y、Z三个 方向激发,这样在地震记录上就得到了更丰富的信息, 不仅可以研究岩性,还可以研究地下介质的裂缝特性, 为石油天然气的精细勘探和开发服务
【思考题】
(1) 横波有哪些特点? (2) 横波双折射的概念? (3) 已知震源子波偏振方向、给定检波器 最 大灵敏度方向下所能观测到何种类型的 波?
一、基本原理
(1)地震各向异性分类 速度各向异性:波的传播速度与传播方向有关。 在各向异性介质中,例如波沿着地层水平方向传播 速度与沿着地层垂直方向传播速度不同。在地震勘 探中,常见的各向异性介可简化为两种: 一种是横向各向同性 ( 简称 TI 介质 ) ,它具有一个垂直对称轴, 在垂直于对称轴的平面内 ,介 质是各向同性的,在其它平面 内,介质是各向异性的。 如周期性的薄互层就属于此类。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波) (1)纵波:从地震波动力学中已知,地震波在弹 性介质中会产生两种波,一种是在介质中质点振动 方向与波的传播方向一致的纵波(, 其传播速度
一、多波勘探的基本原理 (一)地震波的种类及特点
(2)横波:另一种是介质中质点振动的方向与波传 播的方向相互垂直的横波,其传播速度为
一、多波勘探的基本原理 (一)地震波的种类及特点
横波,即SV波,这种波到达地面为SV波,所以接收方向与纯SV波 一样。P—SV波,入射、反射路径不对称,速度也不相同,所以 处理、识别都有一定难度,但由于它产生容易,不需特别装置, 且可以提取出纵、横波速度、所以勘探中使用也较多。同时也产 生透射的纵波和横波。

SV-P波:如当入射为SV横波时,反射波可以为横波,也可
一、基本原理 • 层复合速度:可用两个等效层来表示。 • 将一个厚度为h的层等分为二,则得厚度 相等(h/2)速度不同的两个层。波在第 一层以纵波Vp速度传播,在第二层以横 波Vp速度传播。这样就可把解决单层中 非对称射线问题变为了两层介质对称的 射线问题了。这时就可以利用均方根速 度(V )的公式得出复合速度的表达式
一、多波勘探的基本原理
• (一)地震波的种类及特点
• (3)转换波:当入射波为P 波或SV波时,就可产生同类的反射 波(P-P、SV-SV波)和透射波,也可产生不同类的反射波和 透射波,称为转换波(p-SV、SV-P),如图(7-4-1)所示。

P-SV波:如当入射为纵波时,反射波可以为纵波P波和反射
第五讲: 多波及横波地震勘探
常规地震勘探是利用单一的纵波进行勘 探(如纵波勘探--利用P波;横波勘探 --利用S波)。 多波勘探是指不仅利用纵波、还利用 横波、转换波进行勘探,以提供有关地 质、油气藏更多的信息,解决单一纵波 勘探所不能解决的问题。(如:P、P- SV联合;P、P-SV、SH联合;P、SH联合)一、基本ຫໍສະໝຸດ 理Vv t
i 1
2
i i
t
i 1
2
i
此处V1即为Vp,V2即为Vs,V即为Vps,由此可得出 Vps=(Vp.Vs)1/2 若已知纵波速度,就可由此求出横波速度Vs。
一、基本原理 4.横波的能量分配
(a) (b) (c) (d)
α=0时,61%纵波能量向下透射,39%反射; 近于临界角(33度),透射能量急剧减小; 临界角后,所有能量都反射了,反射纵波能量占10%, P_SV波占90%。 0~90度,输入地下的横波能量为纵波能量的3倍。
x x p
v
2 s
2
在一定条件下近似为一条双曲线。
• 6)倾斜反射面上的P-SV波的时距曲线
一、基本原理 6)倾斜反射面上的P-SV波的时距曲线 参数方程: h x sin h
t ps v p cos p v s cos s htg p tg s x cos sin tg s
一、基本原理
2.地震各向异性 多年来应用的地震勘探理论都是建立在各 向同性、均匀、完全弹性介质的假设基础上, 各向同性是指假设介质的弹性参数与波的传播 方向无关。实际介质的弹性参数与波的传播方 向有关,包括波传播的速度、振幅、偏振特性 等,具有这种性质的介质叫各向异性介质。实 际介质中存在着广泛的各向异性性质,油气勘 探和开发中也是如此。
一、基本原理
(1)地震各向异性分类 另一种是方位各向异性(简称为EDA介质):它是由平 行的垂直裂隙或定向的空隙所引起的,具有水平的 无限次旋转轴的介质。 还有其它的复杂的各向异性介质。
一、基本原理
(1)地震各向异性分类 利用牛顿定理,广义虎克定律和应变位移方程,可 以导出各向异性介质中的波动方程,利用这种波动 方程,就可以研究各向异性介质中的弹性波的传播 规律,这里我们先从正演模型来看各向异性情况下 波场的特点。
p s 2 2 2 ps p0 p 2 p 2 s0 s 2 s
tpo=h/Vp为纵波的单程垂直旅行时,tso=h/Vs为横波的单程垂直旅行时。
由于:
t so
h vs
p0

vp vs
2
t po
,
2
xs x x p
t ps
t
2

x v
p 2 p

vp t p o vs
一、基本原理
(1)地震各向异性分类 速度各向异性:波的传播速度与传播方向有关。 在各向异性介质中,例如波沿着地层水平方向传播 速度与沿着地层垂直方向传播速度不同。在地震勘 探中,常见的各向异性介质可简化为两种: 一种是横向各向同性(简称TI 介质),它具有一个垂直对称轴, 在垂直于对称轴的平面内 ,介 质是各向同性的,在其它平面 内,介质是各向异性的。 如周期性的薄互层就属于此类。
一、基本原理 (1)地震各向异性分类
(b)EDA介质中的三维弹性波数值模拟。 再看垂直于裂隙面的情况,取某时刻的快照:纵 波和一个横波耦合在一起,称为准纵波、准横波, 此时准纵波波前为菱形,而准横波为梅花状,另有 一个纯横波波前面是椭圆,若既不平行也不垂直裂 隙面.则波场更加复杂。
一、多波勘探的基本原理
• (一)地震波的种类及特点
• 勒夫波:存在于低速带与介质分界面上的面波(SH型 面波)。它的速度介于上下介质横波速之间。勒夫波 (L)具有波散特性。其质点振动方向与波的传播方向 垂直。在自由表面上(Z=0),X和Y方向位移为零, 只有Y方向位移沿X方向传播(图 1。1。3 ),质点 振动幅度随深度面迅速衰减。在SH型横波勘探中L波可 能形成干扰,但也可以利用其波散特点求得横波静校 正参数。
利用Snell定律
p
sin p vp

sin s vs
将x和t式用射线参数p表示,然后用二项式展开,取前两项近 似,两式分别平方,去掉p的高次项,最后得到近似式
x sin 2 cos t pso 2 sin vs sin 2 2 2 t ps t ps0 2 x t pso 2 x t po v 2 t so v 2 v s x sin vs vs p s
一、基本原理 • (三)弹性波在分界面上的反射和透射
一、基本原理 • (四)反射波的运动学特征
• 1。一个分界面的反射波时距关系 • 1)水平界面反射纵波的时距曲线
t x t v
2 2 op
2h , 其中top 2 vp
p
2
1。一个分界面的反射波时距关系
• 2)倾斜平界面反射纵波的时距曲线 • 设界面倾角为φ,炮点深度为h,这时距曲线方程: •
t pso t po t so
h vp

h vs
这是一条二次曲线,但不能向水平界面那样可近似为双曲线或抛物 线。
一、基本原理 • 2.复合速度的概念
• 为了研究转换反射波的运动学特点,引入复合速度的 概念。转换反射波的传播速度即与纵波速度又与横波 速度有关。所谓复合速度是不必分离出纵波和横波, 也就是不管波型是什么,用速度谱(或速度扫描)的 方法由转换波资料直接得出的转换波叠加速度,用Vps 表示。对水平地层也就是均方根速度。 • 复合层速度有别于纵波的代替层速度。后者是多层介 质中的概念,而复合速度既有诞辰的层复合速度又有 多层的等效复合速度。
一、多波勘探的基本原理
• (一)地震波的种类及特点
• 在弹性分界面附近还存在着面波。在自由表明,可存在瑞雷面波 (R波)。其质点的运动轨迹可由两个相位差为π /2,振动比为2: 3的相互垂直的振动合成,在波传播平面内是一个逆时针旋转的 椭圆,为椭圆激化。质点振动幅度随深度的增加而减小,在一个 波长的深度就基本“消失”了,可以说R波指存在地下一个波长 的范围内。它的速度于介质泊松比有关:VR=K(σ )Vs。σ 越 大,VR越接近Vs,当σ =0.25时,K(σ )=0.92一般情况下VR 稍小于横波速度Vs。瑞雷面波具有低频的特点,虽然在均匀介质 的自由表明时无波散现象,由于存在低速带时存在波散。所以在 地震图像上常出现扫 状干扰带。
一、基本原理
(1)地震各向异性分类 (a)TI介质中弹性波数值模拟,在均匀各向同性 介质中,在同一时刻波场波前快照是个圆,表示波 的传播速度各方向相同。而在各向异性介质中,波 前是一个椭圆,表示波的传播速度各方向不同。
一、基本原理
(1)地震各向异性分类 (b)EDA介质中的三维弹性波数值模拟。 在EDA介质中,考虑裂隙是垂直于地面的情况。理论 研究表明:平行于裂隙面和垂直于裂隙面波前特征 不同。首先,看平行于裂隙面的情况,取某一时刻 的快照:有纵波和横波,它们的波前面都是圆;
【思考题】
(1) 横波有哪些特点? (2) 横波双折射的概念? (3) 已知震源子波偏振方向、给定检波器 最 大灵敏度方向下所能观测到何种类型的 波?
(4) 横波有哪些应用?
多波地震勘探
一、基本原理 二、资料采集 三、资料处理
四、资料解释和应用
五、思考题参考答案
一、多波勘探的基本原理 研究人工激发弹性波 (一)地震波的种类及特点(纵波、横波及转换
两种横波偶合在一起,所以横波具有极化性。
因此,两种横波对应着两种勘探即SV波勘探和SH波勘探。
一、多波勘探的基本原理
(一)地震波的种类及特点 (3)转换波:当存在一个半无限弹性介质的分界 面时,入射一个纵波,会产生四种波,即反射纵波、 反射横波、透射纵波、透射横波。 这时的反射横波不是由横波震源产生的,而是由 入射纵波转换产生的,所以叫转换波。
一、基本原理
4)倾斜平界面SH(或SV)横波反射波的时距曲 线
2h t s t os , 其中tos 2 vs / cos Vs / cos
2
x
2
tos为横波的双程垂直旅行时。 是双曲线
相关文档
最新文档